
Architecture
Architectural styles

Principles of Software Design
Architecture

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Architecture



Architecture
Architectural styles

What is architecture?

�Software architecture encompasses the set of signi�cant decisions

about the organization of a software system including the selection

of the structural elements and their interfaces by which the system

is composed; behavior as speci�ed in collaboration among those

elements; composition of these structural and behavioral elements

into larger subsystems; and an architectural style that guides this

organization. Software architecture also involves functionality,

usability, resilience, performance, reuse, comprehensibility, economic

and technology constraints, tradeo�s and aesthetic concerns.�

Philippe Kruchten, Grady Booch, Kurt Bittner, and Rich Reitman

Robert Luko´ka Architecture



Architecture
Architectural styles

What is architecture?

�The highest-level breakdown of a system into its parts; the

decisions that are hard to change; there are multiple architectures

in a system; what is architecturally signi�cant can change over a

system's lifetime; and, in the end, architecture boils down to

whatever the important stu� is.�

Martin Fowler

Robert Luko´ka Architecture



Architecture
Architectural styles

What is architecture?

�The software architecture of a program or computing system is the

structure or structures of the system, which comprise software

elements, the externally visible properties of those elements, and

the relationships among them. Architecture is concerned with the

public side of interfaces; private details of elements�details having

to do solely with internal implementation�are not architectural.�

Len Bass, Paul Clements, Rick Kazman

Robert Luko´ka Architecture



Architecture
Architectural styles

SW architecture

Architecture should [2]:

Expose the structure of the system but hide the
implementation details.

Realize all of the use cases and scenarios.

Try to address the requirements of various stakeholders.

Handle both functional and non-functional requirements.

Robert Luko´ka Architecture



Architecture
Architectural styles

How to describe a SW system?

4+ 1 view model (Diagram):

Logical view

Process view

Development view

Physical view

+1 Use case view

Robert Luko´ka Architecture

https://en.wikipedia.org/wiki/4+1_architectural_view_model#/media/File:4+1_Architectural_View_Model.svg


Architecture
Architectural styles

What is part of the system architecture?

Use case view

What are the actors of the system.

For what reasons the actor use the system.

How to attain that goal.

Which scenarios / use cases are of biggest value / carry
biggest risk.

. . .

Robert Luko´ka Architecture



Architecture
Architectural styles

What is part of the system architecture?

Logical view

Subsystems / components

Interfaces

Relations between the subsystems / components

Robert Luko´ka Architecture



Architecture
Architectural styles

Example: Logical view

Architectural pattern: 3-layer architecture

Presentation layer

Application layer

Data access layer

+ What interfaces will the layers use to communicate.

+ What interfaces the layers use to communicate with the rest of
the system.

This can be a part of the system (server, other parts may be e.g.
web client, database server) or even the whole system (desktop app
working with local DB).

Robert Luko´ka Architecture



Architecture
Architectural styles

Physical view

Deployment conditions (OS, DB server, WEB server, how the
nodes communicate), technologies used.

In large applications, how nodes are structured.

Robert Luko´ka Architecture



Architecture
Architectural styles

Example: Physical view

Architectural pattern: 3-tier architecture

Presentation tier - web browser(s)

Application tier - web server(s)

Data tier - database server(s)

You need to add lot of details: what browser, server, db, just one
server/db is running?, load balancer (or other physical structure
inside the tiers) . . .

Robert Luko´ka Architecture



Architecture
Architectural styles

Process view

Logical view is static. Sometimes not su�cient to explain how
system works.

Deals with concurrency and parallelism.

Who owns threads used for program execution, which code
given thread may execute?

Robert Luko´ka Architecture



Architecture
Architectural styles

Development view

How development is organizes (VCS, packages, names of
source �les, progamming languages and other tool).

How the source �les map to the elements in the logical view.

Which scenarios / use cases should be implemented as �rst.

Robert Luko´ka Architecture



Architecture
Architectural styles

What is architecture depends on the system size

Very large system - mostly about the structure of the nodes
and their relation

Medium system - subsystem, interfaces between them

Small system - components or even classes

Robert Luko´ka Architecture



Architecture
Architectural styles

Principles of Software Architecture

Separation of concerns

Single Responsibility principle

Don't repeat yourself

Minimize upfront design

Build to change instead of building to last.

Analyze and reduce risk.

Use consistent principles within the
components/layers/subsystems.

. . .

