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Preface

Almost two decades have passed since the appearance of those graph the-
ory texts that still set the agenda for most introductory courses taught
today. The canon created by those books has helped to identify some
main fields of study and research, and will doubtless continue to influence
the development of the discipline for some time to come.

Yet much has happened in those 20 years, in graph theory no less
than elsewhere: deep new theorems have been found, seemingly disparate
methods and results have become interrelated, entire new branches have
arisen. To name just a few such developments, one may think of how
the new notion of list colouring has bridged the gulf between invari-
ants such as average degree and chromatic number, how probabilistic
methods and the regularity lemma have pervaded extremal graph theory
and Ramsey theory, or how the entirely new field of graph minors and
tree-decompositions has brought standard methods of surface topology
to bear on long-standing algorithmic graph problems.

Clearly, then, the time has come for a reappraisal: what are, today,
the essential areas, methods and results that should form the centre of
an introductory graph theory course aiming to equip its audience for the
most likely developments ahead?

I have tried in this book to offer material for such a course. In
view of the increasing complexity and maturity of the subject, I have
broken with the tradition of attempting to cover both theory and appli-
cations: this book offers an introduction to the theory of graphs as part
of (pure) mathematics; it contains neither explicit algorithms nor ‘real
world’ applications. My hope is that the potential for depth gained by
this restriction in scope will serve students of computer science as much
as their peers in mathematics: assuming that they prefer algorithms but
will benefit from an encounter with pure mathematics of some kind, it
seems an ideal opportunity to look for this close to where their heart lies!

In the selection and presentation of material, I have tried to ac-
commodate two conflicting goals. On the one hand, I believe that an
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introductory text should be lean and concentrate on the essential, so as
to offer guidance to those new to the field. As a graduate text, moreover,
it should get to the heart of the matter quickly: after all, the idea is to
convey at least an impression of the depth and methods of the subject.
On the other hand, it has been my particular concern to write with
sufficient detail to make the text enjoyable and easy to read: guiding
questions and ideas will be discussed explicitly, and all proofs presented
will be rigorous and complete.

A typical chapter, therefore, begins with a brief discussion of what
are the guiding questions in the area it covers, continues with a succinct
account of its classic results (often with simplified proofs), and then
presents one or two deeper theorems that bring out the full flavour of
that area. The proofs of these latter results are typically preceded by (or
interspersed with) an informal account of their main ideas, but are then
presented formally at the same level of detail as their simpler counter-
parts. I soon noticed that, as a consequence, some of those proofs came
out rather longer in print than seemed fair to their often beautifully
simple conception. I would hope, however, that even for the professional
reader the relatively detailed account of those proofs will at least help
to minimize reading time. . .

If desired, this text can be used for a lecture course with little or
no further preparation. The simplest way to do this would be to follow
the order of presentation, chapter by chapter: apart from two clearly
marked exceptions, any results used in the proof of others precede them
in the text.

Alternatively, a lecturer may wish to divide the material into an easy
basic course for one semester, and a more challenging follow-up course
for another. To help with the preparation of courses deviating from the
order of presentation, I have listed in the margin next to each proof the
reference numbers of those results that are used in that proof. These
references are given in round brackets: for example, a reference (4.1.2)
in the margin next to the proof of Theorem 4.3.2 indicates that Lemma
4.1.2 will be used in this proof. Correspondingly, in the margin next to
Lemma 4.1.2 there is a reference [ 4.3.2 ] (in square brackets) informing
the reader that this lemma will be used in the proof of Theorem 4.3.2.
Note that this system applies between different sections only (of the same
or of different chapters): the sections themselves are written as units and
best read in their order of presentation.

The mathematical prerequisites for this book, as for most graph
theory texts, are minimal: a first grounding in linear algebra is assumed
for Chapter 1.9 and once in Chapter 5.5, some basic topological con-
cepts about the Euclidean plane and 3-space are used in Chapter 4, and
a previous first encounter with elementary probability will help with
Chapter 11. (Even here, all that is assumed formally is the knowledge
of basic definitions: the few probabilistic tools used are developed in the
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text.) There are two areas of graph theory which I find both fascinat-
ing and important, especially from the perspective of pure mathematics
adopted here, but which are not covered in this book: these are algebraic
graph theory and infinite graphs.

At the end of each chapter, there is a section with exercises and
another with bibliographical and historical notes. Many of the exercises
were chosen to complement the main narrative of the text: they illus-
trate new concepts, show how a new invariant relates to earlier ones,
or indicate ways in which a result stated in the text is best possible.
Particularly easy exercises are identified by the superscript −, the more
challenging ones carry a +. The notes are intended to guide the reader
on to further reading, in particular to any monographs or survey articles
on the theme of that chapter. They also offer some historical and other
remarks on the material presented in the text.

Ends of proofs are marked by the symbol �. Where this symbol is
found directly below a formal assertion, it means that the proof should
be clear after what has been said—a claim waiting to be verified! There
are also some deeper theorems which are stated, without proof, as back-
ground information: these can be identified by the absence of both proof
and �.

Almost every book contains errors, and this one will hardly be an
exception. I shall try to post on the Web any corrections that become
necessary. The relevant site may change in time, but will always be
accessible via the following two addresses:

http://www.springer-ny.com/supplements/diestel/
http://www.springer.de/catalog/html-files/deutsch/math/3540609180.html

Please let me know about any errors you find.
Little in a textbook is truly original: even the style of writing and

of presentation will invariably be influenced by examples. The book that
no doubt influenced me most is the classic GTM graph theory text by
Bollobás: it was in the course recorded by this text that I learnt my first
graph theory as a student. Anyone who knows this book well will feel
its influence here, despite all differences in contents and presentation.

I should like to thank all who gave so generously of their time,
knowledge and advice in connection with this book. I have benefited
particularly from the help of N. Alon, G. Brightwell, R. Gillett, R. Halin,
M. Hintz, A. Huck, I. Leader, T. �Luczak, W. Mader, V. Rödl, A.D. Scott,
P.D. Seymour, G. Simonyi, M. Škoviera, R. Thomas, C. Thomassen and
P.Valtr. I am particularly grateful also to Tommy R. Jensen, who taught
me much about colouring and all I know about k-flows, and who invested
immense amounts of diligence and energy in his proofreading of the pre-
liminary German version of this book.

March 1997 RD
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About the second edition

Naturally, I am delighted at having to write this addendum so soon after
this book came out in the summer of 1997. It is particularly gratifying
to hear that people are gradually adopting it not only for their personal
use but more and more also as a course text; this, after all, was my aim
when I wrote it, and my excuse for agonizing more over presentation
than I might otherwise have done.

There are two major changes. The last chapter on graph minors
now gives a complete proof of one of the major results of the Robertson-
Seymour theory, their theorem that excluding a graph as a minor bounds
the tree-width if and only if that graph is planar. This short proof did
not exist when I wrote the first edition, which is why I then included a
short proof of the next best thing, the analogous result for path-width.
That theorem has now been dropped from Chapter 12. Another addition
in this chapter is that the tree-width duality theorem, Theorem 12.3.9,
now comes with a (short) proof too.

The second major change is the addition of a complete set of hints
for the exercises. These are largely Tommy Jensen’s work, and I am
grateful for the time he donated to this project. The aim of these hints
is to help those who use the book to study graph theory on their own,
but not to spoil the fun. The exercises, including hints, continue to be
intended for classroom use.

Apart from these two changes, there are a few additions. The most
noticable of these are the formal introduction of depth-first search trees
in Section 1.5 (which has led to some simplifications in later proofs) and
an ingenious new proof of Menger’s theorem due to Böhme, Göring and
Harant (which has not otherwise been published).

Finally, there is a host of small simplifications and clarifications
of arguments that I noticed as I taught from the book, or which were
pointed out to me by others. To all these I offer my special thanks.

The Web site for the book has followed me to

http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/

I expect this address to be stable for some time.
Once more, my thanks go to all who contributed to this second

edition by commenting on the first—and I look forward to further com-
ments!

December 1999 RD
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About the third edition

There is no denying that this book has grown. Is it still as ‘lean and
concentrating on the essential’ as I said it should be when I wrote the
preface to the first edition, now almost eight years ago?

I believe that it is, perhaps now more than ever. So why the increase
in volume? Part of the answer is that I have continued to pursue the
original dual aim of offering two different things between one pair of
covers:

• a reliable first introduction to graph theory that can be used either
for personal study or as a course text;

• a graduate text that offers some depth in selected areas.

For each of these aims, some material has been added. Some of this
covers new topics, which can be included or skipped as desired. An
example at the introductory level is the new section on packing and
covering with the Erdős-Pósa theorem, or the inclusion of the stable
marriage theorem in the matching chapter. An example at the graduate
level is the Robertson-Seymour structure theorem for graphs without a
given minor: a result that takes a few lines to state, but one which is in-
creasingly relied on in the literature, so that an easily accessible reference
seems desirable. Another addition, also in the chapter on graph minors,
is a new proof of the ‘Kuratowski theorem for higher surfaces’—a proof
which illustrates the interplay between graph minor theory and surface
topology better than was previously possible. The proof is complemented
by an appendix on surfaces, which supplies the required background and
also sheds some more light on the proof of the graph minor theorem.

Changes that affect previously existing material are rare, except for
countless local improvements intended to consolidate and polish rather
than change. I am aware that, as this book is increasingly adopted as
a course text, there is a certain desire for stability. Many of these local
improvements are the result of generous feedback I got from colleagues
using the book in this way, and I am very grateful for their help and
advice.

There are also some local additions. Most of these developed from
my own notes, pencilled in the margin as I prepared to teach from the
book. They typically complement an important but technical proof,
when I felt that its essential ideas might get overlooked in the formal
write-up. For example, the proof of the Erdős-Stone theorem now has
an informal post-mortem that looks at how exactly the regularity lemma
comes to be applied in it. Unlike the formal proof, the discussion starts
out from the main idea, and finally arrives at how the parameters to be
declared at the start of the formal proof must be specified. Similarly,
there is now a discussion pointing to some ideas in the proof of the perfect
graph theorem. However, in all these cases the formal proofs have been
left essentially untouched.
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The only substantial change to existing material is that the old
Theorem 8.1.1 (that cr2n edges force a TKr) seems to have lost its
nice (and long) proof. Previously, this proof had served as a welcome
opportunity to explain some methods in sparse extremal graph theory.
These methods have migrated to the connectivity chapter, where they
now live under the roof of the new proof by Thomas and Wollan that 8kn
edges make a 2k-connected graph k-linked. So they are still there, leaner
than ever before, and just presenting themselves under a new guise. As
a consequence of this change, the two earlier chapters on dense and
sparse extremal graph theory could be reunited, to form a new chapter
appropriately named as Extremal Graph Theory .

Finally, there is an entirely new chapter, on infinite graphs. When
graph theory first emerged as a mathematical discipline, finite and infi-
nite graphs were usually treated on a par. This has changed in recent
years, which I see as a regrettable loss: infinite graphs continue to pro-
vide a natural and frequently used bridge to other fields of mathematics,
and they hold some special fascination of their own. One aspect of this
is that proofs often have to be more constructive and algorithmic in
nature than their finite counterparts. The infinite version of Menger’s
theorem in Section 8.4 is a typical example: it offers algorithmic insights
into connectivity problems in networks that are invisible to the slick
inductive proofs of the finite theorem given in Chapter 3.3.

Once more, my thanks go to all the readers and colleagues whose
comments helped to improve the book. I am particularly grateful to Imre
Leader for his judicious comments on the whole of the infinite chapter; to
my graph theory seminar, in particular to Lilian Matthiesen and Philipp
Sprüssel, for giving the chapter a test run and solving all its exercises
(of which eighty survived their scrutiny); to Angelos Georgakopoulos for
much proofreading elsewhere; to Melanie Win Myint for recompiling the
index and extending it substantially; and to Tim Stelldinger for nursing
the whale on page 366 until it was strong enough to carry its baby
dinosaur.

May 2005 RD
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1 The Basics

This chapter gives a gentle yet concise introduction to most of the ter-
minology used later in the book. Fortunately, much of standard graph
theoretic terminology is so intuitive that it is easy to remember; the few
terms better understood in their proper setting will be introduced later,
when their time has come.

Section 1.1 offers a brief but self-contained summary of the most
basic definitions in graph theory, those centred round the notion of a
graph. Most readers will have met these definitions before, or will have
them explained to them as they begin to read this book. For this reason,
Section 1.1 does not dwell on these definitions more than clarity requires:
its main purpose is to collect the most basic terms in one place, for easy
reference later.

From Section 1.2 onwards, all new definitions will be brought to life
almost immediately by a number of simple yet fundamental propositions.
Often, these will relate the newly defined terms to one another: the
question of how the value of one invariant influences that of another
underlies much of graph theory, and it will be good to become familiar
with this line of thinking early.

By N we denote the set of natural numbers, including zero. The set
Z/nZ of integers modulo n is denoted by Zn; its elements are written Zn

as i := i + nZ. For a real number x we denote by �x� the greatest
integer � x, and by �x� the least integer � x. Logarithms written as �x�, �x�
‘log’ are taken at base 2; the natural logarithm will be denoted by ‘ln’. log, ln

A set A = {A1, . . . , Ak } of disjoint subsets of a set A is a partition partition

of A if the union
⋃
A of all the sets Ai ∈ A is A and Ai �= ∅ for every i.

⋃
A

Another partition {A′
1, . . . , A

′
� } of A refines the partition A if each A′

i is
contained in some Aj . By [A]k we denote the set of all k-element subsets [A]k

of A. Sets with k elements will be called k-sets; subsets with k elements
are k-subsets. k-set
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1.1 Graphs
A graph is a pair G = (V, E) of sets such that E ⊆ [V ]2; thus, the elementsgraph

of E are 2-element subsets of V . To avoid notational ambiguities, we
shall always assume tacitly that V ∩E = ∅. The elements of V are the
vertices (or nodes, or points) of the graph G, the elements of E are itsvertex

edges (or lines). The usual way to picture a graph is by drawing a dot foredge

each vertex and joining two of these dots by a line if the corresponding
two vertices form an edge. Just how these dots and lines are drawn is
considered irrelevant: all that matters is the information of which pairs
of vertices form an edge and which do not.

1

2

3

4

5

6

7

Fig. 1.1.1. The graph on V = { 1, . . . , 7 } with edge set
E = {{ 1, 2 }, { 1, 5 }, { 2, 5 }, { 3, 4 }, { 5, 7 }}

A graph with vertex set V is said to be a graph on V . The vertexon

set of a graph G is referred to as V (G), its edge set as E(G). TheseV (G), E(G)

conventions are independent of any actual names of these two sets: the
vertex set W of a graph H = (W, F ) is still referred to as V (H), not as
W (H). We shall not always distinguish strictly between a graph and its
vertex or edge set. For example, we may speak of a vertex v ∈ G (rather
than v ∈ V (G)), an edge e ∈ G, and so on.

The number of vertices of a graph G is its order , written as |G|; itsorder

number of edges is denoted by ‖G‖. Graphs are finite, infinite, countable|G|, ‖G‖
and so on according to their order. Except in Chapter 8, our graphs will
be finite unless otherwise stated.

For the empty graph (∅, ∅) we simply write ∅. A graph of order 0 or 1∅
is called trivial . Sometimes, e.g. to start an induction, trivial graphs cantrivial

graph
be useful; at other times they form silly counterexamples and become a
nuisance. To avoid cluttering the text with non-triviality conditions, we
shall mostly treat the trivial graphs, and particularly the empty graph ∅,
with generous disregard.

A vertex v is incident with an edge e if v ∈ e; then e is an edge at v.incident

The two vertices incident with an edge are its endvertices or ends, andends

an edge joins its ends. An edge {x, y } is usually written as xy (or yx).
If x ∈ X and y ∈ Y , then xy is an X–Y edge. The set of all X–Y edges
in a set E is denoted by E(X, Y ); instead of E({x }, Y ) and E(X, { y })E(X, Y )

we simply write E(x, Y ) and E(X, y). The set of all the edges in E at a
vertex v is denoted by E(v).E(v)
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Two vertices x, y of G are adjacent , or neighbours, if xy is an edge adjacent

of G. Two edges e �= f are adjacent if they have an end in common. If all neighbour

the vertices of G are pairwise adjacent, then G is complete. A complete complete

graph on n vertices is a Kn; a K3 is called a triangle. Kn

Pairwise non-adjacent vertices or edges are called independent .
More formally, a set of vertices or of edges is independent (or stable) inde-

pendent
if no two of its elements are adjacent.

Let G = (V, E) and G′ = (V ′, E′) be two graphs. We call G and
G′ isomorphic, and write G 
 G′, if there exists a bijection ϕ:V → V ′ �
with xy ∈ E ⇔ ϕ(x)ϕ(y) ∈ E′ for all x, y ∈ V . Such a map ϕ is called
an isomorphism; if G = G′, it is called an automorphism. We do not isomor-

phism
normally distinguish between isomorphic graphs. Thus, we usually write
G = G′ rather than G 
 G′, speak of the complete graph on 17 vertices,
and so on.

A class of graphs that is closed under isomorphism is called a graph
property . For example, ‘containing a triangle’ is a graph property: if property

G contains three pairwise adjacent vertices then so does every graph
isomorphic to G. A map taking graphs as arguments is called a graph
invariant if it assigns equal values to isomorphic graphs. The number invariant

of vertices and the number of edges of a graph are two simple graph
invariants; the greatest number of pairwise adjacent vertices is another.

GG ∪ − G ∩

1

2

3

4

5
G

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

G′

G′G′ G′

Fig. 1.1.2. Union, difference and intersection; the vertices 2,3,4
induce (or span) a triangle in G∪G′ but not in G

We set G∪G′ := (V ∪ V ′, E ∪E′) and G∩G′ := (V ∩V ′, E ∩E′). G ∩ G′

If G∩G′ = ∅, then G and G′ are disjoint . If V ′ ⊆ V and E′ ⊆ E, then subgraph

G′ is a subgraph of G (and G a supergraph of G′), written as G′ ⊆ G. G′ ⊆ G

Less formally, we say that G contains G′. If G′ ⊆ G and G′ �= G, then
G′ is a proper subgraph of G.

If G′ ⊆ G and G′ contains all the edges xy ∈ E with x, y ∈ V ′, then
G′ is an induced subgraph of G; we say that V ′ induces or spans G′ in G, induced

subgraph



4 1. The Basics

G′ G′′G

Fig. 1.1.3. A graph G with subgraphs G′ and G′′:
G′ is an induced subgraph of G, but G′′ is not

and write G′ =: G [V ′ ]. Thus if U ⊆ V is any set of vertices, then G [U ]G [ U ]

denotes the graph on U whose edges are precisely the edges of G with
both ends in U . If H is a subgraph of G, not necessarily induced, we
abbreviate G [V (H) ] to G [H ]. Finally, G′ ⊆ G is a spanning subgraphspanning

of G if V ′ spans all of G, i.e. if V ′ = V .
If U is any set of vertices (usually of G), we write G−U for−

G [V �U ]. In other words, G−U is obtained from G by deleting all the
vertices in U ∩ V and their incident edges. If U = { v } is a singleton,
we write G− v rather than G− { v }. Instead of G− V (G′) we simply
write G−G′. For a subset F of [V ]2 we write G−F := (V, E � F ) and+

G +F := (V, E∪F ); as above, G−{ e } and G+{ e } are abbreviated to
G− e and G + e. We call G edge-maximal with a given graph propertyedge-

maximal
if G itself has the property but no graph G + xy does, for non-adjacent
vertices x, y ∈ G.

More generally, when we call a graph minimal or maximal with someminimal

property but have not specified any particular ordering, we are referringmaximal

to the subgraph relation. When we speak of minimal or maximal sets of
vertices or edges, the reference is simply to set inclusion.

If G and G′ are disjoint, we denote by G ∗ G′ the graph obtainedG ∗G′

from G∪G′ by joining all the vertices of G to all the vertices of G′. For
example, K2 ∗ K3 = K5. The complement G of G is the graph on V

comple-

ment G
with edge set [V ]2 � E. The line graph L(G) of G is the graph on E in
which x, y ∈ E are adjacent as vertices if and only if they are adjacentline graph

L(G)
as edges in G.

G G

Fig. 1.1.4. A graph isomorphic to its complement
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1.2 The degree of a vertex

Let G = (V, E) be a (non-empty) graph. The set of neighbours of a
vertex v in G is denoted by NG(v), or briefly by N(v).1 More generally N(v)

for U ⊆ V , the neighbours in V �U of vertices in U are called neighbours
of U ; their set is denoted by N(U).

The degree (or valency) dG(v) = d(v) of a vertex v is the number degree d(v)

|E(v)| of edges at v; by our definition of a graph,2 this is equal to the
number of neighbours of v. A vertex of degree 0 is isolated . The number isolated

δ(G) := min { d(v) | v ∈ V } is the minimum degree of G, the number δ(G)

∆(G) := max { d(v) | v ∈ V } its maximum degree. If all the vertices ∆(G)

of G have the same degree k, then G is k-regular , or simply regular . A regular

3-regular graph is called cubic. cubic

The number

d(G) :=
1
|V |

∑
v∈V

d(v)
d(G)

is the average degree of G. Clearly,
average
degree

δ(G) � d(G) � ∆(G) .

The average degree quantifies globally what is measured locally by the
vertex degrees: the number of edges of G per vertex. Sometimes it will
be convenient to express this ratio directly, as ε(G) := |E|/|V |. ε(G)

The quantities d and ε are, of course, intimately related. Indeed,
if we sum up all the vertex degrees in G, we count every edge exactly
twice: once from each of its ends. Thus

|E| = 1
2

∑
v∈V

d(v) = 1
2d(G) · |V | ,

and therefore

ε(G) = 1
2d(G) .

Proposition 1.2.1. The number of vertices of odd degree in a graph is [ 10.3.3 ]

always even.

Proof . A graph on V has 1
2

∑
v∈V d(v) edges, so

∑
d(v) is an even

number. �

1 Here, as elsewhere, we drop the index referring to the underlying graph if the
reference is clear.

2 but not for multigraphs; see Section 1.10
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If a graph has large minimum degree, i.e. everywhere, locally, many
edges per vertex, it also has many edges per vertex globally: ε(G) =
1
2d(G) � 1

2δ(G). Conversely, of course, its average degree may be large
even when its minimum degree is small. However, the vertices of large
degree cannot be scattered completely among vertices of small degree: as
the next proposition shows, every graph G has a subgraph whose average
degree is no less than the average degree of G, and whose minimum
degree is more than half its average degree:

Proposition 1.2.2. Every graph G with at least one edge has a sub-[ 1.4.3 ]
[ 3.5.1 ]

graph H with δ(H) > ε(H) � ε(G).

Proof . To construct H from G, let us try to delete vertices of small
degree one by one, until only vertices of large degree remain. Up to
which degree d(v) can we afford to delete a vertex v, without lowering ε?
Clearly, up to d(v) = ε : then the number of vertices decreases by 1
and the number of edges by at most ε, so the overall ratio ε of edges to
vertices will not decrease.

Formally, we construct a sequence G = G0 ⊇ G1 ⊇ . . . of induced
subgraphs of G as follows. If Gi has a vertex vi of degree d(vi) � ε(Gi),
we let Gi+1 := Gi − vi; if not, we terminate our sequence and set
H := Gi. By the choices of vi we have ε(Gi+1) � ε(Gi) for all i, and
hence ε(H) � ε(G).

What else can we say about the graph H? Since ε(K1) = 0 < ε(G),
none of the graphs in our sequence is trivial, so in particular H �= ∅. The
fact that H has no vertex suitable for deletion thus implies δ(H) > ε(H),
as claimed. �

1.3 Paths and cycles
A path is a non-empty graph P = (V, E) of the formpath

V = {x0, x1, . . . , xk } E = {x0x1, x1x2, . . . , xk−1xk } ,

where the xi are all distinct. The vertices x0 and xk are linked by P and
are called its ends; the vertices x1, . . . , xk−1 are the inner vertices of P .
The number of edges of a path is its length, and the path of length k islength

denoted by P k. Note that k is allowed to be zero; thus, P 0 = K1.P k

We often refer to a path by the natural sequence of its vertices,3

writing, say, P = x0x1 . . . xk and calling P a path from x0 to xk (as well
as between x0 and xk).

3 More precisely, by one of the two natural sequences: x0 . . . xk and xk . . . x0

denote the same path. Still, it often helps to fix one of these two orderings of V (P )
notationally: we may then speak of things like the ‘first’ vertex on P with a certain
property, etc.
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G P

Fig. 1.3.1. A path P = P 6 in G

For 0 � i � j � k we write xPy, P̊

Pxi := x0 . . . xi

xiP := xi . . . xk

xiPxj := xi . . . xj

and
P̊ := x1 . . . xk−1

Px̊i := x0 . . . xi−1

x̊iP := xi+1 . . . xk

x̊iPx̊j := xi+1 . . . xj−1

for the appropriate subpaths of P . We use similar intuitive notation for
the concatenation of paths; for example, if the union Px∪ xQy ∪ yR of
three paths is again a path, we may simply denote it by PxQyR. PxQyR

xPyQzx

y

z
x

P

y

Q

z

Fig. 1.3.2. Paths P , Q and xPyQz

Given sets A, B of vertices, we call P = x0 . . . xk an A–B path if A–B path

V (P ) ∩ A = {x0 } and V (P ) ∩ B = {xk }. As before, we write a–B
path rather than { a }–B path, etc. Two or more paths are independent inde-

pendent
if none of them contains an inner vertex of another. Two a–b paths, for
instance, are independent if and only if a and b are their only common
vertices.

Given a graph H, we call P an H-path if P is non-trivial and meets H-path

H exactly in its ends. In particular, the edge of any H-path of length 1
is never an edge of H.

If P = x0 . . . xk−1 is a path and k � 3, then the graph C :=
P + xk−1x0 is called a cycle. As with paths, we often denote a cycle cycle

by its (cyclic) sequence of vertices; the above cycle C might be written
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as x0 . . . xk−1x0. The length of a cycle is its number of edges (or vertices);length

the cycle of length k is called a k-cycle and denoted by Ck.Ck

The minimum length of a cycle (contained) in a graph G is the girthgirth g(G)

g(G) of G; the maximum length of a cycle in G is its circumference. (Ifcircum-
ference G does not contain a cycle, we set the former to ∞, the latter to zero.)

An edge which joins two vertices of a cycle but is not itself an edge ofchord

the cycle is a chord of that cycle. Thus, an induced cycle in G, a cycle in
G forming an induced subgraph, is one that has no chords (Fig. 1.3.3).induced

cycle

y

x

Fig. 1.3.3. A cycle C8 with chord xy, and induced cycles C6, C4

If a graph has large minimum degree, it contains long paths and
cycles (see also Exercise 77):

Proposition 1.3.1. Every graph G contains a path of length δ(G) and[ 1.4.3 ]
[ 3.5.1 ]

a cycle of length at least δ(G) + 1 (provided that δ(G) � 2).

Proof . Let x0 . . . xk be a longest path in G. Then all the neighbours of
xk lie on this path (Fig. 1.3.4). Hence k � d(xk) � δ(G). If i < k is
minimal with xixk ∈ E(G), then xi . . . xkxi is a cycle of length at least
δ(G) + 1. �

x0 xi xk

Fig. 1.3.4. A longest path x0 . . . xk, and the neighbours of xk

Minimum degree and girth, on the other hand, are not related (un-
less we fix the number of vertices): as we shall see in Chapter 11, there
are graphs combining arbitrarily large minimum degree with arbitrarily
large girth.

The distance dG(x, y) in G of two vertices x, y is the length of adistance
d(x, y)

shortest x–y path in G; if no such path exists, we set d(x, y) := ∞. The
greatest distance between any two vertices in G is the diameter of G,
denoted by diamG. Diameter and girth are, of course, related:diameter

diam G

Proposition 1.3.2. Every graph G containing a cycle satisfies g(G) �
2 diamG + 1.
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Proof . Let C be a shortest cycle in G. If g(G) � 2 diamG + 2, then
C has two vertices whose distance in C is at least diam G + 1. In G,
these vertices have a lesser distance; any shortest path P between them
is therefore not a subgraph of C. Thus, P contains a C-path xPy.
Together with the shorter of the two x–y paths in C, this path xPy
forms a shorter cycle than C, a contradiction. �

A vertex is central in G if its greatest distance from any other vertex central

is as small as possible. This distance is the radius of G, denoted by radG.
Thus, formally, radG = minx∈V (G) maxy∈V (G) dG(x, y). As one easily radius

rad G
checks (exercise), we have

radG � diamG � 2 radG .

Diameter and radius are not related to minimum, average or max-
imum degree if we say nothing about the order of the graph. However,
graphs of large diameter and minimum degree are clearly large (much
larger than forced by each of the two parameters alone; see Exercise 88),
and graphs of small diameter and maximum degree must be small:

Proposition 1.3.3. A graph G of radius at most k and maximum degree [ 9.4.1 ]
[ 9.4.2 ]

at most d � 3 has fewer than d
d−2 (d− 1)k vertices.

Proof . Let z be a central vertex in G, and let Di denote the set of
vertices of G at distance i from z. Then V (G) =

⋃k
i=0 Di. Clearly

|D0| = 1 and |D1| � d. For i � 1 we have |Di+1| � (d− 1)|Di|, because
every vertex in Di+1 is a neighbour of a vertex in Di, and each vertex in
Di has at most d−1 neighbours in Di+1 (since it has another neighbour
in Di−1). Thus |Di+1| � d(d− 1)i for all i < k by induction, giving

|G| � 1 + d

k−1∑
i=0

(d− 1)i = 1 +
d

d− 2
(
(d− 1)k − 1

)
<

d

d− 2
(d− 1)k.

�

Similarly, we can bound the order of G from below by assuming that
both its minimum degree and girth are large. For d ∈ R and g ∈ N let

n0(d, g) :=




1 + d
r−1∑
i=0

(d− 1)i if g =: 2r + 1 is odd;

2
r−1∑
i=0

(d− 1)i if g =: 2r is even.

It is not difficult to prove that a graph of minimum degree δ and girth g
has at least n0(δ, g) vertices (Exercise 66). Interestingly, one can obtain
the same bound for its average degree:
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Theorem 1.3.4. (Alon, Hoory & Linial 2002)
Let G be a graph. If d(G) � d � 2 and g(G) � g ∈ N then |G| � n0(d, g).

One aspect of Theorem 1.3.4 is that it guarantees the existence of
a short cycle compared with |G|. Using just the easy minimum degree
version of Exercise 66, we get the following rather general bound:

Corollary 1.3.5. If δ(G) � 3 then g(G) < 2 log |G|.[ 2.3.1 ]

Proof . If g := g(G) is even then

n0(3, g) = 2
2g/2 − 1
2− 1

= 2g/2 + (2g/2 − 2) > 2g/2,

while if g is odd then

n0(3, g) = 1 + 3
2(g−1)/2 − 1

2− 1
=

3√
2

2g/2 − 2 > 2g/2.

As |G| � n0(3, g), the result follows. �

A walk (of length k) in a graph G is a non-empty alternating se-walk

quence v0e0v1e1 . . . ek−1vk of vertices and edges in G such that ei =
{ vi, vi+1 } for all i < k. If v0 = vk, the walk is closed . If the vertices
in a walk are all distinct, it defines an obvious path in G. In general,
every walk between two vertices contains4 a path between these vertices
(proof?).

1.4 Connectivity
A non-empty graph G is called connected if any two of its vertices areconnected

linked by a path in G. If U ⊆ V (G) and G [U ] is connected, we also
call U itself connected (in G). Instead of ‘not connected’ we usually say
‘disconnected’.

Proposition 1.4.1. The vertices of a connected graph G can always be[ 1.5.2 ]

enumerated, say as v1, . . . , vn, so that Gi := G [ v1, . . . , vi ] is connected
for every i.

Proof . Pick any vertex as v1, and assume inductively that v1, . . . , vi

have been chosen for some i < |G|. Now pick a vertex v ∈ G−Gi. As G
is connected, it contains a v–v1 path P . Choose as vi+1 the last vertex
of P in G−Gi; then vi+1 has a neighbour in Gi. The connectedness of
every Gi follows by induction on i. �

4 We shall often use terms defined for graphs also for walks, as long as their
meaning is obvious.
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Let G = (V, E) be a graph. A maximal connected subgraph of G
is called a component of G. Note that a component, being connected, is component

always non-empty; the empty graph, therefore, has no components.

Fig. 1.4.1. A graph with three components, and a minimal
spanning connected subgraph in each component

If A, B ⊆ V and X ⊆ V ∪E are such that every A–B path in G
contains a vertex or an edge from X, we say that X separates the sets A separate

and B in G. Note that this implies A∩B ⊆ X. More generally we say
that X separates G if G−X is disconnected, that is, if X separates in
G some two vertices that are not in X. A separating set of vertices is a
separator . Separating sets of edges have no generic name, but some such separator

sets do; see Section 1.9 for the definition of cuts and bonds. A vertex cutvertex

which separates two other vertices of the same component is a cutvertex ,
and an edge separating its ends is a bridge. Thus, the bridges in a graph bridge

are precisely those edges that do not lie on any cycle.

wv

e

x y

Fig. 1.4.2. A graph with cutvertices v, x, y, w and bridge e = xy

The unordered pair {A, B } is a separation of G if A∪B = V and G separation

has no edge between A � B and B � A. Clearly, the latter is equivalent
to saying that A∩B separates A from B. If both A � B and B � A are
non-empty, the separation is proper . The number |A∩B| is the order of
the separation {A, B }.

G is called k-connected (for k ∈ N) if |G| > k and G−X is connected k-connected

for every set X ⊆ V with |X| < k. In other words, no two vertices of G
are separated by fewer than k other vertices. Every (non-empty) graph
is 0-connected, and the 1-connected graphs are precisely the non-trivial
connected graphs. The greatest integer k such that G is k-connected
is the connectivity κ(G) of G. Thus, κ(G) = 0 if and only if G is connectivity

κ(G)
disconnected or a K1, and κ(Kn) = n− 1 for all n � 1.
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If |G| > 1 and G − F is connected for every set F ⊆ E of fewer
than � edges, then G is called �-edge-connected. The greatest integer �

�-edge-
connected

such that G is �-edge-connected is the edge-connectivity λ(G) of G. In
particular, we have λ(G) = 0 if G is disconnected.

edge-
connectivity
λ(G)

HG

Fig. 1.4.3. The octahedron G (left) with κ(G) = λ(G) = 4,
and a graph H with κ(H) = 2 but λ(H) = 4

Proposition 1.4.2. If G is non-trivial then κ(G) � λ(G) � δ(G).

Proof . The second inequality follows from the fact that all the edges
incident with a fixed vertex separate G. To prove the first, let F be any
minimal subset of E such that G − F is disconnected. We show that
κ(G) � |F |.

Suppose first that G has a vertex v that is not incident with an edge
in F . Let C be the component of G−F containing v. Then the vertices
of C that are incident with an edge in F separate v from G−C. Since
no edge in F has both ends in C (by the minimality of F ), there are at
most |F | such vertices, giving κ(G) � |F | as desired.

Suppose now that every vertex is incident with an edge in F . Let v
be any vertex, and let C be the component of G−F containing v. Then
the neighbours w of v with vw /∈ F lie in C and are incident with distinct
edges in F , giving dG(v) � |F |. As NG(v) separates v from all the other
vertices in G, this yields κ(G) � |F |—unless there are no other vertices,
i.e. unless { v }∪N(v) = V . But v was an arbitrary vertex. So we may
assume that G is complete, giving κ(G) = λ(G) = |G| − 1. �

By Proposition 1.4.2, high connectivity requires a large minimum
degree. Conversely, large minimum degree does not ensure high connec-
tivity, not even high edge-connectivity (examples?). It does, however,
imply the existence of a highly connected subgraph:

Theorem 1.4.3. (Mader 1972)[ 7.2.1 ]
[ 11.2.3 ]

Let 0 �= k ∈ N. Every graph G with d(G) � 4k has a (k + 1)-connected
subgraph H such that ε(H) > ε(G)− k.
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Proof . Put γ := ε(G) (� 2k), and consider the subgraphs G′ ⊆ G such
(1.2.2)
(1.3.1)

γthat

|G′| � 2k and ‖G′‖ > γ
(
|G′| − k

)
. (∗)

Such graphs G′ exist since G is one; let H be one of smallest order. H

No graph G′ as in (∗) can have order exactly 2k, since this would
imply that ‖G′‖ > γk � 2k2 >

(|G′|
2

)
. The minimality of H therefore

implies that δ(H) > γ : otherwise we could delete a vertex of degree at
most γ and obtain a graph G′ � H still satisfying (∗). In particular, we
have |H| � γ. Dividing the inequality of ‖H‖ > γ |H| − γk from (∗) by
|H| therefore yields ε(H) > γ − k, as desired.

It remains to show that H is (k + 1)-connected. If not, then H has
a proper separation {U1, U2 } of order at most k; put H [Ui ] =: Hi. H1, H2

Since any vertex v ∈ U1 � U2 has all its d(v) � δ(H) > γ neighbours
from H in H1, we have |H1| � γ � 2k. Similarly, |H2| � 2k. As by the
minimality of H neither H1 nor H2 satisfies (∗), we further have

‖Hi‖ � γ
(
|Hi| − k

)

for i = 1, 2. But then

‖H‖ � ‖H1‖+ ‖H2‖

� γ
(
|H1|+ |H2| − 2k

)
� γ

(
|H| − k

)
(as |H1 ∩H2| � k),

which contradicts (∗) for H. �

1.5 Trees and forests

An acyclic graph, one not containing any cycles, is called a forest . A con- forest

nected forest is called a tree. (Thus, a forest is a graph whose components tree

are trees.) The vertices of degree 1 in a tree are its leaves.5 Every non- leaf

trivial tree has a leaf—consider, for example, the ends of a longest path.
This little fact often comes in handy, especially in induction proofs about
trees: if we remove a leaf from a tree, what remains is still a tree.

5 . . . except that the root of a tree (see below) is never called a leaf, even if it has
degree 1.
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Fig. 1.5.1. A tree

Theorem 1.5.1. The following assertions are equivalent for a graph T :
[ 1.6.1 ]
[ 1.9.6 ]
[ 4.2.9 ]

(i) T is a tree;

(ii) Any two vertices of T are linked by a unique path in T ;

(iii) T is minimally connected, i.e. T is connected but T − e is discon-
nected for every edge e ∈ T ;

(iv) T is maximally acyclic, i.e. T contains no cycle but T + xy does,
for any two non-adjacent vertices x, y ∈ T . �

The proof of Theorem 1.5.1 is straightforward, and a good exercise
for anyone not yet familiar with all the notions it relates. Extending our
notation for paths from Section 1.3, we write xTy for the unique pathxTy

in a tree T between two vertices x, y (see (ii) above).
A frequently used application of Theorem 1.5.1 is that every con-

nected graph contains a spanning tree: by the equivalence of (i) and (iii),
any minimal connected spanning subgraph will be a tree. Figure 1.4.1
shows a spanning tree in each of the three components of the graph
depicted.

Corollary 1.5.2. The vertices of a tree can always be enumerated, say
as v1, . . . , vn, so that every vi with i � 2 has a unique neighbour in
{ v1, . . . , vi−1 }.

Proof . Use the enumeration from Proposition 1.4.1. �(1.4.1)

Corollary 1.5.3. A connected graph with n vertices is a tree if and[ 1.9.6 ]
[ 2.4.1 ]
[ 2.4.4 ]
[ 4.2.9 ]

only if it has n− 1 edges.

