Procedural programming, Secure C coding

Principles of Software Design 3

Procedural programming, Secure C coding

Robert Lukotka
lukotka@dcs.fmph.uniba.sk
www.dcs.fmph.uniba.sk/“lukotka

M-255

Robert Lukotka Requirements

Procedural programming, Secure C coding

Procedural programming

Procedural programming is a programming paradigm, derived from
imperative programming, based on the concept of the procedure
call. Procedures (a type of routine or subroutine) simply contain a
series of computational steps to be carried out. Any given
procedure might be called at any point during a program’s
execution, including by other procedures or itself. [1]

How does this compare to other paradigms?
Procedural programming - Wikipedia

Robert Lukotka Requirements

https://en.wikipedia.org/wiki/Procedural_programming

OOP - features

difference here.

| will try to persuade you, that there is not that much of a

40r «F» «=)» « =) Q>

https://en.wikipedia.org/wiki/Object-oriented_programming#Features

Procedural programming, Secure C coding

Procedural programming

OOP concepts [2] we will be looking for in procedural
programming:

Class/Prototype
Dynamic dispatch
Encapsulation

Composition, inheritance, and delegation

Subtyping, polymorphism

Robert Lukotka Requirements

Procedural programming, Secure C coding

Procedural programming

e Class/Prototype

e Associating procedure calls with classes and methods is
syntactic sugar. But there definitely are advantages (e.g.
better autocomplete no need to use extra namespaces)

e Constructors and destructors - so it is not up to programmer
to make init call after declaration / match malloc and free
calls for dynamic allocation.

@ Dynamic dispatch
e You have function pointers and they are fine.

Robert Lukotka Requirements

Procedural programming, Secure C coding

Procedural programming

@ Encapsulation
e .h and .c files
e Private functions and global variables can be hidden in .c files
from compiler (use extern to expose global variable)
o If you use static it is hidden from linker.
e You have to share size of the variable if you want to allow
client to use automatic variables
e You may use pointers and handle alocation in init/free calls
e Composition, inheritance, and delegation
e Composition over inheritance anyways. Function pointers are a
good tool for composition and delegation
@ Subtyping, polymorphism
e It is a bit clumsy. In particular given the lack of constructors
and destructors, you need to have init call to initialize function
pointer fields

Robert Lukotka Requirements

Procedural programming, Secure C coding

Polymorphism in procedural programming

@ Tools to achieve polymorphism

e passing pointers to functions
e passing multiple function pointers
e struct of function pointers

@ You can generally achieve results similar to OOP. It is more or
less like creating objects by hand.

@ This has consequences for testing. You can do all the mocking
and stuff like in OOP cmocka

Robert Lukotka Requirements

https://api.cmocka.org/

@ Procedural programming - Wikipedia

«Or «Fr « aer

https://en.wikipedia.org/wiki/Procedural_programming

Procedural programming, Secure C coding

Dangers |

@ Undefined behaviour

e sprintf quite unsafe design, new call snprintf
e It is good idea to have array args always accompanied by
known size

e Signed/unsigned int casting

@ Going overboard with macros

Robert Lukotka Requirements

o Const correctness

@ Macros to avoid errors in code

«40)>r «F»r « Qv

[Procedural programming - Wikipedia
OOP - features

«4O0r «F>r «=)» « =) aer

https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Object-oriented_programming#Features

	Procedural programming, Secure C coding

