
Management, Planning

Principles of Software Design
Management, Planning

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Management, Planning



Management, Planning

Project management activities

Project initiation

Contract management
For each management item: time, work, resources (people,
money, . . . )

planning
organization
controlling
monitoring
evaluation

Decision making

Information management

Robert Luko´ka Management, Planning



Management, Planning

Planning

De�ning planed items

Estimation (work, dependencies)

Resource allocation
Scheduling

Critical path analysis

Updating/re�ning the plan

Robert Luko´ka Management, Planning

https://en.wikipedia.org/wiki/Critical_path_method#/media/File:Pert_chart_colored.svg


Management, Planning

Planning

What plans do we need.
There are various scopes: project plan, release cycle plan,
iteration plan

This does not imply that you should have detailed long term
plan.
There are uncertainties involved and you should acknowledge
them, it makes little sense to discuss details when huge error
bars are involved
Often it is right to prefer adaptive planning.

There are various activities: e.g. Design, Construction,
Testing, Contract management; Risk Management; Change
management;.

Robert Luko´ka Management, Planning



Management, Planning

Organization

Project team structure.

Set up environment and processes.

To obtain, arrange and release resources.

Attach resources to roles.

Robert Luko´ka Management, Planning



Management, Planning

Controlling

Check and regulate managed objects to achieve speci�ed goal.

Controlling used materials and resource.

. . .

Robert Luko´ka Management, Planning



Management, Planning

Monitoring and evaluation

Measure relevant metrics, get feedback

Keep measurement logs

Report defects

Use the results to re�ne plans, improve processes, improve
allocation of resources, . . .

Robert Luko´ka Management, Planning



Management, Planning

Management

During the rest of the presentation we cover several selected topics
of interest:

Brook's law

Cross-functional teams

Issue tracking, product backlog, kanban boards

Scrum

Estimations

Robert Luko´ka Management, Planning



Management, Planning

Planning: Brook's Law

�Adding engineers to a late software product makes it later.�

Why?

It takes some time (and possibly resources) for the people
added to a project to become productive.

More people, more communication overhead.

Some works are not easily divisible. (It takes one woman nine
months to make one baby, nine women can't make a baby in
one month. [3])

Robert Luko´ka Management, Planning



Management, Planning

Planning: Brook's Law

What can we do about this? How to mitigate the e�ect

Correcting the schedule :).

Add highly skilled programmers and specialists (they become
productive faster and require less communication to do so).

Helping with side tasks (e.g. quality assurance,
documentation)

Adding people early enough (the law applies to projects that
are already late).

Robert Luko´ka Management, Planning



Management, Planning

Organizational structure

There are two very distinct approaches to the structure of teams

Traditional team structure - team consist of specialist
specialized in the same area (e.g. User Experience/UI Design,
Development, Quality, Database, Security, . . . )

Cross-functional teams - members of each team have
competence in various areas of software development, covering
(almost) all aspects necessary for the project (this may include
even people with background in e.g. marketing).

Robert Luko´ka Management, Planning



Management, Planning

Cross-functional vs Traditional

Traditional teams:

Allow deep specialization within the teams area of expertise

Easier substitutability of the team members (e.g. when
somebody gets sick, or goes for a vacation)

Cross-functional teams:

Team members get competence to perform tasks in
neighboring areas.

This improves decision-making within the team as the
members have better understanding of the product as whole.

Robert Luko´ka Management, Planning



Management, Planning

Cross-functional vs Traditional

The application structure tends to copy the organizational
structure:

Communication within a team is way easier that inter-team
communication.

Thus if a team member can solve an issue within the team, he
often does that, despite the fact that the change creates new
dependency with other component/service.

This may erode the architecture over time.

Robert Luko´ka Management, Planning



Management, Planning

Cross-functional vs Traditional

Consider an issue when database is too slow to handle one kind of
requests.

In traditional team structure, the likely solution is that
something is improved on the database level. As the team has
various experts with deep knowledge in the area, traditional
team may be able to do this even if it is hard while
cross-functional team might struggle.

In cross-functional team it is quite likely, that the issue will be
dealt with outside the database (do we even need to send that
many requests).

Robert Luko´ka Management, Planning



Management, Planning

Cross-functional vs Traditional

Responsibility for product.

It makes a big di�erence if the responsibility for a product is
shared between 6 and 100 people.