Proof . Induction on i shows that the subgraph spanned by the first
i vertices in Corollary 1.5.2 has i − 1 edges; for i = n this proves the
forward implication. Conversely, let G be any connected graph with n
vertices and n− 1 edges. Let G′ be a spanning tree in G. Since G′ has
n− 1 edges by the first implication, it follows that G = G′. �
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Corollary 1.5.4. If T is a tree and G is any graph with δ(G) � |T |−1, [ 9.2.1 ]
[ 9.2.3 ]

then T ⊆ G, i.e. G has a subgraph isomorphic to T .

Proof . Find a copy of T in G inductively along its vertex enumeration
from Corollary 1.5.2. �

Sometimes it is convenient to consider one vertex of a tree as special;
such a vertex is then called the root of this tree. A tree T with a fixed root

root r is a rooted tree. Writing x � y for x ∈ rTy then defines a partial
ordering on V (T ), the tree-order associated with T and r. We shall tree-order

think of this ordering as expressing ‘height’: if x < y we say that x lies
below y in T , we call up/above

down/below

�y� := {x | x � y } and �x� := { y | y � x } �t�, �t�

the down-closure of y and the up-closure of x, and so on. Note that the down-closure
up-closure

root r is the least element in this partial order, the leaves of T are its
maximal elements, the ends of any edge of T are comparable, and the
down-closure of every vertex is a chain, a set of pairwise comparable chain

elements. (Proofs?) The vertices at distance k from r have height k and height

form the kth level of T . level

A rooted tree T contained in a graph G is called normal in G if normal tree

the ends of every T -path in G are comparable in the tree-order of T .
If T spans G, this amounts to requiring that two vertices of T must be
comparable whenever they are adjacent in G; see Figure 1.5.2.

r

G

T

Fig. 1.5.2. A normal spanning tree with root r

A normal tree T in G can be a powerful tool for examining the
structure of G, because G reflects the separation properties of T :

Lemma 1.5.5. Let T be a normal tree in G.
[ 8.2.3 ]
[ 8.5.7 ]
[ 8.5.8 ]

(i) Any two vertices x, y ∈ T are separated in G by the set �x�∩ �y�.
(ii) If S ⊆ V (T ) = V (G) and S is down-closed, then the components

of G−S are spanned by the sets �x� with x minimal in T −S.
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Proof . (i) Let P be any x–y path in G. Since T is normal, the vertices of
P in T form a sequence x = t1, . . . , tn = y for which ti and ti+1 are always
comparable in the tree oder of T . Consider a minimal such sequence of
vertices in P ∩ T . In this sequence we cannot have ti−1 < ti > ti+1

for any i, since ti−1 and ti+1 would then be comparable and deleting ti
would yield a smaller such sequence. So

x = t1 > . . . > tk < . . . < tn = y

for some k ∈ { 1, . . . , n }. As tk ∈ �x� ∩ �y� ∩V (P ), the result follows.
(ii) Since S is down-closed, the upper neighbours in T of any vertex

of G − S are again in G − S (and clearly in the same component), so
the components C of G−S are up-closed. As S is down-closed, minimal
vertices of C are also minimal in G−S. By (i), this means that C has
only one minimal vertex x and equals its up-closure �x�. �

Normal spanning trees are also called depth-first search trees, be-
cause of the way they arise in computer searches on graphs (Exercise 1919).
This fact is often used to prove their existence. The following inductive
proof, however, is simpler and illuminates nicely how normal trees cap-
ture the structure of their host graphs.

Proposition 1.5.6. Every connected graph contains a normal spanning
[ 6.5.3 ]
[ 8.2.4 ]

tree, with any specified vertex as its root.

Proof . Let G be a connected graph and r ∈ G any specified vertex. Let T
be a maximal normal tree with root r in G; we show that V (T ) = V (G).

Suppose not, and let C be a component of G−T . As T is normal,
N(C) is a chain in T . Let x be its greatest element, and let y ∈ C be
adjacent to x. Let T ′ be the tree obtained from T by joining y to x; the
tree-order of T ′ then extends that of T . We shall derive a contradiction
by showing that T ′ is also normal in G.

Let P be a T ′-path in G. If the ends of P both lie in T , then they
are comparable in the tree-order of T (and hence in that of T ′), because
then P is also a T -path and T is normal in G by assumption. If not,
then y is one end of P , so P lies in C except for its other end z, which
lies in N(C). Then z � x, by the choice of x. For our proof that y and
z are comparable it thus suffices to show that x < y, i.e. that x ∈ rT ′y.
This, however, is clear since y is a leaf of T ′ with neighbour x. �
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1.6 Bipartite graphs

Let r � 2 be an integer. A graph G = (V, E) is called r-partite if r-partite

V admits a partition into r classes such that every edge has its ends
in different classes: vertices in the same partition class must not be
adjacent. Instead of ‘2-partite’ one usually says bipartite. bipartite

K2,2,2 = K3
2

Fig. 1.6.1. Two 3-partite graphs

An r-partite graph in which every two vertices from different par-
tition classes are adjacent is called complete; the complete r-partite complete

r-partite
graphs for all r together are the complete multipartite graphs. The
complete r-partite graph Kn1 ∗ . . . ∗ Knr is denoted by Kn1,...,nr ; if Kn1,...,nr

n1 = . . . = nr =: s, we abbreviate this to Kr
s . Thus, Kr

s is the complete Kr
s

r-partite graph in which every partition class contains exactly s ver-
tices.6 (Figure 1.6.1 shows the example of the octahedron K3

2 ; compare
its drawing with that in Figure 1.4.3.) Graphs of the form K1,n are
called stars; the vertex in the singleton partition class of this K1,n is the star

star’s centre. centre

==

Fig. 1.6.2. Three drawings of the bipartite graph K3,3 = K2
3

Clearly, a bipartite graph cannot contain an odd cycle, a cycle of odd odd cycle

length. In fact, the bipartite graphs are characterized by this property:

Proposition 1.6.1. A graph is bipartite if and only if it contains no [ 5.3.1 ]
[ 6.4.2 ]

odd cycle.

6 Note that we obtain a Kr
s if we replace each vertex of a Kr by an independent

s-set; our notation of Kr
s is intended to hint at this connection.
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Proof . Let G = (V, E) be a graph without odd cycles; we show that G is(1.5.1)

bipartite. Clearly a graph is bipartite if all its components are bipartite
or trivial, so we may assume that G is connected. Let T be a spanning
tree in G, pick a root r ∈ T , and denote the associated tree-order on V
by �T . For each v ∈ V , the unique path rTv has odd or even length.
This defines a bipartition of V ; we show that G is bipartite with this
partition.

e

Ce

r

x

y

Fig. 1.6.3. The cycle Ce in T + e

Let e = xy be an edge of G. If e ∈ T , with x <T y say, then
rTy = rTxy and so x and y lie in different partition classes. If e /∈ T
then Ce := xTy + e is a cycle (Fig. 1.6.3), and by the case treated
already the vertices along xTy alternate between the two classes. Since
Ce is even by assumption, x and y again lie in different classes. �

1.7 Contraction and minors

In Section 1.1 we saw two fundamental containment relations between
graphs: the ‘subgraph’ relation, and the ‘induced subgraph’ relation. In
this section we meet two more: the ‘minor’ relation, and the ‘topological
minor’ relation.

Let e = xy be an edge of a graph G = (V, E). By G/e we denote theG/e

graph obtained from G by contracting the edge e into a new vertex ve,contraction

which becomes adjacent to all the former neighbours of x and of y. For-
mally, G/e is a graph (V ′, E′) with vertex set V ′ := (V �{x, y })∪{ ve }
(where ve is the ‘new’ vertex, i.e. ve /∈ V ∪E) and edge setve

E′ :=
{

vw ∈ E | { v, w }∩ {x, y } = ∅
}

∪
{

vew | xw ∈ E � { e } or yw ∈ E � { e }
}

.
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x

y

e
ve

G/eG

Fig. 1.7.1. Contracting the edge e = xy

More generally, if X is another graph and {Vx | x ∈ V (X) } is a
partition of V into connected subsets such that, for any two vertices
x, y ∈ X, there is a Vx–Vy edge in G if and only if xy ∈ E(X), we call
G an MX and write7 G = MX (Fig. 1.7.2). The sets Vx are the branch MX

sets of this MX. Intuitively, we obtain X from G by contracting every branch sets

branch set to a single vertex and deleting any ‘parallel edges’ or ‘loops’
that may arise. In infinite graphs, branch sets are allowed to be infinite.
For example, the graph shown in Figure 8.1.1 is an MX with X an
infinite star.

X

Y
Vx

Vz

x

z

G

Fig. 1.7.2. Y ⊇ G = MX, so X is a minor of Y

If Vx = U ⊆ V is one of the branch sets above and every other
branch set consists just of a single vertex, we also write G/U for the G/U

graph X and vU for the vertex x ∈ X to which U contracts, and think vU

of the rest of X as an induced subgraph of G. The contraction of a
single edge uu′ defined earlier can then be viewed as the special case of
U = {u, u′ }.

Proposition 1.7.1. G is an MX if and only if X can be obtained
from G by a series of edge contractions, i.e. if and only if there are
graphs G0, . . . , Gn and edges ei ∈ Gi such that G0 = G, Gn 
 X, and
Gi+1 = Gi/ei for all i < n.

Proof . Induction on |G| − |X|. �

7 Thus formally, the expression MX—where M stands for ‘minor’; see below—
refers to a whole class of graphs, and G = MX means (with slight abuse of notation)
that G belongs to this class.
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If G = MX is a subgraph of another graph Y , we call X a minor of Y
and write X � Y . Note that every subgraph of a graph is also its minor;minor; �
in particular, every graph is its own minor. By Proposition 1.7.1, any
minor of a graph can be obtained from it by first deleting some vertices
and edges, and then contracting some further edges. Conversely, any
graph obtained from another by repeated deletions and contractions (in
any order) is its minor: this is clear for one deletion or contraction, and
follows for several from the transitivity of the minor relation (Proposition
1.7.3).

If we replace the edges of X with independent paths between their
ends (so that none of these paths has an inner vertex on another path
or in X), we call the graph G obtained a subdivision of X and writesubdivision

TX
G = TX.8 If G = TX is the subgraph of another graph Y , then X is a
topological minor of Y (Fig. 1.7.3).topological

minor

X

Y

G

Fig. 1.7.3. Y ⊇ G = TX, so X is a topological minor of Y

If G = TX, we view V (X) as a subset of V (G) and call these vertices
the branch vertices of G; the other vertices of G are its subdividingbranch

vertices
vertices. Thus, all subdividing vertices have degree 2, while the branch
vertices retain their degree from X.

Proposition 1.7.2.[ 4.4.2 ]
[ 7.3.1 ]
[ 12.5.3 ] (i) Every TX is also an MX (Fig. 1.7.4); thus, every topological

minor of a graph is also its (ordinary) minor.

(ii) If ∆(X) � 3, then every MX contains a TX; thus, every minor
with maximum degree at most 3 of a graph is also its topological
minor. �

Proposition 1.7.3. The minor relation � and the topological-minor[ 12.4.1 ]

relation are partial orderings on the class of finite graphs, i.e. they are
reflexive, antisymmetric and transitive. �

8 So again TX denotes an entire class of graphs: all those which, viewed as a
topological space in the obvious way, are homeomorphic to X. The T in TX stands
for ‘topological’.
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Fig. 1.7.4. A subdivision of K4 viewed as an MK4

Now that we have met all the standard relations between graphs,
we can also define what it means to embed one graph in another. Basi-
cally, an embedding of G in H is an injective map ϕ:V (G)→V (H) that embedding

preserves the kind of structure we are interested in. Thus, ϕ embeds G
in H ‘as a subgraph’ if it preserves the adjacency of vertices, and ‘as
an induced subgraph’ if it preserves both adjacency and non-adjacency.
If ϕ is defined on E(G) as well as on V (G) and maps the edges xy
of G to independent paths in H between ϕ(x) and ϕ(y), it embeds G
in H ‘as a topological minor’. Similarly, an embedding ϕ of G in H ‘as
a minor’ would be a map from V (G) to disjoint connected vertex sets
in H (rather than to single vertices) such that H has an edge between
the sets ϕ(x) and ϕ(y) whenever xy is an edge of G. Further variants are
possible; depending on the context, one may wish to define embeddings
‘as a spanning subgraph’, ‘as an induced minor’, and so on in the obivous
way.

1.8 Euler tours
Any mathematician who happens to find himself in the East Prussian
city of Königsberg (and in the 18th century) will lose no time to follow the
great Leonhard Euler’s example and inquire about a round trip through
the old city that traverses each of the bridges shown in Figure 1.8.1
exactly once.

Thus inspired,9 let us call a closed walk in a graph an Euler tour if
it traverses every edge of the graph exactly once. A graph is Eulerian if Eulerian

it admits an Euler tour.

Theorem 1.8.1. (Euler 1736) [ 2.1.5 ]
[ 10.3.3 ]

A connected graph is Eulerian if and only if every vertex has even degree.

Proof . The degree condition is clearly necessary: a vertex appearing k
times in an Euler tour (or k + 1 times, if it is the starting and finishing
vertex and as such counted twice) must have degree 2k.

9 Anyone to whom such inspiration seems far-fetched, even after contemplating
Figure 1.8.2, may seek consolation in the multigraph of Figure 1.10.1.
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Fig. 1.8.1. The bridges of Königsberg (anno 1736)

Conversely, let G be a connected graph with all degrees even, and
let

W = v0e0 . . . e�−1v�

be a longest walk in G using no edge more than once. Since W cannot
be extended, it already contains all the edges at v�. By assumption, the
number of such edges is even. Hence v� = v0, so W is a closed walk.

Suppose W is not an Euler tour. Then G has an edge e outside W
but incident with a vertex of W , say e = uvi. (Here we use the connect-
edness of G, as in the proof of Proposition 1.4.1.) Then the walk

ueviei . . . e�−1v�e0 . . . ei−1vi

is longer than W , a contradiction. �

Fig. 1.8.2. A graph formalizing the bridge problem
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1.9 Some linear algebra

Let G = (V, E) be a graph with n vertices and m edges, say V = G = (V, E)

{ v1, . . . , vn } and E = { e1, . . . , em }. The vertex space V(G) of G is the
vector space over the 2-element field F2 = { 0, 1 } of all functions V →F2.

vertex
space V(G)

Every element of V(G) corresponds naturally to a subset of V , the set of
those vertices to which it assigns a 1, and every subset of V is uniquely
represented in V(G) by its indicator function. We may thus think of
V(G) as the power set of V made into a vector space: the sum U + U ′ +

of two vertex sets U, U ′ ⊆ V is their symmetric difference (why?), and
U = −U for all U ⊆ V . The zero in V(G), viewed in this way, is the
empty (vertex) set ∅. Since { { v1 }, . . . , { vn } } is a basis of V(G), its
standard basis, we have dimV(G) = n.

In the same way as above, the functions E → F2 form the edge
space E(G) of G: its elements are the subsets of E, vector addition edge space

E(G)
amounts to symmetric difference, ∅ ⊆ E is the zero, and F = −F for
all F ⊆ E. As before, { { e1 }, . . . , { em } } is the standard basis of E(G), standard

basis
and dim E(G) = m.

Since the edges of a graph carry its essential structure, we shall
mostly be concerned with the edge space. Given two edge sets F, F ′ ∈
E(G) and their coefficients λ1, . . . , λm and λ′

1, . . . , λ
′
m with respect to the

standard basis, we write

〈F, F ′〉 := λ1λ
′
1 + . . .+λmλ′

m ∈ F2 . 〈F, F ′〉

Note that 〈F, F ′〉 = 0 may hold even when F = F ′ �= ∅: indeed,
〈F, F ′〉 = 0 if and only if F and F ′ have an even number of edges
in common. Given a subspace F of E(G), we write

F⊥ :=
{
D ∈ E(G) | 〈F, D〉 = 0 for all F ∈ F

}
. F⊥

This is again a subspace of E(G) (the space of all vectors solving a certain
set of linear equations—which?), and we have

dimF + dimF⊥ = m . (†)

The cycle space C = C(G) is the subspace of E(G) spanned by all cycle space
C(G)

the cycles in G—more precisely, by their edge sets.10 The dimension of
C(G) is sometimes called the cyclomatic number of G.

Proposition 1.9.1. The induced cycles in G generate its entire cycle [ 3.2.3 ]

space.

10 For simplicity, we shall not always distinguish between the edge sets F ∈ E(G)
and the subgraphs (V, F ) they induce in G. When we wish to be more precise, such
as in Chapter 8.5, we shall use the word ‘circuit ’ for the edge set of a cycle.
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Proof . By definition of C(G) it suffices to show that the induced cycles
in G generate every cycle C ⊆ G with a chord e. This follows at once
by induction on |C|: the two cycles in C + e that have e but no other
edge in common are shorter than C, and their symmetric difference is
precisely C. �

The elements of C are easily recognized by the degrees of the sub-
graphs they form. Moreover, to generate the cycle space from cycles we
only need disjoint unions rather than arbitrary symmetric differences:

Proposition 1.9.2. The following assertions are equivalent for edge sets[ 4.5.1 ]

F ⊆ E:

(i) F ∈ C(G);

(ii) F is a disjoint union of (edge sets of) cycles in G;

(iii) All vertex degrees of the graph (V, F ) are even.

Proof . Since cycles have even degrees and taking symmetric differences
preserves this, (i)→(iii) follows by induction on the number of cycles used
to generate F . The implication (iii)→(ii) follows by induction on |F |:
if F �= ∅ then (V, F ) contains a cycle C, whose edges we delete for the
induction step. The implication (ii)→(i) is immediate from the definition
of C(G). �

If {V1, V2 } is a partition of V , the set E(V1, V2) of all the edges
of G crossing this partition is called a cut (or cocycle). Recall that forcut

V1 = { v } this cut is denoted by E(v).

Proposition 1.9.3. Together with ∅, the cuts in G form a subspace C∗[ 4.6.3 ]

of E(G). This space is generated by cuts of the form E(v).

Proof . Let C∗ denote the set of all cuts in G, together with ∅. To prove
that C∗ is a subspace, we show that for all D, D′ ∈ C∗ also D + D′

(= D − D′) lies in C∗. Since D + D = ∅ ∈ C∗ and D + ∅ = D ∈ C∗,
we may assume that D and D′ are distinct and non-empty. Let
{V1, V2 } and {V ′

1 , V ′
2 } be the corresponding partitions of V . Then

D + D′ consists of all the edges that cross one of these partitions but
not the other (Fig. 1.9.1). But these are precisely the edges between
(V1 ∩V ′

1)∪ (V2 ∩V ′
2) and (V1 ∩V ′

2)∪ (V2 ∩V ′
1), and by D �= D′ these two

sets form another partition of V . Hence D + D′ ∈ C∗, and C∗ is indeed
a subspace of E(G).

Our second assertion, that the cuts E(v) generate all of C∗, follows
from the fact that every edge xy ∈ G lies in exactly two such cuts (in E(x)
and in E(y)); thus every partition {V1, V2 } of V satisfies E(V1, V2) =∑

v∈V1
E(v). �
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V1 V2

V ′
1

V ′
2

D′

D

Fig. 1.9.1. Cut edges in D + D′

The subspace C∗ =: C∗(G) of E(G) from Proposition 1.9.3 is the cut
space of G. It is not difficult to find among the cuts E(v) an explicit cut space

C∗(G)
basis for C∗(G), and thus to determine its dimension (Exercise 2727).

A minimal non-empty cut in G is a bond . Thus, bonds are for C∗ bond

what cycles are for C: the minimal non-empty elements. Note that the
‘non-empty’ condition bites only if G is disconnected. If G is connected,
its bonds are just its minimal cuts, and these are easy to recognize:
clearly, a cut in a connected graph is minimal if and only if both sides
of the corresponding vertex partition induce connected subgraphs. If G
is disconnected, its bonds are the minimal cuts of its components. (See
also Lemma 3.1.1.)

In analogy to Proposition 1.9.2, bonds and disjoint unions suffice to
generate C∗:

Lemma 1.9.4. Every cut is a disjoint union of bonds. [ 4.6.2 ]

Proof . Consider first a connected graph H = (V, E), a connected sub-
graph C ⊆ H, and a component D of H − C. Then H − D, too, is
connected (Fig. 1.9.2), so the edges between D and H −D form a mini-
mal cut. By the choice of D, this cut is precisely the set E(C, D) of all
C–D edges in H.

D

C

−DH

Fig. 1.9.2. H −D is connected, and E(C, D) a minimal cut
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To prove the lemma, let a cut in an arbitrary graph G = (V, E)
be given, with partition {V1, V2 } of V say. Consider a component
C of G [V1 ], and let H be the component of G containing C. Then
E(C, V2) = E(C, H −C) is the disjoint union of the edge sets E(C, D)
over all the components D of H −C. By our earlier considerations these
sets are minimal cuts in H, and hence bonds in G. Now the disjoint
union of all these edge sets E(C, V2), taken over all the components C
of G [V1 ], is precisely our cut E(V1, V2). �

Theorem 1.9.5. The cycle space C and the cut space C∗ of any graph
satisfy

C = C∗⊥ and C∗ = C⊥ .

Proof . (See also Exercise 3030.) Let us consider a graph G = (V, E).
Clearly, any cycle in G has an even number of edges in each cut. This
implies C ⊆ C∗⊥.

Conversely, recall from Proposition 1.9.2 that for every edge set
F /∈ C there exists a vertex v incident with an odd number of edges in F .
Then 〈E(v), F 〉 = 1, so E(v) ∈ C∗ implies F /∈ C∗⊥. This completes the
proof of C = C∗⊥.

To prove C∗ = C⊥, it now suffices to show C∗ = (C∗⊥)⊥. Here
C∗ ⊆ (C∗⊥)⊥ follows directly from the definition of ⊥. But C∗ has the
same dimension as (C∗⊥)⊥, since (†) implies

dim C∗ +dim C∗⊥ = m = dim C∗⊥ +dim (C∗⊥)⊥.

Hence C∗ = (C∗⊥)⊥ as claimed. �

Consider a connected graph G = (V, E) with a spanning tree T ⊆ G.
Recall that for every edge e ∈ E � E(T ) there is a unique cycle Ce

in T +e (Fig. 1.6.3); these cycles Ce are the fundamental cycles of G withfundamental
cycles

respect to T . On the other hand, given an edge e ∈ T , the graph T − e
has exactly two components (Theorem 1.5.1 (iii)), and the set De ⊆ E(1.5.1)

of edges between these two components form a bond in G (Fig.1.9.3).
These bonds De are the fundamental cuts of G with respect to T .fundamental

cuts
It is not difficult to show directly that the fundamental cycles and

cuts span the cycle and cut space of G, respectively (Ex. 3131–3232). In the
proof of the following more comprehensive theorem, this information
comes for free as a consequence of Theorem 1.9.5 and the dimension
formula (†) for orthogonal subspaces.

Theorem 1.9.6. Let G be a connected graph and T ⊆ G a spanning[ 4.5.1 ]

tree. Then the corresponding fundamental cycles and cuts form a basis
of C(G) and of C∗(G), respectively. If G has n vertices and m edges,
then

dim C(G) = m−n + 1 and dim C∗(G) = n− 1 .
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e

Fig. 1.9.3. The fundamental cut De

Proof . Since an edge e ∈ T lies in De but not in De′ for any e′ �= e, the cut (1.5.3)

De cannot be generated by other fundamental cuts. The fundamental
cuts therefore form a linearly independent subset of C∗, of size n − 1
(Corollary 1.5.3). Similarly, an edge e ∈ E �E(T ) lies on Ce but not on
any other fundamental cycle; so the fundamental cycles form a linearly
independent subset of C, of size m−n + 1. Thus,

dim C∗ � n− 1 and dim C � m−n + 1 .

But

dim C∗ +dim C = m = (n− 1) + (m−n + 1)

by Theorem 1.9.5 and (†), so the two inequalities above can hold only
with equality. Hence the sets of fundamental cuts and cycles are maximal
as linearly independent subsets of C∗ and C, and hence are bases. �

The incidence matrix B = (bij)n×m of a graph G = (V, E) with incidence
matrix

V = { v1, . . . , vn } and E = { e1, . . . , em } is defined over F2 by

bij :=
{ 1 if vi ∈ ej

0 otherwise.

As usual, let Bt denote the transpose of B. Then B and Bt define linear
maps B: E(G)→V(G) and Bt:V(G)→E(G) with respect to the standard
bases.

Proposition 1.9.7.

(i) The kernel of B is C(G).

(ii) The image of Bt is C∗(G). �
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The adjacency matrix A = (aij)n×n of G is defined byadjacency
matrix

aij :=
{ 1 if vivj ∈ E

0 otherwise.

Our last proposition establishes a simple connection between A and B
(now viewed as real matrices). Let D denote the real diagonal matrix
(dij)n×n with dii = d(vi) and dij = 0 otherwise.

Proposition 1.9.8. BBt = A +D. �

1.10 Other notions of graphs

For completeness, we now mention a few other notions of graphs which
feature less frequently or not at all in this book.

A hypergraph is a pair (V, E) of disjoint sets, where the elementshypergraph

of E are non-empty subsets (of any cardinality) of V . Thus, graphs are
special hypergraphs.

A directed graph (or digraph) is a pair (V, E) of disjoint sets (ofdirected
graph

vertices and edges) together with two maps init:E →V and ter:E →V
assigning to every edge e an initial vertex init(e) and a terminal vertexinit(e)

ter(e). The edge e is said to be directed from init(e) to ter(e). Note thatter(e)

a directed graph may have several edges between the same two vertices
x, y. Such edges are called multiple edges; if they have the same direction
(say from x to y), they are parallel . If init(e) = ter(e), the edge e is called
a loop.loop

A directed graph D is an orientation of an (undirected) graph G iforientation

V (D) = V (G) and E(D) = E(G), and if { init(e), ter(e) } = {x, y } for
every edge e = xy. Intuitively, such an oriented graph arises from anoriented

graph
undirected graph simply by directing every edge from one of its ends to
the other. Put differently, oriented graphs are directed graphs without
loops or multiple edges.

A multigraph is a pair (V, E) of disjoint sets (of vertices and edges)multigraph

together with a map E → V ∪ [V ]2 assigning to every edge either one
or two vertices, its ends. Thus, multigraphs too can have loops and
multiple edges: we may think of a multigraph as a directed graph whose
edge directions have been ‘forgotten’. To express that x and y are the
ends of an edge e we still write e = xy, though this no longer determines
e uniquely.

A graph is thus essentially the same as a multigraph without loops
or multiple edges. Somewhat surprisingly, proving a graph theorem more
generally for multigraphs may, on occasion, simplify the proof. Moreover,
there are areas in graph theory (such as plane duality; see Chapters 4.6
and 6.5) where multigraphs arise more naturally than graphs, and where
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any restriction to the latter would seem artificial and be technically
complicated. We shall therefore consider multigraphs in these cases, but
without much technical ado: terminology introduced earlier for graphs
will be used correspondingly.

A few differences, however, should be pointed out. A multigraph
may have cycles of length 1 or 2: loops, and pairs of multiple edges
(or double edges). A loop at a vertex makes it its own neighbour, and
contributes 2 to its degree; in Figure 1.10.1, we thus have d(ve) = 6.
And the notion of edge contraction is simpler in multigraphs than in
graphs. If we contract an edge e = xy in a multigraph G = (V, E) to a
new vertex ve, there is no longer a need to delete any edges other than
e itself: edges parallel to e become loops at ve, while edges xv and yv
become parallel edges between ve and v (Fig. 1.10.1). Thus, formally,
E(G/e) = E � { e }, and only the incidence map e′ �→ { init(e′), ter(e′) }
of G has to be adjusted to the new vertex set in G/e. The notion of a
minor adapts to multigraphs accordingly.

G/eG
e

ve

Fig. 1.10.1. Contracting the edge e in the multigraph corre-
sponding to Fig. 1.8.1

If v is a vertex of degree 2 in a multigraph G, then by suppressing v
suppressing

a vertex
we mean deleting v and adding an edge between its two neighbours.11

(If its two incident edges are identical, i.e. form a loop at v, we add no
edge and obtain just G− v. If they go to the same vertex w �= v, the
added edge will be a loop at w. See Figure 1.10.2.) Since the degrees
of all vertices other than v remain unchanged when v is suppressed,
suppressing several vertices of G always yields a well-defined multigraph
that is independent of the order in which those vertices are suppressed.

Fig. 1.10.2. Suppressing the white vertices

11 This is just a clumsy combinatorial paraphrase of the topological notion of
amalgamating the two edges at v into one edge, of which v becomes an inner point.
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Finally, it should be pointed out that authors who usually work with
multigraphs tend to call them ‘graphs’; in their terminology, our graphs
would be called ‘simple graphs’.

Exercises

1.− What is the number of edges in a Kn?

2. Let d ∈ N and V := { 0, 1 }d; thus, V is the set of all 0–1 sequences of
length d. The graph on V in which two such sequences form an edge if
and only if they differ in exactly one position is called the d-dimensional
cube. Determine the average degree, number of edges, diameter, girth
and circumference of this graph.

(Hint for the circumference: induction on d.)

3. Let G be a graph containing a cycle C, and assume that G contains
a path of length at least k between two vertices of C. Show that G
contains a cycle of length at least

√
k. Is this best possible?

4.− Is the bound in Proposition 1.3.2 best possible?

5. Show that rad G � diam G � 2 rad G for every graph G.

6. Prove the weakening of Theorem 1.3.4 obtained by replacing average
with minimum degree. Deduce that |G| � n0(d/2, g) for every graph G
as given in the theorem.

7.+ Show that every connected graph G contains a path of length at least
min { 2δ(G), |G| − 1 }.

8.+ Find a good lower bound for the order of a connected graph in terms
of its diameter and minimum degree.

9.− Show that the components of a graph partition its vertex set. (In other
words, show that every vertex belongs to exactly one component.)

10.− Show that every 2-connected graph contains a cycle.

11. Determine κ(G) and λ(G) for G = P m, Cn, Kn, Km,n and the d-
dimensional cube (Exercise 22); d, m, n � 3.

12.− Is there a function f : N → N such that, for all k ∈ N, every graph of
minimum degree at least f(k) is k-connected?

13.+ Let α, β be two graph invariants with positive integer values. Formalize
the two statements below, and show that each implies the other:

(i) α is bounded above by a function of β;

(ii) β can be forced up by making α large enough.

Show that the statement

(iii) β is bounded below by a function of α

is not equivalent to (i) and (ii). Which small change will make it so?
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14.+ What is the deeper reason behind the fact that the proof of Theorem
1.4.3 is based on an assumption of the form m � ckn− bk rather than
more simply m � ckn?

15. Prove Theorem 1.5.1.

16.− Show that every tree T has at least ∆(T ) leaves.

17. Show that a tree without a vertex of degree 2 has more leaves than other
vertices. Can you find a very short proof that does not use induction?

18. Show that the tree-order associated with a rooted tree T is indeed a
partial order on V (T ), and verify the claims made about this partial
order in the text.

19.+ Let G be a connected graph, and let r ∈ G be a vertex. Starting
from r, move along the edges of G, going whenever possible to a vertex
not visited so far. If there is no such vertex, go back along the edge by
which the current vertex was first reached (unless the current vertex
is r; then stop). Show that the edges traversed form a normal spanning
tree in G with root r.

(This procedure has earned those trees the name of depth-first search
trees.)

20. Let T be a set of subtrees of a tree T . Assume that the trees in T have
pairwise non-empty intersection. Show that their overall intersection⋂

T is non-empty.

21. Show that every automorphism of a tree fixes a vertex or an edge.

22.− Are the partition classes of a regular bipartite graph always of the same
size?

23. Show that a graph is bipartite if and only if every induced cycle has
even length.

24.+ Find a function f : N→N such that, for all k ∈ N, every graph of average
degree at least f(k) has a bipartite subgraph of minimum degree at
least k.

25. Show that the minor relation � defines a partial ordering on any set of
(finite) graphs. Is the same true for infinite graphs?

26. Prove or disprove that every connected graph contains a walk that
traverses each of its edges exactly once in each direction.

27. Given a graph G, find among all cuts of the form E(v) a basis for the
cut space of G.

28. Show that the bonds of a graph are precisely the minimal cuts of its
components.

29. Prove that the cycles and the cuts in a graph together generate its
entire edge space, or find a counterexample.

30.+ In the proof of Theorem 1.9.5, the only implication that is not proved
directly (but via dimension) is C⊥ ⊆ C∗. Prove this implication directly.
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31. Give a direct proof of the fact that the fundamental cycles of a con-
nected graph span its cycle space.

32. Give a direct proof of the fact that the fundamental cuts of a connected
graph span its cut space.

33. What are the dimensions of the cycle and the cut space of a graph with
k components?

34. Let A = (aij)n×n be the adjacency matrix of the graph G. Show that
the matrix Ak = (a′

ij)n×n displays, for all i, j � n, the number a′
ij of

walks of length k from vi to vj in G.

35.+ Prove Gallai’s cycle-cocycle partition theorem that the vertex set of
any graph G = (V, E) can be written as a disjoint union V = V ′ ∪V ′′

of possibly empty subsets such that the edge sets of both G [ V ′ ] and
G [ V ′′ ] lie in the cycle space of G.

Notes
The terminology used in this book is mostly standard. Alternatives do exist,
of course, and some of these are stated when a concept is first defined. There
is one small point where our notation deviates slightly from standard usage.
Whereas complete graphs, paths, cycles etc. of given order are mostly denoted
by Kn, Pk, C� and so on, we use superscripts instead of subscripts. This has
the advantage of leaving the variables K, P , C etc. free for ad-hoc use: we
may now enumerate components as C1, C2, . . ., speak of paths P1, . . . , Pk, and
so on—without any danger of confusion.

Theorem12 1.3.4 was proved by N.Alon, S.Hoory and N. Linial, The
Moore bound for irregular graphs, Graphs Comb. 18 (2002), 53–57. The
proof uses an ingenious argument counting random walks along the edges of
the graph considered.

The main assertion of Theorem 1.4.3, that an average degree of at least 4k
forces a k-connected subgraph, is from W.Mader, Existenz n-fach zusammen-
hängender Teilgraphen in Graphen genügend großer Kantendichte, Abh. Math.
Sem. Univ. Hamburg 37 (1972) 86–97. The stronger form stated here was
obtained in 2005 by Ph. Sprüssel with a different proof (unpublished); our
proof is due to Mader. For the history of the Königsberg bridge problem, and
Euler’s actual part in its solution, see N.L.Biggs, E.K. Lloyd & R.J.Wilson,
Graph Theory 1736–1936 , Oxford University Press 1976.

Of the large subject of algebraic methods in graph theory, Section 1.9
does not convey an adequate impression. A good introduction is N.L. Biggs,
Algebraic Graph Theory (2nd edn.), Cambridge University Press 1993. A
more comprehensive account is given by C.D.Godsil & G.F.Royle, Algebraic
Graph Theory , Springer GTM 207, 2001. Surveys on the use of algebraic
methods can also be found in the Handbook of Combinatorics (R.L.Graham,
M.Grötschel & L. Lovász, eds.), North-Holland 1995.

12 In the interest of readability, the end-of-chapter notes in this book give references
only for Theorems, and only in cases where these references cannot be found in a
monograph or survey cited for that chapter.



2 Matching
Covering

and Packing

Suppose we are given a graph and are asked to find in it as many in-
dependent edges as possible. How should we go about this? Will we
be able to pair up all its vertices in this way? If not, how can we be
sure that this is indeed impossible? Somewhat surprisingly, this basic
problem does not only lie at the heart of numerous applications, it also
gives rise to some rather interesting graph theory.

A set M of independent edges in a graph G = (V, E) is called a
matching . M is a matching of U ⊆ V if every vertex in U is incident matching

with an edge in M . The vertices in U are then called matched (by M); matched

vertices not incident with any edge of M are unmatched .
A k-regular spanning subgraph is called a k-factor . Thus, a sub- factor

graph H ⊆ G is a 1-factor of G if and only if E(H) is a matching of V .
The problem of how to characterize the graphs that have a 1-factor, i.e.
a matching of their entire vertex set, will be our main theme in the first
two sections of this chapter.

A generalization of the matching problem is to find in a given graph
G as many disjoint subgraphs as possible that are each isomorphic to
an element of a given class H of graphs. This is known as the packing packing

problem. It is related to the covering problem, which asks how few covering

vertices of G suffice to meet all its subgraphs isomorphic to a graph
in H: clearly, we need at least as many vertices for such a cover as the
maximum number k of H-graphs that we can pack disjointly into G. If
there is no cover by just k vertices, perhaps there is always a cover by
at most f(k) vertices, where f(k) may depend on H but not on G? In
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Section 2.3 we shall prove that when H is the class of cycles, then there
is such a function f .

In Section 2.4 we consider packing and covering in terms of edges:
we ask how many edge-disjoint spanning trees we can find in a given
graph, and how few trees in it will cover all its edges. In Section 2.5
we prove a path cover theorem for directed graphs, which implies the
well-known duality theorem of Dilworth for partial orders.

2.1 Matching in bipartite graphs

For this whole section, we let G = (V, E) be a fixed bipartite graph withG = (V, E)

bipartition {A, B }. Vertices denoted as a, a′ etc. will be assumed to lieA, B

in A, vertices denoted as b etc. will lie in B.a, b etc.

How can we find a matching in G with as many edges as possible?
Let us start by considering an arbitrary matching M in G. A path in G
which starts in A at an unmatched vertex and then contains, alternately,
edges from E �M and from M , is an alternating path with respect to M .alternating

path
An alternating path P that ends in an unmatched vertex of B is called
an augmenting path (Fig. 2.1.1), because we can use it to turn M intoaugment-

ing path
a larger matching: the symmetric difference of M with E(P ) is again a
matching (consider the edges at a given vertex), and the set of matched
vertices is increased by two, the ends of P .

M

A B A B

P M ′

Fig. 2.1.1. Augmenting the matching M by the alternating
path P

Alternating paths play an important role in the practical search for
large matchings. In fact, if we start with any matching and keep applying
augmenting paths until no further such improvement is possible, the
matching obtained will always be an optimal one, a matching with the
largest possible number of edges (Exercise 11). The algorithmic problem
of finding such matchings thus reduces to that of finding augmenting
paths—which is an interesting and accessible algorithmic problem.

Our first theorem characterizes the maximal cardinality of a matching
in G by a kind of duality condition. Let us call a set U ⊆ V a (vertex)
cover of E if every edge of G is incident with a vertex in U .cover



2.1 Matching in bipartite graphs 35

Theorem 2.1.1. (König 1931)
The maximum cardinality of a matching in G is equal to the minimum
cardinality of a vertex cover of its edges.

Proof . Let M be a matching in G of maximum cardinality. From every M

edge in M let us choose one of its ends: its end in B if some alternating
path ends in that vertex, and its end in A otherwise (Fig. 2.1.2). We
shall prove that the set U of these |M | vertices covers E; since any vertex U

cover of E must cover M , there can be none with fewer than |M | vertices,
and so the theorem will follow.

