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1 Výroky
Výrok je tvrdenie ktoré je buď pravdivé alebo nepravdivé (princíp dvojhodnotovosti) –
výrok nemôže byť súčasne pravdivý i nepravdivý, ale platí práve jedna z týchto možností.
Inak povedané výrok je deklaratívna veta, teda veta, ktorá niečo tvrdí, a nie je iba roz-
kazom, či otázkou. Výrok má spravidla tvar gramatickej oznamovacej vety. Pravdivostnú
hodnotu výroku nemusíme vedieť určiť.

• Príklady výrokov:

– 2+3=5

– 3+6=10

– V roku 2037 pristanú ľudia na Marse.

– Ak je dnes streda, zajtra bude štvrtok.

• Výrokmi nie sú:

– otázky

– rozkazovacie vety

– oznamovacie vety, pokiaľ im nemožno jednoznačne priradiť pravdivostnú hod-
notu (napr. „Táto veta je nepravdivá.“).

• Výroky zvyčajne označujeme písmenami p, q, r.

• Pravdivostná hodnota „pravdivý” sa označuje symbolom 1 (alebo T – true), prav-
divostná hodnota „nepravdivý” sa označuje symbolom 0 (alebo F – false).

• hypotézy

– Výrok, o ktorom si myslíme, že je pravdivý, ale nevieme to dokázať sa nazýva
hypotéza.

– Tvrdenie o štyroch farbách bolo dlho hypotézou, teraz vieme, že je to pravdivý
výrok.

1.1 Logické spojky

Z výrokov môžeme pomocou logických spojok tvoriť nové, zložitejšie výroky. Postupne
rozoberieme základné logické spojky. Tieto sa podľa počtu parametrov delia na unárne
(negácia) a binárne (konjunkcia, disjunkcia, implikácia a ekvivalencia).
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Negácia

• Negácia: popretie skutočnosti, ktorú vyjadruje pôvodný výrok.

• Napríklad, ak máme výrok: „Číslo 5 je väčšie ako číslo 2.“, popretím skutočnosti,
ktorú tvrdí je výrok „Nie je pravda, že číslo 5 je väčšie ako číslo 2.“, alebo používame
aj slovný obrat „neplatí, že číslo 5 je väčšie ako číslo 2“. Takisto samozrejme mô-
žeme (ak rozumieme tomu, čo hovorí výrok) ho znegovať bez slov, ktoré pred neho
predsunieme: „Číslo 5 je menšie alebo rovnaké ako číslo 2“

• Výrok je pravdivý práve vtedy, ak jeho negácia je nepravdivá, je nepravdivý v opač-
nom prípade

• Ak prvý výrok označíme p, tak jeho negáciu budeme označovať ¬p. V literatúre sa
používa aj p′ alebo p.

• Negácia je unárna spojka (to znamená, že má jeden parameter, v tomto prípade
výrok).

p ¬p
0 1
1 0

Tabuľka 1: Pravdivostné hodnoty pri negácii výroku

Konjunkcia

• Konjunkcia výrokov p a q spája výroky p a q do nového výroku „p a q” čítame p a
súčasne q. Konjunkciu výrokov p a q označujeme p ∧ q (prípadne p&q, p AND q).

• Konjunkcia p ∧ q je pravdivá práve vtedy, ak oba výroky p a q sú pravdivé. V
opačnom prípade je konjunkcia p ∧ q nepravdivá.

Disjunkcia

• Disjunkciu výrokov p a q zapisujeme výrazom p ∨ q (prípadne p OR q). Disjunkciu
výrokov p a q čítame „p alebo q”.

• Disjunkcia výrokov p a q je pravdivá práve vtedy, ak aspoň jeden z výrokov p a q je
pravdivý, v opačnom prípade je disjunkcia výrokov p a q nepravdivá.

• V reálnom živote niekedy používame slovo „alebo” vo vylučovacom význame. Na-
príklad vo vete „Pôjdeš nakúpiť ty alebo ja.” implicitne myslíme, že pôjde práve
jeden z nás, nie obaja. V matematike je pri disjunkcii prípustné aj že sú splnené oba
výroky.
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Implikácia

• Implikácia výrokov p a q sa zapisuje výrazom p ⇒ q a číta sa nasledovne: „ak
(platí výrok) p, tak (platí výrok) q“, „z p vyplýva q“ alebo jednoducho „p implikuje
q“. Výrok p v implikácii p ⇒ q sa nazýva predpoklad a výrok q je uzáver alebo
dôsledok.

• Implikácia je nepravdivá v prípade, keď je pravdivý predpoklad implikácie a neprav-
divý jej uzáver. Vo všetkých ostatných prípadoch je implikácia pravdivá.

• Implikácia zohráva dôležitú úlohu v matematických dôkazoch.

Ekvivalencia

• Ekvivalenciu výrokov p a q zapisujeme výrazom p ⇔ q (p ∼ q, p ≡ q) a čítame ako
„p je ekvivalentne s q”, „p (plati) prave vtedy keď (platí) q”, „p (platí) vtedy a len
vtedy keď (platí) q”. Ekvivalencia p, q platí prave vtedy, keď majú oba výroky p a q
rovnakú pravdivostnú hodnotu; t.j. keď sú oba súčasne pravdivé, alebo oba sučasne
nepravdivé.

• To, že výroky majú rovnakú pravdivostnú hodnotu, znamená, že jeden z nich može
byť napríklad v nejakom zloženom výroku nahradený druhým bez toho, aby sa
pravdivostná hodnota zloženého výroku zmenila.

• Ekvivalencia výrokov má význam pri úpravach výrokov. Napríklad pri zisťovaní
pravdivostnej hodnoty nejakého veľmi zložitého výroku možeme postupne nahra-
dzovať výroky z ktorých pozostáva, ekvivalentnými jednoduchšími výrokmi, až sa
nakoniec dostaneme k výroku, ktorého pravdivostnú hodnotu vieme určiť.

• To, že sú nejake dva výroky logicky ekvivalentné, nemusí znamenať, že majú rovnaký
(semantický) význam. Napríklad výroky 26. septembra 2024 bol štvrtok a 5 > 3 sú
oba pravdivé, a teda sú to ekvivalentné výroky.

p q p∧ q p ∨ q p ⇒ q p ⇔ q
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 0
1 1 1 1 1 1

Tabuľka 2: Pravdivostné hodnoty výrokov pri použití binárnych spojok (spojok, ktoré
spájajú dva výroky)

Špeciálne typy výrokov

• Výrok sa nazýva tautológiou, ak je pravdivý pre všetky možné kombinácie pravdi-
vostných hodnôt výrokov, z ktorých je zložený (základných výrokov).

• Výrok sa nazýva kontradikcia, ak je nepravdivý pre všetky možné kombinácie prav-
divostných hodnôt výrokov, z ktorých je zložený.
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• Výrok je splniteľný, ak je pravdivý pre aspoň jednu kombináciu pravdivostných
hodnôt výrokov, z ktorých je zložený.

• Každý výrok je teda splniteľný alebo kontradikcia.

Významné tautológie

• Idempotentosť (p ∧ p) ⇔ p, (p ∨ p) ⇔ p

• Komutatívnosť (p ∧ r) ⇔ (r ∧ p), (p ∨ r) ⇔ (r ∨ p)

• Asociatívnosť (p ∧ (r ∧ s)) ⇔ ((p ∧ r) ∧ s), (p ∨ (r ∨ s)) ⇔ ((p ∨ r) ∨ s)

• Distributívne zákony (p∧(r∨s)) ⇔ ((p∧r)∨(p∧s)), (p∨(r∧s)) ⇔ ((p∨r)∧(p∨s))

• Absorpčné zákony (p ∧ (r ∨ p)) ⇔ p, (p ∨ (r ∧ p)) ⇔ p

• Zákon dvojitej negácie (¬¬p) ⇔ p

• Zákon o vylúčení tretieho (p ∨ ¬p) ⇔ 1

• Zákon o vylúčení sporu (p ∧ ¬p) ⇔ 0

• De Morganove zákony ¬(p ∧ r) ⇔ (¬p ∨ ¬r), ¬(p ∨ r) ⇔ (¬p ∧ ¬r)

• Kontrapozícia implikácie (¬p ⇒ ¬r) ⇔ (r ⇒ p)

• (p ⇒ r) ⇔ (¬p ∨ r)

Všetky tieto tautológie sa dajú dokázať tabuľkou pravdivostných hodnôt.

♣ Vyjadrite implikáciu a negáciu implikácie pomocou iných logických spojok, pričom
negované môžu byt iba základné výroky.

♣ Je implikácia asociatívna?

2 Výrokové formy
V ýroková forma je formula, ktorá má tvar výroku, ale výrokom nie je, pretože namiesto
tvrdenia o nejakom objekte či objektoch tvrdí niečo o nejakej neznámej veličine (napr.
premennej x) a pravdivostnú hodnotu tohto tvrdenia nie je možné bez znalosti hodnoty
premennej určiť. Ak však za premennú dosadíme vhodný objekt, alebo inak konkretizu-
jeme množinu hodnôt, ktoré môže premenná nadobúdať, dostávame výrok.

Príklady výrokových foriem

• x je prvočíslo

• x+ 3 > 5
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Pre každú výrokovú formu existuje množina objektov, ktoré má zmysel do výrokovej
formy dosadzovať. Túto množina voláme doména a je často označovaná M .

Príklad. Nech výrokovú formu máme na množine prirodzených čísiel definovanú takto
a(x) ⇔ a > 3.
dosadzovaním do výrokovej formy dostávame výroky:
a(1) ⇔ 1 > 3
a(2) ⇔ 2 > 3
a(3) ⇔ 3 > 3
a(4) ⇔ 4 > 3
a(5) ⇔ 5 > 3 ■

Z výrokovej formy môžeme dostať výrok nielen dosadením konkétnych objektov, ale
aj tým, že určíme (kvantifikujeme) pre aké množstvo prvkov množiny M predstavuje
výroková forma pravdivý výrok.

• Existenčný kvantifikátor ∃ čítame „existuje“. Zápis (∃x)a(x) má význam existuje
aspoň jedno také x (z množiny M), pre ktoré platí a(x).

• Všeobecný kvantifikátor ∀ čítame „pre všetky“. Zápis (∀x)a(x) má význam pre všetky x
(z množiny M), ktoré platí a(x).

• Výroky, ktoré obsahujú kvantifikátory sa nazývajú kvantifikované výroky.

Nech a(x) je výroková forma s doménou M .

• výrok (∀x)a(x) formálne zapíšeme (∀x)((x ∈ M) ⇒ a(x))

• výrok (∃x)a(x) formálne zapíšeme (∃x)((x ∈ M) ∧ a(x))

• ak je jasné o akú doménu ide, spravidla používame skrátené zápisy výrokov

♣ Nájdite výrokovú formu a(x) a domény M1 a M2 také, že (∀x)a(x) je pravdivé na M1,
ale nie je pravdivé na M2. Podobne pre (∃x)a(x).

♣ Ako sa správajú existenčný a všeobecný kvantifikátor, ak je doména prázdna množina?

2.1 Negácie kvantifikovaných výrokov

Kvantifikované výroky negujeme nasledovne:

• ¬(∀x)(a(x)) ⇔ (∃x)(¬a(x)),

• ¬(∃x)(a(x)) ⇔ (∀x)(¬a(x)).
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3 Typy dôkazov
Jedna z najčastejších úloh v matematike je dokázať platnosť nejakého tvrdenia (s použitím
istých predpokladov). Typov dôkazov je niekoľko, tu spomenieme najčastejsie používané:
priamy a nepriamy dôkaz, dôkaz sporom a dôkaz matematickou indukciou. Často sa typy
dôkazov kombinujú, napríklad vnútri dôkazu matematickou indukciou sa dokáže čiastkové
tvrdenie priamym dôkazom.

