
GIT

Princípy tvorby softvéru, FMFI UK Jana Kostičová, 25.4.2016

Basic features

● Distributed version control
● Developed in 2005, originally for Linux kernel development
● Free, GNU General Public License version 2
● Available for Linux, BSD, Solaris, OS X, Microsoft Windows
● Installation: https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Storing data as snapshots

Basic snapshotting

Areas

Working directory - file states

Basic snapshotting - summary
● git init:: creates a new (empty) local repository

● git add [path]: adds new/modified files to the staging area (next commit)

● git commit -m “[message]”: commits staged files into the local repository
with the specified commit message

● git status: shows status of the files in the working directory

● git log: displays history of commits in reverse chronological order: author’s
name and e-mail, the date written and the commit message

● gitk, gitk --all: simple built-in gui for viewing history

Basic snapshotting - other useful commands
● git commit -a: shortcut, automatically stage all tracked, modified files and

commits them
● git status -s (=status --short): shows short version of status
● .gitignore: file which defines file types ignored by git
● git rm: removes files
● git mv:: moves/renames files
● git gui: simple built-in gui for snapshotting
● git log -p, -- [filename], -N, --stat, --pretty=oneline, --pretty=format:

[format], --graph, --since, -S: various log formats and filters
● git diff: compares the working directory to the staging area
● git diff --staged (=git --cached): compares staged changes to the last

commit

Branching

Common
ancestor:

Snapshot to
merge into

Snapshot to
merge in

Branching - summary
● git branch: lists all branches (-v, --merged, --no-merged)

● git branch [branchname]: creates new branch

● git checkout [branchname]: switches to a branch “branchname”

● git merge [branchname]: merges branch “branchname” into current branch

● git add [path]: stages fixed files

● git commit: finalizes merge - allows that only if all conflicted files have been
fixed and staged

● git branch -d [branchname]: deletes branch “branchname”

● git tag -a [tagname] -m [message]: tags last commit

Branching - other useful commands
● git checkout -b [branchname]: shortcut, creates a new branch

“branchname” and switches to its context

● git tag: lists all defined tags

● git tag -a [tagname] [commit] -m [message]: tags specified commit

● git show [tagname]: shows detailed information on given tag

● Rebasing - an alternative to merge

Remote repositories

Remote repositories - summary
● git clone [url]: gets a copy of an existing Git repository

● git branch -vv: shows list of local branches and corresponding upstream
branches (if the local branch is a tracking branch)

● git fetch [remote-name]: downloads data to the local repository (without
merging it)

● git push [remote-name] [branch-name]: uploads local branch to the branch
in the remote repository

Remote repositories - other useful commands
● git clone [url] [dir]: downloads the repository into specified directory

● git pull [remotename]: fetches data from the server and automatically tries
to merge it into the current code

● git remote: lists the shortnames of all specified remote handles

● git remote -v: lists also URLs

● git remote show [shortname]: shows detailed information on given remote
repository

● git ls-remote --heads [remote-name]: lists all remote branches

Other commands

Undoing things
● git commit --amend: adds more files or modifications to the last commit

and/or changes commit message of last commit
● git reset HEAD [file]: unstages file
● git checkout -- [file]: reverts changes in file

Other useful commands:
● git revert [commit]: undoes the changes introduced by given commit and

appends a new commit with the resulting content
● git reset --hard HEAD~1: removes last commit
● git reset --hard [commit]: resets the branch to the specified commit (all

following commits are removed)
(warning: “git reset --hard” command will delete all changes in the working
 directory)

Setup, help
● git config: various settings, e.g.

 --global user.name "John Doe"
 --global user.email johndoe@example.com
 --global alias.co checkout

● git help [cmd]: help

● man git [cmd]: help

mailto:johndoe@example.com

References
● https://git-scm.com/book/en/v2
● https://git-scm.com/docs
● https://www.atlassian.com/git/

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://git-scm.com/docs
https://git-scm.com/docs
https://www.atlassian.com/git/
https://www.atlassian.com/git/

Rebasing

Rebasing - summary
● git rebase [branch2]: replays all (separate) commits of the current branch

(branch1) to the branch2 and makes branch1 to point to the resulting commit
● git checkout [branch2], git merge [branch1]: finalizes merge

Other useful commands:

● git rebase --onto [branch1] [branch2] [branch3]: checks out the branch3,
figures out the commits from the common ancestor of branch 2 and branch3,
and then replays them onto branch1

● git rebase -i: interactive rebase
● git cherry-pick [commit1] [commit2], ..: applies the changes introduced by

given commits one by one, recording a new commit for each