U ∩A

U ∩B

Fig. 2.1.2. The vertex cover U

Let ab ∈ E be an edge; we show that either a or b lies in U . If
ab ∈ M , this holds by definition of U , so we assume that ab /∈ M . Since
M is a maximal matching, it contains an edge a′b′ with a = a′ or b = b′.
In fact, we may assume that a = a′: for if a is unmatched (and b = b′),
then ab is an alternating path, and so the end of a′b′ ∈ M chosen for
U was the vertex b′ = b. Now if a′ = a is not in U , then b′ ∈ U , and
some alternating path P ends in b′. But then there is also an alternating
path P ′ ending in b: either P ′ := Pb (if b ∈ P ) or P ′ := Pb′a′b. By the
maximality of M , however, P ′ is not an augmenting path. So b must be
matched, and was chosen for U from the edge of M containing it. �

Let us return to our main problem, the search for some necessary
and sufficient conditions for the existence of a 1-factor. In our present
case of a bipartite graph, we may as well ask more generally when G
contains a matching of A; this will define a 1-factor of G if |A| = |B|,
a condition that has to hold anyhow if G is to have a 1-factor.

A condition clearly necessary for the existence of a matching of A
is that every subset of A has enough neighbours in B, i.e. that

marriage
condition|N(S)| � |S| for all S ⊆ A.

The following marriage theorem says that this obvious necessary condi-
tion is in fact sufficient:
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Theorem 2.1.2. (Hall 1935)[ 2.2.3 ]

G contains a matching of A if and only if |N(S)| � |S| for all S ⊆ A.

We give three proofs, ranging from the natural and pedestrian to the
slick and elegant. The theorem can also be derived easily from König’s
theorem (Exercise 44).

Our first proof is algorithmic and uses alternating paths.

First proof. Consider a matching M of G that leaves a vertex of AM

unmatched; we shall construct an augmenting path with respect to M .
Let a0, b1, a1, b2, a2, . . . be a maximal sequence of distinct vertices

ai ∈ A and bi ∈ B satisfying the following conditions for all i � 1
(Fig. 2.1.3):

(i) a0 is unmatched;

(ii) bi is adjacent to some vertex af(i) ∈ { a0, . . . , ai−1 };f(i)

(iii) aibi ∈ M .

a0

a1

a2

a3

a4

b1

b2

b3

b4

b5

Fig. 2.1.3. Proving the marriage theorem by alternating paths

By the marriage condition, our sequence cannot end in a vertex
of A: the i vertices a0, . . . , ai−1 together have at least i neighbours in B,
so we can always find a new vertex bi �= b1, . . . , bi−1 that satisfies (ii).
Let bk ∈ B be the last vertex of the sequence. By (i)–(iii),k

P := bkaf(k)bf(k)af2(k)bf2(k)af3(k) . . . afr(k)

with fr(k) = 0 is an alternating path.
What is it that prevents us from extending our sequence further?

If bk is matched, say to a, we can indeed extend it by setting ak := a,
unless a = ai with 0 < i < k, in which case (iii) would imply bk = bi

with a contradiction. So bk is unmatched, and hence P is an augmenting
path between a0 and bk. �
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Second proof. We apply induction on |A|. For |A| = 1 the assertion
is true. Now let |A| � 2, and assume that the marriage condition is
sufficient for the existence of a matching of A when |A| is smaller.

If |N(S)| � |S|+1 for every non-empty set S � A, we pick an edge
ab ∈ G and consider the graph G′ := G−{ a, b }. Then every non-empty
set S ⊆ A � { a } satisfies

|NG′(S)| � |NG(S)| − 1 � |S| ,

so by the induction hypothesis G′ contains a matching of A � { a }. To-
gether with the edge ab, this yields a matching of A in G.

Suppose now that A has a non-empty proper subset A′ with |B′| = A′, B′

|A′| for B′ := N(A′). By the induction hypothesis, G′ := G [A′ ∪B′ ] G′

contains a matching of A′. But G−G′ satisfies the marriage condition
too: for any set S ⊆ A � A′ with |NG−G′(S)| < |S| we would have
|NG(S ∪A′)| < |S ∪A′|, contrary to our assumption. Again by induc-
tion, G−G′ contains a matching of A � A′. Putting the two matchings
together, we obtain a matching of A in G. �

For our last proof, let H be a spanning subgraph of G that satisfies H

the marriage condition and is edge-minimal with this property. Note that
dH(a) � 1 for every a ∈ A, by the marriage condition with S = { a }.

Third proof. We show that dH(a) = 1 for every a ∈ A. The edges of
H then form a matching of A, since by the marriage condition no two
such edges can share a vertex in B.

Suppose a has distinct neighbours b1, b2 in H. By definition of H,
the graphs H − ab1 and H − ab2 violate the marriage condition. So for
i = 1, 2 there is a set Ai ⊆ A containing a such that |Ai| > |Bi| for
Bi := NH−abi

(Ai). Since b1 ∈ B2 and b2 ∈ B1, we obtain

|NH(A1 ∩A2 � { a })| � |B1 ∩B2|
= |B1|+ |B2| − |B1 ∪B2|
= |B1|+ |B2| −

∣∣NH(A1 ∪A2)|
� |A1| − 1 + |A2| − 1− |A1 ∪A2|
= |A1 ∩A2 � { a }|− 1 .

Hence H violates the marriage condition, contrary to assumption. �

This last proof has a pretty ‘dual’, which begins by showing that
dH(b) � 1 for every b ∈ B. See Exercise 55 and its hint for details.

Corollary 2.1.3. If G is k-regular with k � 1, then G has a 1-factor.
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Proof . If G is k-regular, then clearly |A| = |B|; it thus suffices to show by
Theorem 2.1.2 that G contains a matching of A. Now every set S ⊆ A
is joined to N(S) by a total of k |S| edges, and these are among the
k |N(S)| edges of G incident with N(S). Therefore k |S| � k |N(S)|, so
G does indeed satisfy the marriage condition. �

In some real-life applications, matchings are not chosen on the basis
of global criteria for the entire graph but evolve as the result of inde-
pendent decisions made locally by the participating vertices. A typical
situation is that vertices are not indifferent to which of their incident
edges are picked to match them, but prefer some to others. Then if M
is a matching and e = ab is an edge not in M such that both a and
b prefer e to their current matching edge (if they are matched), then a
and b may agree to change M locally by including e and discarding their
earlier matching edges. The matching M , although perhaps of maximal
size, would thus be unstable.

More formally, call a family (�v)v∈V of linear orderings �v on E(v)preferences

a set of preferences for G. Then call a matching M in G stable if for
every edge e ∈ E � M there exists an edge f ∈ M such that e and f

stable
matching

have a common vertex v with e <v f . The following result is sometimes
called the stable marriage theorem:

Theorem 2.1.4. (Gale & Shapley 1962)[ 5.4.4 ]

For every set of preferences, G has a stable matching.

Proof . Call a matching M in G better than a matching M ′ �= M if M
makes the vertices in B happier than M ′ does, that is, if every vertex b
in an edge f ′ ∈ M ′ is incident also with some f ∈ M such that f ′ �b f .
Given a matching M , call a vertex a ∈ A acceptable to b ∈ B if e = ab ∈
E � M and any edge f ∈ M at b satisfies f <b e. Call a ∈ A happy
with M if a is unmatched or its matching edge f ∈ M satisfies f >a e
for all edges e = ab such that a is acceptable to b.

Starting with the empty matching, let us construct a sequence of
matchings that each keep all the vertices in A happy. Given such a
matching M , consider a vertex a ∈ A that is unmatched but acceptable
to some b ∈ B. (If no such a exists, terminate the sequence.) Add to M
the �a-maximal edge ab such that a is acceptable to b, and discard from
M any other edge at b.

Clearly, each matching in our sequence is better than the previous,
and it is easy to check inductively that they all keep the vertices in A
happy. So the sequence continues until it terminates with a matching
M such that every unmatched vertex in A is inacceptable to all its
neighbours in B. As every matched vertex in A is happy with M , this
matching is stable. �



2.1 Matching in bipartite graphs 39

Despite its seemingly narrow formulation, the marriage theorem
counts among the most frequently applied graph theorems, both out-
side graph theory and within. Often, however, recasting a problem in
the setting of bipartite matching requires some clever adaptation. As a
simple example, we now use the marriage theorem to derive one of the
earliest results of graph theory, a result whose original proof is not all
that simple, and certainly not short:

Corollary 2.1.5. (Petersen 1891)
Every regular graph of positive even degree has a 2-factor.

Proof . Let G be any 2k-regular graph (k � 1), without loss of generality (1.8.1)

connected. By Theorem 1.8.1, G contains an Euler tour v0e0 . . . e�−1v�,
with v� = v0. We replace every vertex v by a pair (v−, v+), and every
edge ei = vivi+1 by the edge v+

i v−i+1 (Fig. 2.1.4). The resulting bipartite
graph G′ is k-regular, so by Corollary 2.1.3 it has a 1-factor. Collapsing
every vertex pair (v−, v+) back into a single vertex v, we turn this 1-
factor of G′ into a 2-factor of G. �

v

v−

v+

Fig. 2.1.4. Splitting vertices in the proof of Corollary 2.1.5

2.2 Matching in general graphs

Given a graph G, let us denote by CG the set of its components, and by CG

q(G) the number of its odd components, those of odd order. If G has a q(G)

1-factor, then clearly
Tutte’s

conditionq(G−S) � |S| for all S ⊆ V (G),

since every odd component of G−S will send a factor edge to S.
Again, this obvious necessary condition for the existence of a 1-factor

is also sufficient:

Theorem 2.2.1. (Tutte 1947)
A graph G has a 1-factor if and only if q(G−S) � |S| for all S ⊆ V (G).
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G

S S

GS

Fig. 2.2.1. Tutte’s condition q(G−S) � |S| for q = 3, and the
contracted graph GS from Theorem 2.2.3.

Proof . Let G = (V, E) be a graph without a 1-factor. Our task is toV, E

find a bad set S ⊆ V , one that violates Tutte’s condition.bad set

We may assume that G is edge-maximal without a 1-factor. Indeed,
if G′ is obtained from G by adding edges and S ⊆ V is bad for G′, then
S is also bad for G: any odd component of G′ − S is the union of
components of G−S, and one of these must again be odd.

What does G look like? Clearly, if G contains a bad set S then, by
its edge-maximality and the trivial forward implication of the theorem,

all the components of G−S are complete and every vertex
s ∈ S is adjacent to all the vertices of G− s.

(∗)

But also conversely, if a set S ⊆ V satisfies (∗) then either S or the
empty set must be bad: if S is not bad we can join the odd components
of G− S disjointly to S and pair up all the remaining vertices—unless
|G| is odd, in which case ∅ is bad.

So it suffices to prove that G has a set S of vertices satisfying (∗).
Let S be the set of vertices that are adjacent to every other vertex. IfS

this set S does not satisfy (∗), then some component of G−S has non-
adjacent vertices a, a′. Let a, b, c be the first three vertices on a shortesta, b, c

a–a′ path in this component; then ab, bc ∈ E but ac /∈ E. Since b /∈ S,
there is a vertex d ∈ V such that bd /∈ E. By the maximality of G, thered

is a matching M1 of V in G + ac, and a matching M2 of V in G + bd.M1, M2

P
c

a

b

d

C
. . .

2 21

1

1

Fig. 2.2.2. Deriving a contradiction if S does not satisfy (∗)
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Let P = d . . . v be a maximal path in G starting at d with an edge v

from M1 and containing alternately edges from M1 and M2 (Fig. 2.2.2).
If the last edge of P lies in M1, then v = b, since otherwise we could
continue P . Let us then set C := P + bd. If the last edge of P lies in M2,
then by the maximality of P the M1-edge at v must be ac, so v ∈ { a, c };
then let C be the cycle dPvbd. In each case, C is an even cycle with
every other edge in M2, and whose only edge not in E is bd. Replacing
in M2 its edges on C with the edges of C −M2, we obtain a matching
of V contained in E, a contradiction. �

Corollary 2.2.2. (Petersen 1891)
Every bridgeless cubic graph has a 1-factor.

Proof . We show that any bridgeless cubic graph G satisfies Tutte’s
condition. Let S ⊆ V (G) be given, and consider an odd component C of
G−S. Since G is cubic, the degrees (in G) of the vertices in C sum to an
odd number, but only an even part of this sum arises from edges of C.
So G has an odd number of S–C edges, and therefore has at least 3 such
edges (since G has no bridge). The total number of edges between S and
G−S thus is at least 3q(G−S). But it is also at most 3|S|, because G
is cubic. Hence q(G−S) � |S|, as required. �

In order to shed a little more light on the techniques used in match-
ing theory, we now give a second proof of Tutte’s theorem. In fact,
we shall prove a slightly stronger result, a result that places a structure
interesting from the matching point of view on an arbitrary graph. If the
graph happens to satisfy the condition of Tutte’s theorem, this structure
will at once yield a 1-factor.

A graph G = (V, E) is called factor-critical if G �= ∅ and G − v
factor-
critical

has a 1-factor for every vertex v ∈ G. Then G itself has no 1-factor,
because it has odd order. We call a vertex set S ⊆ V matchable to matchable

CG−S if the (bipartite1) graph GS , which arises from G by contracting
the components C ∈ CG−S to single vertices and deleting all the edges
inside S, contains a matching of S. (Formally, GS is the graph with GS

vertex set S∪CG−S and edge set { sC | ∃ c ∈ C : sc ∈ E }; see Fig. 2.2.1.)

Theorem 2.2.3. Every graph G = (V, E) contains a vertex set S with
the following two properties:

(i) S is matchable to CG−S ;

(ii) Every component of G−S is factor-critical.

Given any such set S, the graph G contains a 1-factor if and only if
|S| = |CG−S |.

1 except for the—permitted—case that S or CG−S is empty
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For any given G, the assertion of Tutte’s theorem follows easily from
this result. Indeed, by (i) and (ii) we have |S| � |CG−S | = q(G − S)
(since factor-critical graphs have odd order); thus Tutte’s condition of
q(G − S) � |S| implies |S| = |CG−S |, and the existence of a 1-factor
follows from the last statement of Theorem 2.2.3.

Proof of Theorem 2.2.3. Note first that the last assertion of the(2.1.2)

theorem follows at once from the assertions (i) and (ii): if G has a
1-factor, we have q(G − S) � |S| and hence |S| = |CG−S | as above;
conversely if |S| = |CG−S |, then the existence of a 1-factor follows straight
from (i) and (ii).

We now prove the existence of a set S satisfying (i) and (ii), by
induction on |G|. For |G| = 0 we may take S = ∅. Now let G be given
with |G| > 0, and assume the assertion holds for graphs with fewer
vertices.

Consider the sets T ⊆ V for which Tutte’s condition fails worst, i.e.
for which

d(T ) := dG(T ) := q(G−T )− |T |d

is maximum, and let S be a largest such set T . Note that d(S) � d(∅) � 0.S

We first show that every component C ∈ CG−S =: C is odd. If |C|C
is even, pick a vertex c ∈ C, and consider T := S ∪ { c }. As C − c has
odd order it has at least one odd component, which is also a component
of G−T . Therefore

q(G−T ) � q(G−S) + 1 while |T | = |S|+ 1 ,

so d(T ) � d(S) contradicting the choice of S.
Next we prove the assertion (ii), that every C ∈ C is factor-critical.

Suppose there exist C ∈ C and c ∈ C such that C ′ := C − c has no
1-factor. By the induction hypothesis (and the fact that, as shown ear-
lier, for fixed G our theorem implies Tutte’s theorem) there exists a set
S′ ⊆ V (C ′) with

q(C ′ −S′) > |S′| .

Since |C| is odd and hence |C ′| is even, the numbers q(C ′−S′) and |S′|
are either both even or both odd, so they cannot differ by exactly 1. We
may therefore sharpen the above inequality to

q(C ′ −S′) � |S′|+ 2 ,

giving dC′(S′) � 2. Then for T := S ∪{ c }∪S′ we have

d(T ) � d(S)− 1− 1 + dC′(S′) � d(S) ,
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where the first ‘−1’ comes from the loss of C as an odd component
and the second comes from including c in the set T . As before, this
contradicts the choice of S.

It remains to show that S is matchable to CG−S . If not, then by
the marriage theorem there exists a set S′ ⊆ S that sends edges to fewer
than |S′| components in C. Since the other components in C are also
components of G − (S \ S′), the set T = S \ S′ satisfies d(T ) > d(S),
contrary to the choice of S. �

Let us consider once more the set S from Theorem 2.2.3, together S

with any matching M in G. As before, we write C := CG−S . Let us C
denote by kS the number of edges in M with at least one end in S, and
by kC the number of edges in M with both ends in G− S. Since each kS , kC
C ∈ C is odd, at least one of its vertices is not incident with an edge of
the second type. Therefore every matching M satisfies

kS � |S| and kC � 1
2

(
|V | − |S| − |C|

)
. (1)

Moreover, G contains a matching M0 with equality in both cases: first M0

choose |S| edges between S and
⋃
C according to (i), and then use (ii) to

find a suitable set of 1
2

(
|C| − 1

)
edges in every component C ∈ C. This

matching M0 thus has exactly

|M0| = |S|+ 1
2

(
|V | − |S| − |C|

)
(2)

edges.
Now (1) and (2) together imply that every matching M of maximum

cardinality satisfies both parts of (1) with equality: by |M | � |M0|
and (2), M has at least |S|+ 1

2

(
|V | − |S| − |C|

)
edges, which implies by

(1) that neither of the inequalities in (1) can be strict. But equality
in (1), in turn, implies that M has the structure described above: by
kS = |S|, every vertex s ∈ S is the end of an edge st ∈ M with t ∈ G−S,
and by kC = 1

2

(
|V | − |S| − |C|

)
exactly 1

2 (|C| − 1
)

edges of M lie in C,
for every C ∈ C. Finally, since these latter edges miss only one vertex in
each C, the ends t of the edges st above lie in different components C
for different s.

The seemingly technical Theorem 2.2.3 thus hides a wealth of struc-
tural information: it contains the essence of a detailed description of
all maximum-cardinality matchings in all graphs. A reference to the
full statement of this structural result, known as the Gallai-Edmonds
matching theorem, is given in the notes at the end of this chapter.
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2.3 Packing and covering

Much of the charm of König’s and Hall’s theorems in Section 2.1 lies
in the fact that they guarantee the existence of the desired matching as
soon as some obvious obstruction does not occur. In König’s theorem,
we can find k independent edges in our graph unless we can cover all its
edges by fewer than k vertices (in which case it is obviously impossible).

More generally, if G is an arbitrary graph, not necessarily bipartite,
and H is any class of graphs, we might compare the largest number k
of graphs from H (not necessarily distinct) that we can pack disjointly
into G with the smallest number s of vertices of G that will cover all its
subgraphs in H. If s can be bounded by a function of k, i.e. independently
of G, we say that H has the Erdős-Pósa property . (Thus, formally, H hasErdős-Pósa

property
this property if there exists an N→R function k �→ f(k) such that, for
every k and G, either G contains k disjoint subgraphs each isomorphic
to a graph in H, or there is a set U ⊆ V (G) of at most f(k) vertices
such that G−U has no subgraph in H.)

Our aim in this section is to prove the theorem of Erdős and Pósa
that the class of all cycles has this property: we shall find a function f
(about 4k log k) such that every graph contains either k disjoint cycles
or a set of at most f(k) vertices covering all its cycles.

We begin by proving a stronger assertion for cubic graphs. For
k ∈ N, put

rk := log k + log log k + 4 and sk :=
{

4krk if k � 2
1 if k � 1 .rk, sk

Lemma 2.3.1. Let k ∈ N, and let H be a cubic multigraph. If |H| � sk,
then H contains k disjoint cycles.

Proof . We apply induction on k. For k � 1 the assertion is trivial, so let(1.3.5)

k � 2 be given for the induction step. Let C be a shortest cycle in H.
We first show that H −C contains a subdivision of a cubic multi-

graph H ′ with |H ′| � |H|−2|C|. Let m be the number of edges betweenm

C and H −C. Since H is cubic and d(C) = 2, we have m � |C|. We
now consider bipartitions {V1, V2 } of V (H), beginning with V1 := V (C).
If H [V2 ] has a vertex of degree at most 1 we move this vertex to V1,
obtaining a new partition {V1, V2 } crossed by fewer edges. Suppose
we can perform a sequence of n such moves, but no more. Then then

resulting partition {V1, V2 } is crossed by at most m − n edges. And
H [ V2 ] has at most m−n vertices of degree less than 3, because each of
these is incident with a cut edge. These vertices have degree exactly 2
in H [V2 ], since we could not move them to V1. Let H ′ be the cubic
multigraph obtained from H [V2 ] by suppressing these vertices. Then

|H ′| � |H| − |C| −n− (m−n) � |H| − 2|C| ,
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as desired.
To complete the proof, it suffices to show that |H ′| � sk−1. Since

|C| � 2 log |H| by Corollary 1.3.5 (or by |H| � sk, if |C| = g(H) � 2),
and |H| � sk � 6, we have

|H ′| � |H| − 2|C| � |H| − 4 log |H| � sk − 4 log sk .

(In the last inequality we use that the function x �→ x− 4 log x increases
for x � 6.)

It thus remains to show that sk − 4 log sk � sk−1. For k = 2 this is
clear, so we assume that k � 3. Then rk � 4 log k (which is obvious for
k � 4, while the case of k = 3 has to be calculated), and hence

sk − 4 log sk = 4(k− 1)rk + 4 log k + 4 log log k + 16
−

(
8 + 4 log k + 4 log rk

)
� sk−1 + 4 log log k + 8− 4 log(4 log k)

= sk−1 . �

Theorem 2.3.2. (Erdős & Pósa 1965)
There is a function f : N → R such that, given any k ∈ N, every graph
contains either k disjoint cycles or a set of at most f(k) vertices meeting
all its cycles.

Proof . We show the result for f(k) := sk + k − 1. Let k be given, and
let G be any graph. We may assume that G contains a cycle, and so it
has a maximal subgraph H in which every vertex has degree 2 or 3. Let
U be its set of degree 3 vertices. U

Let C be the set of all cycles in G that avoid U and meet H in exactly
one vertex. Let Z ⊆ V (H) � U be the set of those vertices. For each Z

z ∈ Z pick a cycle Cz ∈ C that meets H in z, and put C′ := {Cz | z ∈ Z }.
By the maximality of H, the cycles in C′ are disjoint.

Let D be the set of the 2-regular components of H that avoid Z.
Then C′∪D is another set of disjoint cycles. If |C′∪D| � k, we are done.
Otherwise we can add to Z one vertex from each cycle in D to obtain a
set X of at most k− 1 vertices that meets all the cycles in C and all the X

2-regular components of H. Now consider any cycle of G that avoids X.
By the maximality of H it meets H. But it is not a component of H, it
does not lie in C, and it does not contain an H - path between distinct
vertices outside U (by the maximality of H). So this cycle meets U .

We have shown that every cycle in G meets X ∪U . As |X| � k− 1,
it thus suffices to show that |U | < sk unless H contains k disjoint cycles.
But this follows from Lemma 2.3.1 applied to the graph obtained from
H by suppressing its vertices of degree 2. �
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We shall meet the Erdős-Pósa property again in Chapter 12. There,
a considerable extension of Theorem 2.3.2 will appear as an unexpected
and easy corollary of the theory of graph minors.

2.4 Tree-packing and arboricity

In this section we consider packing and covering in terms of edges rather
than vertices. How many edge-disjoint spanning trees can we find in
a given graph? And how few trees in it, not necessarily edge-disjoint,
suffice to cover all its edges?

To motivate the tree-packing problem, assume for a moment that
our graph represents a communication network, and that for every choice
of two vertices we want to be able to find k edge-disjoint paths between
them. Menger’s theorem (3.3.6 (ii)) in the next chapter will tell us that
such paths exist as soon as our graph is k-edge-connected, which is clearly
also necessary. This is a good theorem, but it does not tell us how to find
those paths; in particular, having found them for one pair of endvertices
we are not necessarily better placed to find them for another pair. If our
graph has k edge-disjoint spanning trees, however, there will always be k
canonical such paths, one in each tree. Once we have stored those trees
in our computer, we shall always be able to find the k paths quickly, for
any given pair of endvertices.

When does a graph G have k edge-disjoint spanning trees? If it
does, it clearly must be k-edge-connected. The converse, however, is
easily seen to be false (try k = 2); indeed it is not even clear at that any
edge-connectivity will imply the existence of k edge-disjoint spanning
trees. (But see Corollary 2.4.2 below.)

Here is another necessary condition. If G has k edge-disjoint span-
ning trees, then with respect to any partition of V (G) into r sets, every
spanning tree of G has at least r−1 cross-edges, edges whose ends lie incross-edges

different partition sets (why?). Thus if G has k edge-disjoint spanning
trees, it has at least k (r−1) cross-edges. This condition is also sufficient:

Theorem 2.4.1. (Nash-Williams 1961; Tutte 1961)
A multigraph contains k edge-disjoint spanning trees if and only if for
every partition P of its vertex set it has at least k (|P | − 1) cross-edges.

Before we prove Theorem 2.4.1, let us note a surprising corollary:
to ensure the existence of k edge-disjoint spanning trees, it suffices to
raise the edge-connectivity to just 2k:

Corollary 2.4.2. Every 2k-edge-connected multigraph G has k edge-[ 6.4.4 ]

disjoint spanning trees.
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Proof . Every set in a vertex partition of G is joined to other partition
sets by at least 2k edges. Hence, for any partition into r sets, G has
at least 1

2

∑r
i=1 2k = kr cross-edges. The assertion thus follows from

Theorem 2.4.1. �

For the proof of Theorem 2.4.1, let a multigraph G = (V, E) and G = (V, E)

k ∈ N be given. Let F be the set of all k-tuples F = (F1, . . . , Fk) of k,F
edge-disjoint spanning forests in G with the maximum total number of
edges, i.e. such that ‖F‖ :=

∣∣E [F ]
∣∣ with E [F ] := E(F1)∪ . . .∪E(Fk) E[F ], ‖F‖

is as large as possible.
If F = (F1, . . . , Fk) ∈ F and e ∈ E � E [F ], then every Fi + e con-

tains a cycle (i = 1, . . . , k): otherwise we could replace Fi by Fi + e in F
and obtain a contradiction to the maximality of ‖F‖. Let us consider
an edge e′ �= e of this cycle, for some fixed i. Putting F ′

i := Fi + e− e′,
and F ′

j := Fj for all j �= i, we see that F ′ := (F ′
1, . . . , F

′
k) is again in F ;

we say that F ′ has been obtained from F by the replacement of the edge
replacement

edge e′ with e. Note that the component of Fi containing e′ keeps its
vertex set when it changes into a component of F ′

i . Hence for every path
x . . . y ⊆ F ′

i there is a unique path xFiy in Fi; this will be used later. xFiy

We now consider a fixed k-tuple F 0 = (F 0
1 , . . . , F 0

k ) ∈ F . The set F 0

of all k-tuples in F that can be obtained from F 0 by a series of edge
replacements will be denoted by F0. Finally, we let F0

E0E0 :=
⋃

F ∈F0

(E � E [F ])

and G0 := (V, E0). G0

Lemma 2.4.3. For every e0 ∈ E �E [ F 0 ] there exists a set U ⊆ V that
is connected in every F 0

i ( i = 1, . . . , k) and contains the ends of e0.

Proof . As F 0 ∈ F0, we have e0 ∈ E0; let C0 be the component of G0 C0

containing e0. We shall prove the assertion for U := V (C0). U

Let i ∈ { 1, . . . , k } be given; we have to show that U is connected i

in F 0
i . To this end, we first prove the following:

Let F = (F1, . . . , Fk) ∈ F0, and let (F ′
1, . . . , F

′
k) have been

obtained from F by the replacement of an edge of Fi. If
x, y are the ends of a path in F ′

i ∩C0, then also xFiy ⊆ C0.
(1)

Let e = vw be the new edge in E(F ′
i ) � E [F ]; this is the only edge of

F ′
i not lying in Fi. We assume that e ∈ xF ′

iy: otherwise we would have
xFiy = xF ′

iy and nothing to show. It suffices to show that vFiw ⊆ C0:
then (xF ′

iy− e)∪ vFiw is a connected subgraph of Fi ∩C0 that contains
x, y, and hence also xFiy. Let e′ be any edge of vFiw. Since we could
replace e′ in F ∈ F0 by e and obtain an element of F0 not contain-
ing e′, we have e′ ∈ E0. Thus vFiw ⊆ G0, and hence vFiw ⊆ C0 since
v, w ∈ xF ′

iy ⊆ C0. This proves (1).
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In order to prove that U = V (C0) is connected in F 0
i we show that,

for every edge xy ∈ C0, the path xF 0
i y exists and lies in C0. As C0 is

connected, the union of all these paths will then be a connected spanning
subgraph of F 0

i [U ].
So let e = xy ∈ C0 be given. As e ∈ E0, there exist an s ∈ N

and k-tuples F r = (F r
1 , . . . , F r

k ) for r = 1, . . . , s such that each F r is
obtained from F r−1 by edge replacement and e ∈ E � E [F s ]. Setting
F := F s in (1), we may think of e as a path of length 1 in F ′

i ∩ C0.
Successive applications of (1) to F = F s, . . . , F 0 then give xF 0

i y ⊆ C0

as desired. �

Proof of Theorem 2.4.1. We prove the backward implication by(1.5.3)

induction on |G|. For |G| = 2 the assertion holds. For the induction
step, we now suppose that for every partition P of V there are at least
k (|P |−1) cross-edges, and construct k edge-disjoint spanning trees in G.

Pick a k-tuple F 0 = (F 0
1 , . . . , F 0

k ) ∈ F . If every F 0
i is a tree, we areF 0

done. If not, we have

‖F 0‖ =
k∑

i=1

‖F 0
i ‖ < k (|G| − 1)

by Corollary 1.5.3. On the other hand, we have ‖G‖ � k (|G| − 1) by
assumption: consider the partition of V into single vertices. So there
exists an edge e0 ∈ E � E [F 0 ]. By Lemma 2.4.3, there exists a sete0

U ⊆ V that is connected in every F 0
i and contains the ends of e0; inU

particular, |U | � 2. Since every partition of the contracted multigraph
G/U induces a partition of G with the same cross-edges,2 G/U has at
least k (|P | − 1) cross-edges with respect to any partition P . By the
induction hypothesis, therefore, G/U has k edge-disjoint spanning trees
T1, . . . , Tk. Replacing in each Ti the vertex vU contracted from U by the
spanning tree F 0

i ∩G [U ] of G [U ], we obtain k edge-disjoint spanning
trees in G. �

Let us say that subgraphs G1, . . . , Gk of a graph G partition G ifgraph
partition

their edge sets form a partition of E(G). Our spanning tree problem may
then be recast as follows: into how many connected spanning subgraphs
can we partition a given graph? The excuse for rephrasing our simple
tree problem in this more complicated way is that it now has an obvious
dual (cf. Theorem 1.5.1): into how few acyclic (spanning) subgraphs
can we partition a given graph? Or for given k: which graphs can be
partitioned into at most k forests?

An obvious necessary condition now is that every set U ⊆ V (G)
induces at most k (|U | − 1) edges, no more than |U | − 1 for each forest.

2 see Chapter 1.10 on contraction in multigraphs
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Once more, this condition turns out to be sufficient too. And surpris-
ingly, this can be shown with the help of Lemma 2.4.3, which was de-
signed for the proof of our theorem on edge-disjoint spanning trees:

Theorem 2.4.4. (Nash-Williams 1964)
A multigraph G = (V, E) can be partitioned into at most k forests if and
only if ‖G [U ]‖ � k (|U | − 1) for every non-empty set U ⊆ V .

Proof . The forward implication was shown above. Conversely, we show (1.5.3)

that every k-tuple F = (F1, . . . , Fk) ∈ F partitions G, i.e. that E [F ] =
E. If not, let e ∈ E � E [F ]. By Lemma 2.4.3, there exists a set U ⊆ V
that is connected in every Fi and contains the ends of e. Then G [U ]
contains |U | − 1 edges from each Fi, and in addition the edge e. Thus
‖G [U ]‖ > k (|U | − 1), contrary to our assumption. �

The least number of forests forming a partition of a graph G is called
the arboricity of G. By Theorem 2.4.4, the arboricity is a measure for arboricity

the maximum local density: a graph has small arboricity if and only if
it is ‘nowhere dense’, i.e. if and only if it has no subgraph H with ε(H)
large.

We shall meet Theorem 2.4.1 again in Chapter 8.5, where we prove
its infinite version. This is based not on ordinary spanning trees (for
which the result is false) but on ‘topological spanning trees’: the analog-
ous structures in a topological space formed by the graph together with
its ends.

2.5 Path covers

Let us return once more to König’s duality theorem for bipartite graphs,
Theorem 2.1.1. If we orient every edge of G from A to B, the theorem
tells us how many disjoint directed paths we need in order to cover all
the vertices of G: every directed path has length 0 or 1, and clearly the
number of paths in such a ‘path cover’ is smallest when it contains as
many paths of length 1 as possible—in other words, when it contains a
maximum-cardinality matching.

In this section we put the above question more generally: how many
paths in a given directed graph will suffice to cover its entire vertex set?
Of course, this could be asked just as well for undirected graphs. As it
turns out, however, the result we shall prove is rather more trivial in
the undirected case (exercise), and the directed case will also have an
interesting corollary.

A directed path is a directed graph P �= ∅ with distinct vertices
x0, . . . , xk and edges e0, . . . , ek−1 such that ei is an edge directed from
xi to xi+1, for all i < k. In this section, path will always mean ‘directed path
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path’. The vertex xk above is the last vertex of the path P , and when P
is a set of paths we write ter(P) for the set of their last vertices. A pathter(P)

cover of a directed graph G is a set of disjoint paths in G which togetherpath cover

contain all the vertices of G.

Theorem 2.5.1. (Gallai & Milgram 1960)
Every directed graph G has a path cover P and an independent set
{ vP | P ∈ P } of vertices such that vP ∈ P for every P ∈ P.

Proof . We prove by induction on |G| that for every path cover P =P
{P1, . . . , Pm } of G with ter(P) minimal there is a set { vP | P ∈ P } asPi

claimed. For each i, let vi denote the last vertex of Pi.vi

If ter(P) = { v1, . . . , vm } is independent there is nothing more to
show, so we assume that G has an edge from v2 to v1. Since P2v2v1

is again a path, the minimality of ter(P) implies that v1 is not the
only vertex of P1; let v be the vertex preceding v1 on P1. Then P ′ :=v

{P1v, P2, . . . , Pm } is a path cover of G′ := G− v1 (Fig. 2.5.1). Clearly,P ′, G′

any independent set of representatives for P ′ in G′ will also work for
P in G, so all we have to check is that we may apply the induction
hypothesis to P ′. It thus remains to show that ter(P ′) = { v, v2, . . . , vm }
is minimal among the sets of last vertices of path covers of G′.

. . .

v1 v2

P1 P2

v

Pm

Fig. 2.5.1. Path covers of G and G′

Suppose then that G′ has a path cover P ′′ with ter(P ′′) � ter(P ′).
If a path P ∈ P ′′ ends in v, we may replace P in P ′′ by Pvv1 to obtain
a path cover of G whose set of last vertices is a proper subset of ter(P),
contradicting the choice of P. If a path P ∈ P ′′ ends in v2 (but none in v),
we similarly replace P in P ′′ by Pv2v1 to obtain a contradiction to the
minimality of ter(P). Hence ter(P ′′) ⊆ { v3, . . . , vm }. But now P ′′ and
the trivial path { v1 } together form a path cover of G that contradicts
the minimality of ter(P). �

As a corollary to Theorem 2.5.1 we obtain a classical result from
the theory of partial orders. Recall that a subset of a partially ordered
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set (P,�) is a chain in P if its elements are pairwise comparable; it is chain

an antichain if they are pairwise incomparable. antichain

Corollary 2.5.2. (Dilworth 1950)
In every finite partially ordered set (P,�), the minimum number of
chains with union P is equal to the maximum cardinality of an antichain
in P .

Proof . If A is an antichain in P of maximum cardinality, then clearly
P cannot be covered by fewer than |A| chains. The fact that |A| chains
will suffice follows from Theorem 2.5.1 applied to the directed graph on
P with the edge set { (x, y) | x < y }. �

Exercises
1. Let M be a matching in a bipartite graph G. Show that if M is sub-

optimal, i.e. contains fewer edges than some other matching in G, then
G contains an augmenting path with respect to M . Does this fact
generalize to matchings in non-bipartite graphs?

2. Describe an algorithm that finds, as efficiently as possible, a matching
of maximum cardinality in any bipartite graph.

3. Show that if there exist injective functions A→B and B →A between
two infinite sets A and B then there exists a bijection A→B.

4. Derive the marriage theorem from König’s theorem.

5. Let G and H be defined as for the third proof of Hall’s theorem. Show
that dH(b) � 1 for every b ∈ B, and deduce the marriage theorem.

6.+ Find an infinite counterexample to the statement of the marriage the-
orem.

7. Let k be an integer. Show that any two partitions of a finite set into
k-sets admit a common choice of representatives.

8. Let A be a finite set with subsets A1, . . . , An, and let d1, . . . , dn ∈ N.
Show that there are disjoint subsets Dk ⊆ Ak, with |Dk| = dk for all
k � n, if and only if ∣∣∣ ⋃

i∈I

Ai

∣∣∣ �
∑
i∈I

di

for all I ⊆ { 1, . . . , n }.
9.+ Prove Sperner’s lemma: in an n-set X there are never more than

(
n

�n/2�
)

subsets such that none of these contains another.

(Hint. Construct
(

n
�n/2�

)
chains covering the power set lattice of X.)

10.− Find a bipartite graph and a set of preferences such that no matching
of maximal size is stable and no stable matching has maximal size.
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11.− Find a non-bipartite graph with a set of preferences that has no stable
matching.

12. Show that all stable matchings of a given bipartite graph cover the
same vertices. (In particular, they have the same size.)

13. Find a set S for Theorem 2.2.3 when G is a forest.

14. A graph G is called (vertex-) transitive if, for any two vertices v, w ∈ G,
there is an automorphism of G mapping v to w. Using the observa-
tions following the proof of Theorem 2.2.3, show that every transitive
connected graph of even order contains a 1-factor.

15. Show that a graph G contains k independent edges if and only if
q(G−S) � |S|+ |G| − 2k for all sets S ⊆ V (G).

16.− Find a cubic graph without a 1-factor.

17. Derive the marriage theorem from Tutte’s theorem.

18.− Disprove the analogue of König’s theorem (2.1.1) for non-bipartite
graphs, but show that H = {K2 } has the Erdős-Pósa property.

19. For cubic graphs, Lemma 2.3.1 is considerably stronger than the Erdős-
Pósa theorem. Extend the lemma to arbitrary multigraphs of minimum
degree � 3, by finding a function g: N→N such that every multigraph of
minimum degree � 3 and order at least g(k) contains k disjoint cycles,
for all k ∈ N. Alternatively, show that no such function g exists.

20. Given a graph G, let α(G) denote the largest size of a set of independent
vertices in G. Prove that the vertices of G can be covered by at most
α(G) disjoint subgraphs each isomorphic to a cycle or a K2 or K1.

