
Principles of O-O design

Principles of Software Design
Principles of O-O design

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Principles of O-O design



Principles of O-O design

Modeling and design

Common levels of abstractions:

Classes, most important attributes, relations between classes.

+ most of the methods, however, some aspects are

omitted for model simplicity

Full implementation model, can be used as a template for
implementation

Aspects that may be omitted early in the design process typically
include concurrency and persistence.

However, you should have your general approach settled as
these are typically crosscutting concerns.

You just do not need to decide exactly where each lock is, etc.

Robert Luko´ka Principles of O-O design



Principles of O-O design

Mid-level design preconditions

Given the right decision was made at the architecture level your
system is modularized enough that a subsystem you are dealing
with

Is well de�ned (de�ned scope and interfaces)

Is small enough to be comprehensible by a single person.

You understand what are you designing (i.e. you have most of
the requirements a�ecting this module)

Robert Luko´ka Principles of O-O design



Principles of O-O design

Mid-level design goals

Goals for the design at this level:

Modularization

Abstraction

Information hiding

Separating interface and implementation

Low Coupling (few dependencies between parts)

High Cohesion (parts do just one thing)

Su�ciency, Completeness, Simplicity, Flexibility . . .

You want most of these on architecture level too, but there are
subtle di�erences.

Robert Luko´ka Principles of O-O design



Principles of O-O design

Mid-level design goals

Modularization

Focused mostly to modularize implementation and veri�cation
(at architectural level we are more focused on modularizing
requirements, documentation, etc.)

You want to separate aspects that have di�erent properties.
Create modules that allow consistent coding/testing style (see
High Cohesion).

Separate stu� that requires state/does not require state.
Separate stu� with di�erent testing requirements (e.g. for
some trivial code it does not make sense to write unit tests)
Units allow for consistent coding style.

Robert Luko´ka Principles of O-O design



Principles of O-O design

Mid-level design goals

Abstraction

Focused on stu� like simplicity

Making various arbitrary data in the domain irrelevant for the
implementation.
Not only are such data unnecessarily complex, but they are
also prone to changes.
Helps IDEs

Avoiding repeated code.

Robert Luko´ka Principles of O-O design



Principles of O-O design

Mid-level design goals

Information hiding, Separating interface and implementation

to preserve modularization over time

not necessarily that strict for tightly related parts

Low Coupling, High Cohesion

Coupling - degree to which parts depend on each other.

Cohesion - degree to which a part is uniform.

Robert Luko´ka Principles of O-O design



Principles of O-O design

What are our tools

Abstraction (techniques from domain modeling are applicable
to the modeling of the software system)

This includes stu� like abstraction of types, relationships. etc.
it is good idea to perform these simpli�cations before re�ning
the model

Don't repeat yourself, Rule of 3

You ain't gonna need it

. . .

For object-oriented design:

SOLID

Dependency injection

Robert Luko´ka Principles of O-O design



Principles of O-O design

Design veri�cation

You can verify design:

Can you really perform all the function prescribed by the
interfaces you have to implement?

It is much harder to validate the design, example:

We expect aspect A of the system to vary, thus our design
makes it easy to change aspect A

Validation means con�rming that this assumption is correct.

This can be done e.g. by evaluating past changes (even before
the development of our system started).

Often it is hard to predict future changes - the �exibility of
design is important (however one needs to balance the
�exibility and the added complexity).

Robert Luko´ka Principles of O-O design



Principles of O-O design

YAGNI

You ain't gonna need it.

Relevant also on the architecture level

Unless the evidence says otherwise, you should prefer simplicity
over

additional features
excessive �exibility
performance
etc.

This does not mean that you should not apply basic principles while
creating the design. However, you should avoid doing complex
non-standard stu� unless you have really good evidence you need
to.

Robert Luko´ka Principles of O-O design



Principles of O-O design

DRY

Don't repeat yourself

Repeated code is

longer
harder to maintain
error-prone

You should avoid repeating the code.

It is always possible using the right technique.

Tradeo�: sometimes avoiding the code repetition creates some
quite hard to grasp abstraction (e.g. template method pattern
with many parameters) - goes against simplicity

Robert Luko´ka Principles of O-O design



Principles of O-O design

Rule of 3

If in doubt, apply (rule of thumb) Rule of 3:

If similar piece of code appear three times, change the design
so that the code is not repeated.

The idea is, if the code appears for the third time, it is likely
that it will happen even more, in which case the change is
utterly necessary.

