
Design patterns, Code smells, Refactoring

Principles of Software Design

Design patterns, Code smells, Refactoring

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Design pattern

Design pattern:

Repeatable solution to a commonly occurring problem in software

design.

It is not about reusing code.

Design patterns are mostly about typical class structures
present in designs.

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Design patterns

Are reusable solutions for design.

Give terminology to ease speaking about design.

Known solution is easier to understand.

Provide inspiration even if the case is not covered by a design
pattern.

They may indicate missing features in the programming
languages.

Some of the patterns are included into languages (e.g.
Decorator in Python).

Duck-typing languages need fare less elements to attain the
same goal. Even if some elements (e.g. interfaces) are not in
the code explicitly, they are still there implicitly.

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Example - Decorator pattern

Decorator pattern - There are other viable solutions to this
problem, but

many of the other solution are less �exible,

other solutions are much harder to explain - if you use the
pattern a single word �Decorator� is enough to describe several
classes.

Robert Luko´ka Software development process

https://sourcemaking.com/design_patterns/decorator


Design patterns, Code smells, Refactoring

Types of design patterns

Design pattern Gang of Four types:

Creational

Structural

Behavioral

But we have also

Concurrency patterns

Domain-speci�c patterns

. . .

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Creational design patterns

Factory method - a method (which may be static but is not
a constructor) of a class, which returns new instances of some
other class.

The method may return instances of more than one class
depending upon the parameters received.
The caller does not need to know the exact class of the
instance (just an explicit or implicit interface it has to satisfy).
A class containing a factory method can be injected into a
class calling it e.g. in constructor. We can replace the factory
if we need to produce instances of a di�erent class.

Abstract factory - An interface containing several related
factory methods.

Generally, there exists more implementations of the interface.

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Factory method - Example

A graph may be represented with adjacency matrix or
adjacency list

We want to create graphs in our class A, but which
representation is desirable is outside the scope of the class.

We need the following

GraphFactory - interface de�ning the factory method
SparseGraphFactory and DenseGraphFactory implement
GraphFactory
Graph - interface that contain some graph methods (so we can
actually do something with the graph even if we do not know
the implementation).
SparseGraph and DenseGraph implement Graph.
Our class A that creates graphs takes GraphFactory in its
constructor.
According to the implementation of Graphfactory we provide
class A either creates SparseGraph or DenseGraph instances.

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Creational design patterns

Builder - A class that is used to incrementally create or
modify instances of other class..

If creating or modifying an object is complex we could end up
with two sets of methods, one for the building / modifying
phase and second for the actual usage phase. This violates
single responsibility principle.
Distinct data structures may be needed in each phase.

Example: Java StringBuilder

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Builder - example

Graph has methods addEdge(. . . ), removeEdge(. . . ),
addVertex(. . . ) (represented by adjacency lists)

We want to replace the edge by two consecutive edges incident
to a new vertex.

We can: remove edge, add vertex, add two edges.

We have to manipulate the lists a lot.
This is especially bad if we do many such operations

GraphBuilder - we add the new vertex and write its new
adjacency list. Note that now we do not have a graph now,
thus it is good that we have a distinct clas in this situation.
We correct the entries in the adjacency lists of incident
vertices, We have a proper graph again and we can convert the
result to Graph.

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Creational design patterns

Object pool - Instead of creating / destroying a class we just
take an instance from / return an instance to a pool of
objects.

Useful if it is hard to create an instance (threads, connections,
etc.)
We can control the resources by providing limits on the
number of instances available.
typical use: ThreadPool, ConnectionPool

Prototype - New instances are being created by copying a
prototype.

Singleton - A class that is guaranteed to have only one
instance.

. . .

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Structural patterns

Decorator

Composite - Treelike structure to compose objects.

Facade - Class giving an easy access to whole subsystem.

Adapter - Class that modi�es the methods of another class to
satisfy an interface.

Proxy - An object representing another object.

Access proxy, remote proxy, virtual proxy, . . .

Flyweight - We divide a class into a part that is common for
many instances and a part that is speci�c for each instance.

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Behavioral patterns

Iterator

Observer - Notify objects of about changes.

Strategy - Encapsulation of an algorithm.

Template method - Method in an abstract class using other
abstract methods.

Null object - Sometimes reasonable �default� exists which can
be returned in case of failure.

Memento - Keep and reconstructs a state of an object

Visitor - Represent an operation to be performed on the
elements of an object structure. Visitor lets you de�ne a new
operation without changing the classes of the elements on
which it operates.

. . .

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Code smells

Code smell is

"a code smell is a surface indication that usually corresponds to a

deeper problem in the system" - - M.Fowler - -

Code smell is by de�nition not a bug.

May indicate technical debt.

Refactoring is a process of restructuring the source code

without changing its external behavior.

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Software entropy

Ivar Jacobson et al.:

The second law of thermodynamics, in principle, states that a

closed system's disorder cannot be reduced, it can only remain

unchanged or increase. A measure of this disorder is entropy. This

law also seems plausible for software systems; as a system is

modi�ed, its disorder, or entropy, tends to increase. This is known

as software entropy.

M.M.Lehman, L.A.Belady:

1 A computer program that is used will be modi�ed

2 When a program is modi�ed, its complexity will increase,

provided that one does not actively work against this.

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Incorporating refactoring into software development process

Refactoring should be a incorporated into our software
development process

Example: Test-driven development

1 Write a test.

2 Check if the test fails (this is, according to my experience,
unexpectedly useful)

3 Write code

4 Check if the test passes

5 Refactor

6 Check if the test passes

Note the division between adding functionality and refactoring, this
is important.

Robert Luko´ka Software development process



Design patterns, Code smells, Refactoring

Code smells - examples

Code smells - Sourcemakong

Long class

Too many arguments in a method

Switch statement

Parallel inheritance hierarchies

Repeating code

Too many comments (even in the case they seem useful)

. . .

Robert Luko´ka Software development process

https://sourcemaking.com/refactoring/smells


Design patterns, Code smells, Refactoring

Refactoring - examples

Code smells - Sourcemakong

Decompose complex conditional

Extract Method

Extract Variable

Replace Nested Conditional with Guard Clauses

Introduce Parameter Object

Form Template Method

. . .

Robert Luko´ka Software development process

https://sourcemaking.com/refactoring/smells
https://sourcemaking.com/refactoring/decompose-conditional
https://sourcemaking.com/refactoring/extract-method
https://sourcemaking.com/refactoring/extract-variable
https://sourcemaking.com/refactoring/replace-nested-conditional-with-guard-clauses
https://sourcemaking.com/refactoring/introduce-parameter-object
https://sourcemaking.com/refactoring/form-template-method


Design patterns, Code smells, Refactoring

Resources I

Sourcemaking

oodesign.com

Robert Luko´ka Software development process

https://sourcemaking.com/design_patterns
http://www.oodesign.com/


Design patterns, Code smells, Refactoring

References I

Sourcemaking

oodesign.com

Robert Luko´ka Software development process

https://sourcemaking.com/design_patterns
http://www.oodesign.com/

