Diskrétna matematika

Ucebny text k prednaske
Edita Macajova

1 Vyroky

Virok je tvrdenie ktoré je bud pravdivé alebo nepravdivé (princip dvojhodnotovosti) —
vyrok nemoze byt sticasne pravdivy i nepravdivy, ale plati prave jedna z tychto moznosti.
Inak povedané vyrok je deklarativna veta, teda veta, ktoré nieco tvrdi, a nie je iba roz-
kazom, ¢i otazkou. Vyrok ma spravidla tvar gramatickej oznamovacej vety. Pravdivostni
hodnotu vyroku nemusime vediet urcit.

e Priklady vyrokov:
— 2+3=5
— 3+6=10
— V roku 2037 pristant [udia na Marse.
— Ak je dnes streda, zajtra bude stvrtok.

Vyrokmi nie st:
— otazky
— rozkazovacie vety

— oznamovacie vety, pokial im nemo’no jednoznacne priradit pravdivostni hod-
notu (napr. ,,Této veta je nepravdiva.”).

Vyroky zvycajne oznaCujeme pismenami p, q, 7.

Pravdivostna hodnota ,pravdivy” sa oznacuje symbolom 1 (alebo T — true), prav-
divostna hodnota ,nepravdivy” sa oznacuje symbolom 0 (alebo F — false).

hypotézy
— Vyrok, o ktorom si myslime, Ze je pravdivy, ale nevieme to dokazat sa nazyva
hypotéza.

— Tvrdenie o $tyroch farbach bolo dlho hypotézou, teraz vieme, zZe je to pravdivy
vyrok.

1.1 Logické spojky

7, vyrokov mozeme pomocou logickych spojok tvorit nové, zlozitejsie vyroky. Postupne
rozoberieme zakladné logické spojky. Tieto sa podla po¢tu parametrov delia na unérne
(negécia) a binarne (konjunkcia, disjunkcia, implikicia a ekvivalencia).



Negacia

Negdcia: popretie skutocnosti, ktora vyjadruje poévodny vyrok.

Napriklad, ak mame vyrok: .Cislo 5 je vacsie ako ¢islo 2., popretim skutocnosti,
ktoru tvrdi je vyrok ,Nie je pravda, ze ¢islo 5 je vicsie ako ¢islo 2., alebo pouzivame
aj slovny obrat ,neplati, ze ¢islo 5 je vécsie ako ¢islo 2¢. Takisto samozrejme mo-
zeme (ak rozumieme tomu, ¢o hovori vyrok) ho znegovat bez slov, ktoré pred neho
predsunieme: ,,Cislo 5 je mensie alebo rovnaké ako ¢islo 2

Vyrok je pravdivy prave vtedy, ak jeho negacia je nepravdiva, je nepravdivy v opac-
nom pripade

Ak prvy vyrok oznacime p, tak jeho negéciu budeme oznacovat —p. V literattre sa
pouZiva aj p’ alebo p.

Negécia je unarna spojka (to znamené, ze ma jeden parameter, v tomto pripade
vyrok).
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Tabulka 1: Pravdivostné hodnoty pri negacii vyroku

Konjunkcia

Konjunkcia vyrokov p a g spaja vyroky p a ¢ do nového vyroku ,,p a ¢’ ¢itame p a
stcasne q. Konjunkciu vyrokov p a ¢ oznacujeme p A g (pripadne p&q, p AND gq).

e Konjunkcia p A ¢ je pravdiva prave vtedy, ak oba vyroky p a ¢ st pravdivé. V

opacnom pripade je konjunkcia p A ¢ nepravdiva.

Disjunkcia

e Disjunkciu vijrokov p a q zapisujeme vyrazom p V ¢ (pripadne p OR ¢). Disjunkciu

vyrokov p a q ¢itame ,,p alebo ¢”.

e Disjunkcia vyrokov p a q je pravdiva prave vtedy, ak aspon jeden z vyrokov p a ¢ je

pravdivy, v opa¢nom pripade je disjunkcia vyrokov p a ¢ nepravdiva.

e V realnom zivote niekedy pouzivame slovo ,alebo” vo vylu¢ovacom vyzname. Na-

priklad vo vete ,P6jdes nakupit ty alebo ja.” implicitne myslime, Zze pojde prave
jeden z nas, nie obaja. V matematike je pri disjunkcii pripustné aj ze su splnené oba
vyroky.



Implikacia

o Implikdcia vyrokov p a ¢ sa zapisuje vyrazom p = ¢ a Cita sa nasledovne: ,ak
(plati vyrok) p, tak (plati vyrok) ¢, ,z p vyplyva ¢* alebo jednoducho ,,p implikuje
¢“. Vyrok p v implikacii p = ¢ sa nazyva predpoklad a vyrok q je uzdver alebo
dosledok.

e Implikacia je nepravdiva v pripade, ked je pravdivy predpoklad implikacie a neprav-
divy jej uzaver. Vo vsetkych ostatnych pripadoch je implikacia pravdiva.

e Implikacia zohrava doélezitt ulohu v matematickych dokazoch.

Ekvivalencia

e Ekvivalenciu vyrokov p a ¢ zapisujeme vyrazom p < ¢ (p ~ q, p = q) a Citame ako
»p je ekvivalentne s ¢”, ,,p (plati) prave vtedy ked (plati) ¢”, ,,p (plati) vtedy a len
vtedy ked (plati) ¢”. Ekvivalencia p, ¢ plati prave vtedy, ked maji oba vyroky p a q
rovnaku pravdivostni hodnotu; t.j. ked st oba stucasne pravdivé, alebo oba suc¢asne
nepravdivé.

e To, 7e vyroky maju rovnaki pravdivostnii hodnotu, znamené, Ze jeden z nich moze
byt napriklad v nejakom zloZzenom vyroku nahradeny druhym bez toho, aby sa
pravdivostna hodnota zlozeného vyroku zmenila.

e Ekvivalencia vyrokov mé vyznam pri dpravach vyrokov. Napriklad pri zistovani
pravdivostnej hodnoty nejakého velmi zloZzitého vyroku moZeme postupne nahra-
dzovat vyroky z ktorych pozostava, ekvivalentnymi jednoduchsimi vyrokmi, az sa
nakoniec dostaneme k vyroku, ktorého pravdivostni hodnotu vieme urcit.

e To, 7e st nejake dva vyroky logicky ekvivalentné, nemusi znamenat, Ze maju rovnaky
(semanticky) vyznam. Napriklad vyroky 26. septembra 2024 bol $tvrtok a 5 > 3 st
oba pravdivé, a teda st to ekvivalentné vyroky.

plq|pNAd|PVqQ|p=4q|DP=(q
010 0 0 1 1
01| O 1 1 0
170 0 1 0 0
171 1 1 1 1

Tabulka 2: Pravdivostné hodnoty vyrokov pri pouZiti binarnych spojok (spojok, ktoré
spajaju dva vyroky)

Specialne typy vyrokov

e Vyrok sa nazyva tautoldgiou, ak je pravdivy pre vSetky mozné kombinécie pravdi-
vostnych hodnét vyrokov, z ktorych je zlozeny (zakladnych vyrokov).

e Vyrok sa nazyva kontradikcia, ak je nepravdivy pre vSetky mozné kombinécie prav-
divostnych hodnot vyrokov, z ktorych je zlozeny.



Vyrok je splnitelny, ak je pravdivy pre aspon jednu kombinéciu pravdivostnych
hodnot vyrokov, z ktorych je zlozeny.

Kazdy vyrok je teda splnitelny alebo kontradikcia.

Vyznamné tautologie

Idempotentost (p Ap) < p, (pVp) < p

Komutativnost (p A1) < (r Ap), (pVr) < (rVp)

Asociativnost (p A (rAs)) < (pAr)As), (pV(rvs))< ((pVr)Vs)
Distributivne zékony (pA(rVs)) < ((pAr)V(pAs)), (pV(rAs)) < ((pVr)A(pVs))
Absorpcéné zékony (p A (rVp)) < p, (pV (rAp)<p

Zakon dvojitej negacie (——p) < p

Zakon o vyluceni treticho (p VvV —p) < 1

Zéakon o vyluceni sporu (p A —p) < 0

De Morganove zékony —(p A1) < (-pV —r), =(pVr) < (-p A )

Kontrapozicia implikacie (-p = —r) < (r = p)

(p=r)e (-pVr)

Vsetky tieto tautologie sa daju dokazat tabulkou pravdivostnych hodnot.

& Vyjadrite implikdciu a negaciu implikidcie pomocou inych logickych spojok, pricom
negované mozu byt iba zakladné vyroky.

& Je implikacia asociativna?

2 Vyrokové formy

Vyrokova forma je formula, ktora méa tvar vyroku, ale vyrokom nie je, pretoze namiesto
tvrdenia o nejakom objekte ¢ objektoch tvrdi nie¢o o nejakej neznamej veli¢ine (napr.
premennej x) a pravdivostni hodnotu tohto tvrdenia nie je mozné bez znalosti hodnoty
premennej urcit. Ak vSak za premennt dosadime vhodny objekt, alebo inak konkretizu-
jeme mnozinu hodndét, ktoré moze premenna nadobudat, dostavame vyrok.

Priklady vyrokovych foriem

x je prvocislo

e r+3>5



Pre kazdu vyrokova formu existuje mnozina objektov, ktoré ma zmysel do vyrokove;j
formy dosadzovat. Tito mnozina volame doména a je Casto oznacovani M.

Priklad. Nech vyrokovi formu méme na mnozine prirodzenych ¢isiel definovani takto
a(x) < a > 3.

dosadzovanim do vyrokovej formy dostavame vyroky:

a(l) ©1>3

a(2) < 2>3

a(3) <3>3

a(4) <4 >3

a(5) <5 >3 [

7, vyrokovej formy mozeme dostat vyrok nielen dosadenim konkétnych objektov, ale
aj tym, ze urc¢ime (kvantifikujeme) pre aké mnozstvo prvkov mnoziny M predstavuje
vyrokova forma pravdivy vyrok.

e Ezistencny kvantifikator 3 ¢itame ,existuje. Zapis (Ix)a(x) méa vyznam existuje
aspon jedno také x (z mnoziny M), pre ktoré plati a(x).

e Vseobecny kvantifikdtor ¥V ¢itame ,pre vietky". Zapis (Va)a(x) mé vyznam pre vietky x
(z mnoziny M), ktoré plati a(x).

e Vyroky, ktoré obsahuja kvantifikitory sa nazyvaju kvantifikované vijroky.

Nech a(x) je vyrokovéa forma s doménou M.
e vyrok (Vz)a(z) formalne zapiseme (Vz)((x € M) = a(z))
e vyrok (Jz)a(z) formalne zapiseme (Jz)((x € M) A a(x))

e ak je jasné o akd doménu ide, spravidla pouzivame skratené zapisy vyrokov

& Najdite vyrokovi formu a(z) a domény M; a M, také, Ze (Va)a(x) je pravdivé na M,
ale nie je pravdivé na M. Podobne pre (3x)a(z).

& Ako sa spravaju existenény a vSeobecny kvantifikator, ak je doména préazdna mnozina?

2.1 Negacie kvantifikovanych vyrokov

Kvantifikované vyroky negujeme nasledovne:
o ~(Vz)(a(z)) & (z)(-a(2)),
o ~(3z)(a(x)) & (Va)(ma(x)).