Pri dôkazoch sa stretnete so slovným zvratom „bez ujmy na všeobecnosti”. Myslí sa
tým, že z viacerých prípadov, ktoré treba rozobrať stačí rozobrať jeden, lebo ostatné
prípady by sa robili obdobne.

3.1 Priamy dôkaz

Majme matematické tvrdenie B, ktoré chceme dokázať. Pri priamom dôkaze postupujeme
tak, že prijmeme nejaké predpoklady, označíme ich A a dokážeme reťaz implikácii

A ⇒ A1 ⇒ A2 . . . ⇒ An ⇒ B

pre nejaké výroky A1, A2, . . . , An. Túto reťaz implikácií treba chápať ako skrátený zápis, že

A ⇒ A1 a zároveň
A1 ⇒ A2 a zároveň

. . .
An−1 ⇒ An a zároveň
An ⇒ B.

Priamy dôkaz často pouzívame na dôkaz implikácie L ⇒ R, kde za A položíme L a
za B položíme R.

Príklad. Dokážte, že pre všetky prirodzené čisla n platí: ak 3 delí n, tak 9 delí n3.
Riešenie. Pre každé prirodzené číslo n platia nasledujúce implikácie:
3 delí n ⇒ ∃k ∈ N : n = 3.k ⇒ n3 = (3k)3 ⇒ n3 = 27k3 ⇒ 9 delí n3. Dostávame teda, že
3 delí n ⇒ 9 delí n3, čo bolo treba dokázať. ■

Pri priamom dôkaze sa môže stať, že sa dôkaz delí na podprípady, napr. namiesto
Ai ⇒ Ai+1 nahliadneme Ai ⇒ (A1

i+1∨A2
i+1∨ . . .∨Ak

i+1). Potom treba z každého z výrokov
A1

i+1, A2
i+1. . .Ak

i+1 dokázať B.

Príklad. Šesť družstiev sa zúčastnilo turnaja, ktorý sa hral systémom každý s každým
jeden zápas. Turnaj trval dva dni. Dokážte, že existujú tri družstvá, ktoré odohrali všetky
tri svoje vzájomné zápasy počas jedneho dňa.
Riešenie. Označme si družstvá A, B, C, D, E, F. Družstvo A odohralo päť zápasov. Z
dirichletovho princípu vyplýva, že v jeden z dní odohralo družstvo A aspoň tri zápasy,
označme tento deň X a ten iný deň označme Y. Predpokladáme teda, že v deň X odohoralo
družstvo A aspoň tri zápasy. Bez ujmy na všeobecnosti môžeme predpokladať, že v deň
X družstvo A odhralo zápasy s družstvami B, C, D (mohlo aj s viacerými, vyberieme si
tri z družstiev). Tu sa dôkaz rozdeľuje na dve možnosti:
1. možnosť: niektorý zo zápasov medzi B-C, B-D alebo C-D sa odohral v deň X.
2. možnosť: všetky zápasy medzi B-C, B-D a C-D sa odohrali v deň Y.
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Ak nastala možnosť 1, tak dve družstva z B, C, D, ktoré hrali spolu v deň X, tvoria spolu
s družstvom A trojicu družstiev, ktoré všetky tri svoje vzájomné zápasy odohrali v deň X.
Ak nastala možnosť 2, tak družstvá B, C, D odohrali všetky tri svoje vzájomné zápasy v
deň Y.

Nahliadli sme, že bez ohľadu na to, ktorá z dvoch možností nastala, existuje trojica
družstiev s požadovanou vlastnosťou. Keďže tieto dve možnosti pokrývajú všetky možné
prípady, dôkaz je ukončený. ■

3.2 Nepriamy dôkaz implikácie pomocou obmeny

Tento typ dôkazu je založený na skutočnosti, že implikácia a ⇒ b a jej obmena ¬b ⇒ ¬a
sú ekvivalentné. Ak je to teda výhodnejšie, namiesto implikácie a ⇒ b môžeme dokazovať
implikáciu ¬b ⇒ ¬a.

Príklad. Dokážte, že pre všetky prirodzené čísla platí: ak 25 nedelí n2, potom 5 nedelí n.
Riešenie. Máme dokázať, že 25 nedelí n2 ⇒ 5 nedelí n. Namiesto tejto implikácie budeme
dokazovať ekvivalentnú implikáciu 5 delí n ⇒ 25 delí n2. Tu už budeme postupovať, ako
pri priamom dôkaze.
5 delí n ⇒ ∃k ∈ N : n = 5.k ⇒ n2 = (5k)2 ⇒ n2 = 25k2 ⇒ 25 delí k2. Týmto sme
dokázali obmenu pôvodnej implikácie, a teda aj pôvodnú implikáciu. ■

3.3 Dôkaz sporom

Predpokladajme, že chceme dokázať tvrdenie A. V dôkaze sporom z negácie tvrdenia A
odvodíme nepravdivé tvrdenie. Čiže ukážeme, že ¬A ⇒ 0, čo je ekvivalentné s 1 ⇒ A a
toto je ekvivalentné s A.

Príklad. Dokážte, že
√
2 je iracionálne číslo.

Riešenie. Predpokladajme pre spor, že
√
2 je racionálne číslo, čiže sa dá zapísať v tvare

p/q, kde p a q sú prirodzené čísla. Navyše môžme predpokladať, že p a q sú nesúdeliteľné.

√
2 =

p

q
⇒ 2 =

p2

q2
⇒ 2q2 = p2

Z poslednej rovnosti vyplýva, že 2|p2, čo ďalej implikuje 2|p. Teda p = 2k pre niektoré
prirozdené číslo k. Dosadíme toto do 2q2 = p2 a po úprave dostávame, že 2|q2, a teda 2|q.
Čísla p a q majú spoločného deliteľa 2, čo je v spore s tým, že sú nesúdeliteľné. ■

3.4 Dôkaz matematickou indukciou

Dôkaz matematickou indukciou používame obyčajne na dokázanie pravdivosti výrokovej
formy pre nekonečne veľa hodnôt. Vysvetlíme si tento dôkaz na prirodzených číslach a v
závere podsekcie uvedieme niektoré zovšeobecnenia. Majme teda výrokovú formu V (n) a
chceme dokázať pravdivosť výroku V (n) pre všetky prirodzené čísla n. Dôkaz urobíme v
dvoch krokoch:
1. krok, tiež nazývaný bázový krok, alebo aj báza indukcie. Tu overíme pravdivosť vý-
roku V (0).
2. krok, tiež nazývaný indukčný krok. V tomto kroku overíme pravdivosť výroku

(∀n ∈ N)(V (n) ⇒ V (n+ 1)).
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Pri dôkaze indukčného kroku hovoríme výroku V (n) indukčný predpoklad.

Príklad. Dokážte, že pre všetky prirodzené čísla platí

0 · 1 + 1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n · (n+ 1) =
n(n+ 1)(n+ 2)

3
.

Riešenie. Najprv overíme bázu indukcie, to znamená overíme pravdivosť výroku V (0).
Čiže máme overiť, že 0.1 = 0.1.2

3
. Tento výrok je zjavne pravdivý. Pristúpme teraz k

druhému kroku, ukážme, že (∀n ∈ N)(V (n) ⇒ V (n+ 1)). Čiže predpokladajme, že platí

1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n · (n+ 1) =
n(n+ 1)(n+ 2)

3
(∗)

a dokážeme, že platí

1 · 2 + 2 · 3 + · · ·+ n · (n+ 1) + (n+ 1) · (n+ 2) =
(n+ 1)(n+ 2)(n+ 3)

3
.

Začneme ľavou stranou a postupnosťou rovností ukážeme, že sa rovná pravej strane. 1 ·2+
2·3+· · ·+n·(n+1)+(n+1)·(n+2)

(1)
= n(n+1)(n+2)

3
+(n+1)(n+2) = n(n+1)(n+2)+3(n+1)(n+2)

3
=

(n+1)(n+2)(n+3)
3

.

Pričom rovnosť (1) vyplýva z indukčného predpokladu (*) aplikovaného na všetky ščítance
okrem posledného. Tým je dôkaz ukončený. ■

Ako sme uviedli, používajú sa rôzne modifikácie dôkazu matematickou indukciou. Tu
uvedieme niektoré.

• Výrok je platný (a preto ho dokazujeme) až od istého prirodzeného čísla k. Vtedy v
bázovom kroku dokazujeme výrok V (k) a v indukčnom kroku výrok (∀n ∈ N)[(n ≥
k) ⇒ (V (n) ⇒ V (n+ 1))].

• Máme dokázať výrok V (n) pre všetky prirodzené čísla, ale jedným dôkazom mate-
matickou indukciou to nevieme spraviť. Rozdelíme si množinu na viac podmnožín a
dokážeme platnosť výroku pre tieto podmnožiny osobitne. Napr. rozdelíme si priro-
dzené čísla na párne a nepárne a ukážeme, že

– V (0) a V (n) ⇒ V (n+ 2) pre všetky párne prirodzené čísla n, a zároveň

– V (1) a V (n) ⇒ V (n+ 2) pre všetky nepárne prirodzené čísla n.

• V indukčnom kroku využívame ako predpoklad platnosť tvrdenia pre všetky menšie
čísla, t.j. dokazujeme [V (0) ∧ V (1) ∧ . . . ∧ V (n)] ⇒ V (n+ 1).

• Ak je indukčný krok platný len pre n ≥ k pre nejaké prirodzené číslo k, tak v
bázovom kroku overíme platnosť tvrdení V (0), V (1), . . . , V (k).

• Dokazujeme na inej množine, ako na prirodzených číslach. Množina nemusí byť
lineárne usporiadaná, môžu existovať dvojice neporovnateľných prvkov. O takýchto
množinách sa dozviete na tomto predmete neskôr.
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♣ Nájdite chybu v „dôkaze“ nasledujúceho tvrdenia. Všetky kone majú rovnakú farbu.
„Dôkaz.“ Matematickou indukciu dokážeme pre prirodzené k ≥ 1 tvrdenie: každá k-
prvková množina koní obsahuje všetky kone rovnakej farby.
V báze indukcie treba overiť, že každá jednoprvková množina koní má všetky kone rovna-
kej farby. Toto je zjavne pravda, keďže kôň je množine len jediný. Pre dôkaz indukčného
kroku predpokladajme, že tvrdenie platí pre nejaké prirodzené k a dokážeme tvrdenie pre
k + 1. Majme teda nejakú množinu k + 1 koní. Kone si v nej očíslujme 1, 2, . . . , k + 1.
Pozrime sa na množinu koní tvorenú koňmi s číslami 1, 2, . . . , k. Podľa indukčného predpo-
kladu majú všetky kone v tejto množine rovnakú farbu. Takisto v množine koní s číslami
2, , . . . , k+1 majú všetky kone podľa indukčného predpokladu rovnakú farbu. Keďže kôň s
číslom k je v oboch množinách, farby koní v oboch množinách sú rovnaké a dostávame, že
všetky kone z pôvodnej (k+1)-prvkovej množiny majú rovnakú farbu. Tým sme ukončili
indukčný krok, a teda dokázali, že všetky kone sú rovnakej farby.

4 Množiny
Množina je súbor objektov, ktoré sa neopakujú. V množine sú objekty neusporiadané.
Objekty, ktoré sú v množine nazývame prvky. Prvkom množiny môže byť množina.

• Fakt, že prvok x patrí množine A zapisujeme x ∈ A.

• Ak A je konečná množina, tak symbolom |A| označujeme počet jej prvkov.

• Ak množina nemá žiadne prvky, voláme ju prázdna a označujeme ju ∅ alebo {}.

• Symbolom U budeme označovať univerzálnu množinu, teda množinu, ktorá obsahuje
všetky prípustné prvky.

• Dve množiny A a B sa rovnajú ak majú rovnaké prvky. To znamená, že A = B
práve vtedy, keď (∀x ∈ U)(x ∈ A ⇐⇒ x ∈ B).