21. Find the error in the following short ‘proof’ of Theorem 2.4.1. Call a
partition non-trivial if it has at least two classes and at least one of the
classes has more than one element. We show by induction on |V |+ |E|
that G = (V, E) has k edge-disjoint spanning trees if every non-trivial
partition of V into r sets (say) has at least k(r − 1) cross-edges. The
induction starts trivially with G = K1 if we allow k copies of K1 as a
family of k edge-disjoint spanning trees of K1. We now consider the
induction step. If every non-trivial partition of V into r sets (say) has
more than k(r−1) cross-edges, we delete any edge of G and are done by
induction. So V has a non-trivial partition {V1, . . . , Vr } with exactly
k(r − 1) cross-edges. Assume that |V1| � 2. If G′ := G [ V1 ] has k
disjoint spanning trees, we may combine these with k disjoint spanning
trees that exist in G/V1 by induction. We may thus assume that G′

has no k disjoint spanning trees. Then by induction it has a non-trivial
vertex partition {V ′

1 , . . . , V ′
s } with fewer than k(s − 1) cross-edges.

Then {V ′
1 , . . . , V ′

s , V2, . . . , Vr } is a non-trivial vertex partition of G into
r + s− 1 sets with fewer than k(r − 1) + k(s− 1) = k((r + s− 1)− 1)
cross-edges, a contradiction.

22.− Prove the undirected version of the theorem of Gallai & Milgram (with-
out using the directed version).
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23. Derive the marriage theorem from the theorem of Gallai & Milgram.

24.− Show that a partially ordered set of at least rs + 1 elements contains
either a chain of size r +1 or an antichain of size s +1.

25. Prove the following dual version of Dilworth’s theorem: in every finite
partially ordered set (P, �), the minimum number of antichains with
union P is equal to the maximum cardinality of a chain in P .

26. Derive König’s theorem from Dilworth’s theorem.

27. Find a partially ordered set that has no infinite antichain but is not a
union of finitely many chains.

Notes
There is a very readable and comprehensive monograph about matching in
finite graphs: L. Lovász & M.D.Plummer, Matching Theory , Annals of Dis-
crete Math. 29, North Holland 1986. Another very comprehensive source is
A. Schrijver, Combinatorial optimization, Springer 2003. All the references for
the results in this chapter can be found in these two books.

As we shall see in Chapter 3, König’s Theorem of 1931 is no more than
the bipartite case of a more general theorem due to Menger, of 1929. At
the time, neither of these results was nearly as well known as Hall’s marriage
theorem, which was proved even later, in 1935. To this day, Hall’s theorem
remains one of the most applied graph-theoretic results. The first two of our
proofs are folklore; the third and its dual (Exercise 55) are due to Kriesell
(2005). For background and applications of the stable marriage theorem, see
D.Gusfield & R.W. Irving, The Stable Marriage Problem: Structure and Al-
gorithms, MIT Press 1989.

Our proof of Tutte’s 1-factor theorem is based on a proof by Lovász
(1975). Our extension of Tutte’s theorem, Theorem 2.2.3 (including the infor-
mal discussion following it) is a lean version of a comprehensive structure the-
orem for matchings, due to Gallai (1964) and Edmonds (1965). See Lovász &
Plummer for a detailed statement and discussion of this theorem.

Theorem 2.3.2 is due to P. Erdős & LPósa, On independent circuits con-
tained in a graph, Canad. J.Math. 17 (1965), 347–352. Our proof is essentially
due to M. Simonovits, A new proof and generalization of a theorem of Erdős
and Pósa on graphs without k + 1 independent circuits, Acta Sci. Hungar 18
(1967), 191–206. Calculations such as in Lemma 2.3.1 are standard for proofs
where one aims to bound one numerical invariant in terms of another. This
book does not emphasize this aspect of graph theory, but it is not atypical.

There is also an analogue of the Erdős-Pósa theorem for directed graphs
(with directed cycles), which had long been conjectured but was only recently
proved by B.Reed, N.Robertson, P.D. Seymour and R.Thomas, Packing di-
rected circuits, Combinatorica 16 (1996), 535–554. Its proof is much more
difficult than the undirected case; see Chapter 12.4, and in particular Corol-
lary 12.4.10, for a glimpse of the techniques used.

Theorem 2.4.1 was proved independently by Nash-Williams and by Tutte;
both papers are contained in J. London Math. Soc. 36 (1961). Theorem 2.4.4
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is due to C.St.J.A.Nash-Williams, Decompositions of finite graphs into forests,
J. London Math. Soc. 39 (1964), 12. Both results can be elegantly expressed
and proved in the setting of matroids; see § 18 in B.Bollobás, Combinatorics,
Cambridge University Press 1986.

An interesting vertex analogue of Corollary 2.4.2 is to ask which connec-
tivity forces the existence of k spanning trees T1, . . . , Tk, all rooted at a given
vertex r, such that for every vertex v the k paths vTir are independent. For
example, if G is a cycle then deleting the edge left or right of r produces two
such spanning trees. A. Itai and A. Zehavi, Three tree-paths, J. Graph Theory
13 (1989), 175–187, conjectured that κ � k should suffice. This conjecture has
been proved for k � 4; see S. Curran, O. Lee & X.Yu, Chain decompositions
and independent trees in 4-connected graphs, Proc. 14th Ann. ACM SIAM
symposium on Discrete algorithms (Baltimore 2003), 186–191.

Theorem 2.5.1 is due to T.Gallai & A.N.Milgram, Verallgemeinerung
eines graphentheoretischen Satzes von Rédei, Acta Sci. Math. (Szeged) 21
(1960), 181–186.



3 Connectivity

Our definition of k-connectedness, given in Chapter 1.4, is somewhat
unintuitive. It does not tell us much about ‘connections’ in a k-connected
graph: all it says is that we need at least k vertices to disconnect it. The
following definition—which, incidentally, implies the one above—might
have been more descriptive: ‘a graph is k-connected if any two of its
vertices can be joined by k independent paths’.

It is one of the classic results of graph theory that these two defini-
tions are in fact equivalent, are dual aspects of the same property. We
shall study this theorem of Menger (1927) in some depth in Section 3.3.

In Sections 3.1 and 3.2, we investigate the structure of the 2-con-
nected and the 3-connected graphs. For these small values of k it is still
possible to give a simple general description of how these graphs can be
constructed.

In Sections 3.4 and 3.5 we look at other concepts of connectedness,
more recent than the standard one but no less important: the number
of H-paths in G for a subgraph H of G, and the existence of disjoint
paths in G linking up specified pairs of vertices.

3.1 2-Connected graphs and subgraphs

A maximal connected subgraph without a cutvertex is called a block . block

Thus, every block of a graph G is either a maximal 2-connected subgraph,
or a bridge (with its ends), or an isolated vertex. Conversely, every such
subgraph is a block. By their maximality, different blocks of G overlap
in at most one vertex, which is then a cutvertex of G. Hence, every edge
of G lies in a unique block, and G is the union of its blocks.

Cycles and bonds, too, are confined to a single block:
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Lemma 3.1.1.[ 4.6.3 ]
[ 6.5.2 ]

(i) The cycles of G are precisely the cycles of its blocks.

(ii) The bonds of G are precisely the minimal cuts of its blocks.

Proof . (i) Any cycle in G is a connected subgraph without a cutvertex,
and hence lies in some maximal such subgraph. By definition, this is a
block of G.

(ii) Consider any cut in G. Let xy be one of its edges, and B the
block containing it. By the maximality of B in the definition of a block,
G contains no B-path. Hence every x–y path of G lies in B, so those
edges of our cut that lie in B separate x from y even in G. Assertion (ii)
follows easily by repeated application of this argument. �

In a sense, blocks are the 2-connected analogues of components, the
maximal connected subgraphs of a graph. While the structure of G is
determined fully by that of its components, however, it is not captured
completely by the structure of its blocks: since the blocks need not be
disjoint, the way they intersect defines another structure, giving a coarse
picture of G as if viewed from a distance.

The following proposition describes this coarse structure of G as
formed by its blocks. Let A denote the set of cutvertices of G, and B
the set of its blocks. We then have a natural bipartite graph on A∪B
formed by the edges aB with a ∈ B. This block graph of G is shown inblock

graph
Figure 3.1.1.

a′

a

a′

a

B′
B′

B B

Fig. 3.1.1. A graph and its block graph

Proposition 3.1.2. The block graph of a connected graph is a tree.
�

Proposition 3.1.2 reduces the structure of a given graph to that of its
blocks. So what can we say about the blocks themselves? The following
proposition gives a simple method by which, in principle, a list of all
2-connected graphs could be compiled:
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Proposition 3.1.3. A graph is 2-connected if and only if it can be [ 4.2.6 ]

constructed from a cycle by successively adding H-paths to graphs H
already constructed (Fig. 3.1.2).

Fig. 3.1.2. The construction of 2-connected graphs

Proof . Clearly, every graph constructed as described is 2-connected.
Conversely, let a 2-connected graph G be given. Then G contains a
cycle, and hence has a maximal subgraph H constructible as above. H

Since any edge xy ∈ E(G) � E(H) with x, y ∈ H would define an H-
path, H is an induced subgraph of G. Thus if H �= G, then by the
connectedness of G there is an edge vw with v ∈ G−H and w ∈ H. As
G is 2-connected, G−w contains a v–H path P . Then wvP is an H-path
in G, and H ∪wvP is a constructible subgraph of G larger than H. This
contradicts the maximality of H. �

3.2 The structure of 3-connected graphs
In the last section we showed first how every connected graph decomposes
canonically into 2-connected subgraphs (and bridges), and how these are
arranged in a tree-like way to make up the whole graph. There is a similar
canonical decomposition of 2-connected graphs into 3-connected pieces
(and cycles), which are again organized in a tree-like way. This non-
trivial structure theorem of Tutte is most naturally expressed in terms
of tree-decompositions, to be introduced in Chapter 12. We therefore
omit it here.1

Instead, we shall describe how every 3-connected graph can be ob-
tained from a K4 by a succession of elementary operations preserving
3-connectedness. We then prove a deep result of Tutte about the alge-
braic structure of the cycle space of 3-connected graphs; this will play
an important role again in Chapter 4.5.

In Proposition 3.1.3 we saw how every 2-connected graph can be
constructed inductively by a sequence of steps starting from a cycle. All

1 The curious reader may take a glance at Exercise 2020 of Chapter 12.
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the graphs in the sequence were themselves 2-connected, so the graphs
obtainable by this construction method are precisely the 2-connected
graphs. Note that the cycles as starting graphs cannot be replaced by a
smaller class, because they do not have proper 2-connected subgraphs.

When we try to do the same for 3-connected graphs, we soon no-
tice that both the set of starting graphs and the construction steps re-
quired become too complicated. If we base our construction sequences on
the minor relation instead of subgraphs, however, it all works smoothly
again:

Lemma 3.2.1. If G is 3-connected and |G| > 4, then G has an edge e[ 4.4.3 ]

such that G/e is again 3-connected.

Proof . Suppose there is no such edge e. Then, for every edge xy ∈ G,xy

the graph G/xy contains a separator S of at most 2 vertices. Since
κ(G) � 3, the contracted vertex vxy of G/xy (see Chapter 1.7) lies
in S and |S| = 2, i.e. G has a vertex z /∈ {x, y } such that { vxy, z }z

separates G/xy. Then any two vertices separated by { vxy, z } in G/xy
are separated in G by T := {x, y, z }. Since no proper subset of T
separates G, every vertex in T has a neighbour in every component CC

of G−T .
We choose the edge xy, the vertex z, and the component C so that

|C| is as small as possible, and pick a neighbour v of z in C (Fig. 3.2.1).v

By assumption, G/zv is again not 3-connected, so again there is a vertex
w such that { z, v, w } separates G, and as before every vertex in { z, v, w }w

has a neighbour in every component of G−{ z, v, w }.

x

y

z

T
C

v

Fig. 3.2.1. Separating vertices in the proof of Lemma 3.2.1

As x and y are adjacent, G−{ z, v, w } has a component D such that
D∩{x, y } = ∅. Then every neighbour of v in D lies in C (since v ∈ C),
so D∩C �= ∅ and hence D � C by the choice of D. This contradicts the
choice of xy, z and C. �

Theorem 3.2.2. (Tutte 1961)
A graph G is 3-connected if and only if there exists a sequence G0, . . . , Gn

of graphs with the following properties:

(i) G0 = K4 and Gn = G;

(ii) Gi+1 has an edge xy with d(x), d(y) � 3 and Gi = Gi+1/xy, for
every i < n.
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Proof . If G is 3-connected, a sequence as in the theorem exists by Lemma
3.2.1. Note that all the graphs in this sequence are 3-connected.

Conversely, let G0, . . . , Gn be a sequence of graphs as stated; we
show that if Gi = Gi+1/xy is 3-connected then so is Gi+1, for every i < n. xy

Suppose not, let S be a separator of at most 2 vertices in Gi+1, and let S

C1, C2 be two components of Gi+1−S. As x and y are adjacent, we may C1, C2

assume that {x, y }∩V (C1) = ∅ (Fig. 3.2.2). Then C2 contains neither

C1 C2S

x
y

Fig. 3.2.2. The position of xy ∈ Gi+1 in the proof of Theo-
rem 3.2.2

both vertices x, y nor a vertex v /∈ {x, y }: otherwise vxy or v would be
separated from C1 in Gi by at most two vertices, a contradiction. But
now C2 contains only one vertex: either x or y. This contradicts our
assumption of d(x), d(y) � 3. �

Theorem 3.2.2 is the essential core of a result of Tutte known as his
wheel theorem.2 Like Proposition 3.1.3 for 2-connected graphs, it enables
us to construct all 3-connected graphs by a simple inductive process
depending only on local information: starting with K4, we pick a vertex
v in a graph constructed already, split it into two adjacent vertices v′, v′′,
and join these to the former neighbours of v as we please—provided only
that v′ and v′′ each acquire at least 3 incident edges, and that every
former neighbour of v becomes adjacent to at least one of v′, v′′.

Theorem 3.2.3. (Tutte 1963) [ 4.5.2 ]

The cycle space of a 3-connected graph is generated by its non-separating
induced cycles.

Proof . We apply induction on the order of the graph G considered. (1.9.1)

In K4, every cycle is a triangle or (in terms of edges) the symmetric
difference of triangles. As these are induced and non-separating, the
assertion holds for |G| = 4.

For the induction step, let e = xy be an edge of G for which e = xy

G′ := G/e is again 3-connected; cf. Lemma 3.2.1. Then every edge G′

e′ ∈ E(G′) � E(G) is of the form e′ = uve, where at least one of the
two edges ux and uy lies in G. We pick one that does (either ux or uy),
and identify it notationally with the edge e′; thus e′ now denotes both

2 Graphs of the form Cn ∗K1 are called wheels; thus, K4 is the smallest wheel. wheel
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the edge uve of G′ and one of the two edges ux, uy. In this way we may
regard E(G′) as a subset of E(G), and E(G′) as a subspace of E(G); thus
all additions of edge sets will take place unambiguously in E(G).

A special role in this proof will be played by the triangles uxy in G
that contain the edge e. We shall call these the fundamental trianglesfundamental

triangles
of G; they are clearly (induced and) non-separating, as otherwise {u, ve }
would separate G′, contradicting its 3-connectedness.

Now consider an induced cycle C ⊆ G that is not a fundamental
triangle. If e ∈ C, then C/e is a cycle in G′. If e /∈ C, then at most one
of x, y lies on C, as otherwise e would be a chord. Then the vertices of
C in order also form a cycle in G′ (replace x or y by ve as necessary);
this cycle, too, will be denoted by C/e. Thus, for every induced cycle
C ⊆ G that is not a fundamental triangle, C/e denotes a unique cycleC/e

in G′. However, even in the case of e /∈ C the edge set of C/e when
viewed as a subset of E(G) need not coincide with E(C), or even form
a cycle at all; an example is shown in Figure 3.2.3.

e′

e′
e

C/e

ve

C

e′′ e′′
x

y

x

y

u w u w u w

E(C/e) ⊆ E( )G

Fig. 3.2.3. One of the four possibilities for E(C/e) when e /∈ C

Let us refer to the non-separating induced cycles in G or G′ asbasic cycles

basic cycles. We thus want to show that every element of C(G) is a
sum of basic cycles in G. Let C ∈ C(G) be given. By Proposition 1.9.1C

and our observation that fundamental triangles are themselves basic, we
may assume that C is an induced cycle but not a fundamental triangle.
Hence, C ′ := C/e is a cycle in G′.C′

Roughly, our plan is to generate C ′ from basic cycles in G′ by induc-
tion, and lift the generators back to basic cycles in G that generate C.
Now as we have seen, the edge set C ′ can differ a little from C, and
similarly the basic cycles of G′ that generate C ′ may differ a little from
basic cycles in G. To make these differences precise, and to show that
they do not really matter, let us call two sets F, F̃ ∈ E(G) similar if theysimilar

differ only by fundamental triangles and possibly in e, i.e., if there exists
a sum D of fundamental triangles such that

F + F̃ +D ∈ { ∅, { e } } .

Clearly, similarity is an equivalence relation.
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Instead of generating C from basic cycles, it will be enough to gen-
erate a set C̃ ∈ C(G) similar to C:

If C is similar to C̃ ∈ C(G) and C̃ is a sum of basic cycles
in G, then so is C.

(1)

For if D is a sum of fundamental triangles such that C + C̃ + D ∈
{ ∅, { e } }, then C + C̃ + D = ∅, because C + C̃ + D lies in C(G) but
{ e } does not. Hence, as D is a sum of basic cycles, so is C = C̃ +D.

Let us begin our proof by noting that

C ′ is similar to C. (2)

Indeed, if e ∈ C or neither x nor y lies on C, then C ′ differs from C
exactly in e or not at all. Otherwise, C contains one of the vertices x, y
but not the other. Then ve ∈ C ′; let u, w be the two neighbours of ve

on C ′, and e′ = uve and e′′ = vew its incident edges (as in Fig. 3.2.3). If
e′ /∈ C, let Du be the fundamental triangle uxy; otherwise put Du := ∅. If
e′′ /∈ C, let Dw be the fundamental triangle wxy; otherwise put Dw := ∅.
Then C +C ′ +Du +Dw ∈ { ∅, { e } }, completing the proof of (2).

By the induction hypothesis, C ′ is a sum of basic cycles C ′
1, . . . , C

′
k

in G′. Let us lift these back to G, as follows:

For every i = 1, . . . , k there exists a basic cycle Ci in G
that is similar to C ′

i.
(3)

To prove (3), we shall choose the Ci so that Ci/e = C ′
i; these will be

similar to the C ′
i as in (2). If ve /∈ C ′

i then this holds with Ci := C ′
i, so

we assume that ve ∈ C ′
i. Let u and w be the two neighbours of ve on C ′

i, u, w

and let P be the u–w path in C ′
i avoiding ve (Fig. 3.2.4). Then P ⊆ G. P

x

y

u w

P

Fig. 3.2.4. The search for a basic cycle Ci with Ci/e = C′
i

We first assume that {ux, uy, wx, wy } ⊆ E(G), and consider (as
candidates for Ci) the cycles Cx := uPwxu and Cy := uPwyu. Both are Cx, Cy

induced cycles in G (because C ′
i is induced in G′), and clearly Cx/e =

C ′
i = Cy/e. Moreover, neither of these cycles separates two vertices

of G − (V (P ) ∪ {x, y }) in G, since C ′
i does not separate such vertices

in G′. Thus, if Cx (say) is a separating cycle in G, then one of the
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components of G − Cx consists just of y. Likewise, if Cy separates G
then one of the arising components contains only x. However, this cannot
happen for both Cx and Cy at once: otherwise NG({x, y }) ⊆ V (P ) and
hence NG({x, y }) = {u, w } (since C ′

i has no chord), which contradicts
κ(G) � 3. Hence, at least one of Cx, Cy is a basic cycle in G, and we
choose this as Ci.

It remains to consider the case that {ux, uy, wx, wy } �⊆ E(G), say
ux /∈ E(G). Using the 3-connectedness of G as above, we see that ei-
ther uPwyu or uPwxyu is a basic cycle in G (which we choose as Ci),
according as wy is an edge of G or not. This completes the proof of (3).

By (3), C̃ := C1 + . . . + Ck is similar to C ′ = C ′
1 + . . . + C ′

k, which
in turn is similar to C by (2). By (1), this completes the proof. �

3.3 Menger’s theorem

The following theorem is one of the cornerstones of graph theory.

Theorem 3.3.1. (Menger 1927)
Let G = (V, E) be a graph and A, B ⊆ V . Then the minimum number

[ 3.5.2 ]
[ 8.2.5 ]
[ 8.4.1 ]
[ 12.3.9 ]
[ 12.4.4 ]
[ 12.4.5 ]

of vertices separating A from B in G is equal to the maximum number
of disjoint A–B paths in G.

We offer three proofs. Whenever G, A, B are given as in the theorem,
we denote by k = k (G, A, B) the minimum number of vertices separatingk

A from B in G. Clearly, G cannot contain more than k disjoint A–B
paths; our task will be to show that k such paths exist.

First proof. We apply induction on ‖G‖. If G has no edge, then
|A ∩ B| = k and we have k trivial A–B paths. So we assume that G
has an edge e = xy. If G has no k disjoint A–B paths, then neither
does G/e; here, we count the contracted vertex ve as an element of A
(resp. B) in G/e if in G at least one of x, y lies in A (resp. B). By the
induction hypothesis, G/e contains an A–B separator Y of fewer than
k vertices. Among these must be the vertex ve, since otherwise Y ⊆ V
would be an A–B separator in G. Then X := (Y � { ve })∪{x, y } is an
A–B separator in G of exactly k vertices.

We now consider the graph G − e. Since x, y ∈ X, every A–X
separator in G− e is also an A–B separator in G and hence contains at
least k vertices. So by induction there are k disjoint A–X paths in G−e,
and similarly there are k disjoint X–B paths in G− e. As X separates
A from B, these two path systems do not meet outside X, and can thus
be combined to k disjoint A–B paths. �
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Let P be a set of disjoint A–B paths, and let Q be another such set.
We say that Q exceeds P if the set of vertices in A that lie on a path in exceeds

P is a proper subset of the set of vertices in A that lie on a path in Q,
and likewise for B. Then, in particular, |Q| � |P|+ 1.

Second proof. We prove the following stronger statement:

If P is any set of fewer than k disjoint A–B paths in G, then
G contains a set of |P|+1 disjoint A–B paths exceeding P.

Keeping G and A fixed, we let B vary and apply induction on |
⋃
P|.

Let R be an A–B path that avoids the (fewer than k) vertices of B
that lie on a path in P. If R avoids all the paths in P, then P ∪ {R }
exceeds P, as desired. (This will happen when P = ∅, so the induction
starts.) If not, let x be the last vertex of R that lies on some P ∈ P. Put
B′ := B∪V (xP ∪xR) and P ′ :=

(
P �{P }

)
∪{Px } (Fig. 3.3.1). Then

|P ′| = |P| (but |
⋃
P ′| < |

⋃
P|) and k(G, A, B′) � k(G, A, B), so by

the induction hypothesis there is a set Q′ of |P ′|+1 disjoint A–B′ paths
exceeding P ′. Then Q′ contains a path Q ending in x, and a unique path
Q′ whose last vertex y is not among the last vertices of the paths in P ′.
If y /∈ xP , we let Q be obtained from Q′ by adding xP to Q, and adding
yR to Q′ if y /∈ B. Otherwise y ∈ x̊P , and we let Q be obtained from Q′

by adding xR to Q and adding yP to Q′. In both cases Q exceeds P, as
desired. �

A B

R

P

x Px

Rx

P

Fig. 3.3.1. Paths in the second proof of Menger’s theorem

Applied to a bipartite graph, Menger’s theorem specializes to the
assertion of König’s theorem (2.1.1). For our third proof, we shall adapt
the alternating path proof of König’s theorem to the more general set-
up of Theorem 3.3.1. Let again G, A, B be given, and let P be a set P
of disjoint A–B paths in G. Let us say that an A–B separator X ⊆ V
lies on P if it consists of a choice of exactly one vertex from each path on

in P. If we can find such a separator X, then clearly k � |X| = |P|, and
Menger’s theorem will be proved.
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Put

V [P ] :=
⋃

{V (P ) | P ∈ P }

E [P ] :=
⋃

{E(P ) | P ∈ P } .

Let a walk W = x0e0x1e1 . . . en−1xn in G with ei �= ej for i �= j be saidW, xi, ei

to alternate with respect to P (Fig. 3.3.2) if it starts in A � V [P ] and
the following three conditions hold for all i < n (with e−1 := e0 in (iii)):alternating

walk

(i) if ei = e ∈ E [P ], then W traverses the edge e backwards, i.e.
xi+1 ∈ Px̊i for some P ∈ P;

(ii) if xi = xj with i �= j, then xi ∈ V [P ];

(iii) if xi ∈ V [P ], then { ei−1, ei }∩E [P ] �= ∅.

Px0

xn

A

B

W

Fig. 3.3.2. An alternating walk from A to B

Note that, by (ii), any vertex outside V [P ] occurs at most once
on W . And since the edges ei of W are all distinct, (iii) implies that any
vertex v ∈ V [P ] occurs at most twice on W . For v �= xn, this can happen
in exactly the following two ways. If xi = xj with 0 < i < j < n, then

either ei−1, ej ∈ E [P ] and ei, ej−1 /∈ E [P ]

or ei, ej−1 ∈ E [P ] and ei−1, ej /∈ E [P ] .

Unless otherwise stated, any use of the word ‘alternate’ below will
refer to our fixed path system P.

Lemma 3.3.2. If an alternating walk W as above ends in B � V [P ],[ 8.4.5 ]

then G contains a set of disjoint A–B paths exceeding P.

Proof . We may assume that W has only its first vertex in A�V [P ] and
only its last vertex in B � V [P ]. Let H be the graph on V (G) whose
edge set is the symmetric difference of E [P ] with { e0, . . . , en−1 }. In H,
the ends of the paths in P and of W have degree 1 (or 0, if the path or
W is trivial), and all other vertices have degree 0 or 2.
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For each vertex a ∈ (A∩ V [P ])∪ {x0 }, therefore, the component
of H containing a is a path, P = v0 . . . vk say, which starts in a and ends
in A or B. Using conditions (i) and (iii), one easily shows by induction
on i = 0, . . . , k − 1 that P traverses each of its edges e = vivi+1 in the
forward direction with respect to P or W . (Formally: if e ∈ P ′ with
P ′ ∈ P, then vi ∈ P ′̊vi+1; if e = ej ∈ W , then vi = xj and vi+1 = xj+1.)
Hence, P is an A–B path.

Similarly, for every b ∈ (B∩V [P ])∪{xn } there is an A–B path in
H that ends in b. The set of A–B paths in H therefore exceeds P. �

Lemma 3.3.3. If no alternating walk W as above ends in B � V [P ], [ 8.4.5 ]

then G contains an A–B separator on P.

Proof . Let

A1 := A∩V [P ] and A2 := A � A1 , A1, A2

and

B1 := B ∩V [P ] and B2 := B � B1 . B1, B2

For every path P ∈ P, let xP be the last vertex of P that lies on some xP

alternating walk; if no such vertex exists, let xP be the first vertex of P .
Our aim is to show that

X := {xP | P ∈ P } X

meets every A–B path in G; then X is an A–B separator on P.
Suppose there is an A–B path Q that avoids X. We know that Q Q

meets V [P ], as otherwise it would be an alternating walk ending in B2.
Now the A–V [P ] path in Q is either an alternating walk or consists only
of the first vertex of some path in P. Therefore Q also meets the vertex
set V [P ′ ] of

P ′ := {PxP | P ∈ P } . P ′

Let y be the last vertex of Q in V [P ′ ], say y ∈ P ∈ P, and let x := xP . y, P, x

As Q avoids X and hence x, we have y ∈ Px̊. In particular, x = xP is

P

Q

W

y
x

z Qy

Fig. 3.3.3. Alternating walks in the proof of Lemma 3.3.3.
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not the first vertex of P , and so there is an alternating walk W endingW

at x. Then W ∪xPyQ is a walk from A2 to B (Fig. 3.3.3). If this walk
alternates and ends in B2, we have our desired contradiction.

How could W ∪ xPyQ fail to alternate? For example, W might
already use an edge of xPy. But if x′ is the first vertex of W on xP ẙ,x′, W ′

then W ′ := Wx′Py is an alternating walk from A2 to y. (By Wx′ we
mean the initial segment of W ending at the first occurrence of x′ on W ;
from there, W ′ follows P back to y.) Even our new walk W ′yQ need
not yet alternate: W ′ might still meet ẙQ. By definition of P ′ and W ,
however, and the choice of y on Q, we have

V (W ′)∩V [P ] ⊆ V [P ′ ] and V (ẙQ)∩V [P ′ ] = ∅ .

Thus, W ′ and ẙQ can meet only outside P.
If W ′ does indeed meet ẙQ, we let z be the first vertex of W ′ on ẙQz

and set W ′′ := W ′zQ. Otherwise we set W ′′ := W ′ ∪ yQ. In bothW ′′

cases W ′′ alternates with respect to P ′, because W ′ does and ẙQ avoids
V [P ′ ]. (W ′′ satisfies condition (iii) at y in the second case even if
y occurs twice on W ′, because W ′′ then contains the entire walk W ′

and not just its initial segment W ′y.) By definition of P ′, therefore,
W ′′ avoids V [P ] � V [P ′ ]. Thus W ′′ also alternates with respect to P
and ends in B2, contrary to our assumptions. �

Third proof of Menger’s theorem. Let P contain as many disjoint
A–B paths in G as possible. Then by Lemma 3.3.2, no alternating walk
ends in B � V [P ]. By Lemma 3.3.3, this implies that G has an A–B
separator X on P, giving k � |X| = |P| as desired. �

A set of a–B paths is called an a–B fan if any two of the paths havefan

only a in common.

Corollary 3.3.4. For B ⊆ V and a ∈ V � B, the minimum number of[ 10.1.2 ]

vertices �= a separating a from B in G is equal to the maximum number
of paths forming an a–B fan in G.

Proof . Apply Theorem 3.3.1 with A := N(a). �

Corollary 3.3.5. Let a and b be two distinct vertices of G.

(i) If ab /∈ E, then the minimum number of vertices �= a, b separating
a from b in G is equal to the maximum number of independent
a–b paths in G.

(ii) The minimum number of edges separating a from b in G is equal
to the maximum number of edge-disjoint a–b paths in G.

Proof . (i) Apply Theorem 3.3.1 with A := N(a) and B := N(b).
(ii) Apply Theorem 3.3.1 to the line graph of G, with A := E(a)

and B := E(b). �
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Theorem 3.3.6. (Global Version of Menger’s Theorem)
[ 4.2.7 ]
[ 6.6.1 ]
[ 9.4.2 ](i) A graph is k-connected if and only if it contains k independent

paths between any two vertices.

(ii) A graph is k-edge-connected if and only if it contains k edge-
disjoint paths between any two vertices.

Proof . (i) If a graph G contains k independent paths between any two
vertices, then |G| > k and G cannot be separated by fewer than k ver-
tices; thus, G is k-connected.

Conversely, suppose that G is k-connected (and, in particular, has
more than k vertices) but contains vertices a, b not linked by k indepen- a, b

dent paths. By Corollary 3.3.5 (i), a and b are adjacent; let G′ := G−ab. G′

Then G′ contains at most k − 2 independent a–b paths. By Corollary
3.3.5 (i), we can separate a and b in G′ by a set X of at most k − 2 X

vertices. As |G| > k, there is at least one further vertex v /∈ X ∪{ a, b } v

in G. Now X separates v in G′ from either a or b—say, from a. But
then X ∪{ b } is a set of at most k− 1 vertices separating v from a in G,
contradicting the k-connectedness of G.

(ii) follows straight from Corollary 3.3.5 (ii). �

3.4 Mader’s theorem

In analogy to Menger’s theorem we may consider the following ques-
tion: given a graph G with an induced subgraph H, up to how many
independent H-paths can we find in G?

In this section, we present without proof a deep theorem of Mader,
which solves the above problem in a fashion similar to Menger’s theorem.
Again, the theorem says that an upper bound on the number of such
paths that arises naturally from the size of certain separators is indeed
attained by some suitable set of paths.

What could such an upper bound look like? Clearly, if X ⊆ V (G−H) X

and F ⊆ E(G−H) are such that every H-path in G has a vertex or an F

edge in X ∪ F , then G cannot contain more than |X ∪ F | independent
H-paths. Hence, the least cardinality of such a set X ∪ F is a natural
upper bound for the maximum number of independent H-paths. (Note
that every H-path meets G−H, because H is induced in G and edges
of H do not count as H-paths.)

In contrast to Menger’s theorem, this bound can still be improved.
The minimality of |X ∪F | implies that no edge in F has an end in X:
otherwise this edge would not be needed in the separator. Let Y :=
V (G − H) � X, and denote by CF the set of components of the graph CF

(Y, F ). Since every H-path avoiding X contains an edge from F , it has
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∂C

CF
C

H X

Fig. 3.4.1. An H-path in G−X

at least two vertices in ∂C for some C ∈ CF , where ∂C denotes the set of∂C

vertices in C with a neighbour in G−X −C (Fig. 3.4.1). The number
of independent H-paths in G is therefore bounded above by

MG(H) := min
(
|X|+

∑
C∈CF

⌊
1
2 |∂C|

⌋)
,

where the minimum is taken over all X and F as described above: X ⊆X

MG(H)

V (G−H) and F ⊆ E(G−H −X) such that every H-path in G has a
vertex or an edge in X ∪F .

Now Mader’s theorem says that this upper bound is always attained
by some set of independent H-paths:

Theorem 3.4.1. (Mader 1978)
Given a graph G with an induced subgraph H, there are always MG(H)
independent H-paths in G.

In order to obtain direct analogues to the vertex and edge version
of Menger’s theorem, let us consider the two special cases of the above
problem where either F or X is required to be empty. Given an induced
subgraph H ⊆ G, we denote by κG(H) the least cardinality of a vertexκG(H)

set X ⊆ V (G − H) that meets every H-path in G. Similarly, we let
λG(H) denote the least cardinality of an edge set F ⊆ E(G) that meetsλG(H)

every H-path in G.

Corollary 3.4.2. Given a graph G with an induced subgraph H, there
are at least 1

2κG(H) independent H-paths and at least 1
2λG(H) edge-

disjoint H-paths in G.

Proof . To prove the first assertion, let k be the maximum num-k

ber of independent H-paths in G. By Theorem 3.4.1, there are sets
X ⊆ V (G−H) and F ⊆ E(G−H −X) with

k = |X|+
∑

C∈CF

⌊
1
2 |∂C|

⌋



3.4 Mader’s theorem 69

such that every H-path in G has a vertex in X or an edge in F . For every
C ∈ CF with ∂C �= ∅, pick a vertex v ∈ ∂C and let YC := ∂C � { v }; if
∂C = ∅, let YC := ∅. Then

⌊
1
2 |∂C|

⌋
� 1

2 |YC | for all C ∈ CF . Moreover,
for Y :=

⋃
C∈CF

YC every H-path has a vertex in X ∪Y . Hence Y

k � |X|+
∑

C∈CF

1
2 |YC | � 1

2 |X ∪Y | � 1
2κG(H)

as claimed.
The second assertion follows from the first by considering the line

graph of G (Exercise 1818). �

It may come as a surprise to see that the bounds in Corollary 3.4.2
are best possible (as general bounds): one can find examples for G and
H where G contains no more than 1

2κG(H) independent H-paths or no
more than 1

2λG(H) edge-disjoint H-paths (Exercises 1919 and 2020).

3.5 Linking pairs of vertices

Let G be a graph, and let X ⊆ V (G) be a set of vertices. We call X
linked in G if whenever we pick distinct vertices s1, . . . , s�, t1, . . . , t� in linked

X we can find disjoint paths P1, . . . , P� in G such that each Pi links si to
ti and has no inner vertex in X. Thus, unlike in Menger’s theorem, we
are not merely asking for disjoint paths between two sets of vertices: we
insist that each of these paths shall link a specified pair of endvertices.

If |G| � 2k and every set of at most 2k vertices is linked in G, then
G is k-linked . As is easily checked, this is equivalent to requiring that k-linked

disjoint paths Pi = si . . . ti exist for every choice of exactly 2k vertices
s1, . . . , sk, t1, . . . , tk. In practice, the latter is easier to prove, because
we need not worry about inner vertices in X.

Clearly, every k-linked graph is k-connected. The converse, however,
seems far from true: being k-linked is clearly a much stronger property
than k-connectedness. Still, we shall prove in this section that we can
force a graph to be k-linked by assuming that it is f(k)-connected, for
some function f : N→N. We first give a nice and simple proof that such
a function f exists at all. In the remainder of the section we then prove
that f can even be chosen linear.

The basic idea in the simple proof is as follows. If we can prove
that G contains a subdivision K of a large complete graph, we can use
Menger’s theorem to link the vertices of X disjointly to branch vertices
of K, and then hope to pair them up as desired through the subdivided
edges of K. This requires, of course, that our paths do not hit too many
of the subdivided edges before reaching the branch vertices of K.

To show that K exists is a lemma which more properly belongs
in Chapter 7, and we shall derive an improved version there from the
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linearity theorem (3.5.3) proved later in this section. Instead of assuming
high connectivity, it suffices that G has large enough average degree:

Lemma 3.5.1. There is a function h: N→N such that every graph of
average degree at least h(r) contains Kr as a topological minor, for every
r ∈ N.

Proof . For r � 2, the assertion holds with h(r) = 1; we now assume that(1.2.2)
(1.3.1)

r � 3. We show by induction on m = r, . . . ,
(
r
2

)
that every graph G with

average degree d(G) � 2m has a topological minor X with r vertices and
m edges; for m =

(
r
2

)
this implies the assertion with h(r) = 2(r

2).
If m = r then, by Propositions 1.2.2 and 1.3.1, G contains a cycle

of length at least ε(G)+ 1 � 2r−1 +1 � r +1, and the assertion follows
with X = Cr.

Now let r < m �
(
r
2

)
, and assume the assertion holds for smaller m.

Let G with d(G) � 2m be given; thus, ε(G) � 2m−1. Since G has a
component C with ε(C) � ε(G), we may assume that G is connected.
Consider a maximal set U ⊆ V (G) such that U is connected in G andU

ε(G/U) � 2m−1; such a set U exists, because G itself has the form G/U
with |U | = 1. Since G is connected, we have N(U) �= ∅.

Let H := G [N(U) ]. If H has a vertex v of degree dH(v) < 2m−1, weH

may add it to U and obtain a contradiction to the maximality of U : when
we contract the edge vvU in G/U , we lose one vertex and dH(v) + 1 �
2m−1 edges, so ε will still be at least 2m−1. Therefore d(H) � δ(H) �
2m−1. By the induction hypothesis, H contains a TY with |Y | = r
and ‖Y ‖ = m− 1. Let x, y be two branch vertices of this TY that are
non-adjacent in Y . Since x and y lie in N(U) and U is connected in G,
G contains an x–y path whose inner vertices lie in U . Adding this path
to the TY , we obtain the desired TX. �

Theorem 3.5.2. (Jung 1970; Larman & Mani 1970)
There is a function f : N → N such that every f(k)-connected graph is
k-linked, for all k ∈ N.

