
Princípy tvorby softvéru, FMFI UK

Requirements

Jana Kostičová, 29.2.2016

SDLC - Waterfall

SDLC - Rational Unified Process

Zdroj: http://www.ibm.com

Requirements engineering
Requirement
● A service, constraint or other property that the system must provide to fill the

needs of the system’s intended users
Engineering
● Implies that a systematic and repeatable techniques should be used

Requirements engineering
● The systematic process which covers all of the activities involved in

discovering, documenting, and maintaining a set of requirements for a
computer-based system

Requirements define WHAT the system should do (not HOW it should do it)
● In practice, requirements and design overlap, e.g.,

○ GUI design as a part of requirements specification
○ Using system architecture to structure the requirements

Requirements engineering

Informal and
fuzzy

requirements
Requirements
engineering

Well-defined,
complete and

consistent
requirements

Customer Supplier

Why are requirements important?

“Analysts report that as many as 71 percent of software projects
that fail do so because of poor requirements management,
making it the single biggest reason for project failure - bigger than
bad technology, missed deadlines or change management
fiascoes”

- CIO Magazine, November 2005

Software requirements serve many purposes:
= basis for a bid for a contract
= part of the contract (scope definition - what will be delivered)
= basis for realistic estimates of time and schedules
= input for design and implementation
= basis for validation and verification
= basis for the system documentation

Software requirements are intended to a diverse
audience:

● Customers and users for validation, contract, ...
● Systems (requirements) analysts
● Developers, programmers to implement the system
● Testers to check that the requirements have been met
● Project Managers to measure and control the project

Requirements form

⇒ there is much
variation in how they
are written and
presented:

A software requirement may
take the form of anything
from a high-level, abstract
statement of a service or
constraint to a detailed,
formal specification.

Types of requirements
Business requirements

● Describe high-level objectives of the organization itself
● Written for management

User (stakeholder) requirements
● Describe user/stakeholder needs
● Statements in natural language plus diagrams
● Written for stakeholders (= any party having an interest in the system developed)

System requirements
● Describe system’s functions, services and operational constraints in detail
● Technical language, diagrams, models
● Basis for designing the system (Software Requirements Specification - SRS)
● May be incorporated into contract

Business vs. Requirements Analysis
- These two activities overlap

Business analysis:
- Identifies changes within the

organisation which are necessary to
achieve strategic goals of the
organisation

- Changes in strategy, organisation
structure, policies, processes, IT, ...

Example
Business
BR1: Reduce incorrectly processed orders by 50% by the end of next quarter
BR2: increase repeat orders from customer by 10% within six months after deployment
User/Stakeholder
UR1: Create new user account.
UR2: View order history.
UR3: Check order status.
UR4: Create new order.
System
FR1: Create new user account with the following attributes: e-mail address, first name, last name, address
line 1, address line 2, city, postal code, phone number,password, timestamp.
FR2: Log in into an existing account using an e-mail address and a password.
...
NFR1: Require passwords of at least 8 characters in length containing a minimum of one non-alphabet
character.
NFR2: Must run on all Java platforms including 64-bit versions
...

Types of requirements
Functional requirements

● Describes services (functions) the system should provide, how the system
should react to particular inputs and how the system should behave in
particular situations

Non-functional requirements

● Describes constraints put on the services (functions) offered by the system
● E.g., interface requirements, GUI requirements, localization requirements

Domain requirements

● Requirements that come from the application domain of the system and that
reflect characteristics of that domain

Non-functional
requirements

More examples
● Non-functional requirements:

○ PRODUCT REQUIREMENT: The user interface should be implemented as simple HTML
without frames or Java applets.

○ ORGANIZATIONAL REQUIREMENT: The system development process and deliverable
documents shall conform to the process and deliverables defined in XYZCo-SP-STAN-14.

○ EXTERNAL REQUIREMENT: The system shall not disclose any personal information about
customers apart from their name and reference number to the operators of the system.