• Množina A je podmožinou množiny B (zapisujeme A ⊆ B) ak každý prvok, čo
patrí do A patrí aj do B, t.j. (A ⊆ B) ⇐⇒ (∀x)[(x ∈ A) =⇒ (x ∈ B).
Množina A je vlastnou podmnožinou množiny B ak A je podmnožinou B a existuje
prvok množiny B, ktorý nepatrí množine A. Ak chceme zdôrazniť, že množina A je
vlastnou podmnožinou množiny B, môžeme použiť symbol ⊊.

• Potenčná množina množiny A je množina všetkých podmnožín množiny A, označu-
jeme ju P(A). Čiže P(A) = {X;X ⊆ A}. Napríklad P({1, 2, 3}) = {∅, {1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

4.1 Množinové operácie

Nech A a B sú množiny. Definujeme nasledujúce operácie

• zjednotenie A ∪B = {x;x ∈ A ∨ x ∈ B}

• prienik A ∩B = {x;x ∈ A ∧ x ∈ B}
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• rozdiel A \B = {x;x ∈ A ∧ x ̸∈ B}

• komplement AC = {x;x ∈ U ∧ x ̸∈ A}

• karteziánsky súčin A×B = {(a, b); a ∈ A ∧ b ∈ B}

Komplement robíme vzhľadom na univerzálnu množinu U , v ktorej pracujeme. Alter-
natívne môžeme rozdiel A \B vyjadrit ako A ∩BC .

• Symbolom (a, b) označujeme usporiadanú dvojicu definovanú ako {a, {a, b}}.

O množinách A a B povieme, že sú dizjunktné, ak majú prázdny prienik, t.j. ak
A ∩ B = ∅. Množiny A1, A2, . . . , An sú po dvoch dizjunkné, ak Ai ∩ Aj = ∅ pre všetky
i, j ∈ {1, 2, . . . , n} také, že i ̸= j.

4.2 Množinové identity

Veta 4.1. Nech A,B a C sú množiny. Potom platí

(1) A ∪ A = A, A ∩ A = A (idempotentnosť),

(2) A ∪B = B ∪ A, A ∩B = B ∩ A (komutatívnosť),

(3) A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C (asociatívnosť),

(4) A∩ (B∪C) = (A∩B)∪ (A∩C), A∪ (B∩C) = (A∪B)∩ (A∪C) (distributívnosť),

(5) (A ∪B)C = AC ∩BC, (A ∩B)C = AC ∪BC (de Morganove zákony).

Dôkaz. Dokážeme bod (2). Dôkazy ostatných bodov sú podobné – odvoláme sa na vlast-
nosti logických spojok.
x ∈ (A ∪B) ⇔ (x ∈ A) ∨ (x ∈ B) ⇔ (x ∈ B) ∨ (x ∈ A) ⇔ x ∈ (B ∪ A)

5 Pravidlo súčtu
Veta 5.1 (Pravidlo súčtu). Nech X1, X2, . . . , Xn, n ≥ 2 sú po dvoch dizjunktné konečné
množiny. Potom platí

|X1 ∪X2 ∪ . . . ∪Xn| = |X1|+ |X2|+ · · ·+ |Xn|.

Dôkaz. Tvrdenie dokážeme matematickou indukciou. Bázu indukcie bude predstavovať
tvrdenie pre dve množiny. Pre n = 2 tvrdenie hovorí |X1 ∪X2| = |X1|+ |X2| a je zrejmé,
keďže X1 a X2 sú dizjunktné.

Predpokladajme teraz, že tvrdenie platí pre nejaké n ≥ 2 a dokážeme, že platí pre
n+ 1.

|X1 ∪X2 ∪ . . . ∪Xn+1| = |(X1 ∪X2 ∪ . . . ∪Xn) ∪Xn+1| =

= |(X1 ∪X2 ∪ . . . ∪Xn)|+ |Xn+1| = |X1|+ |X2|+ · · ·+ |Xn+1|.

V druhej rovnosti sme využili tvrdenie pre n = 2 a v poslednej rovnosti sme využili
indukcný predpoklad – tvrdenie pre n.
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6 Dirichletov princíp
Aj keď samotný princíp je jednoduchý jeho aplikácia môže byť komplikovaná. Je to jeden
z najčastejšie používaných prinípov pri dokazovaní matematických tvrdení.

Najjednoduchšia forma:
Ak n + 1 predmetov vkladáme do n priečinkov, tak aspoň jeden priečinok bude obsahovať
dva alebo viac predmetov.

• Dirichletov princíp je niekedy nazývaný aj holubníkový princíp.

Množiny A1, A2, . . . , An tvoria rozklad množiny B ak

1. A1 ∪ A2 ∪ . . . ∪ An = B

2. Ai ∩ Aj = ∅ pre všetky i ̸= j a i, j ∈ {1, 2, . . . n}

3. Ai ̸= ∅ pre všetky i ∈ {1, 2, . . . n}

Príklad.

• {1}, {2, 3}, {4, 5, 6} je rozklad množiny {1, 2, 3, 4, 5, 6}

• {2}, {2, 3}, {4, 5, 6} nie je rozklad množiny {1, 2, 3, 4, 5, 6}

• ∅, {1, 2, 3}, {4, 5, 6} nie je rozklad množiny {1, 2, 3, 4, 5, 6}

■

Množiny A1, A2, . . . , An tvoria slabý rozklad množiny B, ak

1. A1 ∪ A2 ∪ . . . An = B

2. Ai ∩ Aj = ∅ pre všetky i ̸= j a i, j ∈ {1, 2, . . . n}

Príklad.

• ∅, {1, 2, 3}, {4, 5, 6} je slabý rozklad množiny {1, 2, 3, 4, 5, 6}

■

Veta 6.1 (Dirichletov princíp). Nech B je množina, |B| = m a A1, A2, . . . , An je slabý
rozklad množiny B. Ak m > n, tak existuje i ∈ {1, 2, . . . , n} také, že |Ai| ≥ 2.

Dôkaz. Sporom predpokladajme, že |Ai| ≤ 1 pre všetky i ∈ {1, 2, . . . , n}. Potom |B| =
|A1|+ |A2|+ . . .+ |An| ≤ n. Dostávame spor s predpokladom, že |B| = m > n.

• Dirichletov princíp je nekonštruktívny princíp, čiže hľadaný objekt pomocou neho
priamo nenájdeme, ale dokážeme jeho existenciu.
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Príklad. Na istej škole je 500 študentov. Nahliadnite, že existujú dvaja študenti, ktorí
majú rovnaký deň aj mesiac narodenia.
Riešenie. Nech S je množina študentov danej školy. Rozdeľme študentov do množín
M1,M2, . . .M366 podľa dňa a mesiaca narodenia. Keďže |S| > 366 existujú dvaja štu-
denti s rovnakým dňom a mesiacom narodenia. ■

Príklad. Dokážte, že v postupnosti (a1, a2, . . . , an) ľubovoľných n prirodzených čísiel
existuje súvislá podpostupnosť (ak+1, ak+2, . . . , am) taká, že súčet ak+1 + ak+2 + . . . + am
je deliteľný číslom n.
Riešenie. Uvažujme n súčtov
s1 = a1
s2 = a1 + a2
...
sn = a1 + a2 + · · ·+ an.

Ak je niektorý medzi nimi deliteľný n, máme hľadaný súčet. Predpokladajme preto, že
žiaden zo súčtov nie je deliteľný n, t.j. po delení n dáva niektorý zo zvyškov 1, 2, . . . , n−1.
Keďže súčtov je n a možných zvyškov je n− 1, existujú dva súčty s rovnakým zvyškom,
nech sú to sp a sq. Bez ujmy na všeobecnosti predpokladajme, že p < q.

• a1 + a2 + . . .+ ap = bn+ z
a1 + a2 + . . .+ aq = cn+ z

• ap+1 + ap+2 + · · · aq = cn+ z − (bn+ z) = (c− b)n

• tento súčet je deliteľný n

■

6.1 Zosilnená forma Dirichletovho princípu

Táto forma dáva postačujú podmienku na to, aby v aspoň jednej z množín slabého roz-
kladu bolo aspoň k prvkov.

♣ Rozmyslite si, koľko študentov musí mať škola, aby bolo isté, že aspoň piati študenti
majú rovnaký deň a mesiac narodenia.

Veta 6.2. Nech B je množina, |B| = m a A1, A2, . . . An je slabý rozklad množiny B. Ak
m/n > r, tak existuje i ∈ {1, 2, . . . , n} také, že |Ai| ≥ r + 1.

Dôkaz. Sporom predpokladajme, že pre všetky i ∈ {1, 2, . . . , n} platí, že |Ai| <= r. Potom
m = |B| = |A1|+ |A2|+ · · ·+ |An| ≤ n.r, čo je v spore s m/n > r.

Príklad. Pri riešení príkladov, ktoré sa dajú riešiť dirichletovým princípom sa často
stretávame s istým druhom chyby. Uvádzame tu preto príklad a najprv jeho chybné a
následne správne riešenie.
Zadanie. Aké je najmenšie číslo k také, že keď vyberieme ľubovoľných k čísiel z množiny
{1, 2, . . . , 100}, tak medzi vybratými číslami určite bude dvojica čísiel, ktoré sa líšia o 1?
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Chybné riešenie. Číslo k musí byť aspoň 51, lebo keby sme vybrali všetky párne čísla z
{1, 2, . . . , 100} žiadne dve z nich by sa nelíšili práve o 1.

Vyberme teda všetkých 50 párnych čísiel, vidíme, že keď pridáme ľubovoľné ďalšie
číslo, bude vo vybraných 51 číslach dvojica s rozdielom 1.
Prečo je uvedené riešnie chybné a kde je chyba? Prvá čast riešenia je v poriadku, čísiel
musí byť aspoň 51, zdôvodnenie je správne. Problém je v druhej časti: tam ak vyberieme
najprv všetky párne čísla a následne pridáme jedno, naozaj budeme mat vo výbere dve
čísla s rozdielom 1. Problém je však v tom, že my máme nahliadnuť, že všetky výbery 51
čísiel obsahuju dve čísla s rozdielom 1 a týmto spôsobom sme uvazovali iba výbery čísiel,
ktoré obsahovali 50 párnych a jedno nepárne číslo a nie iné kombinície.
Riešenie. Prvá časť riešenia, poskytujúca dolný odhad 51 je v poriadku (a treba ju!), vy-
bratých čísiel musí byť aspoň 51. Dokážme, že 51 stačí. Rozdeľme čísla 1, 2, . . . , 100 do 50
množin – položme Ai = {2i− 1, 2i} pre i ∈ {1, 2, . . . , 50}. Systém množín A1, A2, . . . , A50

tvorí rozklad množiny {1, 2, . . . , 100}. Keďže 51>50, v ľubovoľnom výbere 51 čísiel bude
existovať množina Aj pre nejaké j ∈ {1, 2, . . . , 50}, ktorá bude obsahovať dve z vybraných
čísiel. Čísla v množine Aj majú rozdiel 1.

Poznamenávame, že týmto sme dokazali o niečo silnejšie tvrdenie – dokázali sme, že
keď vyberieme 51 čísiel, tak vo výbere budú dve čísla s rozdielom 1, pričom menšie z nich
bude nepárne a väčšie párne.

■

7 Pravidlo súčinu
Použitím pravidla súčtu dokážeme zložitejšie pravidlo súčinu. Usporiadanú n-ticu budeme
zapisovať nasledujúcim spôsobom.

• x ∈ A1 ×A2 × · · · ×An ⇔ (∃a1)(∃a2) . . . (∃an) : (a1 ∈ A1) ∧ (a2 ∈ A2) ∧ . . . ∧ (an ∈
An) ∧ x = (a1, a2, . . . , an)

Veta 7.1 (Pravidlo súčinu). Nech X1, X2, . . . , Xn, n ≥ 1 sú ľubovoľné konečné množiny.
Potom |X1 ×X2 × · · ·Xn| = |X1| · |X2| · · · · · |Xn|.