3 Typy dokazov

Jedna z najcastejsich uloh v matematike je dokazat platnost nejakého tvrdenia (s pouzitim
istych predpokladov). Typov dokazov je niekolko, tu spomenieme najéastejsie pouzivané:
priamy a nepriamy dokaz, dokaz sporom a dokaz matematickou indukciou. Casto sa typy
dokazov kombinujt, napriklad vnuatri dokazu matematickou indukciou sa dokaze ciastkové
tvrdenie priamym dokazom.

Pri dokazoch sa stretnete so slovnym zvratom ,bez ujmy na vSeobecnosti”. Mysli sa
tym, ze z viacerych pripadov, ktoré treba rozobrat staci rozobrat jeden, lebo ostatné
pripady by sa robili obdobne.

3.1 Priamy dokaz

Majme matematické tvrdenie B, ktoré chceme dokazat. Pri priamom dokaze postupujeme
tak, Ze prijmeme nejaké predpoklady, oznac¢ime ich A a dokaZeme retaz implikécii

A=A = A,...= A, =B

pre nejaké vyroky Aq, As, ..., A,. Tato retaz implikacii treba chapat ako skrateny zapis, ze

A = A, a zaroven
Ay = A, azaroven

A,_1 = A, azaroven
A, = B.

Priamy dokaz ¢asto pouzivame na dokaz implikicie L = R, kde za A polozime L a
za B polozime R.

Priklad. Dokaite, Ze pre vietky prirodzené ¢isla n plati: ak 3 deli n, tak 9 deli n®.
Riesenie. Pre kazdé prirodzené ¢islo n platia nasledujice implikéacie:

3delin = 3k € N:n =3k = n?=(3k)® = n® =27k% = 9 deli n®. Dostavame teda, ze
3 deli n = 9 deli n3, ¢o bolo treba dokazat. [ |

Pri priamom dbkaze sa modze stat, ze sa dokaz deli na podpripady, napr. namiesto
A; = A;;1 nahliadneme A; = (A}, VA2 V...VAF ). Potom treba z kazdého z vyrokov
Al A7 AF dokazat B.

Priklad. Sest druzstiev sa zaastnilo turnaja, ktory sa hral systémom kazdy s kazdym
jeden zapas. Turnaj trval dva dni. Dokazte, Ze existuju tri druzstvé, ktoré odohrali vSetky
tri svoje vzajomné zapasy pocas jedneho dna.

Riesenie. Oznacme si druzstva A, B, C, D, E, F. Druzstvo A odohralo pét zapasov. Z
dirichletovho principu vyplyva, Ze v jeden z dni odohralo druzstvo A aspon tri zapasy,
oznacme tento den X a ten iny dent oznacme Y. Predpokladame teda, Zze v defi X odohoralo
druzstvo A aspon tri zapasy. Bez ujmy na vSeobecnosti mozeme predpokladat, ze v den
X druzstvo A odhralo zapasy s druzstvami B, C, D (mohlo aj s viacerymi, vyberieme si
tri z druzstiev). Tu sa dokaz rozdeluje na dve moznosti:

1. moznost: niektory zo zapasov medzi B-C, B-D alebo C-D sa odohral v den X.

2. moznost: v8etky zapasy medzi B-C, B-D a C-D sa odohrali v den Y.



Ak nastala moznost 1, tak dve druzstva z B, C, D, ktoré hrali spolu v den X, tvoria spolu
s druzstvom A trojicu druzstiev, ktoré vsetky tri svoje vzajomné zapasy odohrali v den X.
Ak nastala moznost 2, tak druzstva B, C, D odohrali vSetky tri svoje vzajomné zapasy v
den Y.

Nahliadli sme, Ze bez ohladu na to, ktorda z dvoch moznosti nastala, existuje trojica
druzstiev s pozadovanou vlastnostou. Kedze tieto dve moznosti pokryvaju vietky mozné
pripady, dokaz je ukonceny. ]

3.2 Nepriamy dbékaz implikidcie pomocou obmeny

Tento typ dokazu je zalozeny na skutocnosti, Ze implikacia a = b a jej obmena —b = —a
st ekvivalentné. Ak je to teda vyhodnejsie, namiesto implikacie a = b mdzeme dokazovat
implikaciu —b = —a.

Priklad. Dokéazte, Ze pre vietky prirodzené ¢isla plati: ak 25 nedeli n?, potom 5 nedeli n.
Riesenie. Mame dokazat, ze 25 nedeli n? = 5 nedeli n. Namiesto tejto implikacie budeme
dokazovat ekvivalentnt implikaciu 5 deli n = 25 deli n?. Tu uz budeme postupovat, ako
pri priamom dokaze.

5delin = 3k € N:n =5k = n?> = (5k)? = n? = 25k* = 25 deli k?. Tymto sme
dokézali obmenu povodnej implikécie, a teda aj povodni implikaciu. |

3.3 Dobkaz sporom

Predpokladajme, Ze chceme dokézat tvrdenie A. V dokaze sporom z negécie tvrdenia A
odvodime nepravdivé tvrdenie. Cize ukédzeme, ze =A = 0, ¢o je ekvivalentné s 1 = A a
toto je ekvivalentné s A.

Priklad. Dokazte, ze V2 je iracionélne cislo.

Riesenie. Predpokladajme pre spor, Ze v/2 je racionélne &islo, ¢ize sa dé zapisat v tvare
p/q, kde p a ¢ st prirodzené ¢isla. Navyse mozme predpokladat, Ze p a ¢ st nestudelitelné.

2
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q q
Z poslednej rovnosti vyplyva, Ze 2|p?, ¢o dalej implikuje 2|p. Teda p = 2k pre niektoré
prirozdené &islo k. Dosadime toto do 2¢* = p? a po tuprave dostédvame, 7e 2|¢%, a teda 2|q.
Cisla p a ¢ maju spolo¢ného delitela 2, o je v spore s tym, Ze st nestudelitelné. |

3.4 Dokaz matematickou indukciou

Dokaz matematickou indukciou pouzivame obyc¢ajne na dokézanie pravdivosti vyrokovej
formy pre nekone¢ne vela hodnot. Vysvetlime si tento dokaz na prirodzenych ¢islach a v
zévere podsekcie uvedieme niektoré zovseobecnenia. Majme teda vyrokovu formu V(n) a
chceme dokéazat pravdivost vyroku V' (n) pre vSetky prirodzené ¢isla n. Dokaz urobime v
dvoch krokoch:

1. krok, tiez nazyvany bdzovy krok, alebo aj bdza indukcie. Tu overime pravdivost vy-
roku V(0).

2. krok, tiez nazyvany indukcny krok. V tomto kroku overime pravdivost vyroku

(Vn e N)(V(n) = V(n+1)).

7



Pri dokaze indukéného kroku hovorime vyroku V' (n) indukény predpoklad.

Priklad. Dokazte, Ze pre vSetky prirodzené ¢isla plati

1)(n +2
0141242343 44 +n-(n+1)= U0F Z)3(n+ )

Riesenie. Najprv overfme bazu indukcie, to znamena overime pravdivost vyroku V(0).
Cize mame overit, ze 0.1 = % Tento vyrok je zjavne pravdivy. Pristipme teraz k
druhému kroku, ukédzme, ze (Vn € N)(V(n) = V(n + 1)). Cize predpokladajme, ze plati

n(n+1)(n+2)

1:2+2-3+3-4+-+n-(n+1)= (%)

a dokdzeme, zZe plati

124234 tn-(nt 1)+ m41)-(n+2) = (“”(”;2)(”*3)_

Zacneme lavou stranou a postupnostou rovnosti ukdzeme, Ze sa rovna pravej strane. 1-2+

1 n\n n nn n n n
2.3+ -+n-(n+1)+(n+1)-(n+2) ) w+(”+1)(”+2) _ n(nt1)( +2);}i—3( +1)(n+2) _
(n+1)(n+2)(n+3)

e

Pri¢om rovnost (1) vyplyva z indukéného predpokladu (*) aplikovaného na vsetky $¢itance
okrem posledného. Tym je dokaz ukonceny. |

Ako sme uviedli, pouzivaju sa rézne modifikacie dokazu matematickou indukciou. Tu
uvedieme niektoré.

e Vyrok je platny (a preto ho dokazujeme) az od istého prirodzeného &isla k. Vtedy v
bazovom kroku dokazujeme vyrok V (k) a v indukénom kroku vyrok (Vn € N)[(n >
k)= (V(n) = V(n+1))].

e Méame dokazat vyrok V' (n) pre vetky prirodzené ¢isla, ale jednym dokazom mate-
matickou indukciou to nevieme spravit. Rozdelime si mnozinu na viac podmnozin a
dokazeme platnost vyroku pre tieto podmnoziny osobitne. Napr. rozdelime si priro-
dzené ¢isla na parne a neparne a ukazeme, ze

— V(0) a V(n) = V(n+ 2) pre vSetky parne prirodzené &isla n, a zaroven
— V(1) aV(n) = V(n+ 2) pre vietky nepéarne prirodzené ¢isla n.

e V indukénom kroku vyuzivame ako predpoklad platnost tvrdenia pre vSetky mensie
¢isla, t.j. dokazujeme [V(0) AV(1)A... AV (n)] = V(n+1).

e Ak je indukény krok platny len pre n > k pre nejaké prirodzené ¢islo k, tak v
bazovom kroku overime platnost tvrdeni V(0),V (1),...,V (k).

e Dokazujeme na inej mnozine, ako na prirodzenych c¢islach. Mnozina nemusi byt
linearne usporiadané, moézu existovat dvojice neporovnatelnych prvkov. O takychto
mnozinach sa dozviete na tomto predmete neskor.



& Najdite chybu v ,dokaze* nasledujuceho tvrdenia. VSetky kone maju rovnaku farbu.
,Dokaz.“ Matematickou indukciu dokadzeme pre prirodzené k > 1 tvrdenie: kazda k-
prvkova mnozina koni obsahuje vsetky kone rovnakej farby.

V baze indukcie treba overit, Ze kazdé jednoprvkova mnozina koni ma vsetky kone rovna-
kej farby. Toto je zjavne pravda, kedze kon je mnozine len jediny. Pre dokaz indukéného
kroku predpokladajme, Ze tvrdenie plati pre nejaké prirodzené k a dokazeme tvrdenie pre
k + 1. Majme teda nejaki mnozinu k£ + 1 koni. Kone si v nej ocislujme 1,2,... &k + 1.
Pozrime sa na mnozinu koni tvorent konimi s ¢islami 1,2, ..., k. Podl'a indukéného predpo-
kladu maju vSetky kone v tejto mnozine rovnakiu farbu. Takisto v mnozine konf s ¢islami
2,,...,k+1 maju vSetky kone podla indukéného predpokladu rovnaku farbu. Kedze kon s
¢islom k je v oboch mnozinéch, farby koni v oboch mnozinach st rovnaké a dostavame, ze
vietky kone z povodnej (k + 1)-prvkovej mnoziny maju rovnaku farbu. Tym sme ukonéili
indukény krok, a teda dokéazali, Ze vSetky kone su rovnakej farby.

