
Implementation, Integration

Principles of Software Design
Implementation, Integration

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Implementation, Integration



Implementation, Integration

Implementation

We covered a lot of stu� that a�ect software construction

Design principles

DRY, Rule of 3

Code smells, Refactoring

Testing

. . .

Robert Luko´ka Implementation, Integration



Implementation, Integration

Coding conventions

Why to have coding conventions [2]:

40%�80% of the lifetime cost of a piece of software goes to
maintenance.[3]

Hardly any software is maintained for its whole life by the
original author.

Code conventions improve the readability of the software,
allowing engineers to understand new code more quickly and
thoroughly.

If you ship your source code as a product, you need to make
sure it is as well packaged and clean as any other product you
create.

Robert Luko´ka Implementation, Integration



Implementation, Integration

Coding conventions

Coding conventions, levels:

Programming language level

Organization level

Project level

Package level

Single source level

There are several reasons why to break a convention, but we should
make an e�ort to be consistent, the lower the level, the greater the
importance of consistency.

If you decide not to clean up, you should follow the
conventions of surrounding code.

Reasons for speci�c conventions at unit level: uses a lot of old
code that uses other convention.

Robert Luko´ka Implementation, Integration



Implementation, Integration

Coding conventions [2]

Comment conventions

Indent style conventions

Line length conventions

Naming conventions

Programming practices

Programming principles

Programming style conventions

Robert Luko´ka Implementation, Integration



Implementation, Integration

Comment conventions

How to use Docstrings (Python), etc. Javadocs

When are comments mandatory

/* . . . */ vs // (C++)

How should comments be formated

. . .

Robert Luko´ka Implementation, Integration



Implementation, Integration

Indent style conventions

space or tabs (spaces are more common) or even tabs for
indentation and spaces for alignment.

how many spaces

how to split long lines (this is a surprisingly complex topic)

readability
ease of change

Where to put { }, there are many choices: Indentation style

. . .

Robert Luko´ka Implementation, Integration

https://en.wikipedia.org/wiki/Indentation_style


Implementation, Integration

Line length conventions

79, 80, 99, 100 (Python), 180 (Mono), unlimited (Go), . . .

Characters per line in various programming languages

79 or 80 is somewhat short (leads to more lines, may encourage
shorter names) but it is standard terminal width.

Robert Luko´ka Implementation, Integration

https://en.wikipedia.org/wiki/Characters_per_line#In_programming


Implementation, Integration

Naming conventions

What needs a name needs a convention?

variable (local/global), namespace, constant, package, class,
object, method, function, procedure, . . .

What should be agreed?

length

uppercase/lowercase

First letter

How to shorten long names

How to separate words

CamelCase
snake_case
kebab-case

Robert Luko´ka Implementation, Integration



Implementation, Integration

Naming conventions Java

classes - UpperCamelCase

methods - lowerCamelCase

variables - lowerCamelCase

constants -
UPPER_CASE_SEPARATED_BY_UNDERSCORES

Robert Luko´ka Implementation, Integration



Implementation, Integration

Naming conventions

There is no big reason to avoid long names.
Reasons for short names (mostly historical):

Old linkers had limits on variable the length of names.

Editors lack autocomplete.

Small monitors, screens (80 characters, still a valid reason if
your line width convention is like this)

Computer science has its orgin in mathematics where short
names are common.

Robert Luko´ka Implementation, Integration



Implementation, Integration

Examples - Python

Have a very quick look at the coding style guide for Python:

PEP 8,

Robert Luko´ka Implementation, Integration

https://www.python.org/dev/peps/pep-0008/


Implementation, Integration

Examples - C++, C

Have an even quicker look:

Google C++ coding standards

SEI CERT C++ Coding Standard (Example)

Robert Luko´ka Implementation, Integration

https://google.github.io/styleguide/cppguide.html
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046322
https://wiki.sei.cmu.edu/confluence/display/c/EXP36-C.+Do+not+cast+pointers+into+more+strictly+aligned+pointer+types


Implementation, Integration

Coding style

Python has several guiding principles:

PEP 20, Examples, More examples

There are many standardized way to do stu�, e.g.

check if a list is empty: �if list:.�

You should learn these and use these (this fact + familiarity with
common libraries is what makes you �know the language�, not
syntax, syntax is easy).

Robert Luko´ka Implementation, Integration

https://www.python.org/dev/peps/pep-0020/
https://www.quora.com/What-do-different-aphorisms-in-The-Zen-of-Python-mean
http://artifex.org/~hblanks/talks/2011/pep20_by_example.html


Implementation, Integration

Example - iterating C++ vectors

for(auto element: vec)

You should do this.

for(auto it=pole.begin(); it<pole.end(); it++)

You expect inserting or deleting elements of the array, or some
other more complex stu�.

for(unsigned int i=0; i<pole.size(); i++)

Variable i should be of signi�cant importance.

Robert Luko´ka Implementation, Integration



Implementation, Integration

Linters

Automated tools to check if you follow the coding conventions and
the coding style (to some degree).

pylint

Cpplint

Use them, it is very cheap and e�cient way to improve code
quality.

If an exception is required, you can mark it in the code.

This forces you to think more whether the exception is worth
it.

Robert Luko´ka Implementation, Integration

https://www.pylint.org/
https://en.wikipedia.org/wiki/Cpplint


Implementation, Integration

Dealing with errors

How to deal with erroneous inputs?

Defensive programming - we expect each input may be
incorrect.