It is hard to account which speci�c actions have what impact.
In these circumstances people tend to attribute the positive
e�ects to the actions of their team and negative e�ects to the
action of other teams.

It may lead to an uncooperative attitude and loss of
motivation.

Robert Luko´ka Management, Planning



Management, Planning

Issue tracking

Issue tracking system is a system that helps to maintain and
manage a list of issues and foster the collaboration to solve these
issues.

often contains various additional tools for project management
(resource allocation, proity management, oversight . . . )

Issue:

Bug

Feature

Task

Missing documentation

. . .

These systems started as bug trackers. People later started
successfully use bug trackers to handle non-defect issues.

Robert Luko´ka Management, Planning



Management, Planning

Issue tracking

Issue contains:

Identi�er

Type (bug, feature)

Status (open, in progress, resolved, closed, reopened)

Priority

Assigned to

Further relevant information obtained while handling the issue
(bug description, rreference to the requirements
documentation, commit number)

Communication associated with the request

. . .

Robert Luko´ka Management, Planning



Management, Planning

Issue tracking

Look how an issue tracking system may look like:

Redmine issues of redmine

How an issue may look like:

Issue example

Robert Luko´ka Management, Planning

https://www.redmine.org/issues
https://www.redmine.org/issues/28264


Management, Planning

Issue tracking alternatives

Some other popular ways to assign tasks to team members:

Sprint Backlog (Example)

Kanban boards, Example 1, Example 2

In both cases the approaches assume team self-organization., i.e.
there is no authority to decide who pick which task, everybody tries
to pick the task so that the objectives of the iteration are attained.

Also assumes cross-functional teams of reasonable sizes.

Robert Luko´ka Management, Planning

https://commons.wikimedia.org/wiki/File:Scrum_task_board_example.jpg
https://en.wikipedia.org/wiki/File:Kanban_board_example.jpg
https://en.wikipedia.org/wiki/Kanban_(development)#/media/File:Sample_Kanban_Board.png


Management, Planning

Scrum [13]

Scrum is a management framework for incremental product
development using one or more cross-functional,
self-organizing teams of about seven people each.

It provides a structure of roles, meetings, rules, and artifacts.
Teams are responsible for creating and adapting their
processes within this framework.

Scrum uses �xed-length iterations, called Sprints. Sprints are
no more than 30 days long, preferably shorter. Scrum teams
try to develop a potentially releasable (properly tested)
product increment every Sprint.

Robert Luko´ka Management, Planning



Management, Planning

Scrum [13]

Scrum - Iterative-Incremental development, an iteration is
called sprint. Sprint has �xed length, at most 30 days,

Team has 3-9 members, it is cross-functional, self-organizing,
has autonomy on how to develop.

Specialized roles: Product Owner a Scrum Master.

Scrum de�nes a plan of meetings.

Scrum de�nes three artefacts: product backlog, sprint backlog,
increment. These artefacts do not replace the documentation
but exist on top of it. It is team responsibility to decide what
should be documented.

At the end of the sprint we should have a deployable product
increment.

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Product Owner [13]

Responsible for maximizing the return on investment of the
development e�ort.

Responsible for product vision.

Constantly re-prioritizes the Product Backlog, adjusting any
long-term expectations such as release plans.

Final arbiter of requirements questions.

Decides whether to release.

Decides whether to continue development.

Considers stakeholder interests.

May work as a team member.

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Scrum Master [13]

Works with the organization to make Scrum possible.

Ensures Scrum is understood and enacted.

Creates an environment conducive to team self-organization.

Shields the team from external interference and distractions to
keep it in group �ow.

Promotes improved engineering practices.

Has no management authority over the team.

Helps resolve impediments.

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Meetings [13]

Sprint Planning

Daily Scrum

Sprint Review

Sprint Retrospective

Backlog Re�nement (Optional)

Sprint Cancellation (Optional)

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Meetings [13]

Sprint Planning

Product Owner required on this meeting.

Team is responsible to make estimations for Product Backlog
tasks.

Product Owner prioritizes the tasks (taking into account the
estimation).
Team decides to which tasks it commits during this sprint, the
selected tasks are moved into Sprint Backlog.

Takes into account PO's priorities.
Takes into account current project state and technical debt.
PO cannot a�ect the the amount of work the team decides to
do within the sprint.