Proof . We prove the assertion for f(k) = h(3k) + 2k, where h is a(3.3.1)

function as in Lemma 3.5.1. Let G be an f(k)-connected graph. ThenG

d(G) � δ(G) � κ(G) � h(3k); choose K = TK3k ⊆ G as in Lemma 3.5.1,K

and let U denote its set of branch vertices.U

For the proof that G is k-linked, let distinct vertices s1, . . . , sksi, ti

and t1, . . . , tk be given. By definition of f(k), we have κ(G) � 2k.
Hence by Menger’s theorem (3.3.1), G contains disjoint paths P1, . . . , Pk,
Q1, . . . , Qk, such that each Pi starts in si, each Qi starts in ti, and allPi, Qi

these paths end in U but have no inner vertices in U . Let the set P ofP
these paths be chosen so that their total number of edges outside E(K)
is as small as possible.
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Let u1, . . . , uk be those k vertices in U that are not an end of a
path in P. For each i = 1, . . . , k, let Li be the U -path in K (i.e., the
subdivided edge of the K3k) from ui to the end of Pi in U , and let vi be
the first vertex of Li on any path P ∈ P. By definition of P, P has no
more edges outside E(K) than PviLiui does, so viP = viLi and hence
P = Pi (Fig. 3.5.1). Similarly, if Mi denotes the U -path in K from ui

to the end of Qi in U , and wi denotes the first vertex of Mi on any
path in P, then this path is Qi. Then the paths siPiviLiuiMiwiQiti are
disjoint for different i and show that G is k-linked. �

si

Pi

P

Li

vi

ui

Mi

Qi ti

wi

Fig. 3.5.1. Constructing an si–ti path via ui

The proof of Theorem 3.5.2 yields only an exponential upper bound
for the function f(k). As 2ε(G) � δ(G) � κ(G), the following result
implies the linear bound of f(k) = 16k:

Theorem 3.5.3. (Thomas & Wollan 2005) [ 7.2.1 ]

Let G be a graph and k ∈ N. If G is 2k-connected and ε(G) � 8k, then
G is k-linked.

We begin our proof of Theorem 3.5.3 with a lemma.

Lemma 3.5.4. If δ(G) � 8k and |G| � 16k, then G has a k-linked
subgraph.

Proof . If G itself is k-linked there is nothing to show, so suppose not.
Then we can find a set X of 2k vertices s1, . . . , sk, t1, . . . , tk that cannot X

be linked in G by disjoint paths Pi = si . . . ti. Let P be a set of as many P
such paths as possible, but all of length at most 7. If there are several
such sets P, we choose one with |

⋃
P| minimum. We may assume that

P contains no path from s1 to t1. Let J be the subgraph of G induced s1, t1

by X and all the vertices on the paths in P, and let H := G−J . J, H

Note that each vertex v ∈ H has at most three neighbours on any
given Pi ∈ P: if it had four, then replacing the segment uPiw between
its first and its last neighbour on Pi by the path uvw would reduce |

⋃
P|

and thus contradict our choice of P. Moreover, v is not adjacent to both
si and ti whenever si, ti /∈

⋃
P, by the maximality of P. Thus if |P| =: h,

then v has at most 3h+(2k−2h)/2 � 3k neighbours in J . As δ(G) � 8k



72 3. Connectivity

and |G| � 16k by assumption, while |X| = 2k, we deduce that

δ(H) � 5k and |H| � 14k . (1)

Our next aim is to show that H is disconnected. Since each of the
paths in P has at most eight vertices, we have |J −{ s1, t1 }| � 8(k− 1).
Therefore both s1 and t1 have neighbours in H. Let S ⊆ V (H) be the
set of vertices at distance at most 2 (measured in H) from a neighbour
of s1 in H, and let T ⊆ V (H) be the corresponding set for t1. Since
G−

⋃
P contains no s1–t1 path of length at most 7, we have S ∩T = ∅

and there is no S–T edge in H. To prove that H is disconnected, it thus
suffices to show that V (H) = S ∪ T . Pick a neighbour s ∈ S of s1, and
a neighbour t ∈ T of t1. Then for any vertex v ∈ H − (S ∪ T ) the sets
NH(s), NH(t) and NH(v) are disjoint and each have size at least 5k,
contradicting (1).

So H is disconnected; let C be its smallest component. By (1),

2δ(C) � 2δ(H) � 7k + 3k � 1
2 |H|+ 3k � |C|+ 3k . (2)

We complete the proof by showing that C is k-linked. As δ(C) � 5k,
we have |C| � 2k. Let Y be a set of at most 2k vertices in C. By (2),
every two vertices in Y have at least 3k common neighbours, at least k
of which lie outside Y . We can therefore link any desired � � k pairs
of vertices in Y inductively by paths of length 2 whose inner vertex lies
outside Y . �

Before we launch into the proof of Theorem 3.5.3, let us look at its
main ideas. To prove that G is k-linked, we have to consider a given set
X of up to 2k vertices and show that X is linked in G. Ideally, we would
like to use Lemma 3.5.4 to find a linked subgraph L somewhere in G,
and then use our assumption of κ(G) � 2k to obtain a set of |X| disjoint
X–L paths by Menger’s theorem (3.3.1). Then X could be linked via
these paths and L, completing the proof.

Unfortunately, we cannot expect to find a subgraph H such that
δ(H) � 8k and |H| � 16k (in which L could be found by Lemma 3.5.4);
cf. Corollary 11.2.3. However, it is not too difficult to find a minor H � G
that has such a subgraph (Ex. 2222, Ch. 7), even so that the vertices of X
come to lie in distinct branch sets of H. We may then regard X as a
subset of V (H), and Lemma 3.5.4 provides us with a linked subgraph L
of H. The only problem now is that H need no longer be 2k-connected,
that is, our assumption of κ(G) � 2k will not ensure that we can link X
to L by |X| disjoint paths in H.

And here comes the clever bit of the proof: it relaxes the assump-
tion of κ � 2k to a weaker assumption that does get passed on to H.
This weaker assumption is that if we can separate X from some other
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subgraph by fewer than |X| vertices, then this other part must be ‘light’:
roughly, its own value of ε must not exceed 8k. Now if we fail to link
X to L by |X| disjoint paths, then H has such a separation {A, B },
with X ⊆ A and L ⊆ B and such that |A∩B| < |X|. If we choose this
with |A ∩ B| minimum, then by Menger’s theorem we can link A ∩ B
to L in H [B ] by |A ∩ B| disjoint paths. We may then continue our
proof inside H [A ], whose value of ε is still as big as before, because the
B-part of H was ‘light’. In fact, we may even turn A∩B into a complete
subgraph of H [A ], because such new edges, if used by our linking paths,
can be replaced by paths through B and L. This helps ensure that we
do not in H [A ] have new separations of order less than |X| that split a
‘heavy’ part away from X. Hence, both our inductive assumptions—the
value of ε � 8k and the fact that small separators can only split light
parts away from X—hold for H [A ] because they did in H. This will
complete the inductive proof.

Given k ∈ N, a graph G, and A, B, X ⊆ V (G), call the ordered X-
separation

pair (A, B) an X- separation of G if {A, B } is a proper separation of G
of order at most |X| and X ⊆ A. An X- separation (A, B) is small if small/linked

|A∩B| < |X|, and linked if A∩B is linked in G [B ].
Call a set U ⊆ V (G) light in G if ‖U‖+� 8k |U |, where ‖U‖+denotes ‖ ‖+

the number of edges of G with at least one end in U . A set of vertices light

is heavy if it is not light. heavy

Proof of Theorem 3.5.3. We shall prove the following, for fixed k ∈ N: k

G = (V, E)
XLet G = (V, E) be a graph and X ⊆ V a set of at most 2k

vertices. If V � X is heavy and for every small X- separ-
ation (A, B) the set B � A is light, then X is linked in G.

(∗)

To see that (∗) implies the theorem, assume that κ(G) � 2k and
ε(G) � 8k, and let X be a set of exactly 2k vertices. Then G has no
small X- separation. And V � X is heavy, since

‖V � X‖+ � ‖G‖−
(

2k

2

)
� 8k |V | −

(
2k

2

)
> 8k |V � X| .

By (∗), X is linked in G, completing the proof that G is k-linked.
We prove (∗) by induction on |G|, and for each value of |G| by induc-

tion on ‖V � X‖+. If |G| = 1 then X is linked in G. For the induction
step, let G and X be given as in (∗). We first prove the following:

We may assume that G has no linked X- separation. (1)

For our proof of (1), suppose that G has a linked X- separation (A, B)

(A, B). Let us choose one with A minimal, and put S := A∩B. S
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We first consider the case that |S| = |X|. If G [A ] contains |X| dis-
joint X–S paths, then X is linked in G because (A, B) is linked, complet-
ing the proof of (∗). If not, then by Menger’s theorem (3.3.1) G [A ] has
a small X- separation (A′, B′) such that B′ ⊇ S. If we choose this with
|A′ ∩ B′| minimum, we can link A′ ∩ B′ to S in G [B′ ] by |A′ ∩ B′|
disjoint paths, again by Menger’s theorem. But then (A′, B′ ∪ B) is a
linked X- separation of G that contradicts the choice of (A, B).

So |S| < |X|. Let G′ be obtained from G [A ] by adding any missingG′

edges on S, so that G′ [S ] is a complete subgraph of G′. As (A, B) is
now a small X- separation, our assumption in (∗) says that B �A is light
in G. Thus, G′ arises from G by deleting |B �A| vertices outside X and
at most 8k |B � A| edges, and possibly adding some edges. As V � X is
heavy in G, this implies that

A � X is heavy in G′.

In order to be able to apply the induction hypothesis to G′, let
us show next that for every small X- separation (A′, B′) of G′ the set
B′ �A′ is light in G′. Suppose not, and choose a counterexample (A′, B′)(A′, B′)

with B′ minimal. As G′ [S ] is complete, we have S ⊆ A′ or S ⊆ B′.
If S ⊆ A′ then B′ ∩ B ⊆ S ⊆ A′, so (A′ ∪ B, B′) is a small X-

separation of G. Moreover,

B′ � (A′ ∪B) = B′ � A′,

and no edge of G′ − E is incident with this set (Fig 3.5.2). Our as-
sumption that this set is heavy in G′, by the choice of (A′, B′), therefore
implies that it is heavy also in G. As (A′∪B, B′) is a small X- separation
of G, this contradicts our assumptions in (∗).

B

A

S

A′ B′
X

G′

Fig. 3.5.2. If S ⊆ A′, then (A′ ∪B, B′) is an X- separation of G

Hence S ⊆ B′. By our choice of (A′, B′), the graph G′′ := G′ [B′ ]
satisfies the premise of (∗) for X ′′ := A′ ∩B′. By the induction hypo-
thesis, X ′′ is linked in G′′. But then X ′′ is also linked in G [B′ ∪ B ]:
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as S was linked in G [B ], we simply replace any edges added on S in
the definition of G′ by disjoint paths through B (Fig. 3.5.3). But now
(A′, B′ ∪B) is a linked X- separation of G that violates the minimality
of A in the choice of (A, B).

B

A

S

A′ B′
X′′

G ′′

X

Fig. 3.5.3. If S ⊆ B′, then (A′, B′ ∪B) is linked in G

We have thus shown that G′ satisfies the premise of (∗) with respect
to X. Since {A, B } is a proper separation, G′ has fewer vertices than G.
By the induction hypothesis, therefore, X is linked in G′. Replacing
edges of G′ − E on S by paths through B as before, we can turn any
linkage of X in G′ into one in G, completing the proof of (∗). This
completes the proof of (1).

Our next goal is to show that, by the induction hypothesis, we may
assume that G has not only large average degree but even large minimum
degree. For our proof that X is linked in G, let s1, . . . , s�, t1, . . . , t� be the
distinct vertices in X which we wish to link by disjoint paths Pi = si . . . ti.
Since these paths must not have any inner vertices in X, we may assume
that G has all edges on X except possibly the edges siti: as no other G [ X ]

edges on X may be used by the paths Pi, we may add them without
affecting either the premise or the conclusion in (∗).

After this modification, we can now prove the following:

We may assume that any two adjacent vertices u, v which
do not both lie in X have at least 8k−1 common neighbours.

(2)

To prove (2), let e = uv be such an edge, let n denote the number of e = uv

common neighbours of u and v, and let G′ := G/e be the graph obtained n

by contracting e. Since u, v are not both in X we may view X as a subset G′

also of V ′ := V (G′), replacing u or v in X with the contracted vertex ve V ′

if X ∩{u, v } �= ∅. Our aim is to show that unless n � 8k− 1 as desired
in (2), G′ satisfies the premise of (∗). Then X will be linked in G′ by the
induction hypothesis, so the desired paths P1, . . . , P� exist in G′. If one
of them contains ve, replacing ve by u or v or uv turns it into a path
in G, completing the proof of (∗).
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In order to show that G′ satisfies the premise of (∗) with respect
to X, let us show first that V ′ � X is heavy. Since V � X was heavy
and |V ′ � X| = |V � X| − 1, it suffices to show that the contraction of e
resulted in the loss of at most 8k edges incident with a vertex outside X.
If u and v are both outside X, then the number of such edges lost is only
n+1: one edge at every common neighbour of u and v, as well as e. But
if u ∈ X, then v /∈ X, and we lost all the X–v edges xv of G, too: while
xv counted towards ‖V � X‖+, the edge xve lies in G′ [X ] and does not
count towards ‖V ′ � X‖+. If x �= u and x is not a common neighbour
of u and v, then this is an additional loss. But u is adjacent to every
x ∈ X � {u } except at most one (by our assumption about G [X ]), so
every such x except at most one is in fact a common neighbour of u
and v. Thus in total, we lost at most n + 2 edges. Unless n � 8k − 1
(which would prove (2) directly for u and v), this means that we lost at
most 8k edges, as desired for our proof that V ′ � X is heavy.

It remains to show that for every small X- separation (A′, B′) of G′

the set B′ � A′ is light. Let (A′, B′) be a counterexample, chosen with(A′, B′)

B′ minimal. Then G′ [B′ ] satisfies the premise of (∗) with respect to
X ′ := A′ ∩B′, so X ′ is linked in G′ [ B′ ] by induction. Let A and B beX′

obtained from A′ and B′ by replacing ve, where applicable, with both u
and v. We may assume that u, v ∈ B, since otherwise (A, B) is a small
X- separation of G with B � A heavy, contradicting our assumptions
in (∗). We shall prove that X ′′ := A∩B is linked in G [B ]; then (A, B)X′′

is a linked X- separation of G, which contradicts (1).
If ve /∈ X ′, then u, v ∈ B � A. Now X ′′ is linked in G [B ] because

X ′ is linked in G′ [B′ ]: if ve occurs on one of the linking paths for X ′,
just replace it by u or v or uv as earlier.

Now assume that ve ∈ X ′. Our aim is to show that G [B ] satisfies
the premise of (∗) with respect to X ′′, so that X ′′ is linked in G [B ] by
induction. We know that B � X ′′ = B′ � A′ is heavy in G, since it is
heavy in G′ by the choice of (A′, B′). Consider a small X ′′- separation
(A′′, B′′) of G [B ]. Then (A∪A′′, B′′) is a small X- separation of G, so
B′′ � A′′ = B′′ � (A∪A′′) is light by the assumption in (∗). This com-
pletes the proof that X ′′ is linked in G [ B ], and hence the proof of (2).

Using induction by contracting an edge, we have just shown that the
vertices in V �X may be assumed to have large degree. Using induction
by deleting an edge, we now show that their degrees cannot be too large.
Since (∗) holds if V = X, we may assume that V �X �= ∅; let d∗ denoted∗

the smallest degree in G of a vertex in V � X. Let us prove that

8k � d∗ � 16k− 1 . (3)

The lower bound in (3) follows from (2) if we assume that G has no
isolated vertex outside X, which we may clearly assume by induction.
To prove the upper bound, let us see what happens if we delete an edge
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e whose ends u, v are not both in X. If G− e satisfies the premise of (∗) e = uv

with respect to X, then X is linked in G − e by induction, and hence
in G. If not, then either V � X is light in G− e, or G− e has a small
X- separation (A, B) such that B � A is heavy. If the latter happens
then e must be an (A � B)–(B � A) edge: otherwise, (A, B) would be a
small X- separation also of G, and B � A would be heavy also in G, in
contradiction to our assumptions in (∗). But if e is such an edge then
any common neighbours of u and v lie in A∩B, so there are fewer than
|X| � 2k such neighbours. This contradicts (2).

So V � X must be light in G− e. For G, this yields

‖V � X‖+ � 8k |V � X|+ 1 . (4)

In order to show that this implies the desired upper bound for d∗, let us
estimate the number f(x) of edges that a vertex x ∈ X sends to V � X. f(x)

There must be at least one such edge, xy say, as otherwise (X, V �{x })
would be a small X- separation of G that contradicts our assumptions
in (∗). But then, by (2), x and y have at least 8k−1 common neighbours,
at most 2k− 1 of which lie in X. Hence f(x) � 6k. As

2 ‖V � X‖+ =
∑

v∈V �X

dG(v) +
∑
x∈X

f(x) ,

an assumption of d∗ � 16k would thus imply that

2 (8k |V � X|+ 1) �
(4)

2 ‖V � X‖+ � 16k |V � X|+ 6k |X| ,

yielding the contradiction of 2 � 6k |X|. This completes the proof of (3).

To complete our proof of (∗), pick a vertex v0 ∈ V �X of degree d∗,
and consider the subgraph H induced in G by v0 and its neighbours.
By (2) we have δ(H) � 8k, and by (3) and the choice of v0 we have
|H| � 16k. By Lemma 3.5.4, then, H has a k-linked subgraph; let L be
its vertex set. By definition of ‘k-linked’, we have |L| � 2k � |X|. If G
contains |X| disjoint X–L paths, then X is linked in G, as desired. If not,
then G has a small X- separation (A, B) with L ⊆ B. If we choose (A, B)
of minimum order, then G [B ] contains |A∩B| disjoint (A∩B)–L paths
by Menger’s theorem (3.3.1). But then (A, B) is a linked X- separation
that contradicts (1). �
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Exercises
For the first three exercises let G be a graph with vertices a and b, and let
X ⊆ V (G) � { a, b } be an a–b separator in G.

1.− Show that X is minimal as an a–b separator if and only if every vertex
in X has a neighbour in the component Ca of G−X containing a, and
another in the component Cb of G−X containing b.

2. Let X ′ ⊆ V (G) � { a, b } be another a–b separator, and define C′
a and

C′
b correspondingly. Show that both

Ya := (X ∩C′
a)∪ (X ∩X ′)∪ (X ′ ∩Ca)

and

Yb := (X ∩C′
b)∪ (X ∩X ′)∪ (X ′ ∩Cb)

separate a from b (see figure).

X′

XX′

a bYa

X

3. Are Ya and Yb minimal a–b separators if X and X ′ are? Are |Ya| and
|Yb| minimal for a–b separators from V (G)�{ a, b } if |X| and |X ′| are?

4. Let X and X ′ be minimal separators in G such that X meets at least
two components of G−X ′. Show that X ′ meets all the components of
G−X, and that X meets all the components of G−X ′.

5.− Prove the elementary properties of blocks mentioned at the beginning
of Section 3.1.

6. Show that the block graph of any connected graph is a tree.

7. Show, without using Menger’s theorem, that any two vertices of a 2-
connected graph lie on a common cycle.

8. For edges e, e′ ∈ G write e ∼ e′ if either e = e′ or e and e′ lie on some
common cycle in G. Show that ∼ is an equivalence relation on E(G)
whose equivalence classes are the edge sets of the non-trivial blocks
of G.

9. Let G be a 2-connected graph but not a triangle, and let e be an edge
of G. Show that either G − e or G/e is again 2-connected. Deduce
a constructive characterization of the 2-connected graphs analogous to
Theorem 3.2.2.

10. Let G be a 3-connected graph, and let xy be an edge of G. Show that
G/xy is 3-connected if and only if G−{x, y } is 2-connected.
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11. (i)− Show that every cubic 3-edge-connected graph is 3-connected.

(ii) Show that a graph is cubic and 3-connected if and only if it can
be constructed from a K4 by successive applications of the following
operation: subdivide two edges by inserting a new vertex on each of
them, and join the two new subdividing vertices by an edge.

12.+ Find a finite set of 3-connected graphs from which all 3-connected
graphs can be constructed iteratively by the following operation, or
show that no such set exists. The operation consists of adding a new
vertex to the graph H constructed so far and joining it by at least three
edges to some subdivision of H. (In other words, every new edge is ei-
ther incident with a vertex of H or else with a new subdividing vertex
of H created for this purpose, and the new edges should obviously not
all go to the same subdivided edge of H including its ends.)

13. Find the error in the following ‘simple proof’ of Menger’s theorem
(3.3.1). Let X be an A–B separator of minimum size. Denote by
GA the subgraph of G induced by X and all the components of G−X
that meet A, and define GB correspondingly. By the minimality of X,
there can be no A–X separator in GA with fewer than |X| vertices, so
GA contains k disjoint A–X paths by induction. Similarly, GB contains
k disjoint X–B paths. Together, all these paths form the desired A–B
paths in G.

14. Prove Menger’s theorem by induction on ‖G‖, as follows. Given an
edge e = xy, consider a smallest A–B separator S in G− e. Show that
the induction hypothesis implies a solution for G unless S ∪ {x } and
S ∪{ y } are smallest A–B separators in G. Then show that if choosing
neither of these separators as X in the previous exercise gives a valid
proof, there is only one easy case left to do.

15. Work out the details of the proof of Corollary 3.3.5 (ii).

16. Let k � 2. Show that every k-connected graph of order at least 2k
contains a cycle of length at least 2k.

17. Let k � 2. Show that in a k-connected graph any k vertices lie on a
common cycle.

18. Derive the edge part of Corollary 3.4.2 from the vertex part.

(Hint. Consider the H-paths in the graph obtained from the disjoint
union of H and the line graph L(G) by adding all the edges he such
that h is a vertex of H and e ∈ E(G) � E(H) is an edge at h.)

19.− To the disjoint union of the graph H = K2m+1 with k copies of K2m+1

add edges joining H bijectively to each of the K2m+1. Show that the
resulting graph G contains at most km = 1

2
κG(H) independent H-

paths.

20. Find a bipartite graph G, with partition classes A and B say, such that
for H := G [ A ] there are at most 1

2
λG(H) edge-disjoint H-paths in G.
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21.+ Derive Tutte’s 1-factor theorem (2.2.1) from Mader’s theorem.

(Hint. Extend the given graph G to a graph G′ by adding, for each
vertex v ∈ G, a new vertex v′ and joining v′ to v. Choose H ⊆ G′ so that
the 1-factors in G correspond to the large enough sets of independent
H-paths in G′.)

22.− Show that k-linked graphs are (2k − 1)-connected. Are they even 2k-
connected?

23. For every k ∈ N find an � = �(k), as large as possible, such that not
every �-connected graph is k-linked.

24. Show that if G is k-linked and s1, . . . , sk, t1, . . . , tk are not necessarily
distinct vertices such that si 
= ti for all i, then G contains independent
paths Pi = si . . . ti for i = 1, . . . , k.

25. Use Theorem 3.5.3 to show that the function h in Lemma 3.5.1 can be
chosen as h(r) = cr2, for some c ∈ N.

Notes
Although connectivity theorems are doubtless among the most natural, and
also the most applicable, results in graph theory, there is still no monograph
on this subject. The most comprehensive source is perhaps A. Schrijver,
Combinatorial optimization, Springer 2003, together with a number of sur-
veys on specific topics by A. Frank, to be found on his home page. Some
areas are covered in B.Bollobás, Extremal Graph Theory , Academic Press
1978, in R.Halin, Graphentheorie, Wissenschaftliche Buchgesellschaft 1980,
and in A. Frank’s chapter of the Handbook of Combinatorics (R.L.Graham,
M.Grötschel & L. Lovász, eds.), North-Holland 1995. A survey specifically of
techniques and results on minimally k-connected graphs (see below) is given
by W.Mader, On vertices of degree n in minimally n-connected graphs and
digraphs, in (D.Miklós, V.T. Sós & T. Szőnyi, eds.) Paul Erdős is 80, Vol. 2,
Proc. Colloq. Math. Soc. János Bolyai, Budapest 1996.

Our proof of Tutte’s Theorem 3.2.3 is due to C.Thomassen, Planarity and
duality of finite and infinite graphs, J. Combin. Theory B 29 (1980), 244–271.
This paper also contains Lemma 3.2.1 and its short proof from first principles.
(The lemma’s assertion, of course, follows from Tutte’s wheel theorem—its
significance lies in its independent proof, which has shortened the proofs of
both of Tutte’s theorems considerably.)

An approach to the study of connectivity not touched upon in this chap-
ter is the investigation of minimal k-connected graphs, those that lose their
k-connectedness as soon as we delete an edge. Like all k-connected graphs,
these have minimum degree at least k, and by a fundamental result of Halin
(1969), their minimum degree is exactly k. The existence of a vertex of small
degree can be particularly useful in induction proofs about k-connected graphs.
Halin’s theorem was the starting point for a series of more and more sophis-
ticated studies of minimal k-connected graphs; see the books of Bollobás and
Halin cited above, and in particular Mader’s survey.
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Our first proof of Menger’s theorem is extracted from Halin’s book.
The second is due to T.Böhme, F.Göring and J.Harant, Menger’s theorem,
J. Graph Theory 37 (2001), 35–36, the third to T.Grünwald (later Gallai),
Ein neuer Beweis eines Mengerschen Satzes, J. London Math. Soc. 13 (1938),
188–192. The global version of Menger’s theorem (Theorem 3.3.6) was first
stated and proved by Whitney (1932).

Mader’s Theorem 3.4.1 is taken from W.Mader, Über die Maximalzahl
kreuzungsfreier H -Wege, Arch. Math. 31 (1978), 387–402; a short proof has
been given by A. Schrijver, A short proof of Mader’s S-paths theorem, J. Com-
bin. Theory B 82 (2001), 319–321. The theorem may be viewed as a common
generalization of Menger’s theorem and Tutte’s 1-factor theorem (Exercise 2121).

Theorem 3.5.3 is due to R.Thomas and P.Wollan, An improved linear
bound for graph linkages, Europ. J. Combinatorics 26 (2005), 309–324. Using
a more involved version of Lemma 3.5.4, they prove that 2k-connected graphs
even with only ε � 5k must be k-linked. And for graphs of large enough
girth the condition on ε can be dropped altogether: as shown by W.Mader,
Topological subgraphs in graphs of large girth, Combinatorica 18 (1998), 405–
412, such graphs are k-linked as soon as they are 2k-connected, which is best
possible. (Mader assumes a lower bound on the girth that depends on k, but
this is not necessary; see D.Kühn & D.Osthus, Topological minors in graphs
of large girth, J. Combin. Theory B 86 (2002), 364–380.) In fact, for every
s ∈ N there exists a ks such that if G 
⊇ Ks,s and κ(G) � 2k � ks then G
is k-linked; see D.Kühn & D.Osthus, Complete minors in Ks,s-free graphs,
Combinatorica 25 (2005) 49–64.





4 Planar Graphs

When we draw a graph on a piece of paper, we naturally try to do this
as transparently as possible. One obvious way to limit the mess created
by all the lines is to avoid intersections. For example, we may ask if we
can draw the graph in such a way that no two edges meet in a point
other than a common end.

Graphs drawn in this way are called plane graphs; abstract graphs
that can be drawn in this way are called planar . In this chapter we
study both plane and planar graphs—as well as the relationship between
the two: the question of how an abstract graph might be drawn in
fundamentally different ways. After collecting together in Section 4.1 the
few basic topological facts that will enable us later to prove all results
rigorously without too much technical ado, we begin in Section 4.2 by
studying the structural properties of plane graphs. In Section 4.3, we
investigate how two drawings of the same graph can differ. The main
result of that section is that 3-connected planar graphs have essentially
only one drawing, in some very strong and natural topological sense. The
next two sections are devoted to the proofs of all the classical planarity
criteria, conditions telling us when an abstract graph is planar. We
complete the chapter with a section on plane duality , a notion with
fascinating links to algebraic, colouring, and flow properties of graphs
(Chapters 1.9 and 6.5).

The traditional notion of a graph drawing is that its vertices are
represented by points in the Euclidean plane, its edges are represented by
curves between these points, and different curves meet only in common
endpoints. To avoid unnecessary topological complication, however, we
shall only consider curves that are piecewise linear; it is not difficult to
show that any drawing can be straightened out in this way, so the two
notions come to the same thing.
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4.1 Topological prerequisites

In this section we briefly review some basic topological definitions and
facts needed later. All these facts have (by now) easy and well-known
proofs; see the notes for sources. Since those proofs contain no graph
theory, we do not repeat them here: indeed our aim is to collect precisely
those topological facts that we need but do not want to prove. Later,
all proofs will follow strictly from the definitions and facts stated here
(and be guided by but not rely on geometric intuition), so the material
presented now will help to keep elementary topological arguments in
those proofs to a minimum.

A straight line segment in the Euclidean plane is a subset of R2 that
has the form { p + λ(q − p) | 0 � λ � 1 } for distinct points p, q ∈ R2.
A polygon is a subset of R2 which is the union of finitely many straightpolygon

line segments and is homeomorphic to the unit circle S1, the set of
points in R2 at distance 1 from the origin. Here, as later, any subset of a
topological space is assumed to carry the subspace topology. A polygonal
arc is a subset of R2 which is the union of finitely many straight line
segments and is homeomorphic to the closed unit interval [ 0, 1 ]. The
images of 0 and of 1 under such a homeomorphism are the endpoints of
this polygonal arc, which links them and runs between them. Instead of
‘polygonal arc’ we shall simply say arc in this chapter. If P is an arcarc

between x and y, we denote the point set P � {x, y }, the interior of P ,
by P̊ .

Let O ⊆ R2 be an open set. Being linked by an arc in O defines
an equivalence relation on O. The corresponding equivalence classes are
again open; they are the regions of O. A closed set X ⊆ R2 is said toregion

separate O if O � X has more than one region. The frontier of a setseparate

X ⊆ R2 is the set Y of all points y ∈ R2 such that every neighbourhoodfrontier

of y meets both X and R2 � X. Note that if X is open then its frontier
lies in R2 � X.

The frontier of a region O of R2 � X, where X is a finite union of
points and arcs, has two important properties. The first is accessibility:
if x ∈ X lies on the frontier of O, then x can be linked to some point in O
by a straight line segment whose interior lies wholly inside O. As a conse-
quence, any two points on the frontier of O can be linked by an arc whose
interior lies in O (why?). The second notable property of the frontier of
O is that it separates O from the rest of R2. Indeed, if ϕ: [ 0, 1 ]→P ⊆ R2

is continuous, with ϕ(0) ∈ O and ϕ(1) /∈ O, then P meets the frontier of
O at least in the point ϕ(y) for y := inf {x | ϕ(x) /∈ O }, the first point
of P in R2 � O.

Theorem 4.1.1. (Jordan Curve Theorem for Polygons)
For every polygon P ⊆ R2, the set R2 �P has exactly two regions. Each

[ 4.2.2 ]
[ 4.2.5 ]
[ 4.2.6 ]
[ 4.2.7 ]
[ 4.3.1 ]
[ 4.5.1 ]
[ 4.6.1 ]
[ 5.1.2 ]

of these has the entire polygon P as its frontier.
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With the help of Theorem 4.1.1, it is not difficult to prove the
following lemma.

Lemma 4.1.2. Let P1, P2, P3 be three arcs, between the same two end-

[ 4.2.6 ]
[ 4.2.8 ]
[ 4.2.7 ]

[ 12.5.4 ]point but otherwise disjoint.

(i) R2 � (P1 ∪ P2 ∪ P3) has exactly three regions, with frontiers
P1 ∪P2, P2 ∪P3 and P1 ∪P3.

(ii) If P is an arc between a point in P̊1 and a point in P̊3 whose
interior lies in the region of R2 � (P1 ∪P3) that contains P̊2, then
P̊ ∩ P̊2 �= ∅.

P1

P2

P3

P

Fig. 4.1.1. The arcs in Lemma 4.1.2 (ii)

Our next lemma complements the Jordan curve theorem by saying
that an arc does not separate the plane. For easier application later, we
phrase this a little more generally:

Lemma 4.1.3. Let X1, X2 ⊆ R2 be disjoint sets, each the union of [ 4.2.2 ]
[ 4.2.4 ]

finitely many points and arcs, and let P be an arc between a point in
X1 and one in X2 whose interior P̊ lies in a region O of R2 � (X1 ∪X2).
Then O � P̊ is a region of R2 � (X1 ∪P ∪X2).

X1 X2

P

O

Fig. 4.1.2. P does not separate the region O of R2 � (X1 ∪X2)

It remains to introduce a few terms and facts that will be used only
once, when we consider notions of equivalence for graph drawings in
Chapter 4.3.

As usual, we denote by Sn the n-dimensional sphere, the set of Sn

points in Rn+1 at distance 1 from the origin. The 2-sphere minus its
‘north pole’ (0, 0, 1) is homeomorphic to the plane; let us choose a fixed
such homeomorphism π:S2 �{ (0, 0, 1) }→R2 (for example, stereograph- π

ic projection). If P ⊆ R2 is a polygon and O is the bounded region of
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R2 �P , let us call C := π−1(P ) a circle on S2, and the sets π−1(O) and
S2 � π−1(P ∪O) the regions of C.

Our last tool is the theorem of Jordan and Schoenflies, again
adapted slightly for our purposes:

Theorem 4.1.4. Let ϕ:C1 → C2 be a homeomorphism between two[ 4.3.1 ]

circles on S2, let O1 be a region of C1, and let O2 be a region of C2.
Then ϕ can be extended to a homeomorphism C1 ∪O1 →C2 ∪O2.

4.2 Plane graphs

A plane graph is a pair (V, E) of finite sets with the following propertiesplane
graph

(the elements of V are again called vertices, those of E edges):

(i) V ⊆ R2;

(ii) every edge is an arc between two vertices;

(iii) different edges have different sets of endpoints;

(iv) the interior of an edge contains no vertex and no point of any
other edge.

A plane graph (V, E) defines a graph G on V in a natural way. As long
as no confusion can arise, we shall use the name G of this abstract graph
also for the plane graph (V, E), or for the point set V ∪

⋃
E; similar

notational conventions will be used for abstract versus plane edges, for
subgraphs, and so on.1

For every plane graph G, the set R2 �G is open; its regions are the
faces of G. Since G is bounded—i.e., lies inside some sufficiently largefaces

disc D—exactly one of its faces is unbounded: the face that contains
R2 � D. This face is the outer face of G; the other faces are its inner
faces. We denote the set of faces of G by F (G).F (G)

The faces of plane graphs and their subgraphs are related in the
obvious way:

Lemma 4.2.1. Let G be a plane graph, f ∈ F (G) a face, and H ⊆ G
a subgraph.

(i) H has a face f ′ containing f .

(ii) If the frontier of f lies in H, then f ′ = f .

1 However, we shall continue to use � for differences of point sets and − for graph
differences—which may help a little to keep the two apart.
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Proof . (i) Clearly, the points in f are equivalent also in R2 � H; let f ′

be the equivalence class of R2 � H containing them.
(ii) Recall from Section 4.1 that any arc between f and f ′ �f meets

the frontier X of f . If f ′ � f �= ∅ then there is such an arc inside f ′,
whose points in X do not lie in H. Hence X �⊆ H. �

In order to lay the foundations for the (easy but) rigorous introduc-
tion to plane graphs that this section aims to provide, let us descend
once now into the realm of truly elementary topology of the plane, and
prove what seems entirely obvious:2 that the frontier of a face of a plane
graph G is always a subgraph of G—not, say, half an edge.

The following lemma states this formally, together with two simi-
larly ‘obvious’ properties of plane graphs:

Lemma 4.2.2. Let G be a plane graph and e an edge of G.
[ 4.5.1 ]
[ 4.5.2 ]

[ 12.5.4 ]
(i) If X is the frontier of a face of G, then either e ⊆ X or X ∩ e̊ = ∅.
(ii) If e lies on a cycle C ⊆ G, then e lies on the frontier of exactly

two faces of G, and these are contained in distinct faces of C.

(iii) If e lies on no cycle, then e lies on the frontier of exactly one face
of G.

Proof . We prove all three assertions together. Let us start by considering (4.1.1)
(4.1.3)

one point x0 ∈ e̊. We show that x0 lies on the frontier of either exactly
two faces or exactly one, according as e lies on a cycle in G or not. We
then show that every other point in e̊ lies on the frontier of exactly the
same faces as x0. Then the endpoints of e will also lie on the frontier of
these faces—simply because every neighbourhood of an endpoint of e is
also the neighbourhood of an inner point of e.

G is the union of finitely many straight line segments; we may as-
sume that any two of these intersect in at most one point. Around every
point x ∈ e̊ we can find an open disc Dx, with centre x, which meets Dx

only those (one or two) straight line segments that contain x.
Let us pick an inner point x0 from a straight line segment S ⊆ e. x0, S

Then Dx0 ∩G = Dx0 ∩S, so Dx0 �G is the union of two open half-discs.
Since these half-discs do not meet G, they each lie in a face of G. Let
us denote these faces by f1 and f2; they are the only faces of G with x0 f1, f2

on their frontier, and they may coincide (Fig. 4.2.1).
If e lies on a cycle C ⊆ G, then Dx0 meets both faces of C (Theo-

rem 4.1.1). Since f1 and f2 are contained in faces of C by Lemma 4.2.1,
this implies f1 �= f2. If e does not lie on any cycle, then e is a bridge

2 Note that even the best intuition can only ever be ‘accurate’, i.e., coincide with
what the technical definitions imply, inasmuch as those definitions do indeed formal-
ize what is intuitively intended. Given the complexity of definitions in elementary
topology, this can hardly be taken for granted.
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f1

f2

x0

Dx0

e
S

Fig. 4.2.1. Faces f1, f2 of G in the proof of Lemma 4.2.2

and thus links two disjoint point sets X1, X2 as in Lemma 4.1.3, with
X1 ∪X2 = G � e̊. Clearly, f1 ∪ e̊∪ f2 is the subset of a face f of G− e.
By Lemma 4.1.3, f � e̊ is a face of G. But f � e̊ contains f1 and f2 by
definition of f , so f1 = f � e̊ = f2 since f1, f2 and f are all faces of G.

Now consider any other point x1 ∈ e̊. Let P be the arc from x0 tox1

x1 contained in e. Since P is compact, finitely many of the discs DxP

with x ∈ P cover P . Let us enumerate these discs as D0, . . . , Dn in theD0, . . . , Dn

natural order of their centres along P ; adding Dx0 or Dx1 as necessary,
we may assume that D0 = Dx0 and Dn = Dx1 . By induction on n, one
easily proves that every point y ∈ Dn � e can be linked by an arc insidey

(D0 ∪ . . .∪Dn) � e to a point z ∈ D0 � e (Fig. 4.2.2); then y and z arez

equivalent in R2 �G. Hence, every point of Dn � e lies in f1 or in f2, so
x1 cannot lie on the frontier of any other face of G. Since both half-discs
of D0 � e can be linked to Dn � e in this way (swap the roles of D0

and Dn), we find that x1 lies on the frontier of both f1 and f2. �

x0 x1

y
z

P

e

D0 Dn

Fig. 4.2.2. An arc from y to D0, close to P

Corollary 4.2.3. The frontier of a face is always the point set of a
subgraph. �

The subgraph of G whose point set is the frontier of a face f is said
to bound f and is called its boundary ; we denote it by G [ f ]. A faceboundary

is said to be incident with the vertices and edges of its boundary. ByG [ f ]

Lemma 4.2.1 (ii), every face of G is also a face of its boundary; we shall
use this fact frequently in the proofs to come.