4 Mnoziny

MmnozZina je stibor objektov, ktoré sa neopakuji. V mnozine st objekty neusporiadané.
Objekty, ktoré stt v mnozine nazyvame prvky. Prvkom mnoziny moze byt mnozina.

e Fakt, Ze prvok x patri mnozine A zapisujeme z € A.
e Ak A je konefna mnozina, tak symbolom |A| ozna¢ujeme pocet jej prvkov.
e Ak mnoZina nemé Ziadne prvky, volame ju prdzdna a oznacujeme ju () alebo {}.

e Symbolom U budeme oznacovat univerzdlnu mnoZinu, teda mnozinu, ktoré obsahuje
vSetky pripustné prvky.

e Dve mnoziny A a B sa rovnaju ak maji rovnaké prvky. To znamena, ze A = B
prave vtedy, ked (Vz € U)(z € A <= z € B).

e Mnozina A je podmoZinou mnoziny B (zapisujeme A C B) ak kazdy prvok, ¢o
patri do A patri aj do B, t.j. (A € B) <— Va)[(z € A) = (x € B).
Mnozina A je vlastnou podmnoZinou mnoziny B ak A je podmnozinou B a existuje
prvok mnoziny B, ktory nepatri mnozine A. Ak chceme zdoéraznit, Ze mnozina A je
vlastnou podmnozinou mnoziny B, mozeme pouzit symbol C.

e Potencnd mnoZina mnoziny A je mnozina vSetkych podmnozin mnoziny A, oznacu-
jeme ju P(A). Cize P(A) = {X; X C A}. Napriklad P({1,2,3}) = {0, {1},{2}, {3},
{1,2},{1,3},{2,3},{1,2,3}}.

4.1 Mnozinové operacie
Nech A a B st mnoziny. Definujeme nasledujtice operacie

e zjednotenie AUB = {z;2 € AV € B}

e prienik ANB = {z;2 € ANz € B}



e rozdiel A\ B={z;2 € ANz ¢ B}
e komplement A° = {z;x € U Az & A}
e karteziansky suéin A x B = {(a,b);a € AND € B}

Komplement robime vzhladom na univerzalnu mnozinu U, v ktorej pracujeme. Alter-
nativne mozeme rozdiel A\ B vyjadrit ako A N BC.

e Symbolom (a,b) ozna¢ujeme usporiadant dvojicu definovanu ako {a, {a,b}}.

O mnozinach A a B povieme, Ze su dizjunkiné, ak maji prazdny prienik, t.j. ak
AN B = 0. Mnoziny Ay, As, ..., A, st po dvoch dizjunkné, ak A; N A; = ) pre vietky
i,7€{1,2,...,n} také, ze 1 # j.

4.2 MnozZinové identity

Veta 4.1. Nech A, B a C' si mnozZiny. Potom plati

Dékaz. Dokazeme bod (2). Dokazy ostatnych bodov st podobné — odvolame sa na vlast-
nosti logickych spojok.
r€(AUB)& (re€A)V(zeB)e (xeB)V(xe A)& xe (BUA) O

5 Pravidlo suctu

Veta 5.1 (Pravidlo suctu). Nech X1, Xo,...,X,, n > 2 si po dvoch dizjunktné konecné
mnoziny. Potom plati

X1 UXoU...UX,| =X+ X+ + | X0l

Doékaz. Tvrdenie dokdzeme matematickou indukciou. Bazu indukcie bude predstavovat
tvrdenie pre dve mnoziny. Pre n = 2 tvrdenie hovori | X; U Xs| = | X3 | + | X2| a je zrejmé,
kedze X; a X5 su dizjunktné.
Predpokladajme teraz, ze tvrdenie plati pre nejaké n > 2 a dokazeme, Ze plati pre
n+ 1.
IXiUXoU.. . UX, | = (X1 UXoU...UX,))UX, 14| =

= |[(XiUXoU...UXp)| + | Xng1| = | Xa]| + | X+ + | Xnga]-

V druhej rovnosti sme vyuzili tvrdenie pre n = 2 a v poslednej rovnosti sme vyuzili
indukeny predpoklad — tvrdenie pre n. O
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6 Dirichletov princip

Aj ked samotny princip je jednoduchy jeho aplikicia moze byt komplikovana. Je to jeden
z najcastejsie pouzivanych prinipov pri dokazovani matematickych tvrdeni.

Najjednoduchsia forma:
Ak n + 1 predmetov vkladdme do n priecinkov, tak aspon jeden priecinok bude obsahovat
dva alebo viac predmetov.

e Dirichletov princip je niekedy nazyvany aj holubnikovy princip.

Mnoziny A, As, ..., A, tvoria rozklad mnoziny B ak
1. AUAU...UA, =B
2. A;NA; =0 pre vietky i # j ai,j € {1,2,...n}

3. A; # 0 pre vietky i € {1,2,...n}

Priklad.
e {1},{2,3},{4,5,6} je rozklad mnoziny {1,2,3,4,5,6}
e {2},{2,3},{4,5,6} nie je rozklad mnoziny {1,2,3,4,5,6}
e (0,{1,2,3},{4,5,6} nie je rozklad mnoziny {1,2,3,4,5,6}

[ |
Mnoziny Ay, As, ..., A, tvoria slaby rozklad mnoziny B, ak
1. AUAU... A, =B
2. AiNA; =0prevsetky i #jai,je{l,2,...n}
Priklad.
e (0,{1,2,3},{4,5,6} je slaby rozklad mnoziny {1,2,3,4,5,6}
[ |

Veta 6.1 (Dirichletov princip). Nech B je mnoZina, |B| = m a Ay, As, ..., A, je slaby
rozklad mnoZiny B. Ak m > n, tak existuje i € {1,2,...,n} také, Ze |A;| > 2.

Dékaz. Sporom predpokladajme, ze |A;| < 1 pre vsetky i € {1,2,...,n}. Potom |B| =
| A1 + A2 + ... +|A,| < n. Dostavame spor s predpokladom, ze |B| = m > n. O

e Dirichletov princip je nekonstruktivny princip, ¢ize hfadany objekt pomocou neho
priamo nenajdeme, ale dokédZeme jeho existenciu.
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Priklad. Na istej skole je 500 studentov. Nahliadnite, ze existuju dvaja Studenti, ktori
maju rovnaky den aj mesiac narodenia.

Riesenie. Nech S je mnozina Studentov danej Skoly. Rozdelme Studentov do mmnoZzin
My, Ms, ... Msgs podla diia a mesiaca narodenia. Kedze |S| > 366 existuju dvaja Stu-

denti s rovnakym diiom a mesiacom narodenia. [
Priklad. Dokazte, ze v postupnosti (aj,as,...,a,) Tubovolnych n prirodzenych ¢isiel
existuje suvisla podpostupnost (agi1, agio, ..., an) taki, ze sacet ary1 + agro + ... + am

je delitelny ¢islom n.
Riesenie. Uvazujme n suctov
S1 = ai

Sg = a1 + ag

Sp,=a1+as+ -+ a,.

Ak je niektory medzi nimi deliteIny n, mame hladany sucet. Predpokladajme preto, Ze
Ziaden zo suctov nie je deliteIny n, t.j. po deleni n déva niektory zo zvyskov 1,2,...,n—1.
Kedze siuc¢tov je n a moznych zvyskov je n — 1, existuju dva siacty s rovnakym zvyskom,
nech si to s, a s,. Bez ujmy na vSeobecnosti predpokladajme, ze p < g.

e a +ay+...+a,=bm+z2
ap+tax+...+a,=cn+z

® Gpi1+apot-rag=cn+z—(bn+2z2)=(c—bn

e tento sucet je delitelny n

6.1 Zosilnena forma Dirichletovho principu

Tato forma déva postacuju podmienku na to, aby v aspon jednej z mnozin slabého roz-
kladu bolo aspon k prvkov.

& Rozmyslite si, kolko Studentov musi mat Skola, aby bolo isté, Ze aspon piati Studenti
maju rovnaky den a mesiac narodenia.

Veta 6.2. Nech B je mnozina, |B| =m a Ay, As, ... Ay je slaby rozklad mnoZiny B. Ak
m/n > r, tak ezxistuje i € {1,2,...,n} také, Ze |A;| > r+ 1.

Dékaz. Sporom predpokladajme, Ze pre vietky i € {1,2,... n} plati, ze | A;| <= r. Potom
m = |B| =|A;| + |As| + -+ - + |A,| < n.r, €o je v spore s m/n > . O

Priklad. Pri rieSeni prikladov, ktoré sa daju riesit dirichletovym principom sa ¢asto

stretavame s istym druhom chyby. Uvadzame tu preto priklad a najprv jeho chybné a
nasledne spravne rieSenie.

Zadanie. Aké je najmensie ¢islo k také, Ze ked vyberieme I'ubovolnych k ¢isiel z mnoziny
{1,2,...,100}, tak medzi vybratymi ¢islami ur¢ite bude dvojica ¢isiel, ktoré¢ sa lisia o 17
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Chybné riesenie. Cislo k must byt aspon 51, lebo keby sme vybrali vSetky parne ¢isla z
{1,2,...,100} ziadne dve z nich by sa nelisili prave o 1.

Vyberme teda vSetkych 50 parnych ¢isiel, vidime, Ze ked pridame I'ubovolné dalsie
¢islo, bude vo vybranych 51 ¢islach dvojica s rozdielom 1.
Preco je uvedené riesnie chybné a kde je chyba? Prva Cast rieSenia je v poriadku, ¢isiel
musi byt aspon 51, zdévodnenie je spravne. Problém je v druhej ¢asti: tam ak vyberieme
najprv vsetky péarne ¢isla a nésledne pridame jedno, naozaj budeme mat vo vybere dve
¢isla s rozdielom 1. Problém je vSak v tom, Ze my mame nahliadnut, ze vsetky vybery 51
¢isiel obsahuju dve ¢isla s rozdielom 1 a tymto sposobom sme uvazovali iba vybery ¢isiel,
ktoré obsahovali 50 parnych a jedno neparne ¢islo a nie iné kombinicie.
Riesenie. Prva ¢ast rieSenia, poskytujtica dolny odhad 51 je v poriadku (a treba jul), vy-
bratych ¢isiel musi byt asponi 51. Dokazme, ze 51 staci. Rozdelme ¢isla 1,2, ...,100 do 50
mnozin — polozme A; = {2i — 1,2i} pre i € {1,2,...,50}. Systém mnozin Ay, As, ..., Aso
tvori rozklad mnoziny {1,2,...,100}. Kedze 51>50, v lubovolnom vybere 51 &isiel bude
existovat mnozina A; pre nejaké j € {1,2,...,50}, ktora bude obsahovat dve z vybranych
gisiel. Cisla v mnoZine A; maju rozdiel 1.

Poznamenavame, Ze tymto sme dokazali o nieCo silnejsie tvrdenie — dokazali sme, Ze
ked vyberieme 51 ¢isiel, tak vo vybere budu dve ¢isla s rozdielom 1, pricom mensie z nich
bude nepérne a vicsie parne.

7 Pravidlo sucinu

Pouzitim pravidla suc¢tu dokazeme zlozitejsie pravidlo suc¢inu. Usporiadand n-ticu budeme
zapisovat nasledujucim spésobom.