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Meetings [13]

Sprint Planning
If the top of the Product Backlog has not been re�ned, a
portion of the Planning meeting might be spent doing this.

If necessary, Backlog Re�nement Meeting may be held before
sprint planning.

Toward the end of the Sprint Planning Meeting, the team
determines how it will accomplish the work.

Duration: max. 8 hours for 30 day sprint.

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Meetings [13]

Daily scrum (a.k.a. stand-up)

Inspecting progress, resolving issues.

Stand-up meeting, max. 15 min. Standing up is a popular way
to keep it short (which dies not always work).

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Meetings [13]

Sprint Review Meeting

Product Owner required on this meeting.

Demonstrate the working product.

Product Owner decides what is done (it is up to PO to decide
what is important, even un�nished documentation may cause
an item to be declared not done). Un�nished tasks return to
the Product Backlog.

Various stakeholders can attend the meeting (e.g. future users
of the product). It is an ability to �nd out how to adapt the
product.

Scrum Master helps PO and other stakeholders to convert the
feedback into new Product Backlog Items. If new items appear
fast enough, some Product Backlog Items are never done
(which is a good thing).

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Meetings [13]

Sprint retrospective

Scrum Master is required on this meeting.

At this meeting, the team re�ects on its own process. They
inspect their behavior and take action to adapt it for future
Sprints.
There are various obstacles that impede the re�ection.

Presence of people who conduct performance appraisals.
Psychological aspects.

Scrum Masters should use a variety of techniques to facilitate
retrospectives.

The fact that the Scrum Master does not contribute as a team
member allows him to see how the team work from a di�erent
perspective.

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Scrum Master role

Scrum Master is �xed within a sprint but may change between
sprints.

In some scrum approaches Scrum Master is a rotating position
(original approach?).

Other scrum approaches have devoted Scrum Master
(currently more prevalent approach?).

There are di�erences, e.g.:

Devoted Scrum Master probably knows more tricks to improve
discussion/feedback/. . .

A rotating Scrum Master has better chance to �nd
technological improvements in the area he is familiar with.

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Artefacts [13]

Product Backlog:

Force-ranked (prioritized) list of desired functionality.

Visible to all stakeholders.

Any stakeholder (including the Team) can add items.

Constantly re-prioritized by the Product Owner.

Constantly re�ned by the Scrum Team.

Items at top should be smaller (e.g. smaller than 1/4 of a
Sprint) than items at bottom.

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Artefacts [13]

Product Backlog Item:

Describes the what (more than the how) of a customer-centric
feature.

Often written in User Story form.

Has a product-wide de�nition of done to prevent technical
debt.

May have item-speci�c acceptance criteria.

E�ort is estimated by the Development Team, ideally in
relative units.

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Artefacts [13]

Sprint Backlog:

Consists of selected PBIs negotiated between the team and the
Product Owner during the Sprint Planning Meeting.

No changes are made during the Sprint that would endanger
the Sprint Goal.

Initial tasks are identi�ed by the team during Sprint Planning
Meeting.

Team will discover additional tasks needed to meet the Sprint
Goal during Sprint execution.

Visible to the team.

Referenced during the Daily Scrum Meeting.

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Artefacts [13]

Increment:

The product capabilities completed during the Sprints.

Brought to a usable, releasable state by the end of each Sprint.

Released as often as the Product Owner wishes.

Inspected during every Sprint Review Meeting.

Robert Luko´ka Management, Planning



Management, Planning

Scrum - Artefacts (optional)

Further optional artefacts:

Sprint task (optional)

Sprint burndown chart (optional)

Product/release burndown chart (optional)

Robert Luko´ka Management, Planning



Management, Planning

Scrum values

Commitment: Team members individually commit to achieving
their team goals, each and every sprint.

Courage: Team members know they have the courage to work
through con�ict and challenges together so that they can do
the right thing.

Focus: Team members focus exclusively on their team goals
and the sprint backlog; there should be no work done other
than through their backlog.

Openness: Team members and their stakeholders agree to be
transparent about their work and any challenges they face.

Respect: Team members respect each other to be technically
capable and to work with good intent.

Robert Luko´ka Management, Planning



Management, Planning

Scrum - some issues

The priorities of the tasks are very important to get right. May
be too important to be decided by one person: Product
Owner. On the other hand, PO may stand as a representative
of other process that decides what should be built.
Scrum does not specify good technical practices, it is left to
the team.