● Domain requirement:
○ The deceleration of the train shall be computed as: D (train) = D (control) + D (gradient),

where D (gradient) is 9.81ms2 * compensated gradient/alpha and the values of 9.81ms2
/alpha are known for different types of train.

Requirements
engineering

process

Requirements
definition

Existing
system

information

Stakeholder
needs

Organisational
standards

Domain
information

Regulations

Elicitation
(meetings,

interviews,, watching
the users, studying
documentation,..)

Analysis
(thinking.

discussions,
notes,

sketches,..)

Specification
(decomposition,

structured
notation,

models, ..)

Validation
(meetings, draft

presentation,
negotiations, GUI

model presentation, ..)

Meeting
minutes,

Notes

Requirements
specification -

final

Requirements
specification -

draft

Detailed view

Software Requirements Specification
Typically structured text supported by figures/models/diagrams

○ Use Case model and Conceptual model (UML)
○ GUI model (mock-ups)

Other approaches
● “Victorian novel”

○ Massive narrative sequential description,
seldom used today

● Flat catalogue of requirements
○ Often used, not optimal

● UML only
○ Insufficient - UML does not provide means

to define non-functional requirements

○ Customer may have poor knowledge of
UML…

● CASE tool (e.g., Enterprise
Architect)

○ More difficult to create and maintain
the specification

○ Provides complete system
description

● Collaborative Software, Wiki (e.g.,
Atlassian Confluence)

IEEE 830 standard - SRS form
● Title
● Table of Contents
● Introduction

○ Purpose, Scope, Definitions, Acronyms & Abbreviations, References

● Overall description
○ Product Perspective, Product Functions, User Characteristics, Constraints, Assumptions and

Dependencies

● Specific Requirements
○ External Interfaces, Functions, Performance Requirements, Logical Database Requirements,

Design Constraints, Software System Quality Attributes, Object Oriented Models

● Appendices
● Index

IEEE 830 standard - “good” SRS
● Correct

○ Correctly describes the system’s behavior
● Unambiguous

○ Every requirement has only one interpretation
● Complete

○ Completely describes the system’s expected behavior and feature set
● Consistent

○ Requirements do not contradict each other
● Ranked

○ Each requirement has an identifier to indicate either its importance or stability
● Verifiable

○ Requirements are testable
● Modifiable

○ Requirements are easy to modify or change
● Traceable

○ The origin of each requirement is known and documented

Requirements traceability

BR1

BR2

BR3

UR1

UR2

UR3

UR4

FR1

NFR1

NFR2

TC1

TC2

TC3

TC4

Business
requirements

User
requirements

System
requirements

Test Cases

FR2

Code

Requirements problems
● Users don't understand what they want
● All requirements are critical, no priority is

defined
● Business requirements are not clearly defined
● Users won't commit to a set of written

requirements
● Users change requirements after the cost and

schedule have been fixed
● Communication with users is slow
● Users often do not participate in reviews
● Users don't understand the development

process

● Technical personnel and end users
may have different vocabularies

● Engineers and developers may try to
make the requirements fit an
existing system or model, rather
than develop a system specific to
the needs of the client

● Analysis may be often carried out by
engineers or programmers, rather
than personnel with the people skills
and the domain knowledge to
understand a client's needs properly

Best practises
● Take into account all types of requirements

○ Use sweng books or other sources to get a comprehensive survey of requirement types
○ Especially non-functional requirements might be difficult to discover

● Gather requirements from all stakeholders
● Avoid grey zones

○ Customer wants everything what is not explicitly “NO”
○ Supplier delivers only things that are explicitly “YES”
○ Document key non-requirements!

● Document requirements accurately and thoroughly
● Avoid ambiguities

○ Natural language is ambiguous, employ independent (internal) reviewers

● Validate requirements with all stakeholders
● Identify risks

○ Project manager is in charge of risk management

Further reading
● Ian Sommerville: Software Engineering (10th edition)

● IEEE STANDARD 830-1998 - IEEE Recommended Practice for Software
Requirements Specifications

● Karl Weigers: Software Requirements (2nd Edition)