° xeAl><A2><---xAn(:)(Elal)(Elag)...(Han):(a1€A1)/\(a2€A2)/\.../\(anE
A Nz = (ar,a9,...,a,)

Veta 7.1 (Pravidlo stu¢inu). Nech X, Xa, ..., X,, n > 1 su lubovolné koneéné mnoZiny.
Potom |X1XX2XXn’:|X1||X2| """ |Xn|

Doékaz. Tvrdenie dokdzeme matematickou indukciou. Za bazu zoberieme n = 1; tu tvrde-
nie zjavne plati. Pristipme teraz k indukénému kroku. Predpokladajme, Ze tvrdenie plati
pre nejaké n > 1 a dokdzeme, ze plati pre n + 1.

e Chceme zistit pocet prvkov mnoziny X; x Xy x -+ - X, X X;41.

o Ak Xy = 0, tak | X3 x Xp x -+ Xp X Xoa] = 0= [ X[ - [Xa] -+ [ Xl « [ X,
teda tvrdenie v tomto pripade plati.

Predpokladajme, teraz, ze | X,+1| = s > 1 a nech X,,11 = {ay,aq,...,as}. Polozme
pre kazdé i € {1,2,...,s}

Yi=X1 x Xo x -+ x X,, X {a;}.

Plati |Y;| = | X7 x Xo x -+ x X,,|.
Podl'a indukéného predpokladu |Y;| = | X;| - | Xa| - -+ - | X |-
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° PlatiX1><X2><><Xn+1:Y’1UY'2UUY;

o Plati [ X7 x Xo X - x X,y = VTUY2U---UY,| = |Vi|+ |Yo| + -+ |Ys] =
s-|X1|-|X2|-----|Xn|:|X1|-|X2|-----|Xn|-|Xn+1|.

O
8 Variacie

8.1 Variacie s opakovanim

Variacie s opakovanim k-tej triedy z n prvkov mnoziny M st ako usporiadané k-tice
pozostavajuce z prvkov mnoziny M. Ich pocet oznacujeme V) (n).
e Podla pravidla su¢inu pocet variacie s opakovanim k-tej triedy z n prvkov mnoZiny
Mije|MxMx---x M|=|M|IM|...|M|=|M|.

~
k krat k krat

Priklad. Kolkymi sposobmi mozno zvolit kod od trezoru, ak kod sa skladé zo $tyroch
cifier {0,1,...,9}7

Riesenie. Kazdy kod zodpoveda usporiadanej 4-ici z desiatich cifier {0,1,...,9}. Preto
moznych kodov je 10* = 10000. |

8.2 Variacie bez opakovania a permutacie

Veta 8.1 (Zovieobecnené pravidlo st¢inu). Nech M je koneénd mnoZina. Nech A C M*
je podmnoZina kartezidnskeho sucinu M*, ktorej kazdy prvok (ay,as, ..., ay) spliia pod-
maenky:

(i) prvok a; mozno z mnoZiny M vybral ny spésobmi a

(ii) pre kazdéi € {2,3, ...k}, po akomkolvek vijbere usporiadanej (i—1)-tice (aq, ag, . .., a;_1)
je mozné prvok a; vybrat vidy n; spésobmi. Potom |A| =ny -ng----- Ng.

Dokaz. Nie je tazké urobit indukciou vzhladom na k. m

Variacie bez opakovania k-tej triedy z n prvkov mnoziny M st ako usporiadané k-
tice pozostavajice z prvkov mnoziny M, pricom prvky sa neopakuju. Pocet variacii bez
opakovania k-tej triedy z n prvkov oznacujeme Vj(n).

e Podla zovSeobecneného pravidla suc¢inu pocet variacii bez opakovania k-tej triedy z
n prvkov mnoziny M je |M|.(|]M|—1)...(|IM|—-k+1)=n.(n—1)...(n —k+1).
Vsimnite si, Ze tento vztah plati aj ak n < k — jeden z ¢initelov bude 0.
k—1
e Stcin n(n —1)....(n — k + 1) zapisujeme aj ako [](n — 1) a tiez ako nk a ¢itame
i=0
ako k-ta klesajiica mocnina z n.
Priklad. Pretekov v orientacnom behu sa zucastnilo 100 bezcov. Kolkymi spdsobmi sa
mohli umiestnit na stupnoch vitazov?

Riesenie. Potrebujeme zostavit usporiadand trojicu, pricom jej prvky vyberame zo 100
prvkovej mnoziny a prvky sa neopakuji. Ide teda o variacie s opakovanim 3. triedy zo
100 prvkov a je 100.99.98 = 1002 moZnosti ako sa mohli umiestnit pretekari na stupiioch
vitazov. |
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e ak & = n tak variacie bez opakovania k-tej triedy z n prvkov volame permutdcie.
Ich pocet je n(n — 1)...1. Tento sucin oznacujeme n! a ¢itame ,n-faktorial”. Plati
0ol =1.

9 Kombinacie bez opakovania

e Kombindcie bez opakovania k-tej triedy z n prvkov mnoziny M st k-prvkové pod-
mnoziny mnoziny M.

e Pocet kombinéacii bez opakovania k-tej triedy n prvkov oznacujeme Cj(n), ale taktieZ
pouzivame symbol (2), ktory ¢itame ,,n nad k. Tento symbol sa nazyva kombinacné
¢islo alebo aj binomicky koeficient. Pri kombina¢nych ¢islach predpokladame, ze n
a k su prirodzené cisla.

e mnozinu vSetkych k-prvkovych podmnozin mnoziny M oznacujeme (M) alebo aj

Po(M) *

7 definicie kombina¢ného ¢isla vyplyva pre prirodzené ¢islo n:

(3) = 1, lebo existuje jedna prazdna podmnozina n-prvkovej mnoziny

(Tf) = n, lebo existuje n jednoprvkovych podmnozin n-prvkovej mnoziny

(Z) = 1, lebo existuje jedna n-prvkovid podmnozina n-prvkovej mnoziny

(Z) = 0, pre kazde prirodzené ¢islo k& > n, lebo neexistuje k-prvkova podmnozina

n-prvkovej mnoziny ak n < k.

Ak k je prirodzené ¢islo a k < n, potom (Z) = (nﬁk), lebo kazdu k£ prvkova pod-
monozinu P mnoziny s n prvkami M moZzeme jednoznacne urcit jej komplementom

M —P.

Priklad. Pomocou kombinacii bez opakovanie modZzeme vyrieSit otéazku, kolko zapasov
sa bude hrat medzi n druzstvammi, ak sa hra systémom kazdy s kazdym. Tiez, ak mame
m Tudi a cheu si kazdy s kazdym podat ruku, kolko bude podani ruk? |

Veta 9.1. Nech M je koneénd mnozZina, pricom |M| = n a nech k je prirodzené cislo.
Potom pocet kombindcii bez opakovania k-tej triedy z n prvkov mnoziny M je

(1) = Pni =1

Doékaz. Pocet kombinacii bez opakovania odvodime od poc¢tu variacii bez opakovania.
Mnozinu v8etkych varidcii bez opakovania moézeme rozlozit na dizjunktné podmnoziny
tak, ze variacie v jednej podmnozine sa liSia iba poradim prvkov. Cize v kazdej podmno-
Zine bude pocet prvkov rovny poc¢tu moznosti, kolkymi sa da k prvkov usporiadat do
postupnosti, teda po¢tu permutacii k prvkov, t.j. k!. Pocet variacii bez opakovania je nk.
Preto pocet kombinacii bez opakovania je % O]

e Podobne ako pri variaciach bez opakovania, predchadzajuca veta plati aj ked n < k.
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n!

e Ak n > k, mozeme pouzit vztah (Z) = W)l

Veta 9.2. Pre vsetky prirodzené cisla n a k plati

(1) ()= ()

Doékaz. Dokaz urobime pomocou mnozinovej interpretacie. Majme mnozinu M, ktora ma
n + 1 prvkov. Prava strana rovnosti zodpoveda po¢tu moznych vyberov k + 1-prvkove;j
podmnoziny z M. Zvolme si [ubovolny prvok mnoziny M, povedzme p. Podmnoziny
mnoziny M, ktoré maji k + 1 prvkov mozeme rozdelit do dvoch skupin — tie ¢o obsahuju
prvok p a tie neobsahuju prvok p. Podmnozin mnoziny M s k+ 1 prvkami, ktoré obsahuji
prvok p, je tolko isto, ako k-prvkovych podmnozin mnoziny M — {p}, ¢ize je ich (2)
Podmnozin mnoziny M s k+1, ktoré neobsahuji prvok p je tolko isto, ako k- 1-prvkovych

podmnozin mnoziny M — {p}, ¢ize je ich (kil) Z toho vyplyva uvedeny vztah. H

Predchadzajuci vztah je zdkladom Pascalového trojuholika — usporiadania kombinac-
nych ¢isel v rovine do tvaru trojuholnika. Pomenovanie méa podla matematika, ktory zil
v 17. storo¢i Blaise Pascala, ale je ovela starsi. Plati v iom vela zaujimavych vztahov,
okrem iného zohrava doéleziti tlohu pri nasledujiicej vete.

(o) G G

Veta 9.3 (Binomické veta). Pre kazdé prirodzené c¢islo n a redlne ¢isla a a b plati vztah

n __ - n i1n—i
(a+0) —Z (i)ab :
=0
Doékaz. Dokaz urobime matematickou indukciou vzhladom na n. Ak n = 0, tak aj lava
aj prava strana sa rovnaja 0; tym je baza indukcie overena. Pre dokaz indukéného kroku,
predpokladajme, Ze tvrdenie pre n a dokazeme, Ze plati aj pre n+ 1. Predpokladame teda,

ze plati (a+b)" = 3 (7)a’b"~" a checeme dokdzat (a+b)"* = >~ (") a'b"+17%. Zacneme

=0 i=0

[avou stranou a postupnymi tpravami sa dostaneme k pravej strane.

(a+b)"" = (a+b)(a+b)" = a(a+b)" +bla+b)" = a- > (N)a b +b- 3 (Vaibr =
=0 =0

M=

n n—1
(?Z)aiJrlbn—i_'_;) (ﬁ)aianrl—i —_ (g)aobn+1+ ;) [(711) az’+1bn—i + (z—tl) ai+1bn—z] +(z)an+1b0 —_

~
I
o

0 i+1
a0 — (Z)aObn+1 + i (”Jirl)aianrlfi + (Z) ant1p0 — (narl>a0bn+1 + i (n;ﬂ)aianrlfi +
i=1 =1

n—1 n—1
(ettet+ 5 [0)+ (2] Qa2 Qe+ 5 (s
()
n+1\ n+170 _ ntl n+1\ iin+1—i
(i) a0 =3 (") a'd

Tym je binomické veta dokazan. O]
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Dosledok 9.4. Platia nasledujice vztahy.