Dôkaz. Tvrdenie dokážeme matematickou indukciou. Za bázu zoberieme n = 1; tu tvrde-
nie zjavne platí. Pristúpme teraz k indukčnému kroku. Predpokladajme, že tvrdenie platí
pre nejaké n ≥ 1 a dokážeme, že platí pre n+ 1.

• Chceme zistiť počet prvkov množiny X1 ×X2 × · · ·Xn ×Xn+1.

• Ak Xn+1 = ∅, tak |X1 ×X2 × · · ·Xn ×Xn+1| = 0 = |X1| · |X2| · · · · · |Xn| · |Xn+1|,
teda tvrdenie v tomto prípade platí.

• Predpokladajme, teraz, že |Xn+1| = s ≥ 1 a nech Xn+1 = {a1, a2, . . . , as}. Položme
pre každé i ∈ {1, 2, . . . , s}

Yi = X1 ×X2 × · · · ×Xn × {ai}.

• Platí |Yi| = |X1 ×X2 × · · · ×Xn|.

• Podľa indukčného predpokladu |Yi| = |X1| · |X2| · · · · · |Xn|.
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• Platí X1 ×X2 × · · · ×Xn+1 = Y1 ∪ Y2 ∪ · · · ∪ Ys.

• Platí |X1 × X2 × · · · × Xn+1| = |Y1 ∪ Y2 ∪ · · · ∪ Ys| = |Y1| + |Y2| + · · · + |Ys| =
s · |X1| · |X2| · · · · · |Xn| = |X1| · |X2| · · · · · |Xn| · |Xn+1|.

8 Variácie

8.1 Variácie s opakovaním

Variacie s opakovaním k-tej triedy z n prvkov množiny M sú ako usporiadané k-tice
pozostávajúce z prvkov množiny M . Ich počet označujeme V ′

k(n).

• Podľa pravidla súčinu počet variácie s opakovaním k-tej triedy z n prvkov množiny
M je |M ×M × · · · ×M︸ ︷︷ ︸

k krát

| = |M |.|M | . . . |M |︸ ︷︷ ︸
k krát

= |M |k.

Príklad. Koľkými spôsobmi možno zvoliť kód od trezoru, ak kód sa skladá zo štyroch
cifier {0, 1, . . . , 9}?
Riešenie. Každý kód zodpovedá usporiadanej 4-ici z desiatich cifier {0, 1, . . . , 9}. Preto
možných kódov je 104 = 10000. ■

8.2 Variácie bez opakovania a permutácie

Veta 8.1 (Zovšeobecnené pravidlo súčinu). Nech M je konečná množina. Nech A ⊆ Mk

je podmnožina karteziánskeho súčinu Mk, ktorej každý prvok (a1, a2, . . . , an) spĺňa pod-
mienky:
(i) prvok a1 možno z množiny M vybrať n1 spôsobmi a
(ii) pre každé i ∈ {2, 3, . . . k}, po akomkoľvek výbere usporiadanej (i−1)-tice (a1, a2, . . . , ai−1)
je možné prvok ai vybrať vždy ni spôsobmi. Potom |A| = n1 · n2 · · · · · nk.

Dôkaz. Nie je ťažké urobiť indukciou vzhľadom na k.

Variacie bez opakovania k-tej triedy z n prvkov množiny M sú ako usporiadané k-
tice pozostávajúce z prvkov množiny M , pričom prvky sa neopakujú. Počet variácií bez
opakovania k-tej triedy z n prvkov označujeme Vk(n).

• Podľa zovšeobecneného pravidla súčinu počet variácií bez opakovania k-tej triedy z
n prvkov množiny M je |M |.(|M | − 1) . . . (|M | − k + 1) = n.(n− 1) . . . (n− k + 1).
Všimnite si, že tento vzťah platí aj ak n < k – jeden z činiteľov bude 0.

• Súčin n(n − 1) . . . .(n − k + 1) zapisujeme aj ako
k−1∏
i=0

(n − i) a tiež ako nk a čítame

ako k-ta klesajúca mocnina z n.

Príklad. Pretekov v orientačnom behu sa zúčastnilo 100 bežcov. Koľkými spôsobmi sa
mohli umiestniť na stupňoch víťazov?
Riešenie. Potrebujeme zostaviť usporiadanú trojicu, pričom jej prvky vyberáme zo 100
prvkovej množiny a prvky sa neopakujú. Ide teda o variácie s opakovaním 3. triedy zo
100 prvkov a je 100.99.98 = 1003 možností ako sa mohli umiestniť pretekári na stupňoch
vítazov. ■
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• ak k = n tak variácie bez opakovania k-tej triedy z n prvkov voláme permutácie.
Ich počet je n(n − 1) . . . 1. Tento súčin označujeme n! a čítame „n-faktoriál”. Platí
0! = 1.

9 Kombinácie bez opakovania
• Kombinácie bez opakovania k-tej triedy z n prvkov množiny M sú k-prvkové pod-

množiny množiny M .

• Počet kombinácií bez opakovania k-tej triedy n prvkov označujeme Ck(n), ale taktiež
používame symbol

(
n
k

)
, ktorý čítame „n nad k”. Tento symbol sa nazýva kombinačné

číslo alebo aj binomický koeficient. Pri kombinačných číslach predpokladáme, že n
a k sú prirodzené čísla.

• množinu všetkých k-prvkových podmnožín množiny M označujeme
(
M
k

)
alebo aj

Pk(M)

Z definície kombinačného čísla vyplýva pre prirodzené číslo n:

•
(
n
0

)
= 1, lebo existuje jedna prázdna podmnožina n-prvkovej množiny

•
(
n
1

)
= n, lebo existuje n jednoprvkových podmnožín n-prvkovej množiny

•
(
n
n

)
= 1, lebo existuje jedna n-prvková podmnožina n-prvkovej množiny

•
(
n
k

)
= 0, pre každe prirodzené číslo k > n, lebo neexistuje k-prvková podmnožina

n-prvkovej množiny ak n < k.

• Ak k je prirodzené číslo a k ≤ n, potom
(
n
k

)
=

(
n

n−k

)
, lebo každú k prvkovú pod-

monožinu P množiny s n prvkami M možeme jednoznačne určiť jej komplementom
M − P .

Príklad. Pomocou kombinácií bez opakovanie môžeme vyriešiť otázku, koľko zápasov
sa bude hrať medzi n družstvammi, ak sa hrá systémom každý s každým. Tiež, ak máme
m ľudí a chcú si každý s každým podať ruku, koľko bude podaní rúk? ■

Veta 9.1. Nech M je konečná množina, pričom |M | = n a nech k je prirodzené číslo.
Potom počet kombinácií bez opakovania k-tej triedy z n prvkov množiny M je(

n

k

)
= |Pk(M)| = nk

k!

Dôkaz. Počet kombinácií bez opakovania odvodíme od počtu variácií bez opakovania.
Množinu všetkých variácií bez opakovania môžeme rozložiť na dizjunktné podmnožiny
tak, že variácie v jednej podmnožine sa líšia iba poradím prvkov. Čiže v každej podmno-
žine bude počet prvkov rovný počtu možností, koľkými sa dá k prvkov usporiadať do
postupnosti, teda počtu permutácií k prvkov, t.j. k!. Počet variácií bez opakovania je nk.
Preto počet kombinácií bez opakovania je nk

k!
.

• Podobne ako pri variáciách bez opakovania, predchádzajúca veta platí aj keď n < k.
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• Ak n ≥ k, môžeme použiť vzťah
(
n
k

)
= n!

k!(n−k)!
.

Veta 9.2. Pre všetky prirodzené čísla n a k platí(
n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)
.

Dôkaz. Dôkaz urobíme pomocou množinovej interpretácie. Majme množinu M , ktorá má
n + 1 prvkov. Pravá strana rovnosti zodpovedá počtu možných výberov k + 1-prvkovej
podmnožiny z M . Zvoľme si ľubovoľný prvok množiny M , povedzme p. Podmnožiny
množiny M , ktoré majú k+1 prvkov môžeme rozdeliť do dvoch skupín – tie čo obsahujú
prvok p a tie neobsahujú prvok p. Podmnožín množiny M s k+1 prvkami, ktoré obsahujú
prvok p, je toľko isto, ako k-prvkových podmnožín množiny M − {p}, čiže je ich

(
n
k

)
.

Podmnožín množiny M s k+1, ktoré neobsahujú prvok p je toľko isto, ako k+1-prvkových
podmnožín množiny M − {p}, čiže je ich

(
n

k+1

)
. Z toho vyplýva uvedený vzťah.

Predchádzajúci vzťah je základom Pascalového trojuholíka – usporiadania kombinač-
ných čísel v rovine do tvaru trojuholníka. Pomenovanie má podľa matematika, ktorý žil
v 17. storočí Blaise Pascala, ale je oveľa starší. Platí v ňom veľa zaujímavých vzťahov,
okrem iného zohráva dôležitú úlohu pri nasledujúcej vete.

(
0
0

)
1(

1
0

) (
1
1

)
1 1(

2
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) (
2
1

) (
2
2

)
1 2 1(

3
0

) (
3
1

) (
3
2

) (
3
3

)
1 3 3 1(

4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
1 4 6 4 1

Veta 9.3 (Binomická veta). Pre každé prirodzené číslo n a reálne čísla a a b platí vzťah

(a+ b)n =
n∑

i=0

(
n

i

)
aibn−i.

Dôkaz. Dôkaz urobíme matematickou indukciou vzhľadom na n. Ak n = 0, tak aj ľavá
aj pravá strana sa rovnajú 0; tým je báza indukcie overená. Pre dôkaz indukčného kroku,
predpokladajme, že tvrdenie pre n a dokážeme, že platí aj pre n+1. Predpokladáme teda,

že platí (a+ b)n =
n∑

i=0

(
n
i

)
aibn−i a chceme dokázať (a+ b)n+1 =

n∑
i=0

(
n+1
i

)
aibn+1−i. Začneme

ľavou stranou a postupnými úpravami sa dostaneme k pravej strane.

(a+ b)n+1 = (a+ b)(a+ b)n = a(a+ b)n+ b(a+ b)n
2xIP
= a ·

n∑
i=0

(
n
i

)
aibn−i+ b ·

n∑
i=0

(
n
i

)
aibn−i =

n∑
i=0

(
n
i

)
ai+1bn−i+

n∑
i=0

(
n
i

)
aibn+1−i =

(
n
0

)
a0bn+1+

n−1∑
i=0

[(
n
i

)
ai+1bn−i +

(
n

i+1

)
ai+1bn−i

]
+
(
n
n

)
an+1b0 =(

n
0

)
a0bn+1 +

n−1∑
i=0

[(
n
i

)
+
(

n
i+1

)]
ai+1bn−i +

(
n
n

)
an+1b0

Veta 9.2
=

(
n
0

)
a0bn+1 +

n−1∑
i=0

(
n+1
i+1

)
ai+1bn−i +(

n
n

)
an+1b0 =

(
n
0

)
a0bn+1 +

n∑
i=1

(
n+1
i

)
aibn+1−i +

(
n
n

)
an+1b0 =

(
n+1
0

)
a0bn+1 +

n∑
i=1

(
n+1
i

)
aibn+1−i +(

n+1
n+1

)
an+1b0 =

n+1∑
i=0

(
n+1
i

)
aibn+1−i

Tým je binomická veta dokázaná.
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Dôsledok 9.4. Platia nasledujúce vzťahy.

(a)
n∑

i=0

(
n
i

)
= 2n pre každé prirodzené číslo n,

(b)
n∑

i=0

(−1)i
(
n
i

)
= 0 pre každé prirodzené číslo n ≥ 1,

(c)
∑

0≤i≤n
i je párne

(
n
i

)
=

∑
0≤i≤n

i je nepárne

(
n
i

)
= 2n−1 pre každé prirodzené číslo n ≥ 1.