Robert Luko´ka Architecture



Architecture
Architectural styles

Interface

Interface is a shared boundary across which two or more separate
components of a computer system exchange information [3].

Hardware interfaces

Software interfaces

ABI - Application binary interface - typically not relevant
(created by compiler / other tools).
API - Application programming interface -

User interfaces

Here, we will speak about API's.

Robert Luko´ka Architecture



Architecture
Architectural styles

Interface
Interface

is a contract between communicating parties, it typically has two
sides:

Side that requires interface (caller) - has a means to access
the callee (memory/web address) using an agreed protocol
(HTTP, C calling convention).

Side that implements interface (callee) - does an action and
may returns some value.

To make larger applications more tractable it is necessary that
di�erent parts of an applications communicate only via strictly
de�ned interfaces.

Robert Luko´ka Architecture



Architecture
Architectural styles

Service

Service is refers to a software functionality or a set of software
functionalities (such as the retrieval of speci�ed information or the
execution of a set of operations) with a purpose that di�erent
clients can reuse for di�erent purposes, together with the policies
that should control its usage [4].

To access the service, the service de�nes an interface.

Some de�nitions requires the service to be useful in various
settings.

In service oriented architecture services form separate
application (communication e.g. through HTTP protocol)

Robert Luko´ka Architecture



Architecture
Architectural styles

SW architecture

Architecture should [2] (repeated list):

Expose the structure of the system but hide the
implementation details.

This is achieved by separating the functionality into di�erent parts
(subsystems / components / services) and de�ning the interfaces
they use to communicate.

Realize all of the use cases and scenarios.

Try to address the requirements of various stakeholders.

The functionality has to be complete.

Handle non-functional requirements.

E.g. Encripted communication, ability to handle su�cient data.

Robert Luko´ka Architecture



Architecture
Architectural styles

Service design / Interface design

Service design

Separation of concerns

Single Responsibility principle

Don't repeat yourself (some repetition to decouple services is
acceptable)

Build to change instead of building to last.

The principles are similar to design principles at lower level.

Robert Luko´ka Architecture



Architecture
Architectural styles

Service design / Interface design

Interface design

Stateless / Stateful protocol/service

Minimal interface vs Humane interface

Uniformity

Type safety in services? Use e.g. GraphQL.

Robert Luko´ka Architecture

https://graphql.org/


Architecture
Architectural styles

Stateless / Stateful protocol

Stateless protocol / service:

Service does not store session or other data

Clients need to send everything relevant to the request with it.

It you need multiple servers they'd better be stateless.

Robert Luko´ka Architecture



Architecture
Architectural styles

Interface design REST

Representational state transfer

Client-server architecture

Statelessness

Cacheability

Layered system

Code on demand (optional)

Uniform interface

Example

Robert Luko´ka Architecture

https://realpython.com/api-integration-in-python/


Architecture
Architectural styles

How to �nd the architecture

Important questions [2]:

What are the foundational parts of the architecture that
represent the greatest risk if you get them wrong?

What are the parts of the architecture that are most likely to
change, or whose design you can delay until later with little
impact?

What are your key assumptions, and how will you test them?

What conditions may require you to refactor the design?

Robert Luko´ka Architecture



Architecture
Architectural styles

How to �nd the architecture

You need to determine

Application Type (mobile app, rich client, rich internet,
service, web app, cloud, . . . )

Deployment Strategy

Appropriate Technologies

Quality Attributes

Crosscutting Concerns (authentication, logging, caching, . . . )

Robert Luko´ka Architecture

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658104(v%3dpandp.10)


Architecture
Architectural styles

Example - Crosscutting Concerns

Crosscutting Concerns for security [2]:

Auditing and Logging

Authentication

Authorization

Con�guration Management

Cryptography

Exception Management

Input and Data Validation

Sensitive data

Session Management

Robert Luko´ka Architecture



Architecture
Architectural styles

You cannot focus on everything.

Key scenario [2]:

It represents an issue�a signi�cant unknown area or an area
of signi�cant risk.

It refers to an architecturally signi�cant use case

Business Critical.
High impact.

It represents the intersection of quality attributes with
functionality.

It represents a trade-o� between quality attributes.

Robert Luko´ka Architecture



Architecture
Architectural styles

How to decrease the risk involved

Order of analysis / implementation - high priority stu�:

Things that are unknown / not well understood / the solution
is not known

Things used throughout the system, later change has high
impact (e.g. cross-cutting concerns)

Most valuable use cases

Robert Luko´ka Architecture



Architecture
Architectural styles

Testing the architecture [2]

What assumptions have I made in this architecture?