Design by contract - a part of the function de�nition we have
what the inputs should satisfy and what happens in that case
(e.g. unde�ned behavior).

Robert Luko´ka Implementation, Integration



Implementation, Integration

Dealing with errors

Response to detected failure: Fail fast

Fail fast and visibly.

Makes it easier to check and correct errors

Note that fault tolerance is not opposite to fail fast. One can fail
visibly and still leave large part or the whole system intact.

Robert Luko´ka Implementation, Integration



Implementation, Integration

Test driven development

TDD work�ow:

1 Add a test

2 Run all tests and see if the new test fails

3 Write the code

4 Run tests

5 Refactor code

6 Run tests

Robert Luko´ka Implementation, Integration



Implementation, Integration

Three rules of TDD

If you do TDD, you should add your code in very small increments.
These rules require you to make even smaller increments.

1 You are not allowed to write any production code unless it is
to make a failing unit test pass.

2 You are not allowed to write any more of a unit test than is
su�cient to fail; and compilation failures are failures.

3 You are not allowed to write any more production code than is
su�cient to pass the one failing unit test.

Robert Luko´ka Implementation, Integration



Implementation, Integration

TDD advantages

Advantages

great unit test coverage

e�ciency

little need for debugging

TDD encourage to put minimal code into hard to test or cannot be
unit reasonably tested (user interfaces, working with databases,
etc.).
Disadvantages:

Code and tests are written simultaneously, they may share
blind spots.

You need to maintain the tests, problematic for badly written
tests that need to change on refactoring.

Robert Luko´ka Implementation, Integration



Implementation, Integration

Integration

How often should you integrate.

Frequently - integrating frequently allows to detect
disagreement between teams working on various parts faster.

To be able to obtain customer feedback, you should even be
able do deliver/deploy frequently.

To illustrate necessary practices we will focus on one speci�c
approach and quite popular approach: continuous integration

Robert Luko´ka Implementation, Integration



Implementation, Integration

Continuous integration

One can extend continuous integration further.

Continuous integration - You integrate your system with each
commit.

Continuous delivery - Current version of system is always ready
for deployment (not necessarily with each commit but e.g.
daily).

More testing needed.

Continuous deployment - You deploy your product
continuously.

Requires architecture supporting deployment without a�ecting
the production too much.
This is architecturally signi�cant requirement.

Robert Luko´ka Implementation, Integration



Implementation, Integration

Continuous integration - Best Practices

Maintain a Single Source Repository.

VCS has everything necessary to build and deploy the project.
Minimal branches, stable mainline (Reasonable branches are
bug �xes of prior production releases and temporary
experiments.)

Automate the Build

Automate each aspect of the build
IDE independent

Robert Luko´ka Implementation, Integration



Implementation, Integration

Continuous integration

Make Your Build Self-Testing

All levels of testing automated

Everyone Commits To the Mainline Every Day

Every Commit Should Build the Mainline on an Integration
Machine

Fix Broken Builds Immediately

Mainline is in sound state all the time.
If a build breaks very often you just return to previous version
immediately

Robert Luko´ka Implementation, Integration



Implementation, Integration

Continuous integration

Keep the Build Fast < 10min.

Build and test only what has changed
Use deployment pipeline if some tests have to take long.

Test in a Clone of the Production Environment

This has its limit, but you should try your best.
It is worth some additional expenses in purchasing the software.

Make it Easy for Anyone to Get the Latest Executable

Everyone can see what's happening

At least the state of the mainline build.

Automate the deployment (and rollback)

Robert Luko´ka Implementation, Integration



Implementation, Integration

Deployment pipeline

Multiple builds done in sequence

Commit build - when somebody commits into mainline

Fast, reduced ability to detect bugs, but stable enough for
other people to work on.

The second stage build runs a di�erent suite of test, may take
few hours.

Failure shows where commit build tests should be extended.

If necessary, there may be more stages.

Robert Luko´ka Implementation, Integration



Implementation, Integration

Resources I

Wikipedia - Coding conventions

Wikipedia - Naming conventions

M. Fowler - Continuous Integration

optional video - B. Martin - The Three Laws of TDD

optional video - M. Fowler - Continuous delivery

Robert Luko´ka Implementation, Integration

https://en.wikipedia.org/wiki/Coding_conventions
https://en.wikipedia.org/wiki/Naming_convention_(programming)
https://martinfowler.com/articles/continuousIntegration.html
https://www.youtube.com/watch?v=qkblc5WRn-U
https://www.youtube.com/watch?v=aoMfbgF2D_4


Implementation, Integration

References I

Wikipedia - Software Construction

Wikipedia - Coding conventions

Wikipedia - Naming conventions

Python - PEP 8

Python - PEP 20

pylint

Google C++ coding standards

SEI CERT C++ Coding Standard

Cpplint

M. Fowler - Continuous Integration

Robert Luko´ka Implementation, Integration

https://en.wikipedia.org/wiki/Software_construction
https://en.wikipedia.org/wiki/Coding_conventions
https://en.wikipedia.org/wiki/Naming_convention_(programming)
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0020/
https://www.pylint.org/
https://google.github.io/styleguide/cppguide.html
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046322
https://en.wikipedia.org/wiki/Cpplint
https://martinfowler.com/articles/continuousIntegration.html


Implementation, Integration

References II

Wikipedia - Continious integration

Robert Luko´ka Implementation, Integration

https://en.wikipedia.org/wiki/Continuous_integration