If you have code that is repeated twice document this very
carefully (e.g. comments in the code referring to the other
part and vice versa).

Similar reasoning can be applied elsewhere (e.g. if some aspect
of the system changes three times, you should change your
design so that the change is easy to do)

Robert Luko´ka Principles of O-O design



Principles of O-O design

Low Coupling

Coupling is the degree of interdependence between software
modules; a measure of how closely connected two routines or
modules are; the strength of the relationships between modules [1].

A change in one module usually forces a ripple e�ect of
changes in other modules.

Assembly of modules might require more e�ort and/or time
due to the increased inter-module dependency.

A particular module might be harder to reuse and/or test
because dependent modules must be included.

Robert Luko´ka Principles of O-O design



Principles of O-O design

Low Coupling

Information expert principle (rule of thumb for low coupling)

A Responsibility belongs to a class which has most data to
perform the task

Coupling strength, Coupling distance

It is more acceptable to have high coupling between classes
with small distance

Robert Luko´ka Principles of O-O design



Principles of O-O design

High cohesion

Cohesion - cohesion refers to the degree to which the elements
inside a module belong together [2].

Example metrics LCOM4:

Create a graph, vertices - attributes and methods, edges
method calls a method or uses an attribute
LCOM4 = number of components
If LCOM4 ̸= 1, the class is not very cohesive.

Similar testing requirements.

Similar cross-cutting concerns (e.g. db, logging).

Similar expected coding style.

Robert Luko´ka Principles of O-O design



Principles of O-O design

Encapsulate what varies

If some functionality (e.g. method of a class) changes a lot we
should encapsulate this functionality

Create a new class whose concern is exactly this behavior

Hide behind an interface (strategy pattern)

This protects the rest of the class from the frequent changes.

protects the original class against newly introduced errors.
allows to narrow the scope of the change making it easier.

Alternative approach: abstraction - design things so, that the
changes just a�ect input data (e.g. a change in a con�guration �le)

Robert Luko´ka Principles of O-O design



Principles of O-O design

Object oriented design

Information hiding, Separation of interface and implementation

Encapsulation does some information hiding, however,
interfaces are a more robust tool to do this.

Implementation depends on the interface and not vice versa

This is general principle valid also outside OOP.
OOP separates interface from implementation using
polymorphism.
The caller (who requires interface) needs not to be aware of
who exactly the callee (implements interface) is - polymorphic
dispatch.
The caller code should not need to recompile upon a change in
the callee code.
Private/public implicitly de�ne an interface, however, this tool
may not be su�cient.

Robert Luko´ka Principles of O-O design



Principles of O-O design

Anemic domain model

Anemic domain model - classes have little or no behavior.

M. Fowler, 2003:
�The fundamental horror of this anti-pattern is that it's

so contrary to the basic idea of object-oriented designing;

which is to combine data and process them together. The

anemic domain model is just a procedural style design, ex-

actly the kind of thing that object bigots like me ... have

been �ghting since our early days in Smalltalk. What's

worse, many people think that anemic objects are real ob-

jects, and thus completely miss the point of what object-

oriented design is all about.�

Robert Luko´ka Principles of O-O design



Principles of O-O design

Anemic domain model

Suggest insu�cient abstraction

Not really an O-O design

Separating data and behavior is normal in non-O-O
programming.

Robert Luko´ka Principles of O-O design



Principles of O-O design

SOLID

Single responsibility principle

Open-closed principle

Liskov substitution principle (Liskovej substitu£ný princíp)

Interface segregation principle

Dependency inversion principle

Robert Luko´ka Principles of O-O design



Principles of O-O design

Single responsibility principle

A class should only have a single responsibility, that is, only

changes to one part of the software's speci�cation should be able to

a�ect the speci�cation of the class.

This implies:

high cohesion, LCOM4= 1

class has a responsibility

How to separate other responsibilities? E.g.. strategy pattern.

Robert Luko´ka Principles of O-O design



Principles of O-O design

Open-closed principle

Software entities should be open for extension, but closed for

modi�cation.

How to change a class without modifying it?:

Inheritance

Composition (preferred, �Composition over inheritance�)

How to compose objects without creating an explicit dependency?

Dependency injection

Robert Luko´ka Principles of O-O design



Principles of O-O design

Liskov substitution principle

Objects in a program should be replaceable with instances of their

subtypes without altering the correctness of that program.

Inheritance is not as IS-A relationship

e.g. Square is a rectangle, but square should not be a subclass
of a rectangle.

