
Documentation, Maintenance, Logging

Principles of Software Design
Documentation, Maintenance, Logging

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Documentation in SW project

Documentation in software engineering is the umbrella term that

encompasses all written documents and materials dealing with a

software product's development and use. [1]

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Why we need documentation?

Main purpose of documentation:

To convey information when face to face communication not
possible. E.g.:

Face to face communication between you now and you a year
later is not possible :).
You have a meeting with the customer, and you feel it is
inappropriate to repeatedly ask the same questions so you just
make notes.
Make the future work faster/better.
To capture an agreement in a more binding way.
. . .

Any documentation you create should have a purpose, a reason for
its existence.

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Software documentation types

Process documentation

Product documentation

System documentation
User documentation

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Process documentation

Examples:

Meeting minutes

Estimations

Plans

Company standards

. . .

In many cases, process documentation is relevant only for limited
time (until the process �nishes).

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

System documentation

Describes the system and its parts [1]:

Requirements

Architecture, design

Source code documentation

UX (user experience) design documents

Quality assurance documentation (testing strategy, plan, the
actual tests, . . . )

Help and maintenance

. . .

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

User documentation

How to use the system:

FAQ

Beginner's guide (contains the usual use cases)

Full user manual

Manual for system administrators

. . .

Various actors may interact with the system di�erently, they may
need specialized manuals.

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Good practices

Just barely good enough

Everybody contributes to the documentation.

Having out of date documentation may be worse than having
none, but slightly out of date documentation may still be quite
useful (especially if you are aware of the fact).

. . .

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Good practices - Agile/Lean Documentation [2]

Writing

Prefer executable speci�cations over static documents

Document stable concepts, not speculative ideas

Generate system documentation

Simpli�cation

Keep documentation just simple enough, but not too simple

Write the fewest documents with least overlap

Put the information in the most appropriate place

Display information publicly

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Good practices - Agile/Lean Documentation [2]

Determining What to Document

Document with a purpose

Focus on the needs of the actual customers(s) of the document

The customer determines su�ciency

Determining When to Document

Iterate, iterate, iterate

Find better ways to communicate

Start with models you actually keep current

Update only when it hurts

General

Treat documentation like a requirement

Require people to justify documentation requests

Recognize that you need some documentation

Get someone with writing experience

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Maintenance

Maintenance is signi�cant: it accounts for 40− 80% software
lifetime cost [3].
Maintenance is not only about bug �xing [4]:

Adaptive: Modifying the system to cope with environment
changes (computer, OS, etc.) - 25% of work

Perfective: Modifying the system to satisfy new or modi�ed
requirements - 50% of work.

Corrective: Correcting discovered problems - 20% of work

Preventive: Detecting and correcting latent faults before they
become e�ective faults - 5% of work

. . .

Although the studies are old, general consensus is that the ration of
software maintenance has increased since then.

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Maintanance

Maintenance is expensive: a feature is 2− 100× more expensive as
in regular development. Why?

Loss of knowledge:

employee turnover,
time (people forget stu�)
time (systems and technologies get outdated and thus
developers are not as familiar with them as they used to be)

Maintenance departments contain more junior developers on
average.

No incentive for the developer to o�er low price.

. . .

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Logging

Why we need logging?

How do we know about problems encountered in production?

Is logging architecturally signi�cant?

It a�ect all/most of the parts of the SW system → Yes.

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Problems

What is hard:

How to log in such a way that we do not have too many logs
but we still have the data we need?

Is logging �exible enough so one can change the con�guration
easily to obtain more detailed logs concerning something when
needed?

Logging code increases the total length of code, it makes e.g.
business logic harder to read.

How to log in libraries?

. . .

We introduce Python logging library. It gives an up-to-date
approach on how to deal with many of those issues.

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Logging in Python

We have the following classes:

Logger - object that receives the logs.

Handler - decides with to do with the log, one logger can have
multiple handlers.

Filter

Formater

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Logging in Python

Loggers are singleton objects and live in hierarchy
corresponding to the hierarchy of packages. To use a logger
within a unit we use:
logger = logging.getLogger(__name__)

This allow us to con�gure logging for each module separately.

We can pass logs ho higher level loggers within the hierarchy,
that is root.a.b logger can pass logs to root.a logger which
can pas them to root logger. This allows us to set reasonable
approach at the right level.

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Logging in Python

The levels of logging:

logger.debug(...) - Detailed information, typically of
interest only when diagnosing problems.
logger.info(...) - Detailed information, typically of
interest only when diagnosing problems.
logger.warning(...) - An indication that something
unexpected happened, or indicative of some problem in the
near future.
logger.error(...) - Due to a more serious problem, the
software has not been able to perform some function.
logger.critical(...) - A serious error, indicating that the
program itself may be unable to continue running.

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Logging in Python

Check here how does it work: Logging �ow

Robert Luko´ka Documentation, Maintenance, Logging

https://docs.python.org/3/_images/logging_flow.png


Documentation, Maintenance, Logging

Logging in Python

Some of Logger methods:

.propagate - should the event be passed to higher level
(ancestor) loggers?

.setLevel - be careful that if something propagates to higher
level logger, the level is not checked.

.addFilter

.removeFilter

.addHandler

.removeHandler

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Logging in Python

Some of handler object methods

.setLevel

.setFormatter

.addFilter

.removeFilter

.�ush

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Logging in Python

You do not need to write your own handlers, here are some that are
available:

StreamHandler

FileHandler

NullHandler

RotatingFileHandler

TimedRotatingFileHandler

SocketHandler

DatagramHandler

SMTPHandler

HTTPHandler

Robert Luko´ka Documentation, Maintenance, Logging



Documentation, Maintenance, Logging

Resources I

Agile/Lean documentation best practices

Software maintenance - Wikipédia

Logging Cookbook

Robert Luko´ka Documentation, Maintenance, Logging

http://www.agilemodeling.com/essays/agileDocumentationBestPractices.htm
https://en.wikipedia.org/wiki/Software_maintenance
https://docs.python.org/3/howto/logging-cookbook.html#an-example-dictionary-based-configuration


Documentation, Maintenance, Logging

References I

Software Documentation Types and Best Practices

Agile/Lean documentation best practices

R. L. Glass, "Frequently forgotten fundamental facts about
software engineering," in IEEE Software, vol. 18, no. 3, pp.
112-111, May-June 2001.

Lientz B., Swanson E., 1980: Software Maintenance
Management. Addison Wesley, Reading, MA

J. Kosti£ová: Documentation & Maintenance

Robert Luko´ka Documentation, Maintenance, Logging

https://www.altexsoft.com/blog/business/software-documentation-types-and-best-practices/
http://www.agilemodeling.com/essays/agileDocumentationBestPractices.htm
http://www.dcs.fmph.uniba.sk/~lukotka/PTS/2016/Documentation_maintenance.pdf

	Documentation, Maintenance, Logging