(a) > (%) =2 pre kaZdé prirodzené ¢islo n,

=0
(c) 0<Z< (") = 0<Z< (") = 2" pre kazdé prirodzené cislon > 1.
% je_;gﬁze i je Ezﬁzﬂne

Dékaz. Cast (a) dostaneme dosadenim ¢isla 1 za a aj b do binomickej vety. V ¢asti (b)

dosadime do binomickej vety @ = —1, b = 1. Dostaneme 0" = Y (—1)'("). Pren > 1 z

i=0
toho vyplyva dané tvrdenie. Cast (c) dostaneme s¢itanim, resp. od¢itanim rovnosti z (a)
a (b). O
Tvrdenie 9.5. Pre vsetky prirodzené cisla n plati

() - ()

: i) \n)

=0
Dokaz. Najprv vyuZijeme symetricka identitu binomickych koeficientov (’Z) = (nﬁl),
preto plati Y ., (?)2 =>ro (M) =>m, (M(,",). Teraz pomocou kombinatorickej

interpretacie nahliadneme, Ze posledné suma sa rovna (2:) Spocitame dvomi spésobmi,
kol'kymi spdsobmi mézme vybrat n-prvkovi podmnozinu mnoziny M. Majme mnozinu M,
ktora ma 2n prvkov. Rozdel me ju Tubovolne na dve podmnoziny A a B s n prvkami. KedZze
vyberame n-prvkovia podmnozinu 2n-prvkovej mnoziny, mozeme to urobit (2:) sposobmi.
Alternativne sa na to mozeme pozriet tak, ze vyberame i-prvkovi podmnozinu mnoziny A
a n—i-prvkovi podmnozinu mnoziny B, teda dokopy n-prvkovi podmnozinu mnoziny M.
Prvi podmnoZinu méZeme vybrat (7;) a druhua (niz) sposobmi. Vybery mozme [ubovolne
kombinovat, ¢ize kombinécii vyberov i-prvkovej podmnoziny z A a n—i-prvkovej podmno-
7iny z B je podla pravidla sucinu (’Z) (n:) Aby sme uvazovali vSetky moZné n-prvkové
podmnoziny mnoziny M, musime uvaZovat vSetky pripustné velkosti prieniku vybera-
nej podmnoziny mnoziny a mnoziny A. Tieto pocty spocitame, preto pouzijeme sumu s
hranicami 0 a n. O

10 Kombinacie s opakovanim

e Kombindcie s opakovanim k-tej triedy n prvkov mnoziny M sa k-prvkové stbory
prvkov, v ktorych st prvky neusporiadané a mozu sa opakovat, inymi slovami st to
podmultimnoziny mnoziny M.

e Pocet kombinacii s opakovanim k-tej triedy n prvkov oznacujeme Cj(n).

Veta 10.1. Nech M je koneénd mnozina, pricom |M| = n a nech k je prirodzené cislo.
Potom pocet kombindcii s opakovanim k-tej triedy z n prvkov mnoZiny M je

1)

17



Dékaz. Uvedieme tu dva dokazy, v oboch prevedieme tlohu na pocet kombinécii bez
opakovania.
1. dokaz. Potrebujeme vybrat k objektov z n typov, pricom mozeme mat viacero objektov
rovnakého typu. Objektom budi zodpovedat gulicky — budeme mat k guli¢iek, zoradime si
ich do radu. Tieto gulicky potrebujeme rozdelit do n typov, to spravime n—1 oddelova¢mi,
ktorym buda zodpovedat palicky. Teda medzi k guli¢iek vsunieme n — 1 pali¢iek, a tym
vytvorime rad k guliciek a n — 1 paliciek, pricom nekladieme ziadne obmedzenia — m6zme
mat viacero paliGiek pri sebe, palickami méZzeme zacinat aj koncit; obdobne pre gulicky.
Pocet guli¢iek pred prvou palickou bude zodpovedat poc¢tu vybratych objektov 1. typu,
pocet guli¢iek medzi prvou a druhou palickou bude zodpovedat po¢tu vybratych objektov
2. typu, ... pocet guli¢iek za poslednou (n — 1)-vou palickou bude zodpovedat objektom
n-tého typu. Existuje jednoznacné vzajomné korespodencia medzi takymi postupnostami
gulic¢iek a paliciek a kombindciami s opakovanim.

Teraz uz zostéva len zratat pocet moznosti, ktorymi moézeme rozmiestnit do radu k
guliciek a n — 1 paliciek. Miesta v rade si ocislujeme od 1 po kK +n — 1 a vyberieme z

nich k, na ktoré dame gulicky. Toto moZzme urobit (”Jr:_l) sposobmi. (Obdobne by sme
mohli vyberat miesta pre palicky, dostali by sme (”ZEI

kombinacné ¢isla sa rovnaju.)

) moznosti, pricom obe uvedené

2. dokaz. Pokial nam ide len o pocet kombinacii s opakovanim, tak nezélezi, aké su
prvky n-prvkovej mnoziny M. Budeme teda predpokladat, ze M = {1,2,... n}. Kazdému
vyberu k prvkov z mnoziny M (prvky sa mozu opakovat a nie si medzi sebou usporiadané)
mozme jednoznacne priradit k-ticu aq, as, . . ., ag, pricom mdzme bez ujmy na vSeobecnosti
predpokladat, ze a; < as < --- < ag. Prerobime tuto k-ticu taku, aby jednotlivé polozky v
nej tvorili rasticu postupnost. To urobime tak, ze pri¢itame postupne zvysujice sa ¢islo k
jednotlivym polozkam, dostaneme k-ticu (b1, bo, ..., bx) = (a1 +0,a0+1,...,ar+ (k—1)).
Je Tahko vidiet, Ze je jednoznaéna korespodencia mezi neklesajtucimi postupnostami dlzky
kzcisel 1,2, ..., n amedzi rasticimi postupnostami dlzky k z ¢isel 1,2, ..., n+k—1. Pocet
rasttcich postupnosti dizky k z ¢isel 1,2, ..., n+ k — 1 zase zodpoveda po¢tu kombinécii
bez opakovania k-tej triedy z n + k — 1 prvkov. Preto, pocet kombinécii s opakovanim

k-tej triedy z n prvkov je (”H;_l). ]

11 Permutacie s opakovanim

e Permutacie s opakavanim z k; prvkov prvého druhu, ks prvkov prvého druhu, ...,
k,, prvkov n-tého druhu st usporiadané (k; + kg + - - - + k, )-tice, v ktorych sa prvok
prvého druhu vyskytuje ki-krat, prvok druhého druhu vyskytuje ko-krat, ..., prvok
n-tého druhu vyskytuje k,-krat

Veta 11.1. Pocet permutdcii s opakavanim z ki prvkov prvého druhu, ki prvkov prvého
druhu, ..., k, prvkov n-tého druhu je

k!
kilko! .. KL

kd@k:/{?1+k}2++kn
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Dékaz. Ak by vsetkych k prvkov bolo roznych, tak by islo o permutécie (bez opakovania)
a bolo by ich k!. KedZe prvkov jedného druhu moze byt viac, musime tieto moZnosti
stotoznit, tomu zodopoveda menovatel. O

ar k! o . k
Cislo T, h oznacujeme aj (kl,kg,...,kn)'

. . . . (2n)! . s w
Priklad. Nahliadnite, ze (2—? je celé cislo.

Riesenie. Kedze ¢islo % zodpovedé poctu moznych ulozeni do radu 2n objektov,

pricom objekty st n typov a z kazdého typu st dva nerozlisiteIné objekty, toto ¢islo musi

byt celé. m
Veta 11.2 (Polynomicka veta). Pre kazZdé prirodzené cislan a k a redlne ¢isla x1, xa, . . ., 2y,
plati vztah
k k ki, ko k
(1 4+ 22+ ...2,)" = Z xitws? L.
k17k27"'7kn
ki+ka+-kn=k

12 Asymptotické odhady

Nech f,g: N — R. Hovorime, ze

n)), ak existuje C' € R a ng € N také, ze pre vSetky n > ng plati:

)
(

g(n)), ak existuje C' € R™ a ny € N takeé, ze pre vietky n > ng plati:
(

13 Princip zapojenia a vypojenia

Tento princip slizi na spocitanie poc¢tu prvkov zjednotenia koneéného poctu konecnych
mnozin, pricom mnoziny nemusia byt disjunktné. Pre zjednotenie dvoch mnozin nie je
tazké nahliadnut, ze |A; U As| = |A1| + |Aa| — A1 N Ay

Pre mohutnost zjednotenia troch mnozin plati nasledovné:

| A1 U Ay U As| = (|A1| + |As| + | As]) sufet mohutnosti jednotlivych mnozin
- (JA1 N Asl 4+ |A1 N Al + |Aa N Ag])  stcet mohutnosti prienikov dvojic mnozin
+ |A; N Ay N As stucet mohutnosti prienikov trojic mnozin

Mozeme vidiet, ze striedavo pri¢itavame a odcitavame sucet mohutnosti prienikov jed-
notlivych mnozin, dvojic mnozin a trojic mnozin. Toto plati aj pre viac mnozin. Nech

19



Aq, Ay, ..., A, st konecéné mnoziny. Oznac¢ime symbolom Sy sticet mohutnosti prienikov
k mnozin.

S = > |Ap, N A, NN A, |
1<n;<ne<...<np<n
Veta 13.1 (Princip zapojenia a vypojenia). Nech Ay, As, ..., A, si konecné mnoZiny.
Potom

n
|AlUA U UA =) (-1)FS,
i=1
Dokaz. Tvrdenie sa dé dokazat matematickou indukciou vzhladom na pocet mnozin n.
My tu uvedieme dokaz, ktory pre dany prvok zrata, kolkokrat sa nachadza na lavej a na
prave strane dokazovanej rovnosti.

Ak nejaky prvok nepatri do zjednotenia mnozin A;, As, ..., A,, tak nebude zaratany
ani raz ani na lavej ani na pravej strane rovnosti. Predpokladajme teraz, Ze najaky prvok
p patri zjednoteniu A; U A, U ... U A,. Na Tavej strane rovnosti je zaratany jedenkrat.
Predpokladajme, Zze p sa nachadza v z mnozinach z Ay, A, ..., A,, zjavne 1 < z < n.
V S; je prvok p zapocitany z-kréat, v Sy je p zapocitany (;) -krat, lebo sa nachadza v (;)
dvojiciach mnozin, v S3 je p zapocitany (g)—krét ... S; je p zapocitany (f)—krét, pricom pre
neparne ¢ je tato hodnota zapocitana s kladnym znamienkom a pre parne i je tato hodnota
zapocCitana so zapornym znamienkom. VsSimnite si, Ze pre ¢ > z je p v .5; zapocitany nula
krat, a teda v takomto pripade jeho prispevok do S; nemusime uvazovat. Dostédvame

Désledok 9.4(b)
+1(7) _ ok
=) +GE+ T =0 -0 -O+C) -+ DO =T 6+
0=1.
m

Priklad. Bezeckych pretekov sa zacastnilo 100 bezcov, mali pridelené Startovné cisla
1,2,...,n. V8etci bezci uspesne dobehli do ciela a Ziadni dvaja nedobehli naraz. Kolko
moznych vyslednych poradi ma aspon jedného bezca, ktorého Startovné cislo sa rovné
poradiu, na ktorom dobehol?