Proposition 4.2.4. A plane forest has exactly one face.[ 4.6.1 ]

Proof . Use induction on the number of edges and Lemma 4.1.3. �(4.1.3)

With just one exception, different faces of a plane graph have dif-
ferent boundaries:

Lemma 4.2.5. If a plane graph has different faces with the same bound-[ 4.3.1 ]

ary, then the graph is a cycle.
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Proof . Let G be a plane graph, and let H ⊆ G be the boundary of (4.1.1)

distinct faces f1, f2 of G. Since f1 and f2 are also faces of H, Proposition
4.2.4 implies that H contains a cycle C. By Lemma 4.2.2 (ii), f1 and f2

are contained in different faces of C. Since f1 and f2 both have all of H
as boundary, this implies that H = C: any further vertex or edge of H
would lie in one of the faces of C and hence not on the boundary of the
other. Thus, f1 and f2 are distinct faces of C. As C has only two faces,
it follows that f1 ∪C ∪ f2 = R2 and hence G = C. �

Proposition 4.2.6. In a 2-connected plane graph, every face is bounded

[ 4.3.1 ]
[ 4.4.3 ]
[ 4.5.1 ]
[ 4.5.2 ]by a cycle.

Proof . Let f be a face in a 2-connected plane graph G. We show by (3.1.3)
(4.1.1)
(4.1.2)induction on |G| that G [ f ] is a cycle. If G is itself a cycle, this holds

by Theorem 4.1.1; we therefore assume that G is not a cycle.
By Proposition 3.1.3, there exist a 2-connected plane graph H ⊆ G H

and a plane H-path P such that G = H ∪P . The interior of P lies in a P

face f ′ of H, which by the induction hypothesis is bounded by a cycle C. f ′, C

If f is also a face of H, we are home by the induction hypothesis. If
not, then the frontier of f meets P � H, so f ⊆ f ′ and G [ f ] ⊆ C ∪P .
By Lemma 4.2.1 (ii), then, f is a face of C ∪P and hence bounded by a
cycle (Lemma 4.1.2 (i)). �

In a 3-connected graph, we can identify the face boundaries among
the other cycles in purely combinatorial terms:

Proposition 4.2.7. The face boundaries in a 3-connected plane graph [ 4.3.2 ]
[ 4.5.2 ]

are precisely its non-separating induced cycles.

Proof . Let G be a 3-connected plane graph, and let C ⊆ G. If C is a
(3.3.6)
(4.1.1)
(4.1.2)non-separating induced cycle, then by the Jordan curve theorem its two

faces cannot both contain points of G � C. Therefore it bounds a face
of G.

Conversely, suppose that C bounds a face f . By Proposition 4.2.6, C, f

C is a cycle. If C has a chord e = xy, then the components of C−{x, y }
are linked by a C-path in G, because G is 3-connected. This path and
e both run through the other face of C (not f) but do not intersect,
a contradiction to Lemma 4.1.2 (ii).

It remains to show that C does not separate any two vertices x, y ∈
G−C. By Menger’s theorem (3.3.6), x and y are linked in G by three
independent paths. Clearly, f lies inside a face of their union, and by
Lemma 4.1.2 (i) this face is bounded by only two of the paths. The third
therefore avoids f and its boundary C. �
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A plane graph G is called maximally plane, or just maximal , if wemaximal
plane graph

cannot add a new edge to form a plane graph G′ � G with V (G′) = V (G).
We call G a plane triangulation if every face of G (including the outerplane

triangulation face) is bounded by a triangle.

Proposition 4.2.8. A plane graph of order at least 3 is maximally plane[ 4.4.1 ]
[ 5.4.2 ]

if and only if it is a plane triangulation.

Proof . Let G be a plane graph of order at least 3. It is easy to see that(4.1.2)

if every face of G is bounded by a triangle, then G is maximally plane.
Indeed, any additional edge e would have its interior inside a face of G
and its ends on the boundary of that face. Hence these ends are already
adjacent in G, so G∪ e cannot satisfy condition (iii) in the definition of
a plane graph.

Conversely, assume that G is maximally plane and let f ∈ F (G) bef

a face; let us write H := G [ f ]. Since G is maximal as a plane graph,H

G [H ] is complete: any two vertices of H that are not already adjacent
in G could be linked by an arc through f , extending G to a larger plane
graph. Thus G [H ] = Kn for some n—but we do not know yet whichn

edges of G [H ] lie in H.
Let us show first that H contains a cycle. If not, then G � H �= ∅:

by G ⊇ Kn if n � 3, or else by |G| � 3. On the other hand we have
f ∪H = R2 by Proposition 4.2.4 and hence G = H, a contradiction.

Since H contains a cycle, it suffices to show that n � 3: then H = K3

as claimed. Suppose n � 4, and let C = v1v2v3v4v1 be a cycle in G [H ]C, vi

(= Kn). By C ⊆ G, our face f is contained in a face fC of C; let f ′
C

be the other face of C. Since the vertices v1 and v3 lie on the boundaryfC , f ′
C

of f , they can be linked by an arc whose interior lies in fC and avoids G.
Hence by Lemma 4.1.2 (ii), the plane edge v2v4 of G [H ] runs through
f ′

C rather than fC (Fig. 4.2.3). Analogously, since v2, v4 ∈ G [ f ], the
edge v1v3 runs through f ′

C . But the edges v1v3 and v2v4 are disjoint, so
this contradicts Lemma 4.1.2 (ii). �

f ′
C

v1

v

C

2

v3

v4
fC ⊇ f

Fig. 4.2.3. The edge v2v4 of G runs through the face f ′
C

The following classic result of Euler (1752)—here stated in its sim-
plest form, for the plane—marks one of the common origins of graph
theory and topology. The theorem relates the number of vertices, edges
and faces in a plane graph: taken with the correct signs, these numbers
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always add up to 2. The general form of Euler’s theorem asserts the same
for graphs suitably embedded in other surfaces, too: the sum obtained
is always a fixed number depending only on the surface, not on the
graph, and this number differs for distinct (orientable closed) surfaces.
Hence, any two such surfaces can be distinguished by a simple arithmetic
invariant of the graphs embedded in them!3

Let us then prove Euler’s theorem in its simplest form:

Theorem 4.2.9. (Euler’s Formula)
Let G be a connected plane graph with n vertices, m edges, and � faces.
Then

n−m + � = 2 .

Proof . We fix n and apply induction on m. For m � n− 1, G is a tree (1.5.1)
(1.5.3)

and m = n− 1 (why?), so the assertion follows from Proposition 4.2.4.
Now let m � n. Then G has an edge e that lies on a cycle; let e

G′ := G− e. By Lemma 4.2.2 (ii), e lies on the boundary of exactly two G′

faces f1, f2 of G, and as the points in e̊ are all equivalent in R2 � G′, f1, f2

there is a face fe of G′ containing e̊. We show that fe

F (G) � { f1, f2 } = F (G′) � { fe } ; (∗)

then G′ has exactly one face and one edge less than G, and so the
assertion follows from the induction hypothesis for G′.

For a proof of (∗) let first f ∈ F (G)�{ f1, f2 } be given. By Lemma
4.2.2 (i) we have G [ f ] ⊆ G � e̊ = G′, and hence f ∈ F (G′) by Lemma
4.2.1 (ii). As clearly f �= fe, this establishes the forwad inclusion in (∗).

Conversely, consider any face f ′ ∈ F (G′)�{ fe }. Clearly f ′ �= f1, f2,
and f ′ ∩ e̊ = ∅. Hence every two points of f ′ lie in R2 � G and are
equivalent there, so G has a face f containing f ′. By Lemma 4.2.1 (i),
however, f lies inside a face f ′′ of G′. Thus f ′ ⊆ f ⊆ f ′′ and hence
f ′ = f = f ′′, since both f ′ and f ′′ are faces of G′. �

Corollary 4.2.10. A plane graph with n � 3 vertices has at most 3n−6
[ 4.4.1 ]
[ 5.1.2 ]
[ 7.3.5 ]edges. Every plane triangulation with n vertices has 3n− 6 edges.

Proof . By Proposition 4.2.8 it suffices to prove the second assertion. In a
plane triangulation G, every face boundary contains exactly three edges,
and every edge lies on the boundary of exactly two faces (Lemma 4.2.2).
The bipartite graph on E(G)∪F (G) with edge set { ef | e ⊆ G [ f ] } thus
has exactly 2 |E(G)| = 3 |F (G)| edges. According to this identity we may
replace � with 2m/3 in Euler’s formula, and obtain m = 3n− 6. �

3 This fundamental connection between graphs and surfaces lies at the heart of
the proof of the famous Robertson-Seymour graph minor theorem; see Chapter 12.5.
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Euler’s formula can be useful for showing that certain graphs cannot
occur as plane graphs. The graph K5, for example, has 10 > 3 · 5− 6
edges, more than allowed by Corollary 4.2.10. Similarly, K3,3 cannot be
a plane graph. For since K3,3 is 2-connected but contains no triangle,
every face of a plane K3,3 would be bounded by a cycle of length � 4
(Proposition 4.2.6). As in the proof of Corollary 4.2.10 this implies
2m � 4�, which yields m � 2n− 4 when substituted in Euler’s formula.
But K3,3 has 9 > 2 · 6− 4 edges.

Clearly, along with K5 and K3,3 themselves, their subdivisions can-
not occur as plane graphs either:

Corollary 4.2.11. A plane graph contains neither K5 nor K3,3 as a[ 4.4.5 ]
[ 4.4.6 ]

topological minor. �

Surprisingly, it turns out that this simple property of plane graphs iden-
tifies them among all other graphs: as Section 4.4 will show, an arbitrary
graph can be drawn in the plane if and only if it has no (topological) K5

or K3,3 minor.

4.3 Drawings

An embedding in the plane, or planar embedding , of an (abstract) graphplanar
embedding

G is an isomorphism between G and a plane graph H. The latter will be
called a drawing of G. We shall not always distinguish notationally be-drawing

tween the vertices and edges of G and of H. In this section we investigate
how two planar embeddings of a graph can differ.

How should we measure the likeness of two embeddings ρ:G → H
and ρ′: G → H ′ of a planar graph G? An obvious way to do this is to
consider the canonical isomorphism σ := ρ′ ◦ ρ−1 between H and H ′

as abstract graphs, and ask how much of their position in the plane
this isomorphism respects or preserves. For example, if σ is induced by
a simple rotation of the plane, we would hardly consider ρ and ρ′ as
genuinely different ways of drawing G.

So let us begin by considering any abstract isomorphism σ:V →V ′σ

between two plane graphs H = (V, E) and H ′ = (V ′, E′), with faceH; V, E, F

sets F (H) =: F and F (H ′) =: F ′ say, and try to measure to whatH′; V ′, E′, F ′

degree σ respects or preserves the features of H and H ′ as plane graphs.
In what follows we shall propose three criteria for this in decreasing
order of strictness (and increasing order of ease of handling), and then
prove that for most graphs these three criteria turn out to agree. In
particular, applied to the isomorphism σ = ρ′ ◦ ρ−1 considered earlier,
all three criteria will say that there is essentially only one way to draw
a 3-connected graph.
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Our first criterion for measuring how well our abstract isomorphism
σ preserves the plane features of H and H ′ is perhaps the most natural
one. Intuitively, we would like to call σ ‘topological’ if it is induced by
a homeomorphism from the plane R2 to itself. To avoid having to grant
the outer faces of H and H ′ a special status, however, we take a detour
via the homeomorphism π:S2 � { (0, 0, 1) }→R2 chosen in Section 4.1: π

we call σ a topological isomorphism between the plane graphs H and H ′

if there exists a homeomorphism ϕ:S2 →S2 such that ψ := π ◦ϕ ◦ π−1 topological
isomorphism

induces σ on V ∪E. (More formally: we ask that ψ agree with σ on V ,
and that it map every plane edge xy ∈ H onto the plane edge σ(x)σ(y) ∈
H ′. Unless ϕ fixes the point (0, 0, 1), the map ψ will be undefined at
π(ϕ−1(0, 0, 1)).)

Fig. 4.3.1. Two drawings of a graph that are not topologically
isomorphic—why not?

It can be shown that, up to topological isomorphism, inner and
outer faces are indeed no longer different: if we choose as ϕ a rotation
of S2 mapping the π−1-image of a point of some inner face of H to the
north pole (0, 0, 1) of S2, then ψ maps the rest of this face to the outer
face of ψ(H). (To ensure that the edges of ψ(H) are again piecewise
linear, however, one may have to adjust ϕ a little.)

If σ is a topological isomorphism as above, then—except possibly
for a pair of missing points where ψ or ψ−1 is undefined—ψ maps the
faces of H onto those of H ′ (proof?). In this way, σ extends naturally
to a bijection σ:V ∪E ∪F → V ′ ∪E′ ∪F ′ which preserves incidence of
vertices, edges and faces.

Let us single out this last property of a topological isomorphism as
the second criterion for how well an abstract isomorphism between plane
graphs respects their position in the plane: let us call σ a combinatorial
isomorphism of the plane graphs H and H ′ if it can be extended to a combinatorial

isomorphism
bijection σ:V ∪E∪F →V ′∪E′∪F ′ that preserves incidence not only of
vertices with edges but also of vertices and edges with faces. (Formally:
we require that a vertex or edge x ∈ H shall lie on the boundary of a
face f ∈ F if and only if σ(x) lies on the boundary of the face σ(f).)

If σ is a combinatorial isomorphism of the plane graphs H and H ′, it
maps the face boundaries of H to those of H ′. Let us pick out this prop-
erty as our third criterion, and call σ a graph-theoretical isomorphism of

graph-
theoretical

isomorphism
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G′G

Fig. 4.3.2. Two drawings of a graph that are combinatorially
isomorphic but not topologically—why not?

the plane graphs H and H ′ if

{
σ(H [ f ]) : f ∈ F

}
=

{
H ′ [ f ′ ] : f ′ ∈ F ′ } .

Thus, we no longer keep track of which face is bounded by a given
subgraph: the only information we keep is whether a subgraph bounds
some face or not, and we require that σ map the subgraphs that do onto
each other. At first glance, this third criterion may appear a little less
natural than the previous two. However, it has the practical advantage
of being formally weaker and hence easier to verify, and moreover, it will
turn out to be equivalent to the other two in most cases.

As we have seen, every topological isomorphism between two plane
graphs is also combinatorial, and every combinatorial isomorphism is also
graph-theoretical. The following theorem shows that, for most graphs,
the converse is true as well:

Theorem 4.3.1.
(i) Every graph-theoretical isomorphism between two plane graphs is

combinatorial. Its extension to a face bijection is unique if and
only if the graph is not a cycle.

(ii) Every combinatorial isomorphism between two 2-connected plane
graphs is topological.

Proof . Let H = (V, E) and H ′ = (V ′, E′) be two plane graphs,
(4.1.1)
(4.1.4)
(4.2.5)
(4.2.6) put F (H) =: F and F (H ′) =: F ′, and let σ:V → V ′ be an isomor-

phism between the underlying abstract graphs. Extend σ to a map
V ∪E →V ′ ∪E′ by letting σ(xy) := σ(x)σ(y).

(i) If H is a cycle, the assertion follows from the Jordan curve theo-
rem. We now assume that H is not a cycle. Let B and B′ be the sets of
all face boundaries in H and H ′, respectively. If σ is a graph-theoretical
isomorphism, then the map B �→ σ(B) is a bijection between B and B′.
By Lemma 4.2.5, the map f �→ H [ f ] is a bijection between F and B,
and likewise for F ′ and B′. The composition of these three bijections is
a bijection between F and F ′, which we choose as σ:F → F ′. By con-
struction, this extension of σ to V ∪E ∪F preserves incidences (and is
unique with this property), so σ is indeed a combinatorial isomorphism.
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(ii) Let us assume that H is 2-connected, and that σ is a combina- σ

torial isomorphism. We have to construct a homeomorphism ϕ:S2 →S2

which, for every vertex or plane edge x ∈ H, maps π−1(x) to π−1(σ(x)).
Since σ is a combinatorial isomorphism, σ̃ : π−1 ◦ σ ◦ π is an incidence σ̃

preserving bijection from the vertices, edges and faces4 of H̃ := π−1(H)
to the vertices, edges and faces of H̃ ′ := π−1(H ′). H̃, H̃′

S2 ⊇ ⊇H̃ H̃

HH

′ S2

R2 ⊇ ⊇′ R2

� �

  �
  �

σ̃

σ

ππ

Fig. 4.3.3. Defining σ̃ via σ

We construct ϕ in three steps. Let us first define ϕ on the vertex
set of H̃, setting ϕ(x) := σ̃(x) for all x ∈ V (H̃). This is trivially a
homeomorphism between V (H̃) and V (H̃ ′).

As the second step, we now extend ϕ to a homeomorphism between
H̃ and H̃ ′ that induces σ̃ on V (H̃) ∪ E(H̃). We may do this edge by
edge, as follows. Every edge xy of H̃ is homeomorphic to the edge
σ̃(xy) = ϕ(x)ϕ(y) of H̃ ′, by a homeomorphism mapping x to ϕ(x) and
y to ϕ(y). Then the union of all these homeomorphisms, one for every
edge of H̃, is indeed a homeomorphism between H̃ and H̃ ′—our desired
extension of ϕ to H̃: all we have to check is continuity at the vertices
(where the edge homeomorphisms overlap), and this follows at once from
our assumption that the two graphs and their individual edges all carry
the subspace topology in R3.

In the third step we now extend our homeomorphism ϕ: H̃ → H̃ ′ to
all of S2. This can be done analogously to the second step, face by face.
By Proposition 4.2.6, all face boundaries in H̃ and H̃ ′ are cycles. Now if
f is a face of H̃ and C its boundary, then σ̃(C) :=

⋃
{ σ̃(e) | e ∈ E(C) }

bounds the face σ̃(f) of H̃ ′. By Theorem 4.1.4, we may therefore extend
the homeomorphism ϕ:C → σ̃(C) defined so far to a homeomorphism
from C ∪f to σ̃(C)∪ σ̃(f). We finally take the union of all these homeo-
morphisms, one for every face f of H̃, as our desired homeomorphism
ϕ:S2 →S2; as before, continuity is easily checked. �

Let us return now to our original goal, the definition of equivalence
for planar embeddings. Let us call two planar embeddings ρ, ρ′ of a graph

4 By the ‘vertices, edges and faces’ of H̃ and H̃′ we mean the images under π−1

of the vertices, edges and faces of H and H′ (plus (0, 0, 1) in the case of the outer
face). Their sets will be denoted by V (H̃), E(H̃), F (H̃) and V (H̃′), E(H̃′), F (H̃′),
and incidence is defined as inherited from H and H′.
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G topologically (respectively, combinatorially) equivalent if ρ′ ◦ ρ−1 is aequivalent
embeddings

topological (respectively, combinatorial) isomorphism between ρ(G) and
ρ′(G). If G is 2-connected, the two definitions coincide by Theorem 4.3.1,
and we simply speak of equivalent embeddings. Clearly, this is indeed an
equivalence relation on the set of planar embeddings of any given graph.

Note that two drawings of G resulting from inequivalent embeddings
may well be topologically isomorphic (exercise): for the equivalence of
two embeddings we ask not only that some (topological or combinato-
rial) isomorphism exist between the their images, but that the canonical
isomorphism ρ′ ◦ ρ−1 be a topological or combinatorial one.

Even in this strong sense, 3-connected graphs have only one embed-
ding up to equivalence:

Theorem 4.3.2. (Whitney 1932)[ 12.5.4 ]

Any two planar embeddings of a 3-connected graph are equivalent.

Proof . Let G be a 3-connected graph with planar embeddings ρ:G→H(4.2.7)

and ρ′:G → H ′. By Theorem 4.3.1 it suffices to show that ρ′ ◦ ρ−1 is
a graph-theoretical isomorphism, i.e. that ρ(C) bounds a face of H if
and only if ρ′(C) bounds a face of H ′, for every subgraph C ⊆ G. This
follows at once from Proposition 4.2.7. �

4.4 Planar graphs: Kuratowski’s theorem

A graph is called planar if it can be embedded in the plane: if it isplanar

isomorphic to a plane graph. A planar graph is maximal , or maximally
planar , if it is planar but cannot be extended to a larger planar graph
by adding an edge (but no vertex).

Drawings of maximal planar graphs are clearly maximally plane.
The converse, however, is not obvious: when we start to draw a planar
graph, could it happen that we get stuck half-way with a proper subgraph
that is already maximally plane? Our first proposition says that this
can never happen, that is, a plane graph is never maximally plane just
because it is badly drawn:

Proposition 4.4.1.

(i) Every maximal plane graph is maximally planar.

(ii) A planar graph with n � 3 vertices is maximally planar if and
only if it has 3n− 6 edges.

Proof . Apply Proposition 4.2.8 and Corollary 4.2.10. �(4.2.8)
(4.2.10)
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Which graphs are planar? As we saw in Corollary 4.2.11, no planar
graph contains K5 or K3,3 as a topological minor. Our aim in this section
is to prove the surprising converse, a classic theorem of Kuratowski: any
graph without a topological K5 or K3,3 minor is planar.

Before we prove Kuratowski’s theorem, let us note that it suffices
to consider ordinary minors rather than topological ones:

Lemma 4.4.2. A graph contains K5 or K3,3 as a minor if and only if
it contains K5 or K3,3 as a topological minor.

Proof . By Proposition 1.7.2 it suffices to show that every graph G (1.7.2)

with a K5 minor contains either K5 as a topological minor or K3,3 as
a minor. So suppose that G � K5, and let K ⊆ G be minimal such
that K = MK5. Then every branch set of K induces a tree in K, and
between any two branch sets K has exactly one edge. If we take the
tree induced by a branch set Vx and add to it the four edges joining it
to other branch sets, we obtain another tree, Tx say. By the minimality
of K, Tx has exactly 4 leaves, the 4 neighbours of Vx in other branch
sets (Fig. 4.4.1).

Tx

Vx

Fig. 4.4.1. Every MK5 contains a TK5 or MK3,3

If each of the five trees Tx is a TK1,4 then K is a TK5, and we are
done. If one of the Tx is not a TK1,4 then it has exactly two vertices
of degree 3. Contracting Vx onto these two vertices, and every other
branch set to a single vertex, we obtain a graph on 6 vertices containing
a K3,3. Thus, G � K3,3 as desired. �

We first prove Kuratowski’s theorem for 3-connected graphs. This
is the heart of the proof: the general case will then follow easily.

Lemma 4.4.3. Every 3-connected graph G without a K5 or K3,3 minor
is planar.
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Proof . We apply induction on |G|. For |G| = 4 we have G = K4, and(3.2.1)
(4.2.6)

the assertion holds. Now let |G| > 4, and assume the assertion is true
for smaller graphs. By Lemma 3.2.1, G has an edge xy such that G/xyxy

is again 3-connected. Since the minor relation is transitive, G/xy has no
K5 or K3,3 minor either. Thus, by the induction hypothesis, G/xy has
a drawing G̃ in the plane. Let f be the face of G̃− vxy containing theG̃

point vxy, and let C be the boundary of f . Let X := NG(x) � { y } andf, C

Y := NG(y) � {x }; then X ∪Y ⊆ V (C), because vxy ∈ f . Clearly,X, Y

G̃′ := G̃−{ vxyv | v ∈ Y � X }G̃′

may be viewed as a drawing of G−y, in which the vertex x is represented
by the point vxy (Fig. 4.4.2). Our aim is to add y to this drawing to
obtain a drawing of G.

x1

x2

x3

x4

x5

x (= vxy)

C

f1 P4

f

Fig. 4.4.2. G̃′ as a drawing of G−y: the vertex x is represented
by the point vxy

Since G̃ is 3-connected, G̃ − vxy is 2-connected, so C is a cycle
(Proposition 4.2.6). Let x1, . . . , xk be an enumeration along this cycle ofx1, . . . , xk

the vertices in X, and let Pi = xi . . . xi+1 be the X-paths on C betweenPi

them (i = 1, . . . , k; with xk+1 := x1). Let us show that Y ⊆ V (Pi)
for some i. If not, then either x and y have three common neighbours
on C and form a TK5 with these, or y has two neighbours on C that
are separated in C by two neighbours of x, and these four vertices of C
form with x and y the branch vertices of a TK3,3. In either case have a
contradiction, since G contains neither a TK5 nor a TK3,3.

Now fix i so that Y ⊆ Pi. The set C �Pi is contained in one of the
two faces of the cycle Ci := xxiPixi+1x; we denote the other face of CiCi

by fi. Since fi contains points of f (close to x) but no points of C, wefi

have fi ⊆ f . Moreover, the plane edges xxj with j /∈ { i, i+1 } meet Ci

only in x and end outside fi in C � Pi, so fi meets none of those edges.
Hence fi ⊆ R2 � G̃′, that is, fi is contained in (and hence equal to) a face
of G̃′. We may therefore extend G̃′ to a drawing of G by placing y and
its incident edges in fi. �
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Compared with other proofs of Kuratowski’s theorem, the above
proof has the attractive feature that it can easily be adapted to produce
a drawing in which every inner face is convex (exercise); in particular,
every edge can be drawn straight. Note that 3-connectedness is essential
here: a 2-connected planar graph need not have a drawing with all inner
faces convex (example?), although it always has a straight-line drawing
(Exercise 1212).

It is not difficult, in principle, to reduce the general Kuratowski
theorem to the 3-connected case by manipulating and combining partial
drawings assumed to exist by induction. For example, if κ(G) = 2 and
G = G1 ∪G2 with V (G1 ∩G2) = {x, y }, and if G has no TK5 or TK3,3

subgraph, then neither G1 + xy nor G2 + xy has such a subgraph, and
we may try to combine drawings of these graphs to one of G + xy. (If
xy is already an edge of G, the same can be done with G1 and G2.)
For κ(G) � 1, things become even simpler. However, the geometric
operations involved require some cumbersome shifting and scaling, even
if all the plane edges occurring are assumed to be straight.

The following more combinatorial route is just as easy, and may be
a welcome alternative.

Lemma 4.4.4. Let X be a set of 3-connected graphs. Let G be a graph [ 7.3.1 ]

with κ(G) � 2, and let G1, G2 be proper induced subgraphs of G such
that G = G1 ∪G2 and |G1 ∩G2| = κ(G). If G is edge-maximal without
a topological minor in X , then so are G1 and G2, and G1 ∩G2 = K2.

Proof . Note first that every vertex v ∈ S := V (G1 ∩G2) has a neigh- S

bour in every component of Gi −S, i = 1, 2: otherwise S � { v } would
separate G, contradicting |S| = κ(G). By the maximality of G, every
edge e added to G lies in a TX ⊆ G + e with X ∈ X . For all the X

choices of e considered below, the 3-connectedness of X will imply that
the branch vertices of this TX all lie in the same Gi, say in G1. (The
position of e will always be symmetrical with respect to G1 and G2, so
this assumption entails no loss of generality.) Then the TX meets G2 at
most in a path P corresponding to an edge of X. P

If S = ∅, we obtain an immediate contradiction by choosing e with
one end in G1 and the other in G2. If S = { v } is a singleton, let e
join a neighbour v1 of v in G1 − S to a neighbour v2 of v in G2 − S
(Fig. 4.4.3). Then P contains both v and the edge v1v2; replacing vPv1

with the edge vv1, we obtain a TX in G1 ⊆ G, a contradiction.
So |S| = 2, say S = {x, y }. If xy /∈ G, we let e := xy, and in the x, y

arising TX replace e by an x–y path through G2; this gives a TX in G,
a contradiction. Hence xy ∈ G, and G [S ] = K2 as claimed.

It remains to show that G1 and G2 are edge-maximal without a
topological minor in X . So let e′ be an additional edge for G1, say.
Replacing xPy with the edge xy if necessary, we obtain a TX either
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G1 G2

TX

Pe

v

v1 v2

Fig. 4.4.3. If G + e contains a TX, then so does G1 or G2

in G1 + e′ (which shows the edge-maximality of G1, as desired) or in G2

(which contradicts G2 ⊆ G). �

Lemma 4.4.5. If |G| � 4 and G is edge-maximal with TK5, TK3,3 �⊆ G,
then G is 3-connected.

Proof . We apply induction on |G|. For |G| = 4, we have G = K4(4.2.11)

and the assertion holds. Now let |G| > 4, and let G be edge-maximal
without a TK5 or TK3,3. Suppose κ(G) � 2, and choose G1 and G2 asG1, G2

in Lemma 4.4.4. For X := {K5, K3,3 }, the lemma says that G1 ∩G2 is
a K2, with vertices x, y say. By Lemmas 4.4.4, 4.4.3 and the inductionx, y

hypothesis, G1 and G2 are planar. For each i = 1, 2 separately, choose a
drawing of Gi, a face fi with the edge xy on its boundary, and a vertexfi

zi �= x, y on the boundary of fi. Let K be a TK5 or TK3,3 in thezi

abstract graph G + z1z2 (Fig. 4.4.4).K

G1 G2

z1 z2x

y

K

Fig. 4.4.4. A TK5 or TK3,3 in G + z1z2

If all the branch vertices of K lie in the same Gi, then either Gi +xzi

or Gi + yzi (or Gi itself, if zi is already adjacent to x or y, respectively)
contains a TK5 or TK3,3; this contradicts Corollary 4.2.11, since these
graphs are planar by the choice of zi. Since G+z1z2 does not contain four
independent paths between (G1 −G2) and (G2 −G1), these subgraphs
cannot both contain a branch vertex of a TK5, and cannot both contain
two branch vertices of a TK3,3. Hence K is a TK3,3 with only one branch
vertex v in, say, G2−G1. But then also the graph G1 +v+{ vx, vy, vz1 },
which is planar by the choice of z1, contains a TK3,3. This contradicts
Corollary 4.2.11. �
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Theorem 4.4.6. (Kuratowski 1930; Wagner 1937) [ 4.5.1 ]
[ 12.4.3 ]

The following assertions are equivalent for graphs G:

(i) G is planar;

(ii) G contains neither K5 nor K3,3 as a minor;

(iii) G contains neither K5 nor K3,3 as a topological minor.

Proof . Combine Corollary 4.2.11 with Lemmas 4.4.2, 4.4.3 and 4.4.5. (4.2.11)

�

Corollary 4.4.7. Every maximal planar graph with at least four ver-
tices is 3-connected.

Proof . Apply Lemma 4.4.5 and Theorem 4.4.6. �

4.5 Algebraic planarity criteria

One of the most conspicuous features of a plane graph G are its facial
cycles, the cycles that bound a face. If G is 2-connected it is covered by facial

cycles
its facial cycles, so in a sense these form a ‘large’ set. In fact, the set of
facial cycles is large even in the sense that they generate the entire cycle
space: every cycle in G is easily seen to be the sum of the facial cycles
(see below). On the other hand, the facial cycles only cover G ‘thinly’,
as every edge lies on at most two of them. Our first aim in this section
is to show that the existence of such a large yet thinly spread family of
cycles is not only a conspicuous feature of planarity but lies at its very
heart: it characterizes it.

Let G = (V, E) be any graph. We call a subset F of its edge space
E(G) simple if every edge of G lies in at most two sets of F . For example, simple

the cut space C∗(G) has a simple basis: according to Proposition 1.9.3 it
is generated by the cuts E(v) formed by all the edges at a given vertex v,
and an edge xy ∈ G lies in E(v) only for v = x and for v = y.

Theorem 4.5.1. (MacLane 1937) [ 4.6.3 ]

A graph is planar if and only if its cycle space has a simple basis.

Proof . The assertion being trivial for graphs of order at most 2, we
(1.9.2)
(1.9.6)
(4.1.1)
(4.2.2)
(4.2.6)
(4.4.6)

consider a graph G of order at least 3. If κ(G) � 1, then G is the union
of two proper induced subgraphs G1, G2 with |G1 ∩G2| � 1. Then C(G)
is the direct sum of C(G1) and C(G2), and hence has a simple basis if
and only if both C(G1) and C(G2) do (proof?). Moreover, G is planar if
and only if both G1 and G2 are: this follows at once from Kuratowski’s
theorem, but also from easy geometrical considerations. The assertion
for G thus follows inductively from those for G1 and G2. For the rest of
the proof, we now assume that G is 2-connected.
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We first assume that G is planar and choose a drawing. By Pro-
position 4.2.6, the face boundaries of G are cycles, so they are elements
of C(G). We shall show that the face boundaries generate all the cycles
in G; then C(G) has a simple basis by Lemma 4.2.2. Let C ⊆ G be any
cycle, and let f be its inner face. By Lemma 4.2.2, every edge e with
e̊ ⊆ f lies on exactly two face boundaries G [ f ′ ] with f ′ ⊆ f , and every
edge of C lies on exactly one such face boundary. Hence the sum in C(G)
of all those face boundaries is exactly C.

Conversely, let {C1, . . . , Ck } be a simple basis of C(G). Then, for
every edge e ∈ G, also C(G − e) has a simple basis. Indeed, if e lies
in just one of the sets Ci, say in C1, then {C2, . . . , Ck } is a simple
basis of C(G − e); if e lies in two of the Ci, say in C1 and C2, then
{C1 + C2, C3, . . . , Ck } is such a basis. (Note that the two bases are
indeed subsets of C(G− e) by Proposition 1.9.2.) Thus every subgraph
of G has a cycle space with a simple basis. For our proof that G is planar,
it thus suffices to show that the cycle spaces of K5 and K3,3 (and hence
those of their subdivisions) do not have a simple basis: then G cannot
contain a TK5 or TK3,3, and so is planar by Kuratowski’s theorem.

Let us consider K5 first. By Theorem 1.9.6, dim C(K5) = 6; let
B = {C1, . . . , C6 } be a simple basis, and put C0 := C1 + . . . + C6. As
B is linearly independent, none of the sets C0, . . . , C6 is empty, so each
of them contains at least three edges (cf. Proposition 1.9.2). Moreover,
as every edge from C0 lies in just one of C1, . . . , C6, the set {C0, . . . , C6 }
is still simple. But this implies that K5 should have more edges than it
does, i.e. we obtain the contradiction of

21 = 7 · 3 � |C0|+ . . .+ |C6| � 2 ‖K5‖ = 20 .

For K3,3, Theorem 1.9.6 gives dim C(K3,3) = 4; let B = {C1, . . . , C4 }
be a simple basis, and put C0 := C1 + . . . + C4. As K3,3 has girth 4,
each Ci contains at least four edges. We then obtain the contradiction
of

20 = 5 · 4 � |C0|+ . . .+ |C4| � 2 ‖K3,3‖ = 18 .
�

It is one of the hidden beauties of planarity theory that two such
abstract and seemingly unintuitive results about generating sets in cy-
cle spaces as MacLane’s theorem and Tutte’s theorem 3.2.3 conspire to
produce a very tangible planarity criterion for 3-connected graphs:

Theorem 4.5.2. (Kelmans 1978)
A 3-connected graph is planar if and only if every edge lies on at most
(equivalently: exactly) two non-separating induced cycles.

Proof . The forward implication follows from Propositions 4.2.7 and
(3.2.3)
(4.2.2)
(4.2.6)
(4.2.7) 4.2.2 (and Proposition 4.2.6 for the ‘exactly two’ version); the backward

implication follows from Theorems 3.2.3 and 4.5.1. �
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4.6 Plane duality

In this section we shall use MacLane’s theorem to uncover another con-
nection between planarity and algebraic structure: a connection between
the duality of plane graphs, defined below, and the duality of the cycle
and cut space hinted at in Chapters 1.9 and 2.4.

A plane multigraph is a pair G = (V, E) of finite sets (of vertices plane
multigraph

and edges, respectively) satisfying the following conditions:

(i) V ⊆ R2;
(ii) every edge is either an arc between two vertices or a polygon

containing exactly one vertex (its endpoint);
(iii) apart from its own endpoint(s), an edge contains no vertex and

no point of any other edge.

We shall use terms defined for plane graphs freely for plane multigraphs.
Note that, as in abstract multigraphs, both loops and double edges count
as cycles.

Let us consider the plane multigraph G shown in Figure 4.6.1. Let
us place a new vertex inside each face of G and link these new vertices
up to form another plane multigraph G∗, as follows: for every edge e of
G we link the two new vertices in the faces incident with e by an edge e∗

crossing e; if e is incident with only one face, we attach a loop e∗ to the
new vertex in that face, again crossing the edge e. The plane multigraph
G∗ formed in this way is then dual to G in the following sense: if we
apply the same procedure as above to G∗, we obtain a plane multigraph
very similar to G; in fact, G itself may be reobtained from G∗ in this way.

G∗

e∗
e

G

Fig. 4.6.1. A plane graph and its dual

To make this idea more precise, let G = (V, E) and (V ∗, E∗) be any
two plane multigraphs, and put F (G) =: F and F ((V ∗, E∗)) =: F ∗. We
call (V ∗, E∗) a plane dual of G, and write (V ∗, E∗) =: G∗, if there are plane

dual G∗
bijections

F →V ∗

f �→ v∗(f)
E →E∗

e �→ e∗
V →F ∗

v �→ f∗(v)

satisfying the following conditions:
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(i) v∗(f) ∈ f for all f ∈ F ;

(ii) |e∗ ∩G| = |̊e∗ ∩ e̊| = |e∩G∗| = 1 for all e ∈ E, and in each of e
and e∗ this point is an inner point of a straight line segment;

(iii) v ∈ f∗(v) for all v ∈ V .

Every connected plane multigraph has a plane dual. Indeed, to sat-
isfy condition (i) we start by picking from each face f of G a point v∗(f)
as a vertex for G∗. We can then link these vertices up by independent
arcs as required by (ii), and using the connectedness of G show that
there is indeed a bijection V →F ∗ satisfying (iii) (Exercise 2727).

If G∗
1 and G∗

2 are two plane duals of G, then clearly G∗
1 
 G∗

2; in fact,
one can show that the natural bijection v∗1(f) �→ v∗2(f) is a topological
isomorphism between G∗

1 and G∗
2. In this sense, we may speak of the

plane dual G∗ of G.
Finally, G is in turn a plane dual of G∗. Indeed, this is witnessed

by the inverse maps of the bijections from the definition of G∗: setting
v∗(f∗(v)) := v and f∗(v∗(f)) := f for f∗(v) ∈ F ∗ and v∗(f) ∈ V ∗, we
see that conditions (i) and (iii) for G∗ transform into (iii) and (i) for G,
while condition (ii) is symmetrical in G and G∗. As duals are easily seen
to be connected (Exercise 2626), this symmetry implies that connectedness
is also a necessary condition for G to have a dual.

Perhaps the most interesting aspect of plane duality is that it relates
geometrically two types of edges sets—cycles and bonds—that we have
previously seen to be algebraically related (Theorem 1.9.5):

Proposition 4.6.1. For any connected plane multigraph G, an edge set[ 6.5.2 ]

E ⊆ E(G) is the edge set of a cycle in G if and only if E∗ := { e∗ | e ∈ E }
is a minimal cut in G∗.

Proof . By conditions (i) and (ii) in the definition of G∗, two vertices(4.1.1)
(4.2.4)

v∗(f1) and v∗(f2) of G∗ lie in the same component of G∗− E∗ if and
only if f1 and f2 lie in the same region of R2 �

⋃
E: every v∗(f1)–v∗(f2)

path in G∗−E∗ is an arc between f1 and f2 in R2 �
⋃

E, and conversely
every such arc P (with P ∩V (G) = ∅) defines a walk in G∗−E∗ between
v∗(f1) and v∗(f2).