What explicit or implied requirements is this architecture
meeting?

What are the key risks with this architectural approach?

What countermeasures are in place to mitigate key risks?

In what ways is this architecture an improvement over the
baseline or the last candidate architecture?

Robert Luko´ka Architecture



Architecture
Architectural styles

Architectural styles and patterns

Similar to design patterns:

Provide abstract framework for a family of systems

Help communication

Robert Luko´ka Architecture



Architecture
Architectural styles

Architectural styles and patterns

Architecture addresses a wide variety of issues, thus we have
various types of styles/patterns

Deployment

Structure

Communication

Domain

. . .

Robert Luko´ka Architecture



Architecture
Architectural styles

Key architectural styles and patterns

Client/Server - Segregates the system into two applications,
where the client makes requests to the server. In many cases,
the server is a database with application logic represented as
stored procedures.

Peer-to-peer - Each workstation has the same capabilities and
responsibilities.

Robert Luko´ka Architecture



Architecture
Architectural styles

Key architectural styles and patterns

Component-Based Architecture
Decomposes application design into reusable functional or logical

components that expose well-de�ned communication interfaces.

Service-Oriented Architecture (SOA)
Decomposes application into a collection of independently

deployable services.

Microservice architecture
SOA + dumb pipes, independent services + many more

Message Bus
SOA + intelligent pipes

Robert Luko´ka Architecture



Architecture
Architectural styles

Key architectural styles and patterns

Object-Oriented

Domain Driven Design
An object-oriented architectural style focused on modeling a

business domain and de�ning business objects based on entities

within the business domain.

Layeres
Partitions the concerns of the application into stacked groups

(layers).

Robert Luko´ka Architecture



Architecture
Architectural styles

Key architectural styles and patterns

N-Tier / 3-Tier
Segregates functionality into separate segments in much the same

way as the layered style, but with each segment being a tier located

on a physically separate computer.

Model-View-Controller

Naked objects

. . .

Robert Luko´ka Architecture

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller#/media/File:MVC-Process.svg
https://en.wikipedia.org/wiki/Naked_objects


Architecture
Architectural styles

Key architectural styles and patterns

Most of the phrases associated with architectural styles patterns
have additional meanings associated

Good practices

Restrictions

Associated techniques

. . . and very often the contents of a homonymous book that
introduced the approach.

Robert Luko´ka Architecture



Architecture
Architectural styles

User interface

How well should we separate user interface

Code involving user interface should be separated -
presentation code vs. domain code

User interface changes frequently - it is good to isolate the
changes

Business logic should be independent of UI, UI depends on
business logic

Ideally, UI should communicate with business logic only
through de�ned interface, however, sometimes it is practical to
read values directly.

Writes should be done strictly through interface.
If representation of data changes, it is highly likety that also
the interface needs to change.

Robert Luko´ka Architecture



Architecture
Architectural styles

Applications running in cloud

Resources used in a cloud may change without your control

You want your servers to be stateless.

Makes it easy to scale up and down your services on demand.

You want to give your services nicely packaged.

Why? OS-level virtualization
Container orchestration, see Kubernetes

Robert Luko´ka Architecture

https://en.wikipedia.org/wiki/OS-level_virtualization
https://en.wikipedia.org/wiki/Kubernetes


Architecture
Architectural styles

Resources I

Microsoft Application Architecture Guide

Robert Luko´ka Architecture

https://msdn.microsoft.com/en-us/library/ff650706.aspx


Architecture
Architectural styles

References I

SWEBOK V3 - Chapter 2.3, 2.4

Microsoft Application Architecture Guide, Software
Architecture and Design

Wikipedia - Interface

Wikipedia - Service

M. Fowler - API Design

Wikipedia - REST

REST API example

Robert Luko´ka Architecture

https://www.computer.org/web/swebok/v3
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658093%28v%3dpandp.10%29
https://en.wikipedia.org/wiki/Interface_(computing)
https://en.wikipedia.org/wiki/Service_(systems_architecture)
https://www.martinfowler.com/tags/API%20design.html
https://en.wikipedia.org/wiki/Representational_state_transfer
https://realpython.com/api-integration-in-python/

	Architecture
	Architectural styles