Nech A; je mnozina vSetkych vyslednych poradi bezcov takych, Ze bezec ¢islom 14
dobehol na i-tom mieste. Toto poradie moze byt reprezentované vektorom dizky 100, kde
jednotlivé polozky st celé ¢isla od 1 do 100, pricom ¢isla sa neopakuji — ide o permutécie
mnoziny 1,2, ..., 100. Chceme teda spocitat kol'ko prvkov ma mnozina A;UAU. ..U A qo.
Spocitajme, akd je mohutnost A;. Cislo ¢ musi byt na i-tom mieste, zvysnych 99 &siel
moze byt rozmiestnenych lubovolne na miestach réznzch od i-teho, preto |A;| = 99!. Sucet
S1 = |Ay| + |As| + ... |A100| = 100.99!. Pozrime sa teraz na Ss. Na vypocet hodnoty S,
potrebujeme spocitat hodnoty |A;NA;| prei,j € {1,2,...,100}, i # j. Hodnota ¢ ma byt
na i-tom mieste, j mé byt na j-tom mieste a zvysnych 98 hodnoét moéze byt rozmiestnenych
Tubovolne, preto |A; N A;| = 98!. Dvojic roznych ¢isiel z mnoziny {1,2,...,100} je (120),
preto S, = (180) - 98!. Obdobne dostavame, ze S, = (120)(100 — k)!. Pouzitim principu
zapojenia a vypojenia dostdvame

|A1 U A2 Uu...uU AlOO‘ - Z?:l(—l)i+lsi - Z?:1<—1>i+1 (100)(100 - Z)'

1

tpravami dostavame:

[A1UALU. . UAgo] = S0, (= 1) 0 (100—)) = S0 (—1)7 1190 = 1001 37 (— 1)1

i+11
il

Pocet vyslednych poradi, kde aspoii jeden bezec dobehol na svojom mieste je 100!y " | (—1)
[
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Priklad. Kolko rieSeni mé rovnica x; + 29 + ---x, = k ak 1, x9,...,x, st celé ¢isla a
pre i € {1,2,...,n} plati 0 < z; < 8?7

Kazdé riesenie je suporiadana n-tica celych nezapornych déisiel, ktoré v siicte dajua k a
kazdé z nich je nanajvys 8. VyrieSme naprv tento priklad bez poziadavky na to, ze kazdé
x; je nanajvys 8. Jeden mozny pohlad je Ze chceme vybrat k objektov z n druhov, ¢ize
ide o kombinacie s opakovanim k-tej triedy z n prvkov. Tych je (”+]]:_1). Alternativne sa
na to da posriet tak, ze mame umistnit do radu k guli¢ie a n — 1 oddelovacov, ¢o takisto
vedie k po¢tu moznosti (”H;l) = ("ﬁ;l)

Od tychto moznosti musime od¢itat tie, ktoré porusuju podmienku x; < 8 pre niektoré
1. Nech A; je mnozina rieSeni, ktoré porusuju podmienku pre x;. Pocet rieSeni, ktoré
porusuju podmienku < x; < 8 pre aspon jedno i je |[A; U Ay U...U A,|. Ak je poruSena
podmienka pre x;, znamené to, ze x; > 9. Pocet takychto rieSeni ndjdeme tak, ze tomuto x;

vopred pridadime 9 a zvySnych k — 9 rozdelime medzi vSetky ¢isla xy, 2o, ..., x, (vratane
x;), ¢ize pocet tych rieSeni, ktoré porusuju podmienku z; < 8 je ("Jrsjfg), t.j. |Ai| =
(”H:Ljfg). Obdobnou tvahou dostavame |A4; N A;| = (”Jrknf_lf%) pre i # j atd. Preto

S = (?) : '(Hlj:f&i). Podl’a{ principu Zapojepia a vypojenia plati |[A; UAyU...UA,| =
Z?Zl(_1>z+lsi — Z?:l(_l)lJrl (7;0) . (nJr];:lf&l)'

Zhrnutim teda dostévame, Ze pocet tych rieseni, ktoré neporusuji ani jednu z pod-
mienok <, < 8 e (*717") = £ (1)1 () - () = XD - ()
|

14 Teoéria grafov

Teoria grafov predstavuje jednu z kluc¢ovych oblasti diskrétnej matematiky, ktora naché-
dza Siroké uplatnenie v réznych vednych disciplinach ako napriklad v informatike, ma-
tematike, sociologii. Grafy poskytuji abstraktny, ale velmi vystizny spésob modelovania
vztahov medzi objektmi. V tychto skriptach sa budeme zaoberat zékladnymi pojmami a
tvrdeniami z teérie grafov.

14.1 Definicie

Graf je urceny usporiadanou dvojicou mnozin. Presnejsie graf G = (V, E), kde V je
kone¢né mnozina objektov nazyvanych vrcholy a E je kone¢na mnozina 2-prvkovych pod-
mnozin mnoziny V nazyvanych hrany. Grafy obycajne znaroriiujeme v rovine: vrcholom
priradime r6zne body roviny kazdej hrane priradime spojnicu medzi prislusnou dvojicou
vrcholov. Hrana {u,v} sa obycajne zapisuje skratene uv alebo ekvivalentne vu. Priklad
grafu a jeho znazornenia v rovine je na Obr. 1.

Dva vrcholy v a v, medzi ktorymi je hrana sa volaju susedné. Podobne dve hrany,
ktora sa stretaju vo vrchole sa volajua susedné. Ak hrana ide do nejakého vrchola, tak je
s nim incidentnd. Stupen vrchola v v grafe G je pocet hran incidentnych s vrcholom v,
oznacenie degq(v).

Prirodzena otazka je, ktoré grafy su ,rovnaké”, teda jeden vznikne z druhého len
premenovanim vrcholov. Toto odzrkadluje nasledujtci pojem. Dva grafy G = (V, E) a
G' = (V' F’) st izomorfné, ak existuje bijekcia f : V = V' taka, ze pre vSetky u,v € V
plati uv € E prave vtedy, ked f(u)f(v) € E'.

& Rozhodnite, ktoré z grafov na Obr. 2 st izomorfné.
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Us

Uy U3
@
U1 U2
Obr. 1: Graf G = ({v1,v9, ... v5}, {0109, Vo3, V3V, V4V, V3V5, V4Us, V1U3 })

Obr. 2: Ktoré z tychto grafov st izomorfné?

Tvrdenie 14.1. KaZdy graf md pdrny pocet vrcholov nepdrneho stupmia.

Doékaz. Sacet stupniov vrcholov ZUGV(G) d(v) je parne ¢islo, lebo kazda hrana je zaratana
dvakrat. Z toho vyplyva, ze v sucte je parny pocet neparnych sc¢itancov. O

sled je postupnost vyejvzeavs . . . vy, kde v; je vrchol pre i € {1,2,...,n}, e; je hrana
prei € {1,2,....,n— 1} a e; = v;v;41

tah je sled, v ktorom sa neopakuju hrany

cesta je sled, v ktorom sa neopakuji vrcholy (a teda ani hrany); u-v-cesta je cesta
s koncovymi vrcholmi u a v

dlZka cesty (sledu/tahu) je pocet hran (sledu/tahu)
uzavrety tah (sled) je tah (sled), ktorého prvy a posledny vrchol sa rovnaja

krunica je tah, v ktorom sa prvy a posledny vrchol rovnaji a vSetky ostatné dvojice
vrcholov su rozne

kedze uvazujeme jednoduché grafy (t.j. grafy bez sluciek a ndsobnych hran), sled, tah
a cesta su jednoznacne zadané postupnostou vrcholov, a teda nézvy hran nemusime
pisat

Minimdlny stupeni vrchola 6(G) grafu G = (V, E) je minimum zo stupiiov vrcholov
grafu, t.j. 6(G) = min{degg(v);v € V}. Obdobne mazimdlny stuperi vrchola A(G) je
maximum zo stupiiov vrcholov grafu, t.j. A(G) = max{degs(v);v € V}.
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cesta P

Obr. 3: Susedia koncového vrcholu najdlhsej cesty musia lezat na ceste

Tvrdenie 14.2. Kaidyj graf G obsahuje cestu dizky §(G).

Doékaz. Nech P = vivy ... v, je najdlhsia cesta v grafe G. Ak by nejaky sused vrchola v,
lezal mimo P, tak by to bolo v spore s tym, ze P je najdlhSia cesta v G. Preto vsetci
susedia vy, ktorych je aspon §(G) lezia na P, pozri Obr. 3. Vrchol v, takisto lezi na P, a
teda P ma asponi §(G) + 1 vrcholov. Z toho vyplyva, Ze dlzka P je aspon §(G). O

Graf je suvisly ak medzi kazdou dvojicou vrcholov existuje cesta, inak je nesuvisly.
Komponent grafu G je maximéalny suvisly podgraf grafu G vzhladom na inklaziu. Graf
nazveme acyklicky, ak neobsahuje kruznicu. Strom je suvisly acyklicky graf, les je acyklicky
graf a list je vrchol stupna 1 v strome. Triviglny graf je graf, ktory ma jeden vrchol a
ziadne hrany.

Tvrdenie 14.3. Platia nasledugjice tvrdenia.
(a) Kazdy netrividlny strom md aspoti dva listy.
(b) Pocet hrdn n-vrcholového stromu je n — 1.

Dékaz. (a) Nech P je najdlhsia cesta v netrividlnom strome 7. Jej konce musia byt
listy, lebo inak by strom obsahoval kruznicu. KedZe T je netrivialny, dva koncové vrcholy
najdlhsej cesty st rozne.

(b) Budeme dokazovat matematickou indukciu vzhladom na pocet vrcholov grafu. Ak
strom mé jeden vrchol, nemé Ziadne hrany a tvrdenie plati. Pre dokau indukéného kroku
predpokladajme, Ze tvrdenie plati pre vSetky stromy na n vrcholoch a dokdzeme tvrdenie
pre vSetky stromy na n+1 vrcholoch. Nech T" je Tubovolny strom na n+1 vrcholoch. Podl'a
Casti (a) tohoto tvrdenia, T' obsahuje list, nech v je Iubovolny list stromu 7". Vytvorme
strom 7" tak, ze z T odoberieme v a jedint hranu indicentna s v. (Je lahké vidiet, ze T"
je suvisly a acyklicky, a teda je strom.) KedZe 7" ma n vrcholov, ma n — 1 hran. Z toho
vyplyva, ze T méa n hran, ¢o bolo treba dokazat. O

Kostra grafu G je podgraf grafu G, ktory je strom a obsahuje v8etky vrcholy grafu G
Tvrdenie 14.4. KaZdy suvisly graf obsahuje kostru.

Doékaz. Opakovane vyhadzujeme hranu, ktora lezi v kruznici. Tymto postupom dostaneme
suvisly acyklicky graf, teda strom, ktory obsahuje vSetky vrcholy pévodného grafu. O

14.2 Bipartitné grafy

Graf G je bipartitny ak V(G) sa da rozdelit dvoch dizjunktnych mnozin A a B tak, Ze
kazda hrana mé jeden koncovy vrchol v A a druhy v B.

& Pre ktoré ¢isla n st grafy nazyvané rebrik a skriteny rebrik bipartitné? (Obr. 4)
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Obr. 4: Rebrik R,, a Skrateny rebrik S,

Lahko sa da nahliadnut, Ze v bipartitnom grafe ma kazdéa kruznica parnu dizku. Do-
kadzeme, ze plati aj opacné implikicia. Najprv vSak dokazeme nasledujticu lemu.

Lema 14.5. Kazdyj uzavrety sled nepdrnej dizky obsahuje kruinicu nepdrnej dizky.

Dékaz. Budeme postupovat matematickou indukciou vzhladom na dlzku sledu. Ako bazu
zoberieme uzavrety sled na troch hranach (uzavrety sled na jednej hrane v jednoduchych
grafoch neexistuje). A kedze uzavrety sled na troch hranéch je kruznica na troch hranach,
tu tvrdenie plati.