Dôkaz. Časť (a) dostaneme dosadením čísla 1 za a aj b do binomickej vety. V časti (b)

dosadíme do binomickej vety a = −1, b = 1. Dostaneme 0n =
n∑

i=0

(−1)i
(
n
i

)
. Pre n ≥ 1 z

toho vyplýva dané tvrdenie. Časť (c) dostaneme sčítaním, resp. odčítaním rovností z (a)
a (b).

Tvrdenie 9.5. Pre všetky prirodzené čísla n platí
n∑

i=0

(
n

i

)2

=

(
2n

n

)
.

Dôkaz. Najprv využijeme symetrickú identitu binomických koeficientov
(
n
i

)
=

(
n

n−1

)
,

preto platí
∑n

i=0

(
n
i

)2
=

∑n
i=0

(
n
i

)(
n
i

)
=

∑n
i=0

(
n
i

)(
n

n−i

)
. Teraz pomocou kombinatorickej

interpretácie nahliadneme, že posledná suma sa rovná
(
2n
n

)
. Spočítame dvomi spôsobmi,

koľkými spôsobmi môžme vybrať n-prvkovú podmnožinu množiny M . Majme množinu M ,
ktorá má 2n prvkov. Rozdeľme ju ľubovoľne na dve podmnožiny A a B s n prvkami. Keďže
vyberáme n-prvkovú podmnožinu 2n-prvkovej množiny, možeme to urobiť

(
2n
n

)
spôsobmi.

Alternatívne sa na to možeme pozrieť tak, že vyberáme i-prvkovú podmnožinu množiny A
a n−i-prvkovú podmnožinu množiny B, teda dokopy n-prvkovú podmnožinu množiny M .
Prvú podmnožinu môžeme vybrať

(
n
i

)
a druhú

(
n

n−i

)
spôsobmi. Výbery môžme ľubovoľne

kombinovať, čiže kombinácií výberov i-prvkovej podmnožiny z A a n−i-prvkovej podmno-
žiny z B je podľa pravidla súčinu

(
n
i

)(
n

n−i

)
. Aby sme uvažovali všetky možné n-prvkové

podmnožiny množiny M , musíme uvažovať všetky prípustné veľkosti prieniku vybera-
nej podmnožiny množiny a množiny A. Tieto počty spočítame, preto použijeme sumu s
hranicami 0 a n.

10 Kombinácie s opakovaním
• Kombinácie s opakovaním k-tej triedy n prvkov množiny M sú k-prvkové súbory

prvkov, v ktorých sú prvky neusporiadané a môžu sa opakovať, inými slovami sú to
podmultimnožiny množiny M .

• Počet kombinácií s opakovaním k-tej triedy n prvkov označujeme C ′
k(n).

Veta 10.1. Nech M je konečná množina, pričom |M | = n a nech k je prirodzené číslo.
Potom počet kombinácií s opakovaním k-tej triedy z n prvkov množiny M je(

n+ k − 1

k

)
.
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Dôkaz. Uvedieme tu dva dôkazy, v oboch prevedieme úlohu na počet kombinácií bez
opakovania.
1. dôkaz. Potrebujeme vybrať k objektov z n typov, pričom môžeme mať viacero objektov
rovnakého typu. Objektom budú zodpovedať guličky – budeme mať k guličiek, zoradíme si
ich do radu. Tieto guličky potrebujeme rozdeliť do n typov, to spravíme n−1 oddeľovačmi,
ktorým budú zodpovedať paličky. Teda medzi k guličiek vsunieme n − 1 paličiek, a tým
vytvoríme rad k guličiek a n−1 paličiek, pričom nekladieme žiadne obmedzenia – môžme
mať viacero paličiek pri sebe, paličkami môžeme začínať aj končiť; obdobne pre guličky.
Počet guličiek pred prvou paličkou bude zodpovedať počtu vybratých objektov 1. typu,
počet guličiek medzi prvou a druhou paličkou bude zodpovedať počtu vybratých objektov
2. typu, ... počet guličiek za poslednou (n − 1)-vou paličkou bude zodpovedať objektom
n-tého typu. Existuje jednoznačná vzájomná korešpodencia medzi takými postupnosťami
guličiek a paličiek a kombináciami s opakovaním.

Teraz už zostáva len zrátať počet možností, ktorými môžeme rozmiestniť do radu k
guličiek a n − 1 paličiek. Miesta v rade si očíslujeme od 1 po k + n − 1 a vyberieme z
nich k, na ktoré dáme guličky. Toto možme urobiť

(
n+k−1

k

)
spôsobmi. (Obdobne by sme

mohli vyberat miesta pre paličky, dostali by sme
(
n+k−1
n−1

)
možností, pričom obe uvedené

kombinačné čísla sa rovnajú.)

2. dôkaz. Pokiaľ nám ide len o počet kombinácií s opakovaním, tak nezáleží, aké sú
prvky n-prvkovej množiny M . Budeme teda predpokladať, že M = {1, 2, . . . , n}. Každému
výberu k prvkov z množiny M (prvky sa môžu opakovať a nie sú medzi sebou usporiadané)
môžme jednoznačne priradiť k-ticu a1, a2, . . . , ak, pričom môžme bez ujmy na všeobecnosti
predpokladať, že a1 ≤ a2 ≤ · · · ≤ ak. Prerobíme túto k-ticu takú, aby jednotlivé položky v
nej tvorili rastúcu postupnosť. To urobíme tak, že pričítame postupne zvyšujúce sa číslo k
jednotlivým položkám, dostaneme k-ticu (b1, b2, . . . , bk) = (a1+0, a2+1, . . . , ak+(k−1)).
Je ľahko vidieť, že je jednoznačná korešpodencia mezi neklesajúcimi postupnosťami dĺžky
k z čísel 1, 2, . . . , n a medzi rastúcimi postupnosťami dĺžky k z čísel 1, 2, . . . , n+k−1. Počet
rastúcich postupností dĺžky k z čísel 1, 2, . . . , n+ k − 1 zase zodpovedá počtu kombinácií
bez opakovania k-tej triedy z n + k − 1 prvkov. Preto, počet kombinácií s opakovaním
k-tej triedy z n prvkov je

(
n+k−1

k

)
.

11 Permutácie s opakovaním
• Permutácie s opakavaním z k1 prvkov prvého druhu, k2 prvkov prvého druhu, . . . ,
kn prvkov n-tého druhu sú usporiadané (k1 + k2 + · · ·+ kn)-tice, v ktorých sa prvok
prvého druhu vyskytuje k1-krát, prvok druhého druhu vyskytuje k2-krát, ..., prvok
n-tého druhu vyskytuje kn-krát

Veta 11.1. Počet permutácií s opakavaním z k1 prvkov prvého druhu, k1 prvkov prvého
druhu, . . . , kn prvkov n-tého druhu je

k!

k1!k2! . . . kn!
,

kde k = k1 + k2 + . . .+ kn.
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Dôkaz. Ak by všetkých k prvkov bolo rôznych, tak by išlo o permutácie (bez opakovania)
a bolo by ich k!. Keďže prvkov jedného druhu môže byť viac, musíme tieto možnosti
stotožniť, tomu zodopovedá menovateľ.

Číslo k!
k1!k2!...kn!

označujeme aj
(

k
k1,k2,...,kn

)
.

Príklad. Nahliadnite, že (2n)!
2n

je celé číslo.
Riešenie. Keďže číslo (2n)!

2n
zodpovedá počtu možných uložení do radu 2n objektov,

pričom objekty sú n typov a z každého typu sú dva nerozlíšiteľné objekty, toto číslo musí
byť celé. ■

Veta 11.2 (Polynomická veta). Pre každé prirodzené čísla n a k a reálne čísla x1, x2, . . . , xn

platí vzťah

(x1 + x2 + . . . xn)
k =

∑
k1+k2+···kn=k

(
k

k1, k2, . . . , kn

)
xk1
1 xk2

2 . . . xkn
n .

12 Asymptotické odhady
Nech f, g : N → R. Hovoríme, že

• f(n) = O(g(n)), ak existuje C ∈ R+ a n0 ∈ N také, že pre všetky n ≥ n0 platí:
|f(n)| ≤ C · |g(n)|,

• f(n) = Ω(g(n)), ak existuje C ∈ R+ a n0 ∈ N také, že pre všetky n ≥ n0 platí:
|f(n)| ≥ C · |g(n)|,

• f(n) = Θ(g(n)) ak f(n) = O(g(n)) a zároveň f(n) = Ω(g(n)),

• f(n) = o(g(n)), ak limn→∞
f(n)
g(n)

= 0,

• f(n) = ω(g(n)), ak limn→∞
g(n)
f(n)

= 0,

• f(n) ≡ g(n), ak limn→∞
f(n)
g(n)

= 1.

13 Princíp zapojenia a vypojenia
Tento princíp slúži na spočítanie počtu prvkov zjednotenia konečného počtu konečných
množín, pričom množiny nemusia byť disjunktné. Pre zjednotenie dvoch množín nie je
ťažké nahliadnuť, že |A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|.

Pre mohutnosť zjednotenia troch množín platí nasledovné:

|A1 ∪ A2 ∪ A3| = (|A1|+ |A2|+ |A3|) súčet mohutností jednotlivých množín
- (|A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3|) súčet mohutností prienikov dvojíc množín

+ |A1 ∩ A2 ∩ A3| súčet mohutností prienikov trojíc množín

Môžeme vidieť, že striedavo pričítavame a odčítavame súčet mohutností prienikov jed-
notlivých množín, dvojíc množín a trojíc množín. Toto platí aj pre viac množín. Nech
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A1, A2, . . . , An sú konečné množiny. Označíme symbolom Sk súčet mohutností prienikov
k množín.

Sk =
∑

1≤n1≤n2≤...≤nk≤n

|An1 ∩ An2 ∩ · · · ∩ Ank
|

Veta 13.1 (Princíp zapojenia a vypojenia). Nech A1, A2, . . . , An sú konečné množiny.
Potom

|A1 ∪ A2 ∪ . . . ∪ An| =
n∑

i=1

(−1)i+1Si.

Dôkaz. Tvrdenie sa dá dokázať matematickou indukciou vzhľadom na počet množín n.
My tu uvedieme dôkaz, ktorý pre daný prvok zráta, koľkokrát sa nachádza na ľavej a na
prave strane dokazovanej rovnosti.

Ak nejaký prvok nepatrí do zjednotenia množín A1, A2, . . . , An, tak nebude zarátaný
ani raz ani na ľavej ani na pravej strane rovnosti. Predpokladajme teraz, že najaký prvok
p patrí zjednoteniu A1 ∪ A2 ∪ . . . ∪ An. Na ľavej strane rovnosti je zarátany jedenkrát.
Predpokladajme, že p sa nachádza v z množinách z A1, A2, . . . , An, zjavne 1 ≤ z ≤ n.
V S1 je prvok p započítaný z-krát, v S2 je p započítaný

(
z
2

)
-krát, lebo sa nachádza v

(
z
2

)
dvojiciach množín, v S3 je p započítaný

(
z
3

)
-krát ... Si je p započítaný

(
z
i

)
-krát, pričom pre

nepárne i je táto hodnota započítana s kladným znamienkom a pre párne i je táto hodnota
započítana so záporným znamienkom. Všimnite si, že pre i > z je p v Si započítaný nula
krát, a teda v takomto prípade jeho príspevok do Si nemusíme uvažovať. Dostávame
z−

(
z
2

)
+
(
z
3

)
+ . . . (−1)z+1

(
z
z

)
=

(
z
0

)
−
[(

z
0

)
−
(
z
1

)
+
(
z
2

)
− . . .+ (−1)z

(
z
z

)] Dôsledok 9.4(b)
=

(
z
0

)
+

0 = 1.

Príklad. Bežeckých pretekov sa zúčastnilo 100 bežcov, mali pridelené štartovné čísla
1, 2, . . . , n. Všetci bežci úspešne dobehli do cieľa a žiadni dvaja nedobehli naraz. Koľko
možných výsledných poradí má aspoň jedného bežca, ktorého štartovné číslo sa rovná
poradiu, na ktorom dobehol?

