Principy tvorby softvéru

Dizajnové principy

Robert Lukotka
lukotka@dcs.fmph.uniba.sk
www.dcs.fmph.uniba.sk/"lukotka

M-255

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Analyza a dizajn - Grovne

Architektara

Vysokodroviovy analyticky model

Nizkouroviovy analyticky model

Implementaény model

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Analyza a dizajn

Complexity of most software systems is in the fact that in
comprises of a large amount of simple tasks.

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Co chceme dosiahnut

Modularization
Abstraction

Information hiding

Low Coupling
High Cohesion

°
°

°

@ Separation of interface and implementation

°

°

o Sufficiency, Completeness, Easy to understand, ...

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Modularization

Modularizes requirements, implementation, test cases, . ...

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Abstraction

o |dentify aspects that are relevant to the problem

@ Different concepts in the problem domain may become
identical

o Identify concepts that do not represent a concept in the
problem domain that can be useful to simplify stuff

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Design Verification and Validation

@ Verification - Check if all design outputs meet design
conditions imposed at the beginning of the process.

o Validation - Check if all design outputs meet the customer
needs.

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Paradigms - data and behaviour

object oriented - data and behaviour combined

One of the fundamental principles of object-oriented design is
to combine data and behavior, so that the basic elements of
our system (objects) combine both together. M.Fowler

procedural - behaviour acts on separated data
functional - based on immutable values and pure functions

°
°
@ declarative - abstraction from how to do stuff (often via DSL)
°

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Dizajnové principy

Niektoré principy nie si zavislé na paradigme
e YAGNI
e DRY
@ Rule of 3

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Dizajnové principy - Anemic domain model

Objects have no or little behaviour.

M. Fowler, 2003:

“The fundamental horror of this anti-pattern is that it's so
contrary to the basic idea of object-oriented designing;
which is to combine data and process them together. The
anemic domain model is just a procedural style design,
exactly the kind of thing that object bigots like me ...
have been fighting since our early days in Smalltalk.
What's worse, many people think that anemic objects are
real objects, and thus completely miss the point of what
object-oriented design is all about.”

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Dizajnové principy - Anemic domain model

e May indicate lack of abstraction
@ Not really an OO design

@ This my be completely acceptable or even preferred in other
design styles (e.g. procedural, functional design).

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Dizajnové principy - OO paradigma

Information hiding, Separation of interface and implementation
@ Encapsulation - a way how to hide internal information

@ Interface should not depend on the implementation

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Low Coupling

Coupling is the degree of interdependence between software
modules; a measure of how closely connected two routines or
modules are. Disadvantages of high coupling:

@ A change in one module usually forces a ripple effect of
changes in other modules.

Assembly of modules might require more effort and/or time
due to the increased inter-module dependency.

A particular module might be harder to reuse
Hard to reuse, test

Message transmission/translation/interpretation overhead

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Coupling

@ Information expert principle

e Placing the responsibility on the class with the most
information required to fulfill it.
e Reduces coupling.

e Coupling strength, Coupling distance (high coupling between
objects in the same package is more acceptable)

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



High Cohesion

Cohesion refers to the degree to which the elements inside a
module belong together.

@ Various metrics: e.g. LCOM4.
@ Types of cohesion

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.


https://en.wikipedia.org/wiki/Cohesion_(computer_science)#Types_of_cohesion

Encapsulate what varies

Ak je niektora funcionalita vystavéna Castym zmenam poziadaviek
@ vytvorit objekt obsahujici len toto spravanie
@ skryt za iterface(y)

Este vyhodnejsia moznost: abstrakcia

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Single responsibility principle

Open-closed principle
Liskov substitution principle

Interface segregation principle

Dependency inversion principle

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Single responsibility principle

A class should have only a single responsibility.

This implies:
@ high cohesion
@ almost necessarily LCOM4= 1 for the class.

Strategy pattern to separate other responsibility.

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Open-closed principle

A class/package should be open for extension, but closed for
modification.

Tools:
@ Inheritance
e Composition (preferred)

How to do composition and not create a direct dependency?
e Dependency injection (via constructor, via method)

o Factory method

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Liskov substitution principle

Objects in a program should be replaceable with instances of their
subtypes without altering the correctness of that program.

Example:

@ Square as a subclass of Rectangle is probably not a good idea.

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Interface segregation principle

Many client-specific interfaces are better than one general-purpose
interface.

Implications:

@ Limits the impact of an interface change.

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Dependency inversion principle

One should depend upon abstractions, not concretions.

@ In procedural programming a good practice was that higher
level modules depend on lower level modules.

@ This creates a chain of dependencies

@ This principle asks us to depend on abstractions - typically
interfaces.

o High-level modules should not depend on low-level modules.
Both should depend on abstractions.

@ Abstractions should not depend on details. Details should
depend on abstractions.

o If followed completely, there should be an interface for each
potential dependence between classes, but this is not too
practical.

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Further maxims

@ Composition over inheritance

@ Objects are about behavior, not attributes

© Strategy pattern - We may alway treat methods like attributes
@ Design for change, not to last

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Procedural

@ Break procedures and functions into units + give the units a
structure

e Model data (very often in DBMS)

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Functional

o Identify mutable states, builders

@ Algebraic data types
@ SOLID - aplicable with modifications

o OCP - we can use higher order functionas
o "LSP just says “predicates are contravariant" - Ranar Oli

Robert Lukotka lukotka@dcs.fmph.uniba.sk www.dcs.fmph.



Niektoré zdroje

@ https://www.slideshare.net/cristalngo/software-design-
principles-57388843 Wikipedia -
SOLID
Recommended:

© Bob Martin: Bob Martin SOLID Principles of Object Oriented
and Agile Design

Robert Lukotka lukotka®@dcs.fmph.uniba.sk www.dcs.fmph.


https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://www.youtube.com/watch?v=TMuno5RZNeE
https://www.youtube.com/watch?v=TMuno5RZNeE

	Dizajnové princípy
	Object oriented
	Procedural, functional, declarative

