
Procedural programming, Secure C coding

Principles of Software Design 3

Procedural programming, Secure C coding

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Requirements



Procedural programming, Secure C coding

Procedural programming

Procedural programming is a programming paradigm, derived from
imperative programming, based on the concept of the procedure
call. Procedures (a type of routine or subroutine) simply contain a
series of computational steps to be carried out. Any given
procedure might be called at any point during a program's
execution, including by other procedures or itself. [1]

How does this compare to other paradigms?
Procedural programming - Wikipedia

Robert Luko´ka Requirements

https://en.wikipedia.org/wiki/Procedural_programming


Procedural programming, Secure C coding

Procedural programming

OOP - features
I will try to persuade you, that there is not that much of a
di�erence here.

Robert Luko´ka Requirements

https://en.wikipedia.org/wiki/Object-oriented_programming#Features


Procedural programming, Secure C coding

Procedural programming

OOP concepts [2] we will be looking for in procedural
programming:

Class/Prototype

Dynamic dispatch

Encapsulation

Composition, inheritance, and delegation

Subtyping, polymorphism

Robert Luko´ka Requirements



Procedural programming, Secure C coding

Procedural programming

Class/Prototype

Associating procedure calls with classes and methods is
syntactic sugar. But there de�nitely are advantages (e.g.
better autocomplete no need to use extra namespaces)
Constructors and destructors - so it is not up to programmer
to make init call after declaration / match malloc and free
calls for dynamic allocation.

Dynamic dispatch

You have function pointers and they are �ne.

Robert Luko´ka Requirements



Procedural programming, Secure C coding

Procedural programming

Encapsulation

.h and .c �les
Private functions and global variables can be hidden in .c �les
from compiler (use extern to expose global variable)
If you use static it is hidden from linker.
You have to share size of the variable if you want to allow
client to use automatic variables
You may use pointers and handle alocation in init/free calls

Composition, inheritance, and delegation

Composition over inheritance anyways. Function pointers are a
good tool for composition and delegation

Subtyping, polymorphism

It is a bit clumsy. In particular given the lack of constructors
and destructors, you need to have init call to initialize function
pointer �elds

Robert Luko´ka Requirements



Procedural programming, Secure C coding

Polymorphism in procedural programming

Tools to achieve polymorphism

passing pointers to functions
passing multiple function pointers
struct of function pointers

You can generally achieve results similar to OOP. It is more or
less like creating objects by hand.

This has consequences for testing. You can do all the mocking
and stu� like in OOP cmocka

Robert Luko´ka Requirements

https://api.cmocka.org/


Procedural programming, Secure C coding

Resources I

Procedural programming - Wikipedia

Robert Luko´ka Requirements

https://en.wikipedia.org/wiki/Procedural_programming


Procedural programming, Secure C coding

Dangers I

Unde�ned behaviour

sprintf quite unsafe design, new call snprintf

It is good idea to have array args always accompanied by
known size

Signed/unsigned int casting

Going overboard with macros

Robert Luko´ka Requirements



Procedural programming, Secure C coding

Some tools to use I

Const correctness

Macros to avoid errors in code

Robert Luko´ka Requirements



Procedural programming, Secure C coding

References I

Procedural programming - Wikipedia

OOP - features

Robert Luko´ka Requirements

https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Object-oriented_programming#Features

	Procedural programming, Secure C coding