Nech Ai je množina všetkých výsledných poradí bežcov takých, že bežec číslom i
dobehol na i-tom mieste. Toto poradie môže byť reprezentované vektorom dĺžky 100, kde
jednotlivé položky sú celé čísla od 1 do 100, pričom čísla sa neopakujú – ide o permutácie
množiny 1, 2, . . . , 100. Chceme teda spočítať koľko prvkov má množina A1∪A2∪. . .∪A100.
Spočítajme, aká je mohutnosť Ai. Číslo i musí byť na i-tom mieste, zvysných 99 čísiel
môže byť rozmiestnených ľubovoľne na miestach rôznzch od i-teho, preto |Ai| = 99!. Súčet
S1 = |A1| + |A2| + . . . |A100| = 100.99!. Pozrime sa teraz na S2. Na výpočet hodnoty S2

potrebujeme spočítať hodnoty |Ai∩Aj| pre i, j ∈ {1, 2, . . . , 100}, i ̸= j. Hodnota i má byť
na i-tom mieste, j má byť na j-tom mieste a zvyšných 98 hodnôt môže byť rozmiestnených
ľubovoľne, preto |Ai ∩ Aj| = 98!. Dvojíc rôznych čísiel z množiny {1, 2, . . . , 100} je

(
100
2

)
,

preto S2 =
(
100
2

)
· 98!. Obdobne dostávame, že Sk =

(
100
k

)
(100 − k)!. Použitím princípu

zapojenia a vypojenia dostávame
|A1 ∪ A2 ∪ . . . ∪ A100| =

∑n
i=1(−1)i+1Si =

∑n
i=1(−1)i+1

(
100
i

)
(100− i)!

úpravami dostávame:

|A1∪A2∪. . .∪A100| =
∑n

i=1(−1)i+1 100!
i!(100−i)!

(100−i)! =
∑n

i=1(−1)i+1 100!
i!

= 100!
∑n

i=1(−1)i+1 1
i!
.

Počet výsledných poradí, kde aspoň jeden bežec dobehol na svojom mieste je 100!
∑n

i=1(−1)i+1 1
i!
.

■
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Príklad. Koľko riešení má rovnica x1 + x2 + · · ·xn = k ak x1, x2, . . . , xn sú celé čísla a
pre i ∈ {1, 2, . . . , n} platí 0 ≤ xi ≤ 8?

Každé riešenie je suporiadaná n-tica celých nezáporných čísiel, ktoré v súčte dajú k a
každé z nich je nanajvýš 8. Vyriešme naprv tento príklad bez požiadavky na to, že každé
xi je nanajvýš 8. Jeden možný pohľad je že chceme vybrať k objektov z n druhov, čiže
ide o kombinácie s opakovaním k-tej triedy z n prvkov. Tých je

(
n+k−1

k

)
. Alternatívne sa

na to dá posriet tak, že máme umistniť do radu k guličie a n− 1 oddeľovačov, čo takisto
vedie k počtu možností

(
n+k−1

k

)
=

(
n+k−1
n−1

)
.

Od týchto možností musíme odčítať tie, ktoré porušujú podmienku xi ≤ 8 pre niektoré
i. Nech Ai je množina riešení, ktoré porušujú podmienku pre xi. Počet riešení, ktoré
porušujú podmienku ≤ xi ≤ 8 pre aspoň jedno i je |A1 ∪ A2 ∪ . . . ∪ An|. Ak je porušená
podmienka pre xi, znamená to, že xi ≥ 9. Počet takýchto riešení nájdeme tak, že tomuto xi

vopred pridadíme 9 a zvyšných k− 9 rozdelíme medzi všetky čísla x1, x2, . . . , xn (vrátane
xi), čiže počet tých riešení, ktoré porušujú podmienku xi ≤ 8 je

(
n+k−1−8

n−1

)
, t.j. |Ai| =(

n+k−1−8
n−1

)
. Obdobnou úvahou dostávame |Ai ∩ Aj| =

(
n+k−1−2·8

n−1

)
pre i ̸= j atď. Preto

Si =
(
n
i

)
·
(
n+k−1−8.i

n−1

)
. Podľa princípu zapojenia a vypojenia platí |A1 ∪ A2 ∪ . . . ∪ An| =∑n

i=1(−1)i+1Si =
∑n

i=1(−1)i+1
(
n
i

)
·
(
n+k−1−8.i

n−1

)
.

Zhrnutím teda dostávame, že počet tých riešení, ktoré neporušujú ani jednu z pod-
mienok ≤ xi ≤ 8 je

(
n+k−1
n−1

)
−

∑n
i=1(−1)i+1

(
n
i

)
·
(
n+k−1−8.i

n−1

)
=

∑n
i=0(−1)i

(
n
i

)
·
(
n+k−1−8.i

n−1

)
.

■

14 Teória grafov
Teória grafov predstavuje jednu z kľúčových oblastí diskrétnej matematiky, ktorá nachá-
dza široké uplatnenie v rôznych vedných disciplínach ako napríklad v informatike, ma-
tematike, sociológii. Grafy poskytujú abstraktný, ale veľmi výstižný spôsob modelovania
vzťahov medzi objektmi. V týchto skriptách sa budeme zaoberať základnými pojmami a
tvrdeniami z teórie grafov.

14.1 Definície

Graf je určený usporiadanou dvojicou množín. Presnejšie graf G = (V,E), kde V je
konečná množina objektov nazývaných vrcholy a E je konečná množina 2-prvkových pod-
množín množiny V nazývaných hrany. Grafy obyčajne znárorňujeme v rovine: vrcholom
priradíme rôzne body roviny každej hrane priradíme spojnicu medzi príslušnou dvojicou
vrcholov. Hrana {u, v} sa obyčajne zapisuje skrátene uv alebo ekvivalentne vu. Príklad
grafu a jeho znázornenia v rovine je na Obr. 1.

Dva vrcholy u a v, medzi ktorými je hrana sa volajú susedné. Podobne dve hrany,
ktorá sa stretajú vo vrchole sa volajú súsedné. Ak hrana ide do nejakého vrchola, tak je
s ním incidentná. Stupeň vrchola v v grafe G je počet hrán incidentných s vrcholom v,
označenie degG(v).

Prirodzená otázka je, ktoré grafy sú „rovnaké”, teda jeden vznikne z druhého len
premenovaním vrcholov. Toto odzrkadluje nasledujúci pojem. Dva grafy G = (V,E) a
G′ = (V ′, E ′) sú izomorfné, ak existuje bijekcia f : V ⇒ V ′ taká, že pre všetky u, v ∈ V
platí uv ∈ E práve vtedy, keď f(u)f(v) ∈ E ′.

♣ Rozhodnite, ktoré z grafov na Obr. 2 sú izomorfné.
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v1 v2

v3

v5

v4

Obr. 1: Graf G = ({v1, v2, . . . v5}, {v1v2, v2v3, v3v4, v4v1, v3v5, v4v5, v1v3})

Obr. 2: Ktoré z týchto grafov sú izomorfné?

Tvrdenie 14.1. Každý graf má párny počet vrcholov nepárneho stupňa.

Dôkaz. Súčet stupňov vrcholov
∑

v∈V (G) d(v) je párne číslo, lebo každá hrana je zarátaná
dvakrát. Z toho vyplýva, že v súčte je párny počet nepárnych sčítancov.

• sled je postupnosť v1e1v2e2v3 . . . vn, kde vi je vrchol pre i ∈ {1, 2, . . . , n}, ei je hrana
pre i ∈ {1, 2, . . . , n− 1} a ei = vivi+1

• ťah je sled, v ktorom sa neopakujú hrany

• cesta je sled, v ktorom sa neopakujú vrcholy (a teda ani hrany); u-v-cesta je cesta
s koncovými vrcholmi u a v

• dĺžka cesty (sledu/ťahu) je počet hrán (sledu/ťahu)

• uzavretý ťah (sled) je ťah (sled), ktorého prvý a posledný vrchol sa rovnajú

• krunica je ťah, v ktorom sa prvý a posledný vrchol rovnajú a všetky ostatné dvojice
vrcholov sú rôzne

• keďže uvažujeme jednoduché grafy (t.j. grafy bez slučiek a násobných hrán), sled, ťah
a cesta sú jednoznačne zadané postupnosťou vrcholov, a teda názvy hrán nemusíme
písať

Minimálny stupeň vrchola δ(G) grafu G = (V,E) je minimum zo stupňov vrcholov
grafu, t.j. δ(G) = min{degG(v); v ∈ V }. Obdobne maximálny stupeň vrchola ∆(G) je
maximum zo stupňov vrcholov grafu, t.j. ∆(G) = max{degG(v); v ∈ V }.
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cesta P

Obr. 3: Susedia koncového vrcholu najdlhšej cesty musia ležať na ceste

Tvrdenie 14.2. Každý graf G obsahuje cestu dĺžky δ(G).

Dôkaz. Nech P = v1v2 . . . vn je najdlhšia cesta v grafe G. Ak by nejaký sused vrchola vn
ležal mimo P , tak by to bolo v spore s tým, že P je najdlhšia cesta v G. Preto všetci
susedia vn, ktorých je aspoň δ(G) ležia na P , pozri Obr. 3. Vrchol vn takisto leží na P , a
teda P má aspoň δ(G) + 1 vrcholov. Z toho vyplýva, že dĺžka P je aspoň δ(G).

Graf je súvislý ak medzi každou dvojicou vrcholov existuje cesta, inak je nesúvislý.
Komponent grafu G je maximálny súvislý podgraf grafu G vzhľadom na inklúziu. Graf
nazveme acyklický, ak neobsahuje kružnicu. Strom je súvislý acyklický graf, les je acyklický
graf a list je vrchol stupňa 1 v strome. Triviálny graf je graf, ktorý má jeden vrchol a
žiadne hrany.

Tvrdenie 14.3. Platia nasledujúce tvrdenia.
(a) Každý netriviálny strom má aspoň dva listy.
(b) Počet hrán n-vrcholového stromu je n− 1.

Dôkaz. (a) Nech P je najdlhšia cesta v netriviálnom strome T . Jej konce musia byť
listy, lebo inak by strom obsahoval kružnicu. Keďže T je netriviálny, dva koncové vrcholy
najdlhšej cesty sú rôzne.
(b) Budeme dokazovať matematickou indukciu vzhľadom na počet vrcholov grafu. Ak
strom má jeden vrchol, nemá žiadne hrany a tvrdenie platí. Pre dôkau indukčného kroku
predpokladajme, že tvrdenie platí pre všetky stromy na n vrcholoch a dokázeme tvrdenie
pre všetky stromy na n+1 vrcholoch. Nech T je ľubovoľný strom na n+1 vrcholoch. Podľa
časti (a) tohoto tvrdenia, T obsahuje list, nech v je ľubovoľný list stromu T . Vytvorme
strom T ′ tak, že z T odoberieme v a jedinú hranu indicentnú s v. (Je ľahké vidieť, že T ′

je súvislý a acyklický, a teda je strom.) Kedže T ′ má n vrcholov, má n − 1 hrán. Z toho
vyplýva, že T má n hrán, čo bolo treba dokázať.

Kostra grafu G je podgraf grafu G, ktorý je strom a obsahuje všetky vrcholy grafu G

Tvrdenie 14.4. Každý súvislý graf obsahuje kostru.

Dôkaz. Opakovane vyhadzujeme hranu, ktorá leží v kružnici. Týmto postupom dostaneme
súvislý acyklický graf, teda strom, ktorý obsahuje všetky vrcholy pôvodného grafu.

14.2 Bipartitné grafy

Graf G je bipartitný ak V (G) sa dá rozdeliť dvoch dizjunktných množín A a B tak, že
každá hrana má jeden koncový vrchol v A a druhý v B.