Good technical practices, especially the ability to cope with
changes, are necessary for scrum to succeed.
Ignoring technical quality causes (after a short period of
increased speed) the slow-down or even stoppage of the
development (see the following: technical debt ilustration,
�acid scrum).

Scrum is hard to scale (see e.g. Scrum of scrums).

Robert Luko´ka Management, Planning

http://galorath.com/wp-content/uploads/2011/05/technical-debt.jpg
https://martinfowler.com/bliki/FlaccidScrum.html


Management, Planning

Scrum stability of PBI

Scrum considers important, that the goal of the sprint is stable
and the team works 100% to achieve it.

New stu� can be added into sprint backlog only if it does not
endanger the sprint goal.

If something becomes so important that it meads to be done
right away, and is signi�cantly large to endanger the sprint
goal, the only way to do it before next sprint is sprint
cancellation (thus the Product Owner has to choose wisely if it
is that important).

Robert Luko´ka Management, Planning



Management, Planning

Sprint cancellation

Typical reasons for sprint cancellation:

A better technical solution is found that makes the current
Sprint's activity throwaway work.

A major technology change occurs.

Market forces render the work obsolete.

Fundamental and urgent external changes invalidate the Sprint
Goal.

Urgent bug �x or feature development requests cannot wait
until the normal completion of the Sprint.

After Scrum cancellation all Sprint Backlog items are moved into
Product Backlog and new sprint starts with Sprint Planning.

Robert Luko´ka Management, Planning



Management, Planning

Estimations

Good estimations are necessary:

planning (time, resources)

decision-making

monitoring

evaluation

Robert Luko´ka Management, Planning



Management, Planning

Estimations - expected value vs deadline

There is a common problem in interpreting the estimations. should
the estimation give an expected value or a deadline?

What is a deadline. To be 100% sure is not realistic nor
practical.

E.g. consider the following de�nition of the deadline: time
when there is a 95% chance that we are �nished.

Expected value and deadline as de�ned here can be very
di�erent, especially if signi�cant uncertainties are involved.

If we want to compose estimations, the most meaningful single
number parameter is the expected value.

Deadlines cannot be easily combined by adding them when
large uncertainties are involved.

You should distinguish expected values and �deadlines�.

Robert Luko´ka Management, Planning



Management, Planning

Estimations - expected value vs deadline

Despite this fact management, customers, executives want
deadlines and will often add them.

the desire for deadlines is not unwarranted (you need it e.g. for
contracts).

If you give deadlines for partial job, the sum of time is way too
big (summing is incorrect, but this is what is usually done with
the numbers).

Thus you often need to give some number between the
expected value and the �deadline� value to make everybody
happy (even considering all other aspects).

A sensible approach is at least two numbers expected value and
variance: other parameter that describes the distribution and
calculate the deadlines from them.

Robert Luko´ka Management, Planning



Management, Planning

Cone of uncertainty

It is not possible to provide good estimates in the early phases
of the development, there are too many unknowns.

On the other hand, if you contract is �xed price, cost, time,
you need it early.

Good project management can focus on reducing the
unknowns, and thus improving the precision of the available
estimations faster.

After we deal with several most signi�cant unknowns, law of
big numbers should work in our favor.

Robert Luko´ka Management, Planning



Management, Planning

Cone of uncertainty

I can see how I'd do it if I were rewriting that whole controller from scratch,
but that would take days ... is there an elegant hack where I can change the
inputs to this function in such a way that I don't have to rewrite its code? ...
what if I monkeypatch it at the class level? ... wait, maybe there's an API call
that almost does what I want, then I can tweak the results - hang on, what if I
outsource it via an asynchronous call to the external OS? In that case I can
con�dently estimate that this will require less than two hours of typing.

However, working out what to type is going to take me/us anywhere from one
hour to several days. Sorry. [7]

Robert Luko´ka Management, Planning



Management, Planning

Estimations

Software estimates are always wrong, because the tasks being estimated are
always, to some extent, terra incognito, new and unknown. However,

sometimes the errors are in your favor; an obscure API, a third-party library, or
an elegant hack condenses what you expected to be a week's worth of work

into a single day or less. [7]

The cases where we are way faster than expected are more rare, but
present a problem to�we may not be able to use the resources
that became available e�ciently.