Robert Luko´ka Principles of O-O design



Principles of O-O design

Interface segregation principle

Many client-speci�c interfaces are better than one general-purpose

interface.

Segregates interface from implementation

Makes the interface easier to use in the client code

Limits the impact of the interface change

You can use Adapter pattern to adjust the class to the
required interface.

Robert Luko´ka Principles of O-O design



Principles of O-O design

Dependency inversion principle [4]

One should "depend upon abstractions, not concretions

High-level modules should not depend on low-level modules.
Both should depend on abstractions (e.g. interfaces).

Abstractions should not depend on details. Details (concrete
implementations) should depend on abstractions.

By dictating that both high-level and low-level objects must
depend on the same abstraction, this design principle inverts
the way some people may think about object-oriented
programming

If you apply this principle 100% you should have an interface
between each cooperating classes. You really should do this,
maybe except for several very closely related classes.

Robert Luko´ka Principles of O-O design



Principles of O-O design

Bob Martin - SOLID Principles of O-O and Agile Design

Recommended video on the topic: Bob Martin - SOLID Principles
of OO and Agile Design (12:30-34:45, 37:45-52:30)

Robert Luko´ka Principles of O-O design

https://www.youtube.com/watch?v=TMuno5RZNeE
https://www.youtube.com/watch?v=TMuno5RZNeE


Principles of O-O design

Dependency injection

This is an important design concept that allows modularization
of testing.

Do not confuse it with dependency inversion

Robert Luko´ka Principles of O-O design



Principles of O-O design

Dependency injection and dependency inversion

A class should not create instances of other classes (if we do
sociable testing it might make some exceptions of this rule for
closely related classes) - dependency injection / dependency
injection of a factory.

A class should not depend on the implementation of the
collaborator, just on the interface - dependency inversion

Dependency injection is a way to implement dependency
inversion.

Robert Luko´ka Principles of O-O design



Principles of O-O design

OO design and object dependence

All collaborators (we want to separate) should be separated by an
interface.

calls method, modi�es, . . . - we give the collaborator in the
constructor or as a method parameter

creates, destroys - we give a factory (implementing a factory
interface) as an argument in the constructor of the object

We can inject the dependency either via constructor or as a method
argument.

It is like applying strategy pattern all the time, even if you
have just one strategy.

One of the less obvious reasons to do this is the ability to
separate testing by replacing actual implementation object
with test doubles

Automated dependency injection tools, e.g. dependency injector.

Robert Luko´ka Principles of O-O design

https://pypi.org/project/dependency-injector/


Principles of O-O design

UML Sequence diagrams

UML class diagram with several additional comments in text
form is often su�cient to explain design.

In some more complex cases one needs to provide detailed
dynamic description of how the classes accomplish a goal.

UML Sequence diagrams provides dynamic view of the
described system.

Robert Luko´ka Principles of O-O design



Principles of O-O design

UML Sequence diagrams

UML class diagram with several additional comments in text
form is often su�cient to explain design.

In some more complex cases one needs to provide detailed
dynamic description of how the classes accomplish a goal.

UML Sequence diagrams provides dynamic view of the
described system.

Have a quick look at the examples and the reference.

Note that synchronous and asynchronous calls are
distinguished.

Robert Luko´ka Principles of O-O design

https://www.uml-diagrams.org/sequence-diagrams-examples.html
https://www.uml-diagrams.org/sequence-diagrams-reference.html


Principles of O-O design

Resources I

M. Fowler - YAGNI

Wikipedia - SOLID

Wikipedia - Dependency inversion principle

Bob Martin on SOLID (especially 12:30-34:45, 37:45-52:30)

uml-diagrams.org: Sequence diagram examples

uml-diagrams.org: Sequence diagram reference

Robert Luko´ka Principles of O-O design

https://martinfowler.com/bliki/Yagni.html
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://www.youtube.com/watch?v=QHnLmvDxGTY
https://www.uml-diagrams.org/sequence-diagrams-examples.html
https://www.uml-diagrams.org/sequence-diagrams-reference.html


Principles of O-O design

References I

Wikipedia - Coupling

Wikipedia - Cohesion

Wikipedia - SOLID

Wikipedia - Dependency inversion principle

Robert Luko´ka Principles of O-O design

https://en.wikipedia.org/wiki/Coupling_(computer_programming)
https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://en.wikipedia.org/wiki/Dependency_inversion_principle

	Principles of O-O design