Now if C ⊆ G is a cycle and E = E(C) then, by the Jordan curve
theorem and the above correspondence, G∗−E∗ has exactly two com-
ponents, so E∗ is a minimal cut in G∗.

Conversely, if E ⊆ E(G) is such that E∗ is a cut in G∗, then, by
Proposition 4.2.4 and the above correspondence, E contains the edges
of a cycle C ⊆ G. If E∗ is minimal as a cut, then E cannot contain any
further edges (by the implication shown before), so E = E(C). �
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Proposition 4.6.1 suggests the following generalization of plane du-
ality to abstract multigraphs. Call a multigraph G∗ an abstract dual of abstract

dual
a multigraph G if E(G∗) = E(G) and the bonds in G∗ are precisely the
edge sets of cycles in G. (Neither G nor G∗ need be connected now.)

This correspondence between cycles and bonds extends to the spaces
they generate:

Proposition 4.6.2. If G∗ is an abstract dual of G, then the cut space
of G∗ is the cycle space of G, i.e.,

C∗(G∗) = C(G) .

Proof . Since the cycles of G are precisely the bonds of G∗, the subspace (1.9.4)

C(G) they generate in E(G) = E(G∗) is the same as the subspace gener-
ated by the bonds in G∗. By Lemma 1.9.4,5 this is the space C∗(G∗).

�

By Theorem 1.9.5, Proposition 4.6.2 implies at once that if G∗ is an
abstract dual of G then G is an abstract dual of G∗. One can show that
if G is 3-connected, then G∗ is unique up to isomorphism.

Although the notion of abstract duality arose as a generalization
of plane duality, it could have been otherwise. We knew already from
Theorem 1.9.5 that the cycles and the bonds of a graph form natural
and related sets of edges. It would not have been unthinkable to ask
whether, for some graphs, the orthogonality between these collections of
edge sets might give them sufficiently similar intersection patterns that
a collection forming the cycles in one graph could form the bonds in
another, and vice versa. In other words, for which graphs can we move
their entire edge set to a new set of vertices, redefining incidences, so
that precisely those sets of edges that used to form cycles now become
bonds (and vice versa)? Put in this way, it seems surprising that this
could ever be achieved, let alone for such a large and natural class of
graphs as all planar graphs.

As the one of the highlights of classical planarity theory we now
show that the planar graphs are precisely those for which this can be
done. Admitting an abstract dual thus appears as a new planarity cri-
terion. Conversely, the theorem can be read as a surprising topological
characterization of the equally fundamental property of admitting an
abstract dual:

Theorem 4.6.3. (Whitney 1933)
A graph is planar if and only if it has an abstract dual.

5 Although the lemma was stated for graphs only, its proof remains the same for
multigraphs.
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Proof . Let G be a planar graph, and consider any drawing. Every(1.9.3)
(4.5.1)

component6 C of this drawing has a plane dual C∗. Consider these
C∗ as abstract multigraphs, and let G∗ be their disjoint union. Then
the bonds of G∗ are precisely the minimal cuts in the C∗, which by
Proposition 4.6.1 correspond to the cycles in G.

Conversely, suppose that G has an abstract dual G∗. For a proof
that G is planar, it suffices by Theorem 4.5.1 and Proposition 4.6.2 to
show that C∗(G∗) has a simple basis. By Proposition 1.9.3, it does. �

The duality theory for both abstract and plane graphs can be ex-
tended to infinite graphs. As these can have infinite bonds, their duals
must then have ‘infinite cycles’. Such things do indeed exist, and are
quite fascinating: they arise as topological circles in a space formed by
the graph and its ends; see Chapter 8.5.

Exercises

1. Show that every graph can be embedded in R3 with all edges straight.

2.− Show directly by Lemma 4.1.2 that K3,3 is not planar.

3.− Find an Euler formula for disconnected graphs.

4. Show that every connected planar graph with n vertices, m edges and
finite girth g satisfies m � g

g−2
(n− 2).

5. Show that every planar graph is a union of three forests.

6. Let G1, G2, . . . be an infinite sequence of pairwise non-isomorphic
graphs. Show that if lim sup ε(Gi) > 3 then the graphs Gi have un-
bounded genus—that is to say, there is no (closed) surface S in which
all the Gi can be embedded.

(Hint. You may use the fact that for every surface S there is a constant
χ(S) � 2 such that every graph embedded in S satisfies the generalized
Euler formula of n−m + � � χ(S).)

7. Find a direct proof for planar graphs of Tutte’s theorem on the cycle
space of 3-connected graphs (Theorem 3.2.3).

8.− Show that the two plane graphs in Figure 4.3.1 are not combinatorially
(and hence not topologically) isomorphic.

9. Show that the two graphs in Figure 4.3.2 are combinatorially but not
topologically isomorphic.

10.− Show that our definition of equivalence for planar embeddings does
indeed define an equivalence relation.

6 More elegantly but less straightforwardly, use blocks instead of components and
apply Lemma 3.1.1.
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11. Find a 2-connected planar graph whose drawings are all topologically
isomorphic but whose planar embeddings are not all equivalent.

12.+ Show that every plane graph is combinatorially isomorphic to a plane
graph whose edges are all straight.

(Hint. Given a plane triangulation, construct inductively a graph-
theoretically isomorphic plane graph whose edges are straight. Which
additional property of the inner faces could help with the induction?)

Do not use Kuratowski’s theorem in the following two exercises.

13. Show that any minor of a planar graph is planar. Deduce that a graph
is planar if and only if it is the minor of a grid. (Grids are defined in
Chapter 12.3.)

14. (i) Show that the planar graphs can in principle be characterized as
in Kuratowski’s theorem, i.e., that there exists a set X of graphs such
that a graph G is planar if and only if G has no topological minor in X .

(ii) More generally, which graph properties can be characterized in this
way?

15.− Does every planar graph have a drawing with all inner faces convex?

16. Modify the proof of Lemma 4.4.3 so that all inner faces become convex.

17. Does every minimal non-planar graph G (i.e., every non-planar graph G
whose proper subgraphs are all planar) contain an edge e such that
G− e is maximally planar? Does the answer change if we define ‘mini-
mal’ with respect to minors rather than subgraphs?

18. Show that adding a new edge to a maximal planar graph of order at
least 6 always produces both a TK5 and a TK3,3 subgraph.

19. Prove the general Kuratowski theorem from its 3-connected case by
manipulating plane graphs, i.e. avoiding Lemma 4.4.5.

(This is not intended as an exercise in elementary topology; for the
topological parts of the proof, a rough sketch will do.)

20. A graph is called outerplanar if it has a drawing in which every vertex
lies on the boundary of the outer face. Show that a graph is outerplanar
if and only if it contains neither K4 nor K2,3 as a minor.

21. Let G = G1 ∪G2, where |G1 ∩G2| � 1. Show that C(G) has a simple
basis if both C(G1) and C(G2) have one.

22.+ Find a cycle space basis among the face boundaries of a 2-connected
plane graph.

23. Show that a 2-connected plane graph is bipartite if and only if every
face is bounded by an even cycle.
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24.+ Let C be a closed curve in the plane that intersects itself at most once
in any given point of the plane, and where every such self-intersection
is a proper crossing. Call C alternating if we can turn these crossings
into over- and underpasses in such a way that when we run along the
curve the overpasses alternate with the underpasses.

(i) Prove that every such curve is alternating, or find a counterex-
ample.

(ii) Does the solution to (i) change if the curves considered are not
closed?

25.− What does the plane dual of a plane tree look like?

26.− Show that the plane dual of a plane multigraph is connected.

27.+ Show that a connected plane multigraph has a plane dual.

28. Let G, G∗ be dual plane multigraphs, and let e ∈ E(G). Prove the
following statements (with a suitable definition of G/e):

(i) If e is not a bridge, then G∗/e∗ is a plane dual of G− e.

(ii) If e is not a loop, then G∗ − e∗ is a plane dual of G/e.

29. Show that any two plane duals of a plane multigraph are combinatori-
ally isomorphic.

30. Let G, G∗ be dual plane graphs. Prove the following statements:

(i) If G is 2-connected, then G∗ is 2-connected.

(ii) If G is 3-connected, then G∗ is 3-connected.

(iii) If G is 4-connected, then G∗ need not be 4-connected.

31. Let G, G∗ be dual plane graphs. Let B1, . . . , Bn be the blocks of G.
Show that B∗

1 , . . . , B∗
n are the blocks of G∗.

32. Show that if G∗ is an abstract dual of a multigraph G, then G is an
abstract dual of G∗.

33. Show that the following statements are equivalent for connected multi-
graphs G = (V, E) and G′ = (V ′, E) with the same edge set:

(i) G and G′ are abstract duals of each other;

(ii) given any set F ⊆ E, the multigraph (V, F ) is a tree if and only
if (V ′, E � F ) is a tree.
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Notes
There is a very thorough monograph on the embedding of graphs in surfaces,
including the plane: B.Mohar & C.Thomassen, Graphs on Surfaces, Johns
Hopkins University Press 2001. Proofs of the results cited in Section 4.1, as
well as all references for this chapter, can be found there. A good account
of the Jordan curve theorem, both polygonal and general, is given also in
J. Stillwell, Classical topology and combinatorial group theory , Springer 1980.

The short proof of Corollary 4.2.10 uses a trick that deserves special
mention: the so-called double counting of pairs, illustrated in the text by
a bipartite graph whose edges can be counted alternatively by summing its
degrees on the left or on the right. Double counting is a technique widely used
in combinatorics, and there will be more examples later in the book.

The material of Section 4.3 is not normally standard for an introductory
graph theory course, and the rest of the chapter can be read independently of
this section. However, the results of Section 4.3 are by no means unimportant.
In a way, they have fallen victim to their own success: the shift from a topo-
logical to a combinatorial setting for planarity problems which they achieve
has made the topological techniques developed there dispensable for most of
planarity theory.

In its original version, Kuratowski’s theorem was stated only for topolo-
gical minors; the version for general minors was added by Wagner in 1937. Our
proof of the 3-connected case (Lemma 4.4.3) is a weakening of a proof due to
C.Thomassen, Planarity and duality of finite and infinite graphs, J. Combin.
Theory B 29 (1980), 244–271, which yields a drawing in which all the inner
faces are convex (Exercise 1616). The existence of such ‘convex’ drawings for
3-connected planar graphs follows already from the theorem of Steinitz (1922)
that these graphs are precisely the 1-skeletons of 3-dimensional convex poly-
hedra. Compare also W.T.Tutte, How to draw a graph, Proc. London Math.
Soc. 13 (1963), 743–767.

As one readily observes, adding an edge to a maximal planar graph (of
order at least 6) produces not only a topological K5 or K3,3, but both. In
Chapter 7.3 we shall see that, more generally, every graph with n vertices and
more than 3n− 6 edges contains a TK5 and, with one easily described class
of exceptions, also a TK3,3 (Ex. 2626, Ch. 7).

The simple cycle space basis constructed in the proof of MacLane’s theo-
rem, which consists of the inner face boundaries, is canonical in the following
sense: for every simple basis B of the cycle space of a 2-connected planar graph
there exists a drawing of that graph in which B is precisely the set of inner face
boundaries. (This is proved in Mohar & Thomassen, who also mention some
further planarity criteria.) Our proof of the backward direction of MacLane’s
theorem is based on Kuratowski’s theorem. A more direct approach, in which
a planar embedding is actually constructed from a simple basis, is adopted in
K.Wagner, Graphentheorie, BI Hochschultaschenbücher 1972.

Theorem 4.5.2 is widely known as ‘Tutte’s planarity criterion’, because
it follows at once from Tutte’s 1963 Theorem 3.2.3 and the even earlier pla-
narity criterion of MacLane, Theorem 4.5.1. However, Tutte appears to have
been unaware of this. Theorem 4.5.2 was first noticed in the late 1970s, and
proved independently of both Theorems 3.2.3 and 4.5.1, by A.K.Kelmans, The
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concept of a vertex in a matroid, the non-separating cycles in a graph and a
new criterion for graph planarity, in Algebraic Methods in Graph Theory ,
Vol. 1, Conf. Szeged 1978, Colloq. Math. Soc. János Bolyai 25 (1981) 345–388.
Kelmans also reproved Theorem 3.2.3 (being unaware of Tutte’s proof), and
noted that it can be combined with MacLane’s criterion to a proof of Theo-
rem 4.5.2.

The proper setting for cycle-bond duality in abstract finite graphs (and
beyond) is the theory of matroids; see J.G.Oxley, Matroid Theory , Oxford
University Press 1992. Duality in infinite graphs is treated in H.Bruhn &
R.Diestel, Duality in infinite graphs, Combinatorics, Probability and Com-
puting (to appear).



5 Colouring

How many colours do we need to colour the countries of a map in such
a way that adjacent countries are coloured differently? How many days
have to be scheduled for committee meetings of a parliament if every
committee intends to meet for one day and some members of parliament
serve on several committees? How can we find a school timetable of min-
imum total length, based on the information of how often each teacher
has to teach each class?

A vertex colouring of a graph G = (V, E) is a map c:V → S such vertex
colouring

that c(v) �= c(w) whenever v and w are adjacent. The elements of the
set S are called the available colours. All that interests us about S is
its size: typically, we shall be asking for the smallest integer k such that
G has a k-colouring , a vertex colouring c:V →{ 1, . . . , k }. This k is the chromatic

number
(vertex-) chromatic number of G; it is denoted by χ(G). A graph G with χ(G)

χ(G) = k is called k-chromatic; if χ(G) � k, we call G k-colourable.

1

1

2

3

2

4

Fig. 5.0.1. A vertex colouring V →{ 1, . . . , 4 }

Note that a k-colouring is nothing but a vertex partition into k
independent sets, now called colour classes; the non-trivial 2-colourable colour

classes
graphs, for example, are precisely the bipartite graphs. Historically,
the colouring terminology comes from the map colouring problem stated
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above, which leads to the problem of determining the maximum chro-
matic number of planar graphs. The committee scheduling problem, too,
can be phrased as a vertex colouring problem—how?

An edge colouring of G = (V, E) is a map c:E→S with c(e) �= c(f)edge
colouring

for any adjacent edges e, f . The smallest integer k for which a k-edge-
colouring exists, i.e. an edge colouring c:E → { 1, . . . , k }, is the edge-
chromatic number , or chromatic index , of G; it is denoted by χ′(G).

chromatic
index
χ′(G) The third of our introductory questions can be modelled as an edge

colouring problem in a bipartite multigraph (how?).
Clearly, every edge colouring of G is a vertex colouring of its line

graph L(G), and vice versa; in particular, χ′(G) = χ(L(G)). The prob-
lem of finding good edge colourings may thus be viewed as a restriction
of the more general vertex colouring problem to this special class of
graphs. As we shall see, this relationship between the two types of
colouring problem is reflected by a marked difference in our knowledge
about their solutions: while there are only very rough estimates for χ,
its sister χ′ always takes one of two values, either ∆ or ∆ + 1.

5.1 Colouring maps and planar graphs

If any result in graph theory has a claim to be known to the world
outside, it is the following four colour theorem (which implies that every
map can be coloured with at most four colours):

Theorem 5.1.1. (Four Colour Theorem)
Every planar graph is 4-colourable.

Some remarks about the proof of the four colour theorem and its history
can be found in the notes at the end of this chapter. Here, we prove the
following weakening:

Proposition 5.1.2. (Five Colour Theorem)
Every planar graph is 5-colourable.

Proof . Let G be a plane graph with n � 6 vertices and m edges. We(4.1.1)
(4.2.10)

assume inductively that every plane graph with fewer than n vertices
can be 5-coloured. By Corollary 4.2.10,n, m

d(G) = 2m/n � 2 (3n− 6)/n < 6 ;

let v ∈ G be a vertex of degree at most 5. By the induction hypothesis,v

the graph H := G− v has a vertex colouring c:V (H)→{ 1, . . . , 5 }. If cH

uses at most 4 colours for the neighbours of v, we can extend it to a 5-c

colouring of G. Let us assume, therefore, that v has exactly 5 neighbours,
and that these have distinct colours.
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Let D be an open disc around v, so small that it meets only those D

five straight edge segments of G that contain v. Let us enumerate these
segments according to their cyclic position in D as s1, . . . , s5, and let s1, . . . , s5

vvi be the edge containing si (i = 1, . . . , 5; Fig. 5.1.1). Without loss of v1, . . . , v5

generality we may assume that c(vi) = i for each i.

v1

v2

v3

v4

v5

s1

s2

s3
s4

s5 v
P

D

Fig. 5.1.1. The proof of the five colour theorem

Let us show first that every v1– v3 path P ⊆ H separates v2 from P

v4 in H. Clearly, this is the case if and only if the cycle C := vv1Pv3v C

separates v2 from v4 in G. We prove this by showing that v2 and v4 lie
in different faces of C.

Let us pick an inner point x2 of s2 in D and an inner point x4 of
s4 in D. Then in D � (s1 ∪ s3) ⊆ R2 � C every point can be linked by
a polygonal arc to x2 or to x4. This implies that x2 and x4 (and hence
also v2 and v4) lie in different faces of C: otherwise D would meet only
one of the two faces of C, which would contradict the fact that v lies on
the frontier of both these faces (Theorem 4.1.1).

Given i, j ∈ { 1, . . . , 5 }, let Hi,j be the subgraph of H induced by Hi,j

the vertices coloured i or j. We may assume that the component C1 of
H1,3 containing v1 also contains v3. Indeed, if we interchange the colours
1 and 3 at all the vertices of C1, we obtain another 5-colouring of H;
if v3 /∈ C1, then v1 and v3 are both coloured 3 in this new colouring,
and we may assign colour 1 to v. Thus, H1,3 contains a v1– v3 path P .
As shown above, P separates v2 from v4 in H. Since P ∩ H2,4 = ∅,
this means that v2 and v4 lie in different components of H2,4. In the
component containing v2, we now interchange the colours 2 and 4, thus
recolouring v2 with colour 4. Now v no longer has a neighbour coloured 2,
and we may give it this colour. �

As a backdrop to the two famous theorems above, let us cite another
well-known result:

Theorem 5.1.3. (Grötzsch 1959)
Every planar graph not containing a triangle is 3-colourable.
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5.2 Colouring vertices

How do we determine the chromatic number of a given graph? How can
we find a vertex-colouring with as few colours as possible? How does
the chromatic number relate to other graph invariants, such as average
degree, connectivity or girth?

Straight from the definition of the chromatic number we may derive
the following upper bound:

Proposition 5.2.1. Every graph G with m edges satisfies

χ(G) � 1
2 +

√
2m + 1

4 .

Proof . Let c be a vertex colouring of G with k = χ(G) colours. Then
G has at least one edge between any two colour classes: if not, we could
have used the same colour for both classes. Thus, m � 1

2k(k−1). Solving
this inequality for k, we obtain the assertion claimed. �

One obvious way to colour a graph G with not too many colours is
the following greedy algorithm: starting from a fixed vertex enumerationgreedy

algorithm
v1, . . . , vn of G, we consider the vertices in turn and colour each vi with
the first available colour—e.g., with the smallest positive integer not
already used to colour any neighbour of vi among v1, . . . , vi−1. In this
way, we never use more than ∆(G) + 1 colours, even for unfavourable
choices of the enumeration v1, . . . , vn. If G is complete or an odd cycle,
then this is even best possible.

In general, though, this upper bound of ∆ + 1 is rather generous,
even for greedy colourings. Indeed, when we come to colour the vertex
vi in the above algorithm, we only need a supply of dG[ v1,...,vi ](vi) + 1
rather than dG(vi)+1 colours to proceed; recall that, at this stage, the al-
gorithm ignores any neighbours vj of vi with j > i. Hence in most graphs,
there will be scope for an improvement of the ∆+1 bound by choosing a
particularly suitable vertex ordering to start with: one that picks vertices
of large degree early (when most neighbours are ignored) and vertices
of small degree last. Locally, the number dG[ v1,...,vi ](vi) + 1 of colours
required will be smallest if vi has minimum degree in G [ v1, . . . , vi ]. But
this is easily achieved: we just choose vn first, with d(vn) = δ(G), then
choose as vn−1 a vertex of minimum degree in G− vn, and so on.

The least number k such that G has a vertex enumeration in which
each vertex is preceded by fewer than k of its neighbours is called
the colouring number col(G) of G. The enumeration we just discussed

colouring
number
col(G) shows that col(G) � maxH⊆G δ(H) + 1. But for H ⊆ G clearly also

col(G) � col(H) and col(H) � δ(H) + 1, since the ‘back-degree’ of the
last vertex in any enumeration of H is just its ordinary degree in H,
which is at least δ(H). So we have proved the following:
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Proposition 5.2.2. Every graph G satisfies

χ(G) � col(G) = max { δ(H) | H ⊆ G }+ 1 .
�

Corollary 5.2.3. Every graph G has a subgraph of minimum degree at

[ 9.2.1 ]
[ 7.3.9 ]
[ 9.2.3 ]

[ 11.2.3 ]least χ(G)− 1. �

The colouring number of a graph is closely related to its arboricity; see
the remark following Theorem 2.4.4.

As we have seen, every graph G satisfies χ(G) � ∆(G) + 1, with
equality for complete graphs and odd cycles. In all other cases, this
general bound can be improved a little:

Theorem 5.2.4. (Brooks 1941)
Let G be a connected graph. If G is neither complete nor an odd cycle,
then

χ(G) � ∆(G) .

Proof . We apply induction on |G|. If ∆(G) � 2, then G is a path or
a cycle, and the assertion is trivial. We therefore assume that ∆ := ∆

∆(G) � 3, and that the assertion holds for graphs of smaller order.
Suppose that χ(G) > ∆.

Let v ∈ G be a vertex and H := G − v. Then χ(H) � ∆ : by v, H

induction, every component H ′ of H satisfies χ(H ′) � ∆(H ′) � ∆ unless
H ′ is complete or an odd cycle, in which case χ(H ′) = ∆(H ′) + 1 � ∆
as every vertex of H ′ has maximum degree in H ′ and one such vertex is
also adjacent to v in G.

Since H can be ∆-coloured but G cannot, we have the following:

Every ∆-colouring of H uses all the colours 1, . . . ,∆ on
the neighbours of v; in particular, d(v) = ∆.

(1)

Given any ∆-colouring of H, let us denote the neighbour of v col-
oured i by vi, i = 1, . . . ,∆. For all i �= j, let Hi,j denote the subgraph v1, . . . , v∆

of H spanned by all the vertices coloured i or j. Hi,j

Ci,j

For all i �= j, the vertices vi and vj lie in a common com-
ponent Ci,j of Hi,j .

(2)

Otherwise we could interchange the colours i and j in one of those com-
ponents; then vi and vj would be coloured the same, contrary to (1).

Ci,j is always a vi– vj path. (3)

Indeed, let P be a vi– vj path in Ci,j . As dH(vi) � ∆−1, the neighbours
of vi have pairwise different colours: otherwise we could recolour vi,
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contrary to (1). Hence the neighbour of vi on P is its only neighbour
in Ci,j , and similarly for vj . Thus if Ci,j �= P , then P has an inner
vertex with three identically coloured neighbours in H; let u be the first
such vertex on P (Fig. 5.2.1). Since at most ∆ − 2 colours are used
on the neighbours of u, we may recolour u. But this makes Pů into a
component of Hi,j , contradicting (2).

vi

vj

P ů

Ci,j
i

j j

j

j

i

ii

v

u
i

Fig. 5.2.1. The proof of (3) in Brooks’s theorem

For distinct i, j, k, the paths Ci,j and Ci,k meet only in vi. (4)

For if vi �= u ∈ Ci,j ∩Ci,k, then u has two neighbours coloured j and two
coloured k, so we may recolour u. In the new colouring, vi and vj lie in
different components of Hi,j , contrary to (2).

The proof of the theorem now follows easily. If the neighbours of v
are pairwise adjacent, then each has ∆ neighbours in N(v)∪{ v } already,
so G = G [N(v)∪{ v } ] = K∆+1. As G is complete, there is nothing to
show. We may thus assume that v1v2 /∈ G, where v1, . . . , v∆ derive theirv1, . . . , v∆

names from some fixed ∆-colouring c of H. Let u �= v2 be the neighbourc

of v1 on the path C1,2; then c(u) = 2. Interchanging the colours 1 and 3u

in C1,3, we obtain a new colouring c′ of H; let v′i, H ′
i,j , C ′

i,j etc. be definedc′

with respect to c′ in the obvious way. As a neighbour of v1 = v′3, our
vertex u now lies in C ′

2,3 , since c′(u) = c(u) = 2. By (4) for c, however,
the path v̊1C1,2 retained its original colouring, so u ∈ v̊1C1,2 ⊆ C ′

1,2.
Hence u ∈ C ′

2,3 ∩C ′
1,2, contradicting (4) for c′. �

As we have seen, a graph G of large chromatic number must have
large maximum degree: trivially at least χ(G)− 1, and less trivially at
least χ(G) (in most cases). What more can we say about the structure
of graphs with large chromatic number?

One obvious possible cause for χ(G) � k is the presence of a Kk

subgraph. This is a local property of G, compatible with arbitrary values
of global invariants such as ε and κ. Hence, the assumption of χ(G) � k
does not tell us anything about those invariants for G itself. It does,
however, imply the existence of a subgraph where those invariants are
large: by Corollary 5.2.3, G has a subgraph H with δ(H) � k − 1, and
hence by Theorem 1.4.3 a subgraph H ′ with κ(H ′) � � 1

4 (k− 1)�.
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But is, conversely, the somewhat higher density of those subgraphs
in any sense the ‘cause’ for χ to be large? That is to say, do arbitrary
graphs with such values of δ and κ in turn have large chromatic number,
say at least f(k) for some function f : N→N tending to infinity (however
slowly)? No, not at all: the graphs Kn,n , for example, have a minimum
degree and connectivity that exceeds any bound in terms of k as n→∞,
but are only 2-chromatic. Thus, the sort of large (constant1) average or
minimum degree that a high chromatic number can force in a suitable
subgraph is itself not nearly large enough to force even χ > 2.

Yet even if local edge density is not by itself responsible for χ to be
large, it might still be the case that, somehow, a chromatic number of at
least k forces the existence of one of finitely many ‘canonical’ subgraphs
of chromatic number at least, say, f(k) (with f as above). However, this
is radically not the case: as soon as a graph H contains a cycle (which
highly chromatic graphs clearly do), we cannot force an arbitrary graph
G to contain a copy of H just by making χ(G) large enough:

Theorem 5.2.5. (Erdős 1959)
For every integer k there exists a graph G with girth g(G) > k and
chromatic number χ(G) > k.

Theorem 5.2.5 was first proved non-constructively using random
graphs, and we shall give this proof in Chapter 11.2. Constructing graphs
of large chromatic number and girth directly is not easy; cf. Exercise 2323
for the simplest case.

The message of Erdős’s theorem is that, contrary to our initial guess,
large chromatic number can occur as a purely global phenomenon: note
that locally, around each vertex, a graph of large girth looks just like a
tree, and in particular is 2-colourable there. But what exactly can cause
high chromaticity as a global phenomenon remains a mystery.

Nevertheless, there exists a simple—though not always short—
procedure to construct all the graphs of chromatic number at least k. For
each k ∈ N, let us define the class of k-constructible graphs recursively k-con-

structible
as follows:

(i) Kk is k-constructible.

(ii) If G is k-constructible and x, y ∈ V (G) are non-adjacent, then also
(G + xy)/xy is k-constructible.

(iii) If G1, G2 are k-constructible and there are vertices x, y1, y2 such
that G1∩G2 = {x } and xy1 ∈ E(G1) and xy2 ∈ E(G2), then also
(G1 ∪G2)−xy1 −xy2 + y1y2 is k-constructible (Fig. 5.2.2).

1 Which non-constant average degree will force the existence of a given subgraph
will be a topic in Chapter 7.
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y1 y2

y1 y2

x

xx
1G 2G

=

Fig. 5.2.2. The Hajós construction (iii)

One easily checks inductively that all k-constructible graphs—and hence
their supergraphs—are at least k-chromatic. Indeed, if (G + xy)/xy as
in (ii) has a colouring with fewer than k colours, then this defines such
a colouring also for G, a contradiction. Similarly, in any colouring of
the graph constructed in (iii), the vertices y1 and y2 do not both have
the same colour as x, so this colouring induces a colouring of either G1

or G2 and hence uses at least k colours.
It is remarkable, though, that the converse holds too:

Theorem 5.2.6. (Hajós 1961)
Let G be a graph and k ∈ N. Then χ(G) � k if and only if G has a
k-constructible subgraph.

Proof . Let G be a graph with χ(G) � k; we show that G has a k-
constructible subgraph. Suppose not; then k � 3. Adding some edges
if necessary, let us make G edge-maximal with the property that none
of its subgraphs is k-constructible. Now G is not a complete r-partite
graph for any r: for then χ(G) � k would imply r � k, and G would
contain the k-constructible graph Kk.

Since G is not a complete multipartite graph, non-adjacency is not
an equivalence relation on V (G). So there are vertices y1, x, y2 such that
y1x, xy2 /∈ E(G) but y1y2 ∈ E(G). Since G is edge-maximal withoutx, y1, y2

a k-constructible subgraph, each edge xyi lies in some k-constructible
subgraph Hi of G +xyi (i = 1, 2).H1, H2

Let H ′
2 be an isomorphic copy of H2 that contains x and H2 −H1H′

2

but is otherwise disjoint from G, together with an isomorphism v �→ v′v′ etc.

from H2 to H ′
2 that fixes H2 ∩H ′

2 pointwise. Then H1 ∩H ′
2 = {x }, so

H := (H1 ∪H ′
2)−xy1 −xy′

2 + y1y
′
2

is k-constructible by (iii). One vertex at a time, let us identify in H each
vertex v′ ∈ H ′

2 −G with its partner v; since vv′ is never an edge of H,
each of these identifications amounts to a construction step of type (ii).
Eventually, we obtain the graph

(H1 ∪H2)−xy1 −xy2 + y1y2 ⊆ G ;

this is the desired k-constructible subgraph of G. �
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5.3 Colouring edges
Clearly, every graph G satisfies χ′(G) � ∆(G). For bipartite graphs, we
have equality here:

Proposition 5.3.1. (König 1916) [ 5.4.5 ]

Every bipartite graph G satisfies χ′(G) = ∆(G).

Proof . We apply induction on ‖G‖. For ‖G‖ = 0 the assertion holds. (1.6.1)

Now assume that ‖G‖ � 1, and that the assertion holds for graphs with
fewer edges. Let ∆ := ∆(G), pick an edge xy ∈ G, and choose a ∆- ∆, xy

edge-colouring of G − xy by the induction hypothesis. Let us refer to
the edges coloured α as α-edges, etc. α-edge

In G − xy, each of x and y is incident with at most ∆ − 1 edges.
Hence there are α, β ∈ { 1, . . . ,∆ } such that x is not incident with an α, β

α-edge and y is not incident with a β-edge. If α = β, we can colour the
edge xy with this colour and are done; so we may assume that α �= β,
and that x is incident with a β-edge.

Let us extend this edge to a maximal walk W from x whose edges are
coloured β and α alternately. Since no such walk contains a vertex twice
(why not?), W exists and is a path. Moreover, W does not contain y:
if it did, it would end in y on an α-edge (by the choice of β) and thus
have even length, so W +xy would be an odd cycle in G (cf. Proposition
1.6.1). We now recolour all the edges on W , swapping α with β. By the
choice of α and the maximality of W , adjacent edges of G−xy are still
coloured differently. We have thus found a ∆-edge-colouring of G− xy
in which neither x nor y is incident with a β-edge. Colouring xy with β,
we extend this colouring to a ∆-edge-colouring of G. �

Theorem 5.3.2. (Vizing 1964)
Every graph G satisfies

∆(G) � χ′(G) � ∆(G) + 1 .

Proof . We prove the second inequality by induction on ‖G‖. For ‖G‖ = 0 V, E

it is trivial. For the induction step let G = (V, E) with ∆ := ∆(G) > 0 be ∆

given, and assume that the assertion holds for graphs with fewer edges.
Instead of ‘(∆ + 1)-edge-colouring’ let us just say ‘colouring’. An edge colouring

coloured α will again be called an α-edge. α-edge

For every edge e ∈ G there exists a colouring of G − e, by the
induction hypothesis. In such a colouring, the edges at a given vertex
v use at most d(v) � ∆ colours, so some colour β ∈ { 1, . . . ,∆ + 1 } is
missing at v. For any other colour α, there is a unique maximal walk missing

(possibly trivial) starting at v, whose edges are coloured alternately α
and β. This walk is a path; we call it the α/β - path from v. α/β - path

Suppose that G has no colouring. Then the following holds:
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Given xy ∈ E, and any colouring of G− xy in which the
colour α is missing at x and the colour β is missing at y,
the α/β - path from y ends in x.

(1)

Otherwise we could interchange the colours α and β along this path and
colour xy with α, obtaining a colouring of G (contradiction).

Let xy0 ∈ G be an edge. By induction, G0 := G − xy0 has axy0

colouring c0. Let α be a colour missing at x in this colouring. Further,G0, c0, α

let y0, y1, . . . , yk be a maximal sequence of distinct neighbours of x in G,y1, . . . , yk

such that c0(xyi) is missing in c0 at yi−1 for each i = 1, . . . , k. For each
of the graphs Gi := G−xyi we define a colouring ci, settingGi

ci(e) :=
{

c0(xyj+1) for e = xyj with j ∈ { 0, . . . , i− 1 }
c0(e) otherwise;ci

note that in each of these colourings the same colours are missing at x
as in c0.

Now let β be a colour missing at yk in c0. Clearly, β is still missingβ

at yk in ck. If β were also missing at x, we could colour xyk with β
and thus extend ck to a colouring of G. Hence, x is incident with a
β-edge (in every colouring). By the maximality of k, therefore, there is
an i ∈ { 1, . . . , k− 1 } such that

i c0(xyi) = β . (2)

α α

α

α

Gk

yi+1

yi

yi−1

yk

x

β

β

β

β

P

y0

Fig. 5.3.1. The α/β - path P in Gk

Let P be the α/β - path from yk in Gk (with respect to ck; Fig. 5.3.1).P

By (1), P ends in x, and it does so on a β-edge, since α is missing at x.
As β = c0(xyi) = ck(xyi−1), this is the edge xyi−1. In c0, however, and
hence also in ci−1, β is missing at yi−1 (by (2) and the choice of yi); let
P ′ be the α/β - path from yi−1 in Gi−1 (with respect to ci−1). Since P ′P ′

is uniquely determined, it starts with yi−1Pyk; note that the edges of
Px̊ are coloured the same in ci−1 as in ck. But in c0, and hence in ci−1,
there is no β-edge at yk (by the choice of β). Therefore P ′ ends in yk,
contradicting (1). �
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Vizing’s theorem divides the finite graphs into two classes according
to their chromatic index; graphs satisfying χ′ = ∆ are called (imagina-
tively) class 1 , those with χ′ = ∆ + 1 are class 2 .

5.4 List colouring

In this section, we take a look at a relatively recent generalization of the
concepts of colouring studied so far. This generalization may seem a little
far-fetched at first glance, but it turns out to supply a fundamental link
between the classical (vertex and edge) chromatic numbers of a graph
and its other invariants.

Suppose we are given a graph G = (V, E), and for each vertex of
G a list of colours permitted at that particular vertex: when can we
colour G (in the usual sense) so that each vertex receives a colour from
its list? More formally, let (Sv)v∈V be a family of sets. We call a vertex
colouring c of G with c(v) ∈ Sv for all v ∈ V a colouring from the
lists Sv. The graph G is called k-list-colourable, or k-choosable, if, for k-choosable

every family (Sv)v∈V with |Sv| = k for all v, there is a vertex colouring
of G from the lists Sv. The least integer k for which G is k-choosable is
the list-chromatic number , or choice number ch(G) of G.

choice
number

ch(G)List-colourings of edges are defined analogously. The least integer
k such that G has an edge colouring from any family of lists of size k
is the list-chromatic index ch′(G) of G; formally, we just set ch′(G) := ch′(G)

ch(L(G)), where L(G) is the line graph of G.
In principle, showing that a given graph is k-choosable is more diffi-

cult than proving it to be k-colourable: the latter is just the special case
of the former where all lists are equal to { 1, . . . , k }. Thus,

ch(G) � χ(G) and ch′(G) � χ′(G)

for all graphs G.
In spite of these inequalities, many of the known upper bounds for

the chromatic number have turned out to be valid for the choice num-
ber, too. Examples for this phenomenon include Brooks’s theorem and
Proposition 5.2.2; in particular, graphs of large choice number still have
subgraphs of large minimum degree. On the other hand, it is easy to con-
struct graphs for which the two invariants are wide apart (Exercise 2525).
Taken together, these two facts indicate a little how far those general
upper bounds on the chromatic number may be from the truth.

The following theorem shows that, in terms of its relationship to
other graph invariants, the choice number differs fundamentally from the
chromatic number. As mentioned before, there are 2-chromatic graphs of
arbitrarily large minimum degree, e.g. the graphs Kn,n. The choice num-
ber, however, will be forced up by large values of invariants like δ, ε or κ:
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Theorem 5.4.1. (Alon 1993)
There exists a function f : N→N such that, given any integer k, all graphs
G with average degree d(G) � f(k) satisfy ch(G) � k.

The proof of Theorem 5.4.1 uses probabilistic methods as introduced in
Chapter 11.

Although statements of the form ch(G) � k are formally stronger
than the corresponding statement of χ(G) � k, they can be easier to
prove. A pretty example is the list version of the five colour theorem:
every planar graph is 5-choosable. The proof of this does not use the
five colour theorem (or even Euler’s formula, on which the proof of the
five colour theorem is based). We thus reobtain the five colour theorem
as a corollary, with a very different proof.

Theorem 5.4.2. (Thomassen 1994)
Every planar graph is 5-choosable.

Proof . We shall prove the following assertion for all plane graphs G with(4.2.8)

at least 3 vertices:

Suppose that every inner face of G is bounded by a trian-
gle and its outer face by a cycle C = v1 . . . vkv1. Suppose
further that v1 has already been coloured with the col-
our 1, and v2 has been coloured 2. Suppose finally that
with every other vertex of C a list of at least 3 colours is
associated, and with every vertex of G−C a list of at least
5 colours. Then the colouring of v1 and v2 can be extended
to a colouring of G from the given lists.

(∗)

Let us check first that (∗) implies the assertion of the theorem.
Let any plane graph be given, together with a list of 5 colours for each
vertex. Add edges to this graph until it is a maximal plane graph G.
By Proposition 4.2.8, G is a plane triangulation; let v1v2v3v1 be the
boundary of its outer face. We now colour v1 and v2 (differently) from
their lists, and extend this colouring by (∗) to a colouring of G from the
lists given.

Let us now prove (∗), by induction on |G|. If |G| = 3, then G =
C and the assertion is trivial. Now let |G| � 4, and assume (∗) for
smaller graphs. If C has a chord vw, then vw lies on two unique cyclesvw

C1, C2 ⊆ C + vw with v1v2 ∈ C1 and v1v2 /∈ C2. For i = 1, 2, let Gi

denote the subgraph of G induced by the vertices lying on Ci or in its
inner face (Fig. 5.4.1). Applying the induction hypothesis first to G1

and then—with the colours now assigned to v and w—to G2 yields the
desired colouring of G.