Robert Luko´ka Management, Planning



Management, Planning

We are quite bad at estimating stu�, some jokes

Hofstadter's Law:

It always takes longer than you expect, even when you take
into account Hofstadter's Law. :)

90-90 Rule:

The �rst 90 percent of the code accounts for the �rst 90
percent of the development time. The remaining 10 percent of
the code accounts for the other 90 percent of the development
time. :)

Robert Luko´ka Management, Planning



Management, Planning

Estimations

Check this:

How to respond when you are asked for an estimate

Besides all this, there is another issue: �How much work does it
require?� vs �When will it be done?�.

It takes two weeks, but as you have process high priority
requests �rst, it might take four weeks.

Robert Luko´ka Management, Planning

https://softwareengineering.stackexchange.com/questions/648/how-to-respond-when-you-are-asked-for-an-estimate


Management, Planning

Estimation bias

Even if we understand the di�erence between expected value and
deadline and even if we are aware of the uncertainties involved,
there are still many reasons for bias.

positive bias - people tend to think they are good :)
MCE pressure

They want to hear a low number and they are right next to
you. It is easy to �get rid of them� by satisfying them.
The time depends on who does the job. Does a high estimate
(higher than your peer's) mean, that you are just slower at the
job or you see something that you see something others do not
see.

It is hard to be intellectually honest about own capabilities.
Random unexpected events increase the required time way
more often then they decrease it.

People are generally very bad at accounting for unlikely
scenarios.

Robert Luko´ka Management, Planning



Management, Planning

Estimation approaches

Expert estimation

Formal estimation model

Combination-based estimation

Expert estimation is the dominant approach. Formal estimation
requires detailed speci�cation and good data measured in similar
past projects.

Robert Luko´ka Management, Planning



Management, Planning

Estimations via decomposition

A natural approach is to decompose the problem into smaller tasks.
This approach is useful but has some limitations.

Functionality also not the right key. Consider a concrete example. Suppose

you're building an app that logs in to a web service. Don't have individual

server-side estimates for �user can create account,� �account email address can

be con�rmed,� �user can log in,� �user can sign out,� and �user can reset

password.� Have a single �user authentication� task, and estimate that. [7]

The parts often intersect.

There is often a correlation between how long the parts will
take.

A lot of work, it may lead to estimation fatigue (A state when
you do not really think about the estimations, but you want to
end the meeting :))

Robert Luko´ka Management, Planning



Management, Planning

Estimations - manhours

The most common measure of required e�ort is manhours. This is
not an universal measure and one needs to be careful when using it

Brook's law is an example of situation when applying man
hours makes no sense at all.

Not everybody works at the same pace.

The is a proxy parameter (eg. user story points, function
points) is commonly introduced to the estimation process.

�Let's run that trail. It'll take 30 minutes.� [11]

Also, helps with MCE pressure to some extent.

Eventually, we can translate the proxy parameter to manhours
at appropriate level (e.g. for whole team).

Robert Luko´ka Management, Planning



Management, Planning

Estimations - T-shirt method

XS, S, M, L, XL, XXL

As teams learns to work together, the team members re�ne
their idea of what a given T-shirt means.

Note that the estimate precision is severely limited by available
T-shirts. This shows, that the estimate is not accurate enough
anyway to reasonably consider more granularity.
T-shirt estimates - what can they easily state about our
backlog:

XL/XXL on the top of the backlog → we need to break stu�
into smaller tasks.
SSSSS → we were breaking too much, this is ine�cient, now
we have to put e�ort to manage a lot of small tasks.

If you have a roughly even mix of S, M, and L, you've probably
structured things so that you'll have pretty good - well, least
bad - estimates. [7]

Robert Luko´ka Management, Planning



Management, Planning

Story points

1, 2, 3, 5, 13, 40, 100, in�nity, unknown

Story points make apparent that the di�erence between S and
M id much smaller than between M and L.

Robert Luko´ka Management, Planning



Management, Planning

Planing Poker [10]

Planning poker (or scrum poker) is a consensus-based,
gami�ed technique for estimating, mostly used to estimate
e�ort or relative size of development goals in software
development.

The rules mitigate various psychological issues that make it
hard for a group to obtain a honest estimate.