♣ Pre ktoré čísla n sú grafy nazývané rebrík a skrútený rebrík bipartitné? (Obr. 4)
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Obr. 4: Rebrík Rn a Skrútený rebrík Sn

Ľahko sa dá nahliadnuť, že v bipartitnom grafe má každá kružnica párnu dĺžku. Do-
kážeme, že platí aj opačná implikácia. Najprv však dokážeme nasledujúcu lemu.

Lema 14.5. Každý uzavretý sled nepárnej dĺžky obsahuje kružnicu nepárnej dĺžky.

Dôkaz. Budeme postupovať matematickou indukciou vzhľadom na dĺžku sledu. Ako bázu
zoberieme uzavretý sled na troch hranách (uzavretý sled na jednej hrane v jednoduchých
grafoch neexistuje). A keďže uzavretý sled na troch hranách je kružnica na troch hranách,
tu tvrdenie platí.

Majte uzavretý sled S nepárnej dĺžky d a predpokladajme, že pre všetky uzavreté sledy
nepárnej dĺžky menšej ako d toto tvrdenie platí. Nech S = v1v2 . . . vn, pričom vn = v1.

Prípad 1. vi ̸= vj pre všetky i ̸= j, kde i, j ∈ {1, 2, . . . , n − 1}, a teda vrcholy sa v
slede neopakujú okrem vn = v1. V tomto prípade je S kružnicou nepárnej dĺžky.

Prípad 2. vi = vj pre nejaké i ̸= j, kde i, j ∈ {1, 2, . . . , n− 1}. Bez ujmy na všeobec-
nosti môžeme predpokladať, že i < j. Uvažujme dva sledy
S ′ = v1v2 . . . vi = vjvj+1 . . . vn = v1 a
S ′′ = vivi+1 . . . vj = vi.

Ľahko vidno, že oba S ′ aj S ′′ sú uzavreté sledy. Navyše dĺžka sledu S je súčtom dĺžok
sledov S ′ a S ′′, a keďže S je nepárnej dĺžky, dĺžka práve jedného z S ′ a S ′′ je nepárna,
nech je to S ′. Použitím indukčného predpokladu nahliadneme, že S ′ a teda aj S obsahuje
uzavretý sled nepárnej dĺžky.

Poznamenajme, že ak by sme zmenili oba výskyty slova nepárny v znení lemy na slovo
párny, tvrdenie by nebolo pravdivé.

♣ Nájdete príklad sledu, ktorý je protipríkladom k pozmenenému tvrdeniu.
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Vzdialenosť vrcholov u a v v grafe G, označenie dist(u, v), je dĺžka najkratšej u-v-cesty

Veta 14.6. Graf je bipartitný práve vtedy, keď neobsahuje kružnicu nepárnej dĺžky.

Dôkaz. Dokážeme dve implikácie.
(⇒) Táto implikácia je zrejmá, keďže na každej kružnici sa musia striedať vrcholy z

dvoch množín.
(⇐) Majme graf G ktorý má každú kružnicu párnej dĺžky. Dokážeme, že G je bipar-

titný. Môžme predpokladať, že G je súvislý, lebo inak môžme urobiť nasledujúcu úvahu
pre každý komponent a využiť fakt, že zjednotenie bipartitných grafov je bipartitný graf.
Nech x je ľubovoľný pevne zvolený vrchol grafu G. Rozdeľme množinu V (G) do dvoch
množín:

A = {v ∈ V (G); dist(v, x) je párne číslo} a
B = {v ∈ V (G); dist(v, x) je nepárne číslo}.

Zjavne každý vrchol z V (G) patrí do práve jednej z množín A a B. Ukážeme, že každá
hrana z E(G) má jeden koniec v A a druhý v B. Sporom predpokladajme, že existuje
hrana e ∈ E(G), ktorej oba koncové vrcholy patria A. (Dôkaz, že oba koncové vrcholy
nemôžu patriť B je obdobný.) Nech e = uv, nech P ′ je cesta, na ktorej sa nadobúda
najkratšia vzdialenosť medzi u a x a nech P ′′ je cesta, na ktorej sa nadobúda najkratšia
vzdialenosť medzi v a x. Potom S = P ′ ∪ P ′′ ∪ uv je uzavretý sled. Keďže u aj v patria
A, obe cesty P ′ a P ′′ majú párnu dĺžku. Sled S je teda nepárnej dĺžky a podľa Lemy 14.5
obsahuje kružnicu nepárnej dĺžky, čo je v spore s predpokladom. Dôkaz spätnej implikácie
je ukončený.

14.3 Eulerovské grafy

Eulerovský ťah v grafe G je uzavretý ťah obsahujúci všetky hran grafu G. Graf je eulerovský
ak obsahuje eulerovský ťah.

Lema 14.7. Ak pre graf G platí, že δ(G) ≥ 2, potom graf obsahuje kružnicu.

Dôkaz. Zoberme si najdlhšiu cestu P v G. Jej koncový vrchol v je okrem hrany patriacej
P incidentný s ešte aspoň jednou hranou, lebo δ(G) ≥ 2. Nech u je druhý vrchol tejto
hrany; vrchol u musí patriť P inak by nastal spor s tým, že P je najdlhšia. Potom P [uv]vu
je kružnica, kde P [uv] označuje podcestu cesty P ohraničenú vrcholmi u, v.

Veta 14.8. Súvislý graf G je eulerovký práve vtedy, keď stupeň každého jeho vrchola je
párny.

Dôkaz. Nech G je eulerovský, teda obsahuje eulerovský ťah. Pre každý vrchol, okrem po-
čiatočneho, možme hrany s ním incednté rozdeliť do dvojíc tak, že hrany ktoré po sebe
nasledovali v prechádzaní eulerovským ťahom budú tvoriť dvojicu. To dokazuje, že každý
vrchol, ktorý nie je počiatočný má párny stupeň. Pre hrany incidentné s počiatočným
vcholom možeme podobne rozdeliť do dvojíc okrem prvej a poslednej hrany. Z toto vy-
plýva, že stupeň každého vrchola je párny. To dokazuje doprednú implikáciu.

Pre dôkaz opačnej implikácie budeme postupovať matematickou indukciou vzhľadom
na počet hrán. Bázu budú tvoriť grafy, ktoré sú kružnicami, tu zrejme tvrdenie platí.
Indukčný krok dokážeme takto: keďže stupeň každého vrchola je párny a G je súvislý,
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tak G je buď triviálny alebo stupeň každého vrchola je párny a aspoň 2. Ak G je trviálny,
tak obsahuje prázdny eulerovský ťah. Predpokladajme preto, že stupeň každého vrchola
je párny a aspoň 2. Podľa Lemy 14.7, G obsahuje kružnicu, povedzme C. Ak G = C,
tento prípad je pokrytý tvrdením pre bázu. Nech teda G−E(C) má nejaké hrany. Stupne
vrcholov v grafe G − E(C) sú párne – ak cez vrchol neprechádzala kružnica C, tak jeho
stupeň v G a G−E(C) sa rovná, inak je zmenšený o 2. Nech H1, H2, . . . , Hr sú netriviálne
komponenty grafu G − E(C). Vyberme z každého komponentu Hi vrchol hi taký, že
hi ∈ C ∩Hi; zjavne taký existuje. Podľa indukčkného predpokladu každý z komponentov
Hi obsahuje eulerovský ťah Ti, bez ujmy na všeobecnosti môzeme predpokladať, že Ti

začína a končí v Hi. Eulerovský ťah v G vytvoríme tak, že budeme prechádzať po C a
keď sa dostaneme do hi pre nejaké i, tak prejdeme ťah Ti. Následne pokračujeme ďalej
po C a postup opakujeme, kým neprejdeme všetky hrany kružnice C ako aj všetky sledy
Ti.

15 Súvislosť
• Zopakujeme, že graf je súvislý, ak medzi ľubovoľnou dvojicou jeho vrcholov existuje

cesta a komponent grafu je maximálny súvislý podgraf grafu (vzhľadom na inklúziu).

• artikulácia je vrchol, odobratím ktorého vznikne graf s viac komponentmi, ako mal
pôvodný graf; podobne most je hrana, odobratím ktorej vznikne graf s viac kompo-
nentmi, ako mal pôvodný graf

• blok – maximálny súvislý podgraf bez artikulácií

• ak z grafu odoberáme vrchol, tak s ním musíme odobrať aj všetky hrany s ním
incidentné. Ak z grafu odoberáme hranu, koncové vrcholy ponechávame. Ak W je
množina vrcholov alebo graf a z je vrchol, tak W−{z} zapisujeme aj W−z. Obdobné
platí, ak ide o hranu.

♣ V ktorých súvislých grafy existuje množina vrcholov, odobratím ktorej dostaneme ne-
súvislý graf?

• graf G sa nazýva k-súvislým ak |V (G)| > k a pre každú množinu vrcholov X ⊆ V
takú, že |X| < k platí, že graf G−X je súvislý. Najväčšie celé číslo k také, že G je
k-súvislý sa nazýva súvislosť κ(G) grafu G. Súvislosť nekompletného grafu je teda
najmenšie číslo m také, že graf obsahuje m, odobratím ktorých sa stane nesúvislým.

• platí teda: κ(K1) = 0, κ(G) = 0 pre nesúvislý graf G, κ(Kn) = n − 1 pre všetky
n ≥ 1

• graf G sa nazýva hranovo l-súvislý ak |V (G)| > 1 a pre každú množinu hrán F
grafu G takú, že |F | < k je graf G − F súvislý. Najväčšie celé číslo l také, že G je
hranovo l-súvislý sa volá hranová súvislosť λ(G) grafu G. Hranová súvislosť je teda
najmenšie číslo m také, že graf obsahuje m, odobratím ktorých sa stane nesúvislým.

• λ(G) = 0 ak G je nesúvislý
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♣ Je pravda, že ak d(v) ≥ 2 pre všetky vrcholy grafu G, tak G je vrcholovo 2-súvislý?

♣ Je pravda, že keď všetky vrcholy grafu ležia na kružnici, tak je 2-súvisislý?

Tvrdenie 15.1. Ak G je netriviálny, tak κ(G) ≤ λ(G) ≤ δ(G).

Dôkaz. Druhá nerovnosť vyplýva z toho, že množina všetkých hrán vzchádzajúcich z
jedného vrcholu tvorí hranový rez. Predpokladajme teraz, že F je minimálna množina
hrán, taká že G− F je nesúvislý. Ukážeme, že κ(G) ≤ |F |.

Najprv predpokladajme, že G obsahuje vrchol v, ktorý nie je incidentný so žiadnou
hranou z F . Nech C je komponent grafu G− F , ktorý obsahuje v. Potom vrcholy C ∩ F
oddeľujú v od G− C a teda κ(G) ≤ |F |.

Predpokladajme teraz, že každý vrchol grafu G je incidentný s hranou z F . Nech v
je ľubovoľný vrchol grafu G a nech C je komponent grafu G− F , ktorý obsahuje vrchol
v. Potom susedia v v C sú incidentní s rôznymi hranami z F a teda d(v) ≤ |F |. Ak
V (G) ̸= {v}∪N(v), tak N(v) separuje v od zvyšku grafu. Inak V (G) = {v}∪N(v). Túto
úvahu môžeme urobiť pre ľubovoľný vrchol. Buď teda existuje v G vrchol x taký, že N(x)
separuje x od zvyšku grafu alebo pre všetky x ∈ V (G) platí, že V (G) = {x} ∪ N(x). V
druhom prípade je G kompletný graf a tvrdenie platí, lebo κ(G) = λ(G) = |V (G)|−1.

16 Planárne grafy
• graf sa nazýva planárny ak sa dá nakresliť v rovine tak, že hrany majú prienik iba

na ich koncoch

♣ Nahliadnite, že graf K5 − e je planárny.

Veta 16.1. Graf je vnoriteľný do roviny práve vtedy, keď je vnoriteľný do sféry.

