
Objects and databases

Principles of Software Design

Objects and databases

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Objects and databases



Objects and databases

Objects and databases

We receive an event and we want to handle it. How would it look
in an application that runs in-memory only?

An object receives the event.

To make the required calculation and/or state changes

several objects may be called
some objects may be created/deleted.

But what if we have a database where the state is shared by
multiple clients?

Robert Luko´ka Objects and databases



Objects and databases

Objects and databases

We have many problems.

Objects exist in memory, database is on hard disk.

If we access an object we may need to check the database for
its attribute values.

We do not want to read each row separately as it makes too
much calls.
On the other hand, we do not want to read way more than we
need as it slows everything down.

We would like ACID transactions.

If we read too much, the scope of the locks we have to obtain
is big.
We need to decide what the transactions are.

. . .

Robert Luko´ka Objects and databases



Objects and databases

Objects and databases

OCP: Classes should be closed for modi�cation but open for
extension.

In memory, if we use OOP, business objects deal with business
rules.

Persistence is a separate concern.

An ideal object-oriented design solution should extend business
logic objects to have database storing capabilities.

Unfortunately, storing stu� into database is not an easy task,
thus some concerns regarding persistence must be considered
even while designing the business logic.

Robert Luko´ka Objects and databases



Objects and databases

Simple solutions

One request, one transaction.

We modify the getters so that they read value from the
database.

We modify the setters so that they write values to the
database.

Problems include:

way too many sequential database calls.

the locks are requested in a random order, how to e.g. avoid
deadlocks?

Robert Luko´ka Objects and databases



Objects and databases

Simple solutions

One request, one transaction.

We read the whole state of the relevant part of the system
a�ected by the call.

We track what has changed (Unit of work pattern).

In the end, we update what has changed.

Problems include:

the �relevant part� may be too big (locks scope, data volume)

Robert Luko´ka Objects and databases



Objects and databases

Simple solutions

One request, one transaction.

When an object is �rst accessed its state is read from the
database (Proxy pattern).

We track what has changed (Unit of work pattern).

In the end, we update what has changed.

Problems include:

maybe too many sequential database calls.

the locks are requested in a random order, how to e.g. avoid
deadlocks?

Robert Luko´ka Objects and databases



Objects and databases

Simple solutions

One request, one transaction.

When an attribute is accessed it gets a new symbol.

When an attribute is modi�ed the modi�cation is done in a
symbolic manner, e.g. if the attribute has variable a and it is
increased by 10 the resulting value is an expression a+ 10,
thus we do not read a.

At the end we read the variables we need to evaluate the
expressions.

Problems include:

handling conditionals (one could use something like ?:
operator in some situations, but not e.g, when the conditional
is in the loop).

Robert Luko´ka Objects and databases



Objects and databases

How to actually do that

If one of the simple approaches work for you, you are �ne.
Otherwise you combine various approaches.

One request, one transaction - often a good idea.

You need to balance what you read at once (locks scope, data
volume) and how many read requests you make (sequential
reads = time, potential deadlocks).

Ideally you read exactly what you need, but to know what you
need you often need to handle a part of the request.
You can sort out a lot of these issues by proper design decision
(unfortunately, you have to consider the persistence
requirement at least partially while designing the business logic
objects).

Robert Luko´ka Objects and databases



Objects and databases

How hard is to implement these solutions?

Some of these solution are easier, some are harder to
implement.

Once you deal with a certain situation the task becomes
repetitive as the situation reappears.

After dealing with a certain amount of situations you rarely
encounter a new one, you may simply constraint your design
so only situation you already handled appear.

When an task with these properties applies to a big area
within an industry, automated tools to do the task appear.

These are called ORM (object relational mapping) tools.

Robert Luko´ka Objects and databases



Objects and databases

Object-relational impedance mismatch

All the stu� we were dealing with in the previous slides are about
problems that are not speci�c for O-O paradigm:

Data duplication (memory, database).

Concurrency issues (lock scope, setting up lock hierarchy).

. . .

But there are more straightforward issues:

Classes have instances, inheritance, relationships; relational
databases have just tables.

References, pointers.

Datatype di�erences.

Database normal forms make little sense in OOP.

. . .

Object-relational impedance mismatch is a set di�culties that
encountered we use relational databases with an OO application.

Robert Luko´ka Objects and databases



Objects and databases

How to map objects to tables

Class Student with attributes name, surname.

Students(id, name: string, surname:string)

Class Student has subclass PTSStudent with additional
attribute points.

Students(id, name: string, surname:string, type:

string)

PTSStudents(id, points: integer)

Pointer/reference to some other object → id - foreign key

Many to many relations → relation table.

There are many more situations (and the presented solutions are
not the only ones).

Robert Luko´ka Objects and databases



Objects and databases

Python ORM tools

As there are various approaches how to handle object-relational
impedance mismatch, there are many competing Python ORM
tools.

SQLAlchemy

DjangoORM

Peewee ORM

Pony ORM

SQLObject ORM

We will show some basics on SQLAlchemy.

Robert Luko´ka Objects and databases



Objects and databases

SQLAlchemy

Uses Python DBAPI to work with various relational databases.

SQLAlchemyCore - A set of tools to work with relational
databases.

SQLAlchemyORM - ORM build over SQLAlchemyCore

Robert Luko´ka Objects and databases



Objects and databases

Python DBAPI

Implemented by third party libraries / python core.

Major database systems have more than one implementation
of DBAPI.

Solves stu� like bounding parameters within DB queries.

Slightly harder to use. It is good idea to have something over
it.

Robert Luko´ka Objects and databases



Objects and databases

SQLAlchemyCore

Dialect - Engine uses it so it is able to deal with various
databases.

Engine - Something to run the queries.

ConnectionPool - You typically want something like this.

SQL Expression Language

Schema, types

Robert Luko´ka Objects and databases



Objects and databases

SQLAlchemyCore - Engine

engine = create_engine('mysql://jano@localhost/test')

engine.execute("insert into employees (name)

values :name", name="Jano")

with engine.connect() as conn:

result = conn.execute("select name from employees")

for row in result:

print("name:", row['name'])

Robert Luko´ka Objects and databases



Objects and databases

SQLAlchemyCore - Engine

As you can see.

Parameters are bounded

Instead of cursor we get an object that behaves like tuple of
dicts.

. . .

This helps quite a bit.

Robert Luko´ka Objects and databases



Objects and databases

SQL Expression Language

s = select([users, addresses]).where(users.c.id ==

addresses.c.user_id)

Instead of SQL we produce statements in O-O manner.

Hides di�erences between the databases but still allows you
use database-speci�c tools if necessary.

On the other hand it is quite unfortunate to have to learn
something else instead of SQL.

Robert Luko´ka Objects and databases



Objects and databases

SQLAlchemy ORM

This is where the actual object-relational mapping happens.

Get familiar with the basics of SQLALchemy in this simple
tutorial.

Robert Luko´ka Objects and databases

https://docs.sqlalchemy.org/en/13/orm/tutorial.html


Objects and databases

Resources I

Wikipedia - Object-relational impedance mismatch

Object Relational Tutorial

Robert Luko´ka Objects and databases

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://docs.sqlalchemy.org/en/13/orm/tutorial.html


Objects and databases

References I

Wikipedia - Object-relational impedance mismatch

Wikipedia - Object-relational mapping

Full stack Python - Object-relational Mappers

SQLAlchemy documentation

Robert Luko´ka Objects and databases

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_mapping
https://www.fullstackpython.com/object-relational-mappers-orms.html
https://docs.sqlalchemy.org/en/13/

