
Types, Paradigms

Principles of Software Design

Types, Paradigms

Robert Luko´ka

lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Types, Paradigms

Types, Paradigms

Types

What is type system good for?

kill(int, int)

kill(SIGUSR1, pid)

Compiles, runs. May cause an hard to track. Writing tests
may be hard.

kill(Signal, ProcessId)

kill(Signal_SIGUSR1), ProcessId(pid))

Compile-time error. Hard to make a bug.

Robert Luko´ka Types, Paradigms

Types, Paradigms

Types

Strings + encoding:

somewhere you should write a ="lala\aa"

somewhere else a ="lala\\aa", because "\" is a special

character.

We might want to make distinct types for these two to avoid

bugs.

One can also write unit tests to handle this, but if this issue

spans multiple units, type checking is not only more reliable

but also more e�cient way to handle this.

Robert Luko´ka Types, Paradigms

Types, Paradigms

When to check types

When type correctness can be checked

While writing, your IDE may have this feature (requires static

typing)

Compile time (static typing)

Run time (dynamic typing)

�Strong� vs �weak� typing, examples of weak typing may include

�5�+3

C pointers .. you vast void * all the time.

many other shortcuts used in various programming languages

Robert Luko´ka Types, Paradigms

Types, Paradigms

Type systems

The types may be very complex. Some type systems are

NP-complete.

template <int N> struct Factorial

{

enum { val = Factorial<N-1>::val * N };

};

template<>

struct Factorial<0>

{

enum { val = 1 };

};

Thus types std::array<int, 6> and

std::array<int, Factorial<3>::val> are the same.

Robert Luko´ka Types, Paradigms

Types, Paradigms

Dependent types

Examples from Python:

Any

Union

Tuple

Optional

Callable

. . .

You can de�ne your own dependent types.

Robert Luko´ka Types, Paradigms

Types, Paradigms

Type checks

Bene�ts of type checks:

Help document the code.

Enables better IDE support.

Help to maintain cleaner design.

Disadvantages:

You have to write types.

You have to create boundaries between typed and untyped

code (e.g. using external libraries).

Robert Luko´ka Types, Paradigms

Types, Paradigms

More info on typing in Python and on typing in general

If you are interested check this.

Robert Luko´ka Types, Paradigms

https://realpython.com/python-type-checking/

Types, Paradigms

Programming paradigm

A programming paradigm is a style, or �way,� of programming.

Paradigm can also be termed as method to solve some problem or

do some task. Programming paradigm is an approach to solve

problem using some programming language or also we can say it is

a method to solve a problem using tools and techniques that are

available to us following some approach.

Robert Luko´ka Types, Paradigms

Types, Paradigms

Selected Paradigms

From which elements we compose programs:

Procedural

Object oriented

Functional

How we write program:

Declarative

Imperative

Robert Luko´ka Types, Paradigms

Types, Paradigms

Programming Paradigms

Note that there are many other paradigms accounting for various

concerns:

Event-driven programming

Aspect-oriented programming

Generic programming

. . .

See e.g. Wikipedia for some random list.

Robert Luko´ka Types, Paradigms

https://en.wikipedia.org/wiki/Programming_paradigm

Types, Paradigms

Procedural programming

Procedure perform operations over data.

Procedures call other procedures or functions to perform

partial tasks.

Robert Luko´ka Types, Paradigms

Types, Paradigms

Object oriented programming

Principles:

Program is divided into classes. Classes contain both data and

behavior.

Encapsulation

Polymorphism

Inheritance

Robert Luko´ka Types, Paradigms

Types, Paradigms

Functional programming

Principles:

Based on composing pure functions.

Same input gives the same output (no internal/global state).
No side-e�ects (throwing exceptions, i/o, . . .)

Higher order functions (functions that take functions as

parameters)

Referential transparency - Immutable data

Pure functional languages are often accompanied by very

strong and complex type systems.

Robert Luko´ka Types, Paradigms

Types, Paradigms

Example - Relation on R

Procedural (Python):

def relation_add(rel, el1, el2):

if (el1, el2) in rel.elements

return

rel.elements += (el1, el2)

Robert Luko´ka Types, Paradigms

Types, Paradigms

Example - Relation on R

OOP (Python)

class Relation:

...

def add(self, el1, el2):

if (el1, el2) in self.elements

return

self.elements += (el1, el2)

Robert Luko´ka Types, Paradigms

Types, Paradigms

Example - Relation on R

Functional (Python):

class Relation:

...

def add(self, el1, el2):

if (el1, el2) in self.elements

return self

return Relation(self.elements+(el1, el2))

Robert Luko´ka Types, Paradigms

Types, Paradigms

Example - non-pure function

Eventually, you need a state. It can be done, but you should be

careful with it in FP:

def give_counter():

j=0

def function_to_return():

nonlocal j

j+=1

return j

return function_to_return

counter=give_counter()

a=counter() %1

b=counter() %2

Robert Luko´ka Types, Paradigms

Types, Paradigms

Example - server performs stu� on database

Procedural:

You can perform a set of changes in several procedures

O-O:

You read data, build object structure, then you do something

and update what needs to be updated.

Functional:

Read data, evaluate pure function, write data.

You can return a procedure that changes the state as required.

Robert Luko´ka Types, Paradigms

Types, Paradigms

Some stu� to be found in functional languages

fib = -> n { (n == 0 || n == 1) ? n :

fib[n - 1] + fib[n - 2] }

s(x) = (1 to x) |> filter (x => x % 2 == 0)

|> map (x => x * 2)

my_map_and_filter = filter(x => x % 2 == 0)

. map (x => x * 2)

Robert Luko´ka Types, Paradigms

Types, Paradigms

Some stu� to be found in functional languages

Check this (or if it is too abstract, just move on):

Maybe Monad

Robert Luko´ka Types, Paradigms

https://en.wikipedia.org/wiki/Monad_(functional_programming)#An_example:_Maybe

Types, Paradigms

Imperative vs declarative

Imperative - you describe how to do something

Declarative - you de�ne what you want to get done

The boundary is fuzzy.

Robert Luko´ka Types, Paradigms

Types, Paradigms

Examples: declarative approach

SQL - you do not say how to join tables

HTML - you do not say how to render stu�

Regular expressions

Constraint programming

. . .

Robert Luko´ka Types, Paradigms

Types, Paradigms

Declarative programming

You need something that translates what → how.

It is really important that this �something� is very reliable.

If you manage to do it, you will have a code that is much

easier to read and write.

Hard to do in general, however, it might be reasonable to do

this if the scope is small.

Robert Luko´ka Types, Paradigms

Types, Paradigms

Domain speci�c languages

Watch this:

M. Fowler: Introduction to Domain Speci�c Languages

Robert Luko´ka Types, Paradigms

https://www.infoq.com/presentations/domain-specific-languages/

Types, Paradigms

Resources I

Wikipedia: Procedural programming (includes short

description of OO and functional programming)

M. Fowler: Introduction to Domain Speci�c Languages

Robert Luko´ka Types, Paradigms

https://en.wikipedia.org/wiki/Procedural_programming
https://www.infoq.com/presentations/domain-specific-languages/

Types, Paradigms

References I

Ray Toal: Programming Paradigms

Robert Luko´ka Types, Paradigms

http://cs.lmu.edu/~ray/notes/paradigms/

	Types, Paradigms