• Rovinný graf rozdelí rovinu na lineárne súvislé otvorené množiny. Tieto množiny sa
volajú oblasti.

• Každý rovinný graf má práve jednu neohraničenú oblasť, ktorú voláme vonkajšia
oblasť.

• Dĺžka oblasti je dĺžka uzavretého sledu, ktorý danú oblasť ohraničuje, pozri Obr. 5.

10

4 3 3

Obr. 5: Rovinný graf s dĺžkami oblastí. Všimnite si, že v dĺžke vonkajšej oblasti je jedna
hrana zarátaná dvakrát, lebo ohraničujúci sled používa túto hranu dvakrát.
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Obr. 6: Červený graf je duálny k čiernemu a naopak

• Majme rovinný graf G. Duálnym grafom G∗ ku grafu G nazveme taký graf, kto-
rého vrcholy zodpovedajú oblastiam grafu G a dva vrcholy sú spojené hranou ak
zodpovedajúce odblasti zdieľajú spoločnú hranu, pozri Obr. 6. Všimnite si, že ak G
má most, potom G∗ má slučku, a naopak. Ak dvojica oblastí zdieľa viac ako jednu
hranu, v duálnom grafe sa to prejaví ako násobná hrana.

Veta 16.2 (Eulerova formula). Pre každý súvislý rovinný graf G platí

|V (G)| − |E(G)|+ |F (G)| = 2.

Dôkaz. Budeme postupovať matematickou indukciou vzhľadom na počet hrán.
Ak G je strom, tak |V (G)| = |E(G)|+ 1 a |F (G)| = 1, a tvrdenie platí.

Inak, ak G nie je strom, zoberme hranu e ∈ G, ktorá leží na kružnici. Nech G′ = G−e.
Potom G′ je súvislý rovinný graf, E(G′) = E(G)− 1, V (G)′ = V (G) a F (G′) = F (G)− 1.
Z indukčného predpokladu, |V (G′)| − |E(G′) + |F (G′)| = 2 a teda aj |V (G)| − |E(G)| +
|F (G)| = 2.

♣ Ako treba pozmeniť Eulerovu formulu, aby platila pre graf s k ≥ 1 komponentmi?

Dôsledok 16.3. Každé rovinné vnorenie súvislého planárneho grafu má rovnaký počet
oblastí.

Dôsledok 16.4. Nech G je planárny graf s aspoň tromi vrcholmi. Potom
(a) |E(G)| ≤ 3|V (G)| − 6
(b) ak G nemá trojuholníky, tak |E(G)| ≤ 2|V (G)| − 4.

Dôkaz. (a) Majme nejaké rovinné nakreslenie grafu G. Potom

2|E(G)| =
∑

f∈F (G)

d(f) ≥ 3|F (G)| = 3(|E(G)| − |V (G)|+ 2),

pričom posledná vyplýva z Eulerovej formuly. Úpravou dostávame:

|E(G)| ≤ 3|V (G)| − 6.
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(b) Obdobne, ako v (a),

2|E(G)| =
∑

f∈F (G)

d(f) ≥ 4|F (G)| = 4(|E(G)| − |V (G)|+ 2),

z čoho dostávame
|E(G)| ≤ 2|V (G)| − 4.

♣ Kde sme v predchádzajúcom dôsledku využili, že graf má aspoň tri vrcholy?

Dôsledok 16.5. Každý planárny graf má vrchol stupňa najviac 5.

Dôkaz. Sporom predpokladajme, že v planárnom grafe G sú všetky vrcholy stupňa as-
poň 6. Potom 2|E(G)| =

∑
v∈V (G) d(v) ≥ 6|V (G)| a teda |E(G)| ≥ 3|V (G)|, spor.

Dôsledok 16.6. Grafy K5 a K3,3 nie sú planárne.

Dôkaz. Sporom predpokladáme, že sú planárne a z počtu vrcholov a hrán odvodíme spor.

Nasledujúcu vetu, ktorá charakterizuje planárne grafy uvedieme bez dôkazu.

Veta 16.7 (Kuratowski 1930, Wagner 1937). Graf je planárny práve vtedy, keď neobsahuje
subdivíziu K5 ani K3,3.

17 Farbenia grafov
• vrcholové farbenie grafu G = (V,E) je zobrazenie c : V → S, prvkom množiny S

hovoríme aj farby

• vrcholové k-farbenie grafu G = (V,E) je zobrazenie c : V → {1, 2, . . . , k}; čísla
1, 2, . . . , k nazývame aj farbami

• hranové k-farbenie grafu G = (V,E) je zobrazenie c : E → {1, 2, . . . , k}

• regulárne farbenie – susedné objekty majú rôzne farby. Niekedy sa toto slovo vyne-
cháva – ak je zrejmé z kontextu.

• graf je (vrcholovo/hranovo) k-zafarbiteľný ak má vrcholové/hranové k-zafarbenie

• chromatické číslo χ(G) je najmenšie k také, že G má (vrcholové) k-farbenie

• chromatické index χ′(G) je najmenšie k také, že G má hranové k-farbenie
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17.1 Vrcholové farbenia

Majme graf G, ktorý chceme regulárne vrcholovo zafarbiť. Pozrime sa na jednoduchý
greedy algoritmus. Zoraďme vrcholy grafu G do ľubovoľného poradia a v tomto poradí
ich farbíme tak, že pre daný vrchol vždy použijeme farbu s najnižším číslom, ktorá nie
je použitá na jeho susedov. Keďže každý vrchol má najviac ∆(G) susedov, použijeme
najviac ∆(G) + 1 farieb, a teda platí, že χ(G) ≤ ∆(G) + 1.

♣ Nájdite príklady grafov, kde je uvedený odhad tesný, teda platí χ(G) = ∆(G) + 1.

Nasledujúcu vetu uvedieme bez dôkazu.

Veta 17.1 (Brooks, 1941). Nech G je súvislý graf. Ak G nie je kompletný graf ani nepárna
kružnica, tak

χ(G) ≤ ∆(G).

17.2 Hranové farbenia

• je zrejmé, že platí χ′(G) ≥ ∆(G)

Veta 17.2 (König, 1916). Pre každý bipartitný graf G platí χ′(G) = ∆(G).

Dôkaz. Matematickou indukciou vzhľadom na počet hrán. Ak |E(G)| = 0 tvrdenie platí.
Majme teraz graf bipartitný graf G a predpokladajme, že tvrdenie platí pre všetky bipar-
titné grafy s menším počtom hrán. Vyberme e ∈ E(G) a vytvorme graf H := G− e. Ak
∆(H) < ∆(G), tak použijeme ∆(H) farieb na graf H a novou farbou zafarbíme hranu e.
Predpokladajme teda, že ∆(H) = ∆(G). Nech e = uv. Keďže stupeň |E(H)| < |E(G)|,
môžeme použiť indukčný predpoklad na graf H a zafarbiť jeho hrany ∆(G) farbami, nech
f : E(G) → {1, 2, . . . ,∆(G)} je takéto hranové farbenie. Stupne vrcholov u a v sú v grafe
H menšie, ako ∆(G), a teda pre každý z týchto vrcholov existuje farba z {1, 2, . . . ,∆(G)},
ktorá vo farbení f nie je použitá na hranu incidentnú s daným vrcholom. Nech vo vrchole
u nie je prítomná farba α a vo vrchole v nie je prítomná farba β (ak vo vrchole chýba
viacero farieb, vyberieme ľubovoľnú z nich). Ak platí α = β, dofarbíme hranu e farbou α
a máme hranové farbenie grafu G.

Nech teda α ̸= β. Nech P je nepredĺžiteľná cesta, ktorá začína vo vrchole u a používa
len farby α a β (nahliadnite, že je to cesta). Cesta P nemôže končiť vo vrchole v. Ak by
to tak bolo, tak cesta P by bola párnej dĺžky, keďže sa na nej striedajú hrany farieb α a β
a v u chýba α a vo v chýba β. Teda P ∪ e je kružnica nepárnej dĺžky, čo je v bipartitnom
grafe nemožné podľa Vety 14.6. To znamená, že P končí v inom vrchole ako v (a zjavne
cez v ani neprechádza). Vymeníme farby α a β dostaneme iné regulárne hranové farbenie,
povedzme f ′. Vo farbení f ′ je farba β neprítomná v oboch vrcholoch u aj v, pozri Obr. 7.
Dofarbením hrany e farbou β dostávame hranové farbenie grafu G.

Poznamenajme, že nepredĺžiteľnej 2-farebnej ceste sa hovorí Kempeho reťazec a vý-
mene farieb na nej sa nazýva Kempe prepnutie.

Podobne, ako pri vrcholových farbeniach tu uvedieme horný odhad monimálneho po-
čtu farieb potrebného na regulárne hranové farbenie bez dôkazu.

Veta 17.3 (Vizing, 1964). Pre každý jednoduchý graf G platí

∆(G)χ′(G) ≤ ∆(G) + 1.
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Obr. 7: Výmena farieb α a beta na ceste P

17.3 Farbenia planárnych grafov

V roku 1852, matematik Francis Guthrie, inšpirovaný farbením mapy anglicka položil
nasledujúcu otázku.

Problém štyroch farieb. Dokážte, že oblasti ľubovoľného rovinného grafu bez mos-
tov možno zafarbiť najviac štyrmi farbami tak, aby susedné oblasti (tie, čo majú spoločnú
hranu na hranici) boli zafarbené rôznou farbou.

Prvý všeobecne akceptovaný dôkaz urobili v roku 1976 Appel and Haken; tento dôkaz
bol urobený s pomocou počítaču.

My tu teraz uvedieme s dôkazom slabšiu verziu – ukážeme, že päť farieb stačí. Predtým
však prevedieme problém farbení oblastí na problém vrcholového farbenia planárneho
grafu.

V duálnom grafe vrcholy zodpovedajú oblastiam pôvodného grafu a naopak. Preto
oblasti bezmostového rovinného grafu G sa dajú k zafarbiť tak, že oblasti, ktoré zdieľajú
nenulový úsek hranice majú rôznu farbu práve vtedy, ak G∗ je regulárne k-zafarbiteľný.

Z duality vyplýva ekvivalentná formulácia Problému štyroch farieb:

Pre každý rovinný graf G (bez slučiek) platí χ(G) ≤ 4.

Dokážeme slabší variant, a to že päť farieb stačí na regulárne zafarbenie každého
planárneho grafu (bez slučiek).

Veta 17.4 (Heawood, 1890). Pre každý planárny graf G platí χ(G) ≤ 5.

Dôkaz. Budeme postupovať matematickou indukciou na počet vrcholov. Báza indukcie
zrejme platí. Podľa Lemy 16.5, každý planárny graf má vrchol stupňa nanajvýš 5, po-
vedzme v. Podľa indukčného predpokladu, graf G − v má (vrcholové) 5-zafarbenie. Ak
je nejaká farba z množiny {1, 2, 3, 4, 5} nepoužitá na suseda vrchola v, dofarbíme touto
farbou vrchol v a máme regulárne zafarbenie všetkých vrcholov. Inak môžeme predpokla-
dať, že susedia vrcholu v v G sú v1, v2, . . . , v5 v cyklickom poradí podľa vnorenia a vi je
zafarbený farbou i. Podgraf indukovaný vrcholmi ľubovoľných dvoch farieb je bipartitný.
Ak komponent grafu G−v, indukovaný farbami 1 a 3 obsahujúci v1 neobsahuje v3, vyme-
níme farby v tomto komponente a vrchol v zafarbíme farbou 1, Obr. 8. Predpokladajme
teda, že komponent grafu G − v, indukovaný farbami 1 a 3 obsahujúci v1 obsahuje v3.
Potom ale, keďže graf je planárny, komponent indukovaný farbami 2 a 4 obsahujúci v2
neobsahuje v4. Prefarbíme tento komponent a zafarbíme v farbou 2.
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Obr. 8: Výmena farieb v dôkaze Heawoodovej vety
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