Robert Luko´ka Management, Planning



Management, Planning

Planing Poker [10]

Each player has its own set of cards, e.g.: 0, 0.5, 1, 2, 3, 5, 8,
13, 20, 40, 100, ?, ∞, co�ee cup.

A Moderator, who will not play, chairs the meeting.

The Product Owner provides a short overview of one user
story to be estimated. The team is given an opportunity to ask
questions and discuss to clarify assumptions and risks. A
summary of the discussion is recorded, e.g. by the Moderator.

Each individual lays a card face down representing their
estimate for the story. Units used vary - they can be days
duration, ideal days or story points. During discussion,
numbers must not be mentioned at all in relation to feature
size to avoid anchoring.

Robert Luko´ka Management, Planning



Management, Planning

Planing Poker [10]

Everyone calls their cards simultaneously by turning them over.

People with high estimates and low estimates are given a soap
box to o�er their justi�cation for their estimate and then
discussion continues.

Repeat the estimation process until a consensus is reached.
The developer who was likely to own the deliverable has a
large portion of the �consensus vote�, although the Moderator
can negotiate the consensus.

To ensure that discussion is structured; the Moderator or the
Product Owner may at any point turn over the egg timer and
when it runs out all discussion must cease and another round
of poker is played. The structure in the conversation is
re-introduced by the soap boxes.

Robert Luko´ka Management, Planning



Management, Planning

Planing Poker

Planing poker addresses various concerns:

Uses proxy parameter.

Co�ee card against estimation fatigue.

Designed so that everybody participates, not only the �loud�,
�active� player.

Robert Luko´ka Management, Planning



Management, Planning

Formal estimation / Combination

Requires applicable measured past data.

Given good past data, the Models predicting the development
e�ort may be quite involved.

Inaccurate measurements are still useful if handled correctly.

One could combine formal and expert approaches: e.g, turning
story points to man hours based on past data.

Robert Luko´ka Management, Planning



Management, Planning

Resources I

How to respond when you are asked for an estimate? -
Thomas Owens response

Wikipedia: Planning poker

Scrum Reference Card

Robert Luko´ka Management, Planning

http://programmers.stackexchange.com/questions/648/how-to-respond-when-you-are-asked-for-an-estimate
http://programmers.stackexchange.com/questions/648/how-to-respond-when-you-are-asked-for-an-estimate
https://en.wikipedia.org/wiki/Planning_poker
http://scrumreferencecard.com/ScrumReferenceCard.pdf


Management, Planning

References I

R. �ervenka: Project management

Wikipedia: Software project management

Wikipedia: Brooks's law

Wikipedia: Issue tracking

Wikipedia: Hofstadter's law

Wikipedia: 90-90 rule

Jon Evans: On the dark art of software estimation

How to respond when you are asked for an estimate? - Thomas
Owens response

Wikipedia: Software development e�ort estimation

Robert Luko´ka Management, Planning

http://www.dcs.fmph.uniba.sk/~cervenka/oose/OOSEProjectManagement.PDF
https://en.wikipedia.org/wiki/Software_project_management
https://en.wikipedia.org/wiki/Brooks's_law
https://en.wikipedia.org/wiki/Issue_tracking_system
https://en.wikipedia.org/wiki/Hofstadter's_law
https://en.wikipedia.org/wiki/Ninety-ninety_rule
http://techcrunch.com/2016/04/30/estimate-thrice-develop-once/
http://programmers.stackexchange.com/questions/648/how-to-respond-when-you-are-asked-for-an-estimate
http://programmers.stackexchange.com/questions/648/how-to-respond-when-you-are-asked-for-an-estimate
https://en.wikipedia.org/wiki/Software_development_effort_estimation


Management, Planning

References II

Wikipedia: Planning poker

Mike Cohn: The Main Bene�t of Story Points

Richard Clayton: Software Estimation is a Losing Game

Scrum Reference Card

Scrum - Wikipédia

Wikipedia: Kanban

Robert Luko´ka Management, Planning

https://en.wikipedia.org/wiki/Planning_poker
https://www.mountaingoatsoftware.com/blog/the-main-benefit-of-story-points
https://rclayton.silvrback.com/software-estimation-is-a-losing-game
http://scrumreferencecard.com/ScrumReferenceCard.pdf
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Kanban_(development)

	Management, Planning