Majte uzavrety sled S nepéarnej dlzky d a predpokladajme, Ze pre vietky uzavreté sledy
neparnej dIiky mensej ako d toto tvrdenie plati. Nech S = vjv, ... v,, pricom v, = v;.

Pripad 1. v; # v; pre vSetky i # j, kde i,5 € {1,2,...,n — 1}, a teda vrcholy sa v
slede neopakuji okrem v,, = v;. V tomto pripade je S kruznicou neparnej dlzky.

Pripad 2. v; = v; pre nejaké ¢ # j, kde ¢,j € {1,2,...,n — 1}. Bez ujmy na vSeobec-
nosti mézeme predpokladat, ze ¢ < j. Uvazujme dva sledy
S' =010y, ..V = VU1 .. U, =11 A
S" = vvi41 ... v = ;.

Lahko vidno, ze oba S” aj S” st uzavreté sledy. Navyse dlzka sledu S je su¢tom dlzok
sledov S’ a S”, a kedze S je neparnej dlzky, dlzka prave jedného z S’ a S” je nepérna,
nech je to S’. Pouzitim indukéného predpokladu nahliadneme, ze S’ a teda aj S obsahuje
uzavrety sled neparnej dizky. O]

Poznamenajme, ze ak by sme zmenili oba vyskyty slova neparny v zneni lemy na slovo
péarny, tvrdenie by nebolo pravdivé.

& Najdete priklad sledu, ktory je protiprikladom k pozmenenému tvrdeniu.
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Vzdialenost vrcholov u a v v grafe G, oznacenie dist(u,v), je dizka najkratsej u-v-cesty
Veta 14.6. Graf je bipartitng prave vtedy, ked neobsahuje kruZnicu nepdrnej dizky.

Doékaz. Dokézeme dve implikacie.

(=) Tato implikacia je zrejmé, kedze na kazdej kruznici sa musia striedat vrcholy z
dvoch mnozin.

(«<=) Majme graf G ktory ma kazdd kruznicu parnej dlzky. DokdZeme, Ze G je bipar-
titny. Moézme predpokladat, ze G je suvisly, lebo inak mézme urobit nasledujicu tvahu
pre kazdy komponent a vyuzit fakt, ze zjednotenie bipartitnych grafov je bipartitny graf.
Nech z je I'ubovolny pevne zvoleny vrchol grafu G. Rozdelme mnozinu V' (G) do dvoch
mnozin:

A = {v e V(G);dist(v,x) je parne ¢islo} a
B = {v € V(G);dist(v, x) je neparne ¢&islo}.

Zjavne kazdy vrchol z V(G) patri do prave jednej z mnozin A a B. Ukazeme, ze kazda
hrana z E(G) mé jeden koniec v A a druhy v B. Sporom predpokladajme, Ze existuje
hrana e € E(G), ktorej oba koncové vrcholy patria A. (Dokaz, Ze oba koncové vrcholy
nemozu patrit B je obdobny.) Nech e = wwv, nech P’ je cesta, na ktorej sa nadobuda
najkratsia vzdialenost medzi u a x a nech P” je cesta, na ktorej sa nadobuda najkratsia
vzdialenost medzi v a x. Potom S = P’ U P” U uv je uzavrety sled. KedZe u aj v patria
A, obe cesty P’ a P" majua parnu dlzku. Sled S je teda neparnej dlzky a podla Lemy 14.5
obsahuje kruznicu neparnej dizky, ¢o je v spore s predpokladom. Dokaz spitnej implikacie
je ukonceny. O

14.3 Eulerovské grafy

FEulerovskyj tah v grafe G je uzavrety tah obsahujici vsetky hran grafu G. Graf je eulerovsksj
ak obsahuje eulerovsky tah.

Lema 14.7. Ak pre graf G plati, Ze 6(G) > 2, potom graf obsahuje kruZnicu.

Doékaz. Zoberme si najdlhsiu cestu P v G. Jej koncovy vrchol v je okrem hrany patriacej
P incidentny s eSte aspon jednou hranou, lebo 6(G) > 2. Nech u je druhy vrchol tejto
hrany; vrchol u musi patrit P inak by nastal spor s tym, Ze P je najdlhsia. Potom P[uv]vu
je kruznica, kde P[uv] oznacuje podcestu cesty P ohrani¢end vrcholmi u, v. O

Veta 14.8. Suvisly graf G je eulerovky prdve vtedy, ked stupern kaZdého jeho vrchola je
parny.

Doékaz. Nech G je eulerovsky, teda obsahuje eulerovsky tah. Pre kazdy vrchol, okrem po-
¢lato¢neho, mozme hrany s nim incednté rozdelit do dvojic tak, Zze hrany ktoré po sebe
nasledovali v prechéadzani eulerovskym tahom budu tvorit dvojicu. To dokazuje, ze kazdy
vrchol, ktory nie je pociatoény ma parny stupen. Pre hrany incidentné s pociatoénym
vcholom mozeme podobne rozdelit do dvojic okrem prvej a poslednej hrany. Z toto vy-
plyva, ze stupen kazdého vrchola je parny. To dokazuje doprednti implikaciu.

Pre dokaz opa¢nej implikacie budeme postupovat matematickou indukciou vzhladom
na pocet hran. Bazu budua tvorit grafy, ktoré st kruznicami, tu zrejme tvrdenie plati.
Indukény krok dokazeme takto: kedZe stupen kazdého vrchola je parny a G je suvisly,
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tak G je bud trividlny alebo stupen kazdého vrchola je parny a aspon 2. Ak G je trvialny,
tak obsahuje prazdny eulerovsky tah. Predpokladajme preto, Ze stupen kazdého vrchola
je parny a aspon 2. Podla Lemy 14.7, G obsahuje kruznicu, povedzme C. Ak G = C,
tento pripad je pokryty tvrdenim pre bazu. Nech teda G — E(C') ma nejaké hrany. Stupne
vrcholov v grafe G — E(C) st parne — ak cez vrchol neprechadzala kruznica C', tak jeho
stupenn v G a G— E(C) sa rovné, inak je zmenseny o 2. Nech Hy, Hs, ..., H, st netrivialne
komponenty grafu G — E(C). Vyberme z kazdého komponentu H; vrchol h; taky, Ze
h; € C'N H;; zjavne taky existuje. Podla indukékného predpokladu kazdy z komponentov
H; obsahuje eulerovsky tah T}, bez ujmy na vSeobecnosti mozeme predpokladat, ze T;
zacina a kon¢i v H;. Eulerovsky tah v G vytvorime tak, ze budeme prechadzat po C a
ked sa dostaneme do h; pre nejaké i, tak prejdeme tah T;. Nasledne pokracujeme dalej
po C a postup opakujeme, kym neprejdeme vSetky hrany kruznice C' ako aj vSetky sledy
T;. O

15 Suvislost

e Zopakujeme, ze graf je suvisly, ak medzi Tubovolnou dvojicou jeho vrcholov existuje
cesta a komponent grafu je maximalny suvisly podgraf grafu (vzhladom na inklaziu).

e artikuldcia je vrchol, odobratim ktorého vznikne graf s viac komponentmi, ako mal
povodny graf; podobne most je hrana, odobratim ktorej vznikne graf s viac kompo-
nentmi, ako mal povodny graf

e blok — maximalny suvisly podgraf bez artikulécii

e ak z grafu odoberdame vrchol, tak s nim musime odobrat aj vSetky hrany s nim
incidentné. Ak z grafu odoberdme hranu, koncové vrcholy ponechéavame. Ak W je
mnozina vrcholov alebo graf a z je vrchol, tak W —{z} zapisujeme aj W —z. Obdobné
plati, ak ide o hranu.

& V ktorych suvislych grafy existuje mnozina vrcholov, odobratim ktorej dostaneme ne-
stuvisly graf?

e graf GG sa nazyva k-suvislym ak |V (G)| > k a pre kazdt mnozinu vrcholov X C V
taku, ze | X| < k plati, ze graf G — X je suvisly. Najvicsie celé ¢islo k také, ze G je
k-suvisly sa nazyva suvislost k(G) grafu G. Savislost nekompletného grafu je teda
najmensie ¢islo m také, ze graf obsahuje m, odobratim ktorych sa stane nestvislym.

e plati teda: k(K1) = 0, kK(G) = 0 pre nesuvisly graf G, k(K,) = n — 1 pre vietky
n>1

e graf GG sa nazyva hranovo [-suvisly ak |V (G)| > 1 a pre kazdd mnozinu hran F
grafu G taka, ze |F| < k je graf G — F suvisly. Najvacsie celé ¢islo [ také, ze G je
hranovo [-stvisly sa vola hranovd sivislost A(G) grafu G. Hranova suvislost je teda
najmensie ¢islo m také, ze graf obsahuje m, odobratim ktorych sa stane nestvislym.

e \(G) =0 ak G je nesuvisly
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& Je pravda, ze ak d(v) > 2 pre vSetky vrcholy grafu G, tak G je vrcholovo 2-suvisly?

& Je pravda, ze ked vSetky vrcholy grafu lezia na kruznici, tak je 2-suvisisly?

Tvrdenie 15.1. Ak G je netrividlny, tak £(G) < AG) < 0(G).

Dékaz. Druha nerovnost vyplyva z toho, Ze mnozina vSetkych hran vzchédzajucich z
jedného vrcholu tvori hranovy rez. Predpokladajme teraz, ze F' je miniméalna mnozina
hréan, taka ze G — F je nesuvisly. Ukazeme, ze x(G) < |F].

Najprv predpokladajme, ze G obsahuje vrchol v, ktory nie je incidentny so ziadnou
hranou z F'. Nech C' je komponent grafu G — F', ktory obsahuje v. Potom vrcholy C'N F
oddeluju v od G — C' a teda k(G) < |F].

Predpokladajme teraz, ze kazdy vrchol grafu G je incidentny s hranou z F'. Nech v
je Tubovolny vrchol grafu G a nech C' je komponent grafu G — F, ktory obsahuje vrchol
v. Potom susedia v v C' st incidentni s roznymi hranami z F' a teda d(v) < |F|. Ak
V(G) # {v}UN(v), tak N(v) separuje v od zvysku grafu. Inak V(G) = {v} U N(v). Ttto
tvahu mozeme urobit pre Tubovolny vrchol. Bud teda existuje v G vrchol z taky, ze N(x)
separuje x od zvysku grafu alebo pre vsetky x € V(G) plati, ze V(G) = {z} UN(z). V
druhom pripade je G kompletny graf a tvrdenie plati, lebo k(G) = A\(G) = |[V(G)|—1. O

16 Planarne grafy

e graf sa nazyva plandrny ak sa da nakreslit v rovine tak, Ze hrany maju prienik iba
na ich koncoch

& Nahliadnite, ze graf K5 — e je planarny.

Veta 16.1. Graf je vnoritelny do roviny prdve vtedy, ked je vnoritelny do sféry.

e Rovinny graf rozdeli rovinu na linearne stvislé otvorené mnoziny. Tieto mnoziny sa
volaju oblasti.

e Kazdy rovinny graf méa préave jednu neohranic¢eniui oblast, ktord volame wvonkajsia
oblast.

o Dizka oblasti je dlzka uzavretého sledu, ktory dant oblast ohrani¢uje, pozri Obr. 5.

10

Obr. 5: Rovinny graf s dizkami oblasti. Viimnite si, Ze v dlzke vonkajsej oblasti je jedna
hrana zaratana dvakrat, lebo ohranicujuci sled pouziva tuto hranu dvakrat.
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Obr. 6: éerveny graf je dualny k ¢iernemu a naopak

e Majme rovinny graf G. Duédlnym grafom G* ku grafu G nazveme taky graf, kto-
rého vrcholy zodpovedaji oblastiam grafu G a dva vrcholy st spojené hranou ak
zodpovedajuce odblasti zdielaji spolo¢nii hranu, pozri Obr. 6. VSimnite si, ze ak G
ma most, potom G* ma slucku, a naopak. Ak dvojica oblasti zdiela viac ako jednu
hranu, v dualnom grafe sa to prejavi ako nasobnéa hrana.

Veta 16.2 (Eulerova formula). Pre kazdy suvisly rovinng graf G plati
V(G| = |E(G)| +[F(G)] = 2.

Doékaz. Budeme postupovat matematickou indukciou vzhl'adom na pocet hran.
Ak G je strom, tak |V(G)| = |E(G)|+ 1 a |F(G)| = 1, a tvrdenie plati.

Inak, ak G nie je strom, zoberme hranu e € G, ktora lezi na kruznici. Nech G’ = G —e.
Potom G’ je suvisly rovinny graf, £(G') = E(G)—1, V(G) =V(G) a F(G') = F(G) — 1.
Z indukéného predpokladu, |V (G')| — |E(G') + |F(G")| = 2 a teda aj |V(G)| — |E(G)| +
|F(G)] = 2. O

& Ako treba pozmenit Eulerovu formulu, aby platila pre graf s & > 1 komponentmi?

Doésledok 16.3. KaZdé rovinné vnorenie suvislého plandrneho grafu md rovnaky pocet
oblastt.

Doésledok 16.4. Nech G je plandrny graf s aspon tromi vrcholmi. Potom
(a) [E(G)] < 3[V(G)| -6
(b) ak G nemd trojuholniky, tak |E(G)| < 2|V(G)| — 4.

Dékaz. (a) Majme nejaké rovinné nakreslenie grafu G. Potom

20B(G) = ) d(f) = 3|F(G)| = 3(|E(G)| — [V(G)| +2),

fEF(Q)
pri¢om posledné vyplyva z Eulerovej formuly. Upravou dostavame:

[E(G)] < 3[V(G)| - 6.
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(b) Obdobne, ako v (a),

2AB(G)| = ) d(f) Z4IF(Q)| =4(E(G)| - V(G)] +2),

fEF(G)

7 ¢oho dostavame
|E(G)] <2|V(G)| -4

& Kde sme v predchadzajicom dosledku vyuzili, ze graf mé aspon tri vrcholy?

Désledok 16.5. KazZdy plandrny graf ma vrchol stupria najviac 5.

Dékaz. Sporom predpokladajme, ze v plandrnom grafe G su vSetky vrcholy stupia as-
poii 6. Potom 2|E(G)| = 3_ v (g d(v) = 6]V (G)] a teda |E(G)| > 3|V (G)], spor. O
Désledok 16.6. Grafy K5 a K33 nie si plandrne.

Dékaz. Sporom predpokladame, Ze st planarne a z po¢tu vrcholov a hran odvodime spor.

]

Nasledujucu vetu, ktoré charakterizuje planarne grafy uvedieme bez dokazu.

Veta 16.7 (Kuratowski 1930, Wagner 1937). Graf je plandrny prave vtedy, ked neobsahuje
subdiviziu K5 ani K 3.

17 Farbenia grafov

e urcholové farbenie grafu G = (V| E) je zobrazenie ¢ : V — S, prvkom mnoziny S
hovorime aj farby

e urcholové k-farbenie grafu G = (V| E) je zobrazenie ¢ : V. — {1,2,... k}; cisla
1,2,...,k nazyvame aj farbami

e hranové k-farbenie grafu G = (V, E) je zobrazenie ¢ : F — {1,2,...,k}

e requldrne farbenie — susedné objekty maja rozne farby. Niekedy sa toto slovo vyne-
chava — ak je zrejmé z kontextu.

e graf je (vrcholovo/hranovo) k-zafarbitelny ak ma vrcholové/hranové k-zafarbenie
e chromatické c¢islo x(G) je najmensie k také, ze G ma (vrcholové) k-farbenie

e chromatické index x'(G) je najmensie k také, ze G ma hranové k-farbenie
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17.1 Vrcholové farbenia

Majme graf G, ktory chceme regularne vrcholovo zafarbit. Pozrime sa na jednoduchy
greedy algoritmus. Zoradme vrcholy grafu G do I'ubovolného poradia a v tomto poradi
ich farbime tak, ze pre dany vrchol vzdy pouzijeme farbu s najnizs§im ¢islom, ktora nie
je pouzitad na jeho susedov. KedZze kazdy vrchol mé najviac A(G) susedov, pouZzijeme
najviac A(G) + 1 farieb, a teda plati, ze x(G) < A(G) + 1.

& Néajdite priklady grafov, kde je uvedeny odhad tesny, teda plati x(G) = A(G) + 1.

Nasledujtucu vetu uvedieme bez dokazu.

Veta 17.1 (Brooks, 1941). Nech G je suvisly graf. Ak G nie je kompletny graf ani nepdrna
kruznica, tak

X(G) < A(G).

17.2 Hranové farbenia

e je zrejmé, ze plati X'(G) > A(G)
Veta 17.2 (Koénig, 1916). Pre kazdy bipartitng graf G plati X' (G) = A(G).

Dékaz. Matematickou indukciou vzhladom na pocet hran. Ak |E(G)| = 0 tvrdenie plati.
Majme teraz graf bipartitny graf G' a predpokladajme, Ze tvrdenie plati pre vSetky bipar-
titné grafy s mensim poc¢tom hran. Vyberme e € E(G) a vytvorme graf H := G —e. Ak
A(H) < A(G), tak pouzijeme A(H) farieb na graf H a novou farbou zafarbime hranu e.
Predpokladajme teda, ze A(H) = A(G). Nech e = uv. Kedze stupen |E(H)| < |E(G)|,
mozeme pouzit indukény predpoklad na graf H a zafarbit jeho hrany A(G) farbami, nech
f:E(G) = {1,2,...,A(G)} je takéto hranové farbenie. Stupne vrcholov u a v st v grafe
H mensie, ako A(G), a teda pre kazdy z tychto vrcholov existuje farba z {1,2,..., A(G)},
ktora vo farbeni f nie je pouzita na hranu incidentnt s danym vrcholom. Nech vo vrchole
u nie je pritomna farba o a vo vrchole v nie je pritomna farba S (ak vo vrchole chyba
viacero farieb, vyberieme ubovolnu z nich). Ak plati a = §, dofarbime hranu e farbou «
a mame hranové farbenie grafu G.

Nech teda o # . Nech P je nepredlzitelna cesta, ktora za¢ina vo vrchole v a pouziva
len farby « a § (nahliadnite, Ze je to cesta). Cesta P nemoze koncit vo vrchole v. Ak by
to tak bolo, tak cesta P by bola parnej dlzky, kedZe sa na nej striedaja hrany farieb o a /3
a v u chyba o a vo v chyba 3. Teda P Ue je kruznica neparnej dlzky, ¢o je v bipartitnom
grafe nemozné podla Vety 14.6. To znamena, ze P konéi v inom vrchole ako v (a zjavne
cez v ani neprechadza). Vymenime farby « a  dostaneme iné regularne hranové farbenie,
povedzme f’. Vo farbeni f’ je farba [ nepritomna v oboch vrcholoch u aj v, pozri Obr. 7.
Dofarbenim hrany e farbou § dostdvame hranové farbenie grafu G. O

Poznamenajme, Ze nepredlzitelnej 2-farebnej ceste sa hovori Kempeho retazec a vy-
mene farieb na nej sa nazyva Kempe prepnutie.

Podobne, ako pri vrcholovych farbeniach tu uvedieme horny odhad moniméalneho po-
¢tu farieb potrebného na reguldrne hranové farbenie bez dokazu.

Veta 17.3 (Vizing, 1964). Pre kaZdy jednoduchy graf G plati
A(GQ)X'(G) < A(G) + 1.
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Obr. 7: Vymena farieb o a beta na ceste P

17.3 Farbenia planarnych grafov

V roku 1852, matematik Francis Guthrie, inSpirovany farbenim mapy anglicka polozil
nasledujucu otézku.

Problém styroch farieb. Dokdzte, Ze oblasti lubovolného rovinného grafu bez mos-
tov mozno zafarbit najviac Styrmi farbami tak, aby susedné oblasti (tie, ¢o maji spoloéni
hranu na hranici) boli zafarbené roznou farbou.

Prvy vSeobecne akceptovany dokaz urobili v roku 1976 Appel and Haken; tento dokaz
bol urobeny s pomocou pocitacu.

My tu teraz uvedieme s dokazom slabsiu verziu — ukédzeme, ze pét farieb stac¢i. Predtym
vSak prevedieme problém farbeni oblasti na problém vrcholového farbenia planarneho
grafu.

V duélnom grafe vrcholy zodpovedaju oblastiam povodného grafu a naopak. Preto
oblasti bezmostového rovinného grafu G sa daja k zafarbit tak, Ze oblasti, ktoré zdielaja
nenulovy tusek hranice maju roznu farbu prave vtedy, ak G* je regularne k-zafarbitelny.

7, duality vyplyva ekvivalentné formulacia Problému styroch farieb:

Pre kazdy rovinng graf G (bez sluciek) plati x(G) < 4.

Dokazeme slabsi variant, a to ze pat farieb staci na regularne zafarbenie kazdého
planarneho grafu (bez sluciek).

Veta 17.4 (Heawood, 1890). Pre kaZdy plandrny graf G plati x(G) < 5.

Dékaz. Budeme postupovat matematickou indukciou na pocet vrcholov. Béaza indukcie
zrejme plati. Podla Lemy 16.5, kazdy planarny graf mé vrchol stupna nanajvys 5, po-
vedzme v. Podla indukéného predpokladu, graf G — v ma (vrcholové) 5-zafarbenie. Ak
je nejaka farba z mnoziny {1,2,3,4,5} nepouzita na suseda vrchola v, dofarbime touto
farbou vrchol v a méame regulédrne zafarbenie vSetkych vrcholov. Inak mézeme predpokla-
dat, Ze susedia vrcholu v v G st vy, v, ..., v5 v cyklickom poradi podla vnorenia a v; je
zafarbeny farbou . Podgraf indukovany vrcholmi 'ubovolnych dvoch farieb je bipartitny.
Ak komponent grafu G — v, indukovany farbami 1 a 3 obsahujtci v; neobsahuje v3, vyme-
nime farby v tomto komponente a vrchol v zafarbime farbou 1, Obr. 8. Predpokladajme
teda, ze komponent grafu G — v, indukovany farbami 1 a 3 obsahujici v; obsahuje vs.
Potom ale, kedZe graf je planarny, komponent indukovany farbami 2 a 4 obsahujtci v,
neobsahuje vy. Prefarbime tento komponent a zafarbime v farbou 2. m
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Obr. 8: Vymena farieb v dokaze Heawoodovej vety
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