5.4 List colouring 123

v2 = w

v1

v

G1

G2

1

2

Fig. 5.4.1. The induction step with a chord vw; here the case
of w = v2

If C has no chord, let v1, u1, . . . , um, vk−1 be the neighbours of vk in u1, . . . , um

their natural cyclic order order around vk;2 by definition of C, all those
neighbours ui lie in the inner face of C (Fig. 5.4.2). As the inner faces
of C are bounded by triangles, P := v1u1 . . . umvk−1 is a path in G, and
C ′ := P ∪ (C − vk) a cycle. C′

v1

v2

C′

vk−1

vk

u1

u2
u3

P

Fig. 5.4.2. The induction step without a chord

We now choose two different colours j, � �= 1 from the list of vk and
delete these colours from the lists of all the vertices ui. Then every list of
a vertex on C ′ still has at least 3 colours, so by induction we may colour
C ′ and its interior, i.e. the graph G− vk. At least one of the two colours
j, � is not used for vk−1, and we may assign that colour to vk. �

As is often the case with induction proofs, the key to the proof above
lies in its delicately balanced strengthening of the assertion proved. Com-
pared with ordinary colouring, the task of finding a suitable strengthen-
ing is helped greatly by the possibility to give different vertices lists of
different lengths, and thus to tailor the colouring problem more fittingly
to the structure of the graph. This suggests that maybe in other unsolved

2 as in the first proof of the five colour theorem
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colouring problems too it might be of advantage to aim straight for their
list version, i.e. to prove an assertion of the form ch(G) � k instead of
the formally weaker χ(G) � k. Unfortunately, this approach fails for the
four colour theorem: planar graphs are not in general 4-choosable.

As mentioned before, the chromatic number of a graph and its choice
number may differ a lot. Surprisingly, however, no such examples are
known for edge colourings. Indeed it has been conjectured that none
exist:

List Colouring Conjecture. Every graph G satisfies ch′(G) = χ′(G).

We shall prove the list colouring conjecture for bipartite graphs. As
a tool we shall use orientations of graphs, defined in Chapter 1.10. If D
is a directed graph and v ∈ V (D), we denote by N+(v) the set, and byN+(v)

d+(v) the number, of vertices w such that D contains an edge directedd+(v)

from v to w.
To see how orientations come into play in the context of colouring,

recall the greedy algorithm from Section 5.2. This colours the vertices
of a graph G in turn, following a previously fixed ordering (v1, . . . , vn).
This ordering defines an orientation of G if we orient every edge vivj

‘backwards’, that is, from vi to vj if i > j. Then to determine a colour
for vi the algorithm only looks at previously coloured neighbours of vi,
those to which vi sends a directed edge. In particular, if d+(v) < k for
all vertices v, the algorithm will use at most k colours.

If we rewrite the proof of this fact (rather awkwardly) as a formal
induction on k, we notice that the essential property of the set U of
vertices coloured 1 is that every vertex in G − U sends an edge to U :
this ensures that d+

G−U (v) < d+
G(v) for all v ∈ G−U , so we can colour

G−U with the remaining k− 1 colours by the induction hypothesis.
The following lemma generalizes these observations to list colour-

ing, and to orientations D of G that do not necessarily come from a
vertex enumeration but may contain some directed cycles. Let us call an
independent set U ⊆ V (D) a kernel of D if, for every vertex v ∈ D−U ,kernel

there is an edge in D directed from v to a vertex in U . Note that kernels
of non-empty directed graphs are themselves non-empty.

Lemma 5.4.3. Let H be a graph and (Sv)v∈V (H) a family of lists. If H
has an orientation D with d+(v) < |Sv| for every v, and such that every
induced subgraph of D has a kernel, then H can be coloured from the
lists Sv.

Proof . We apply induction on |H|. For |H| = 0 we take the empty
colouring. For the induction step, let |H| > 0. Let α be a colour occur-α

ring in one of the lists Sv, and let D be an orientation of H as stated.
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The vertices v with α ∈ Sv span a non-empty subgraph D′ in D; by D′

assumption, D′ has a kernel U �= ∅. U

Let us colour the vertices in U with α, and remove α from the lists
of all the other vertices of D′. Since each of those vertices sends an edge
to U , the modified lists S′

v for v ∈ D − U again satisfy the condition
d+(v) < |S′

v| in D − U . Since D − U is an orientation of H − U , we
can thus colour H −U from those lists by the induction hypothesis. As
none of these lists contains α, this extends our colouring U →{α } to
the desired list colouring of H. �

In our proof of the list colouring conjecture for bipartite graphs we
shall apply Lemma 5.4.3 only to colourings from lists of uniform length k.
However, note that keeping list lengths variable is essential for the proof
of the lemma itself: its simple induction could not be performed with
uniform list lengths.

Theorem 5.4.4. (Galvin 1995)
Every bipartite graph G satisfies ch′(G) = χ′(G).

Proof . Let G =: (X ∪Y, E), where {X, Y } is a vertex bipartition of G. (2.1.4)

Let us say that two edges of G meet in X if they share an end in X, and X, Y, E

correspondingly for Y . Let χ′(G) =: k, and let c be a k-edge-colouring k

of G. c

Clearly, ch′(G) � k; we prove that ch′(G) � k. Our plan is to use
Lemma 5.4.3 to show that the line graph H of G is k-choosable. To apply H

the lemma, it suffices to find an orientation D of H with d+(e) < k for
every vertex e of H, and such that every induced subgraph of D has a
kernel. To define D, consider adjacent e, e′ ∈ E, say with c(e) < c(e′). D

If e and e′ meet in X, we orient the edge ee′ ∈ H from e′ towards e; if e
and e′ meet in Y , we orient it from e to e′ (Fig 5.4.3).

1

1

2

2

3

X Y

G

Fig. 5.4.3. Orienting the line graph of G

Let us compute d+(e) for given e ∈ E = V (D). If c(e) = i, say,
then every e′ ∈ N+(e) meeting e in X has its colour in { 1, . . . , i− 1 },
and every e′ ∈ N+(e) meeting e in Y has its colour in { i + 1, . . . , k }.
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As any two neighbours e′ of e meeting e either both in X or both in
Y are themselves adjacent and hence coloured differently, this implies
d+(e) < k as desired.

It remains to show that every induced subgraph D′ of D has a kernel.D′

This, however, is immediate by the stable marriage theorem (2.1.4) for G,
if we interpret the directions in D as expressing preference. Indeed, given
a vertex v ∈ X ∪Y and edges e, e′ ∈ V (D′) at v, write e <v e′ if the edge
ee′ of H is directed from e to e′ in D. Then any stable matching in the
graph (X ∪Y, V (D′)) for this set of preferences is a kernel in D′. �

By Proposition 5.3.1, we now know the exact list-chromatic index(5.3.1)

of bipartite graphs:

Corollary 5.4.5. Every bipartite graph G satisfies ch′(G) = ∆(G).
�

5.5 Perfect graphs

As discussed in Section 5.2, a high chromatic number may occur as a
purely global phenomenon: even when a graph has large girth, and thus
locally looks like a tree, its chromatic number may be arbitrarily high.
Since such ‘global dependence’ is obviously difficult to deal with, one may
become interested in graphs where this phenomenon does not occur, i.e.
whose chromatic number is high only when there is a local reason for it.

Before we make this precise, let us note two definitions for a graph G.
The greatest integer r such that Kr ⊆ G is the clique number ω(G) of G,ω(G)

and the greatest integer r such that Kr ⊆ G (induced) is the indepen-
dence number α(G) of G. Clearly, α(G) = ω(G) and ω(G) = α(G).α(G)

A graph is called perfect if every induced subgraph H ⊆ G hasperfect

chromatic number χ(H) = ω(H), i.e. if the trivial lower bound of ω(H)
colours always suffices to colour the vertices of H. Thus, while proving
an assertion of the form χ(G) > k may in general be difficult, even
in principle, for a given graph G, it can always be done for a perfect
graph simply by exhibiting some Kk+1 subgraph as a ‘certificate’ for
non-colourability with k colours.

At first glance, the structure of the class of perfect graphs appears
somewhat contrived: although it is closed under induced subgraphs (if
only by explicit definition), it is not closed under taking general sub-
graphs or supergraphs, let alone minors (examples?). However, per-
fection is an important notion in graph theory: the fact that several
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fundamental classes of graphs are perfect (as if by fluke) may serve as a
superficial indication of this.3

What graphs, then, are perfect? Bipartite graphs are, for instance.
Less trivially, the complements of bipartite graphs are perfect, too—
a fact equivalent to König’s duality theorem 2.1.1 (Exercise 3636). The
so-called comparability graphs are perfect, and so are the interval graphs
(see the exercises); both these turn up in numerous applications.

In order to study at least one such example in some detail, we
prove here that the chordal graphs are perfect: a graph is chordal (or chordal

triangulated) if each of its cycles of length at least 4 has a chord, i.e. if
it contains no induced cycles other than triangles.

To show that chordal graphs are perfect, we shall first characterize
their structure. If G is a graph with induced subgraphs G1, G2 and S,
such that G = G1 ∪G2 and S = G1 ∩G2, we say that G arises from G1

and G2 by pasting these graphs together along S. pasting

Proposition 5.5.1. A graph is chordal if and only if it can be con- [ 12.3.11 ]

structed recursively by pasting along complete subgraphs, starting from
complete graphs.

Proof . If G is obtained from two chordal graphs G1, G2 by pasting them
together along a complete subgraph, then G is clearly again chordal:
any induced cycle in G lies in either G1 or G2, and is hence a triangle
by assumption. Since complete graphs are chordal, this proves that all
graphs constructible as stated are chordal.

Conversely, let G be a chordal graph. We show by induction on |G|
that G can be constructed as described. This is trivial if G is complete.
We therefore assume that G is not complete, in particular that |G| > 1,
and that all smaller chordal graphs are constructible as stated. Let a, b ∈ a, b

G be two non-adjacent vertices, and let X ⊆ V (G)�{ a, b } be a minimal X

a–b separator. Let C denote the component of G−X containing a, and C

put G1 := G [V (C)∪X ] and G2 := G−C. Then G arises from G1 and G1, G2

G2 by pasting these graphs together along S := G [X ]. S

Since G1 and G2 are both chordal (being induced subgraphs of G)
and hence constructible by induction, it suffices to show that S is com-
plete. Suppose, then, that s, t ∈ S are non-adjacent. By the minimality s, t

of X = V (S) as an a–b separator, both s and t have a neighbour in C.
Hence, there is an X-path from s to t in G1; we let P1 be a shortest such
path. Analogously, G2 contains a shortest X-path P2 from s to t. But
then P1 ∪P2 is a chordless cycle of length � 4 (Fig. 5.5.1), contradicting
our assumption that G is chordal. �

3 The class of perfect graphs has duality properties with deep connections to
optimization and complexity theory, which are far from understood. Theorem 5.5.6
shows the tip of an iceberg here; for more, the reader is referred to Lovász’s survey
cited in the notes.
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a

b
S

G1 G2

P1 P2

s

t

Fig. 5.5.1. If G1 and G2 are chordal, then so is G

Proposition 5.5.2. Every chordal graph is perfect.

Proof . Since complete graphs are perfect, it suffices by Proposition
5.5.1 to show that any graph G obtained from perfect graphs G1, G2 by
pasting them together along a complete subgraph S is again perfect. So
let H ⊆ G be an induced subgraph; we show that χ(H) � ω(H).

Let Hi := H ∩ Gi for i = 1, 2, and let T := H ∩ S. Then T is
again complete, and H arises from H1 and H2 by pasting along T . As
an induced subgraph of Gi, each Hi can be coloured with ω(Hi) colours.
Since T is complete and hence coloured injectively, two such colourings,
one of H1 and one of H2, may be combined into a colouring of H with
max {ω(H1), ω(H2) } � ω(H) colours—if necessary by permuting the
colours in one of the Hi. �

By definition, every induced subgraph of a perfect graph is again
perfect. The property of perfection can therefore be characterized by
forbidden induced subgraphs: there exists a set H of imperfect graphs
such that any graph is perfect if and only if it has no induced subgraph
isomorphic to an element of H. (For example, we may choose as H the
set of all imperfect graphs with vertices in N.)

Naturally, one would like to keep H as small as possible. It is one of
the deepest results in graph theory that H need only contain two types
of graph: the odd cycles of length � 5 and their complements. (Neither
of these are perfect; cf. Theorem 5.5.4 below.) This fact, the famous
strong perfect graph conjecture of Berge (1963), was proved only very
recently:

Theorem 5.5.3. (Chudnovsky, Robertson, Seymour & Thomas 2002)
strong
perfect
graph
theorem A graph G is perfect if and only if neither G nor G contains an odd cycle

of length at least 5 as an induced subgraph.

The proof of the strong perfect graph theorem is long and technical,
and it would not be too illuminating to attempt to sketch it. To shed
more light on the notion of perfection, we instead give two direct proofs
of its most important consequence: the perfect graph theorem, formerly
Berge’s weak perfect graph conjecture:
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Theorem 5.5.4. (Lovász 1972)
perfect
graph

theoremA graph is perfect if and only if its complement is perfect.

The first proof we give for Theorem 5.5.4 is Lovász’s original proof,
which is still unsurpassed in its clarity and the amount of ‘feel’ for the
problem it conveys. Our second proof, due to Gasparian (1996), is an
elegant linear algebra proof of another theorem of Lovász’s (Theorem
5.5.6), which easily implies Theorem 5.5.4.

Let us prepare our first proof of Theorem 5.5.4 by a lemma. Let
G be a graph and x ∈ G a vertex, and let G′ be obtained from G by
adding a vertex x′ and joining it to x and all the neighbours of x. We
say that G′ is obtained from G by expanding the vertex x to an edge xx′ expanding

a vertex
(Fig. 5.5.2).

X � {x }

x ′

G′

x

G H

Fig. 5.5.2. Expanding the vertex x in the proof of Lemma 5.5.5

Lemma 5.5.5. Any graph obtained from a perfect graph by expanding
a vertex is again perfect.

Proof . We use induction on the order of the perfect graph considered.
Expanding the vertex of K1 yields K2, which is perfect. For the induc-
tion step, let G be a non-trivial perfect graph, and let G′ be obtained
from G by expanding a vertex x ∈ G to an edge xx′. For our proof that x, x′

G′ is perfect it suffices to show χ(G′) � ω(G′): every proper induced
subgraph H of G′ is either isomorphic to an induced subgraph of G or
obtained from a proper induced subgraph of G by expanding x; in either
case, H is perfect by assumption and the induction hypothesis, and can
hence be coloured with ω(H) colours.

Let ω(G) =: ω ; then ω(G′) ∈ {ω, ω + 1 }. If ω(G′) = ω + 1, then ω

χ(G′) � χ(G) + 1 = ω + 1 = ω(G′)

and we are done. So let us assume that ω(G′) = ω. Then x lies in no
Kω ⊆ G: together with x′, this would yield a Kω+1 in G′. Let us colour
G with ω colours. Since every Kω ⊆ G meets the colour class X of x but X

not x itself, the graph H := G− (X �{x }) has clique number ω(H) < ω H

(Fig. 5.5.2). Since G is perfect, we may thus colour H with ω−1 colours.
Now X is independent, so the set (X �{x })∪{x′ } = V (G′−H) is also
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independent. We can therefore extend our (ω− 1)-colouring of H to an
ω-colouring of G′, showing that χ(G′) � ω = ω(G′) as desired. �

Proof of Theorem 5.5.4. Applying induction on |G|, we show that
the complement G of any perfect graph G = (V, E) is again perfect. ForG = (V, E)

|G| = 1 this is trivial, so let |G| � 2 for the induction step. Let K denoteK
the set of all vertex sets of complete subgraphs of G. Put α(G) =: α,α

and let A be the set of all independent vertex sets A in G with |A| = α.A
Every proper induced subgraph of G is the complement of a proper

induced subgraph of G, and is hence perfect by induction. For the per-
fection of G it thus suffices to prove χ(G) � ω(G) (= α). To this end,
we shall find a set K ∈ K such that K ∩A �= ∅ for all A ∈ A; then

ω(G−K) = α(G−K) < α = ω(G) ,

so by the induction hypothesis

χ(G) � χ(G−K) + 1 = ω(G−K) + 1 � ω(G)

as desired.
Suppose there is no such K; thus, for every K ∈ K there exists a

set AK ∈ A with K ∩AK = ∅. Let us replace in G every vertex x by aAK

complete graph Gx of orderGx

k(x) :=
∣∣{K ∈ K | x ∈ AK }

∣∣ ,k(x)

joining all the vertices of Gx to all the vertices of Gy whenever x and y are
adjacent in G. The graph G′ thus obtained has vertex set

⋃
x∈V V (Gx),G′

and two vertices v ∈ Gx and w ∈ Gy are adjacent in G′ if and only if
x = y or xy ∈ E. Moreover, G′ can be obtained by repeated vertex
expansion from the graph G [ {x ∈ V | k(x) > 0 } ]. Being an induced
subgraph of G, this latter graph is perfect by assumption, so G′ is perfect
by Lemma 5.5.5. In particular,

χ(G′) � ω(G′) . (1)

In order to obtain a contradiction to (1), we now compute in turn the
actual values of ω(G′) and χ(G′). By construction of G′, every maximal
complete subgraph of G′ has the form G′ [

⋃
x∈X Gx ] for some X ∈ K.

So there exists a set X ∈ K such thatX

ω(G′) =
∑
x∈X

k(x)

=
∣∣{ (x, K) : x ∈ X, K ∈ K, x ∈ AK }

∣∣
=

∑
K∈K

|X ∩AK |

� |K|− 1 ; (2)
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the last inequality follows from the fact that |X ∩ AK | � 1 for all K
(since AK is independent but G [X ] is complete), and |X ∩AX | = 0 (by
the choice of AX). On the other hand,

|G′| =
∑
x∈V

k(x)

=
∣∣{ (x, K) : x ∈ V, K ∈ K, x ∈ AK }

∣∣
=

∑
K∈K

|AK |

= |K| ·α .

As α(G′) � α by construction of G′, this implies

χ(G′) � |G′|
α(G′)

� |G′|
α

= |K| . (3)

Putting (2) and (3) together we obtain

χ(G′) � |K| > |K|− 1 � ω(G′) ,

a contradiction to (1). �

At first reading, the proof of Theorem 5.5.4 appears magical: it
starts with an unmotivated lemma about expanding a vertex, shifts the
problem to a strange graph G′ obtained in this way, performs some
double counting—and finished. With hindsight, however, we can under-
stand it a little better. The proof is completely natural up to the point
where we assume that for every K ∈ K there is an AK ∈ A such that
K ∩AK = ∅. To show that this contradicts our assumption that G is
perfect, we would like to show next that its subgraph G̃ induced by all
the AK has a chromatic number that is too large, larger than its clique
number. And, as always when we try to bound the chromatic number
from below, our only hope is to bound |G̃|/α instead, i.e. to show that
this is larger than ω(G̃).

But is the bound of |G̃|/α likely to reflect the true value of χ(G̃)?
In one special case it is: if the sets AK happen to be disjoint, we have
|G̃| = |K| ·α and χ(G̃) = |K|, with the AK as colour classes. Of course,
the sets AK will not in general be disjoint. But we can make them so:
by replacing every vertex x with k(x) vertices, where k(x) is the number
of sets AK it lives in! This is the idea behind G′. What remains is to
endow G′ with the right set of edges to make it perfect (assuming that
G is perfect)—which leads straight to the definition of vertex expansion
and Lemma 5.5.5.



132 5. Colouring

Since the following characterization of perfection is symmetrical in
G and G, it clearly implies Theorem 5.5.4. As our proof of Theorem
5.5.6 will again be from first principles, we thus obtain a second and
independent proof of Theorem 5.5.4.

Theorem 5.5.6. (Lovász 1972)
A graph G is perfect if and only if

|H| � α(H) ·ω(H) (∗)

for all induced subgraphs H ⊆ G.

Proof . Let us write V (G) =: V =: { v1, . . . , vn }, and put α := α(G)V, vi, n

and ω := ω(G). The necessity of (∗) is immediate: if G is perfect, thenα, ω

every induced subgraph H of G can be partitioned into at most ω(H)
colour classes each containing at most α(H) vertices, and (∗) follows.

To prove sufficiency, we apply induction on n = |G|. Assume that
every induced subgraph H of G satisfies (∗), and suppose that G is not
perfect. By the induction hypothesis, every proper induced subgraph of
G is perfect. Hence, every non-empty independent set U ⊆ V satisfies

χ(G−U) = ω(G−U) = ω . (1)

Indeed, while the first equality is immediate from the perfection of G−U ,
the second is easy: ‘�’ is obvious, while χ(G − U) < ω would imply
χ(G) � ω, so G would be perfect contrary to our assumption.

Let us apply (1) to a singleton U = {u } and consider an ω-colouring
of G−u. Let K be the vertex set of any Kω in G. Clearly,

if u /∈ K then K meets every colour class of G−u; (2)

if u ∈ K then K meets all but exactly one colour class of G−u. (3)

Let A0 = {u1, . . . , uα } be an independent set in G of size α.A0

Let A1, . . . , Aω be the colour classes of an ω-colouring of G − u1, let
Aω+1, . . . , A2ω be the colour classes of an ω-colouring of G − u2, and
so on; altogether, this gives us αω +1 independent sets A0, A1, . . . , AαωAi

in G. For each i = 0, . . . , αω, there exists by (1) a Kω ⊆ G − Ai; we
denote its vertex set by Ki.Ki

Note that if K is the vertex set of any Kω in G, then

K ∩Ai = ∅ for exactly one i ∈ { 0, . . . , αω }. (4)

Indeed, if K ∩A0 = ∅ then K ∩Ai �= ∅ for all i �= 0, by definition of Ai

and (2). Similarly if K ∩A0 �= ∅, then |K ∩A0| = 1, so K ∩Ai = ∅ for
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exactly one i �= 0: apply (3) to the unique vertex u ∈ K ∩A0, and (2)
to all the other vertices u ∈ A0.

Let J be the real (αω + 1) × (αω + 1) matrix with zero entries in J

the main diagonal and all other entries 1. Let A be the real (αω +1)×n A

matrix whose rows are the incidence vectors of the subsets Ai ⊆ V : if
ai1, . . . , ain denote the entries of the ith row of A, then aij = 1 if vj ∈ Ai,
and aij = 0 otherwise. Similarly, let B denote the real n × (αω + 1) B

matrix whose columns are the incidence vectors of the subsets Ki ⊆ V .
Now while |Ki∩Ai| = 0 for all i by the choice of Ki, we have Ki∩Aj �= ∅
and hence |Ki ∩Aj | = 1 whenever i �= j, by (4). Thus,

AB = J.

Since J is non-singular, this implies that A has rank αω +1. In particu-
lar, n � αω + 1, which contradicts (∗) for H := G. �

Exercises

1.− Show that the four colour theorem does indeed solve the map colouring
problem stated in the first sentence of the chapter. Conversely, does
the 4-colourability of every map imply the four colour theorem?

2.− Show that, for the map colouring problem above, it suffices to con-
sider maps such that no point lies on the boundary of more than three
countries. How does this affect the proof of the four colour theorem?

3. Try to turn the proof of the five colour theorem into one of the four
colour theorem, as follows. Defining v and H as before, assume induc-
tively that H has a 4-colouring; then proceed as before. Where does
the proof fail?

4. Calculate the chromatic number of a graph in terms of the chromatic
numbers of its blocks.

5.− Show that every graph G has a vertex ordering for which the greedy
algorithm uses only χ(G) colours.

6. For every n > 1, find a bipartite graph on 2n vertices, ordered in such
a way that the greedy algorithm uses n rather than 2 colours.

7. Consider the following approach to vertex colouring. First, find a max-
imal independent set of vertices and colour these with colour 1; then
find a maximal independent set of vertices in the remaining graph and
colour those 2, and so on. Compare this algorithm with the greedy
algorithm: which is better?

8. Show that the bound of Proposition 5.2.2 is always at least as sharp as
that of Proposition 5.2.1.
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9. Find a lower bound for the colouring number in terms of average degree.

10.− A k-chromatic graph is called critically k-chromatic, or just critical ,
if χ(G − v) < k for every v ∈ V (G). Show that every k-chromatic
graph has a critical k-chromatic induced subgraph, and that any such
subgraph has minimum degree at least k− 1.

11. Determine the critical 3-chromatic graphs.

12.+ Show that every critical k-chromatic graph is (k− 1) - edge-connected.

13. Given k ∈ N, find a constant ck > 0 such that every large enough
graph G with α(G) � k contains a cycle of length at least ck |G|.

14.− Find a graph G for which Brooks’s theorem yields a significantly weaker
bound on χ(G) than Proposition 5.2.2.

15.+ Show that, in order to prove Brooks’s theorem for a graph G = (V, E),
we may assume that κ(G) � 2 and ∆(G) � 3. Prove the theorem under
these assumptions, showing first the following two lemmas.

(i) Let v1, . . . , vn be an enumeration of V . If every vi (i < n) has
a neighbour vj with j > i, and if v1vn, v2vn ∈ E but v1v2 /∈ E,
then the greedy algorithm uses at most ∆(G) colours.

(ii) If G is not complete and vn has maximum degree in G, then vn

has neighbours v1, v2 as in (i).

16.+ Show that the following statements are equivalent for a graph G:

(i) χ(G) � k;

(ii) G has an orientation without directed paths of length k− 1;

(iii) G has an acyclic such orientation (one without directed cycles).

17. Given a graph G and k ∈ N, let PG(k) denote the number of vertex
colourings V (G)→{ 1, . . . , k }. Show that PG is a polynomial in k of
degree n := |G|, in which the coefficient of kn is 1 and the coefficient
of kn−1 is −‖G‖. (PG is called the chromatic polynomial of G.)

(Hint. Apply induction on ‖G‖.)

18.+ Determine the class of all graphs G for which PG(k) = k (k−1)n−1. (As
in the previous exercise, let n := |G|, and let PG denote the chromatic
polynomial of G.)

19. In the definition of k-constructible graphs, replace the axiom (ii) by

(ii)′ Every supergraph of a k-constructible graph is k-constructible;

and the axiom (iii) by

(iii)′ If G is a graph with vertices x, y1, y2 such that y1y2 ∈ E(G)
but xy1, xy2 /∈ E(G), and if both G + xy1 and G + xy2 are k-
constructible, then G is k-constructible.

Show that a graph is k-constructible with respect to this new definition
if and only if its chromatic number is at least k.
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20.− An n×n - matrix with entries from { 1, . . . , n } is called a Latin square
if every element of { 1, . . . , n } appears exactly once in each column and
exactly once in each row. Recast the problem of constructing Latin
squares as a colouring problem.

21. Without using Proposition 5.3.1, show that χ′(G) = k for every k-
regular bipartite graph G.

22. Prove Proposition 5.3.1 from the statement of the previous exercise.

23.+ For every k ∈ N, construct a triangle-free k-chromatic graph.

24.− Without using Theorem 5.4.2, show that every plane graph is 6-list-
colourable.

25. For every integer k, find a 2-chromatic graph whose choice number is
at least k.

26.− Find a general upper bound for ch′(G) in terms of χ′(G).

27. Compare the choice number of a graph with its colouring number:
which is greater? Can you prove the analogue of Theorem 5.4.1 for
the colouring number?

28.+ Prove that the choice number of Kr
2 is r.

29. The total chromatic number χ′′(G) of a graph G = (V, E) is the least
number of colours needed to colour the vertices and edges of G simulta-
neously so that any adjacent or incident elements of V ∪E are coloured
differently. The total colouring conjecture says that χ′′(G) � ∆(G)+2.
Bound the total chromatic number from above in terms of the list-
chromatic index, and use this bound to deduce a weakening of the
total colouring conjecture from the list colouring conjecture.

30.− Does every oriented graph have a kernel? If not, does every graph
admit an orientation in which every induced subgraph has a kernel? If
not, does every graph admit an orientation that has a kernel?

31.+ Prove Richardson’s theorem: every directed graph without odd directed
cycles has a kernel.

32. Show that every bipartite planar graph is 3-list-colourable.

(Hint. Apply the previous exercise and Lemma 5.4.3.)

33.− Show that perfection is closed neither under edge deletion nor under
edge contraction.

34.− Deduce Theorem 5.5.6 from the strong perfect graph theorem.

35. Let H1 and H2 be two sets of imperfect graphs, each minimal with
the property that a graph is perfect if and only if it has no induced
subgraph in Hi (i = 1, 2). Do H1 and H2 contain the same graphs, up
to isomorphism?

36. Use König’s Theorem 2.1.1 to show that the complement of any bipar-
tite graph is perfect.
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37. Using the results of this chapter, find a one-line proof of the following
theorem of König, the dual of Theorem 2.1.1: in any bipartite graph
without isolated vertices, the minimum number of edges meeting all
vertices equals the maximum number of independent vertices.

38. A graph is called a comparability graph if there exists a partial ordering
of its vertex set such that two vertices are adjacent if and only if they
are comparable. Show that every comparability graph is perfect.

39. A graph G is called an interval graph if there exists a set { Iv | v ∈ V (G) }
of real intervals such that Iu ∩ Iv 
= ∅ if and only if uv ∈ E(G).

(i) Show that every interval graph is chordal.

(ii) Show that the complement of any interval graph is a compara-
bility graph.

(Conversely, a chordal graph is an interval graph if its complement is a
comparability graph; this is a theorem of Gilmore and Hoffman (1964).)

40. Show that χ(H) ∈ {ω(H) , ω(H)+ 1 } for every line graph H.

41.+ Characterize the graphs whose line graphs are perfect.

42. Show that a graph G is perfect if and only if every non-empty induced
subgraph H of G contains an independent set A ⊆ V (H) such that
ω(H −A) < ω(H).

43.+ Consider the graphs G for which every induced subgraph H has the
property that every maximal complete subgraph of H meets every max-
imal independent vertex set in H.

(i) Show that these graphs G are perfect.

(ii) Show that these graphs G are precisely the graphs not containing
an induced copy of P 3.

44.+ Show that in every perfect graph G one can find a set A of independent
vertex sets and a set O of vertex sets of complete subgraphs such that⋃

A = V (G) =
⋃

O and every set in A meets every set in O.

(Hint. Lemma 5.5.5.)

45.+ Let G be a perfect graph. As in the proof of Theorem 5.5.4, replace
every vertex x of G with a perfect graph Gx (not necessarily complete).
Show that the resulting graph G′ is again perfect.

Notes
The authoritative reference work on all questions of graph colouring is T.R.
Jensen & B.Toft, Graph Coloring Problems, Wiley 1995. Starting with a brief
survey of the most important results and areas of research in the field, this
monograph gives a detailed account of over 200 open colouring problems, com-
plete with extensive background surveys and references. Most of the remarks
below are discussed comprehensively in this book, and all the references for
this chapter can be found there.
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The four colour problem, whether every map can be coloured with four
colours so that adjacent countries are shown in different colours, was raised by
a certain Francis Guthrie in 1852. He put the question to his brother Frederick,
who was then a mathematics undergraduate in Cambridge. The problem was
first brought to the attention of a wider public when Cayley presented it to
the London Mathematical Society in 1878. A year later, Kempe published
an incorrect proof, which was in 1890 modified by Heawood into a proof of
the five colour theorem. In 1880, Tait announced ‘further proofs’ of the four
colour conjecture, which never materialized; see the notes for Chapter 10.

The first generally accepted proof of the four colour theorem was pub-
lished by Appel and Haken in 1977. The proof builds on ideas that can be
traced back as far as Kempe’s paper, and were developed largely by Birkhoff
and Heesch. Very roughly, the proof sets out first to show that every plane
triangulation must contain at least one of 1482 certain ‘unavoidable config-
urations’. In a second step, a computer is used to show that each of those
configurations is ‘reducible’, i.e., that any plane triangulation containing such
a configuration can be 4-coloured by piecing together 4-colourings of smaller
plane triangulations. Taken together, these two steps amount to an inductive
proof that all plane triangulations, and hence all planar graphs, can be 4-
coloured.

Appel & Haken’s proof has not been immune to criticism, not only be-
cause of their use of a computer. The authors responded with a 741 page
long algorithmic version of their proof, which addresses the various criticisms
and corrects a number of errors (e.g. by adding more configurations to the
‘unavoidable’ list): K.Appel & W.Haken, Every Planar Map is Four Col-
orable, American Mathematical Society 1989. A much shorter proof, which
is based on the same ideas (and, in particular, uses a computer in the same
way) but can be more readily verified both in its verbal and its computer part,
has been given by N.Robertson, D. Sanders, P.D. Seymour & R.Thomas, The
four-colour theorem, J. Combin. Theory B 70 (1997), 2–44.

A relatively short proof of Grötzsch’s theorem was found by C.Thomassen,
A short list color proof of Grötzsch’s theorem, J. Combin. Theory B 88 (2003),
189–192. Although not touched upon in this chapter, colouring problems for
graphs embedded in surfaces other than the plane form a substantial and
interesting part of colouring theory; see B.Mohar & C.Thomassen, Graphs on
Surfaces, Johns Hopkins University Press 2001.

The proof of Brooks’s theorem indicated in Exercise 1515, where the greedy
algorithm is applied to a carefully chosen vertex ordering, is due to Lovász
(1973). Lovász (1968) was also the first to construct graphs of arbitrarily
large girth and chromatic number, graphs whose existence Erdős had proved
by probabilistic methods ten years earlier.

A.Urquhart, The graph constructions of Hajós and Ore, J. Graph Theory
26 (1997), 211–215, showed that not only do the graphs of chromatic number
at least k each contain a k-constructible graph (as by Hajós’s theorem); they
are in fact all themselves k-constructible. Algebraic tools for showing that
the chromatic number of a graph is large have been developed by Kleitman &
Lovász (1982), and by Alon & Tarsi (1992); see Alon’s paper cited below.

List colourings were first introduced in 1976 by Vizing. Among other
things, Vizing proved the list-colouring equivalent of Brooks’s theorem. Voigt
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(1993) constructed a plane graph of order 238 that is not 4-choosable; thus,
Thomassen’s list version of the five colour theorem is best possible. A stim-
ulating survey on the list-chromatic number and how it relates to the more
classical graph invariants (including a proof of Theorem 5.4.1) is given by
N.Alon, Restricted colorings of graphs, in (K.Walker, ed.) Surveys in Combi-
natorics, LMS Lecture Notes 187, Cambridge University Press 1993. Both the
list colouring conjecture and Galvin’s proof of the bipartite case are originally
stated for multigraphs. Kahn (1994) proved that the conjecture is asymptot-
ically correct, as follows: given any ε > 0, every graph G with large enough
maximum degree satisfies ch′(G) � (1+ ε)∆(G).

The total colouring conjecture was proposed around 1965 by Vizing and
by Behzad; see Jensen & Toft for details.

A gentle introduction to the basic facts about perfect graphs and their
applications is given by M.C.Golumbic, Algorithmic Graph Theory and Per-
fect Graphs, Academic Press 1980. A more comprehensive treatment is given
in A. Schrijver, Combinatorial optimization, Springer 2003. Surveys on vari-
ous aspects of perfect graphs are included in Perfect Graphs by J.Ramirez-
Alfonsin & B.Reed (eds.), Wiley 2001. Our first proof of the perfect graph
theorem, Theorem 5.5.4, follows L. Lovász’s survey on perfect graphs in
(L.W.Beineke and R.J. Wilson, eds.) Selected Topics in Graph Theory 2,
Academic Press 1983. Our second proof, the proof of Theorem 5.5.6, is due to
G.S.Gasparian, Minimal imperfect graphs: a simple approach, Combinatori-
ca 16 (1996), 209–212. Theorem 5.5.3 was proved by Chudnovsky, Robertson,
Seymour and Thomas, The strong perfect graph theorem, Ann. of Math. (to
appear). Chudnovsky, Cornuejols, Liu, Seymour and Vušković, Recognizing
Berge graphs, Combinatorica 25 (2005), 143–186, constructed an O(n9) algo-
rithm testing for ‘holes’ (induced odd cycles of length at least 5) and ‘antiholes’
(their induced complements), and thus by the theorem for perfection.



6 Flows

Let us view a graph as a network: its edges carry some kind of flow—of
water, electricity, data or similar. How could we model this precisely?

For a start, we ought to know how much flow passes through each
edge e = xy, and in which direction. In our model, we could assign
a positive integer k to the pair (x, y) to express that a flow of k units
passes through e from x to y, or assign −k to (x, y) to express that k
units of flow pass through e the other way, from y to x. For such an
assignment f :V 2 →Z we would thus have f(x, y) = −f(y, x) whenever
x and y are adjacent vertices of G.

Typically, a network will have only a few nodes where flow enters
or leaves the network; at all other nodes, the total amount of flow into
that node will equal the total amount of flow out of it. For our model
this means that, at most nodes x, the function f will satisfy Kirchhoff’s
law

Kirchhoff’s
law

∑
y∈N(x)

f(x, y) = 0 .

In this chapter, we call any map f :V 2 → Z with the above two
properties a ‘flow’ on G. Sometimes, we shall replace Z with another
group, and as a rule we consider multigraphs rather than graphs.1 As
it turns out, the theory of those ‘flows’ is not only useful as a model for
real flows: it blends so well with other parts of graph theory that some
deep and surprising connections become visible, connections particularly
with connectivity and colouring problems.

1 For consistency, we shall phrase some of our proposition for graphs only: those
whose proofs rely on assertions proved (for graphs) earlier in the book. However, all
those results remain true for multigraphs.
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6.1 Circulations

In the context of flows, we have to be able to speak about the ‘directions’
of an edge. Since, in a multigraph G = (V, E), an edge e = xy is notG = (V, E)

identified uniquely by the pair (x, y) or (y, x), we define directed edges as
triples:

→
E := { (e, x, y) | e ∈ E; x, y ∈ V ; e = xy } .

→
E

Thus, an edge e = xy with x �= y has the two directions (e, x, y) anddirection
(e, x, y)

(e, y, x); a loop e = xx has only one direction, the triple (e, x, x). For
given →e = (e, x, y) ∈

→
E, we set ←e := (e, y, x), and for an arbitrary set←e

→
F ⊆

→
E of edge directions we put

←
F := { ←e | →e ∈

→
F } .

←
F

Note that
→
E itself is symmetrical:

←
E =

→
E. For X, Y ⊆ V and

→
F ⊆

→
E,

define

→
F (X, Y ) := { (e, x, y) ∈

→
F | x ∈ X; y ∈ Y ; x �= y } ,

→
F (X, Y )

abbreviate
→
F ({x }, Y ) to

→
F (x, Y ) etc., and write→

F (x, Y )

→
F (x) :=

→
F (x, V ) =

→
F ({x }, {x }) .

→
F (x)

Here, as below, X denotes the complement V �X of a vertex set X ⊆ V.X

Note that any loops at vertices x ∈ X ∩Y are disregarded in the defini-
tions of

→
F (X, Y ) and

→
F (x).

Let H be an abelian semigroup,2 written additively with zero 0.0

Given vertex sets X, Y ⊆ V and a function f :
→
E →H, letf

f(X, Y ) f(X, Y ) :=
∑

�e ∈ �E (X,Y )

f(→e) .

Instead of f({x }, Y ) we again write f(x, Y ), etc.f(x, Y )

From now on, we assume that H is a group. We call f a circulationcirculation

on G (with values in H), or an H-circulation, if f satisfies the following
two conditions:

(F1) f(e, x, y) = −f(e, y, x) for all (e, x, y) ∈
→
E with x �= y;

(F2) f(v, V ) = 0 for all v ∈ V .

2 This chapter contains no group theory. The only semigroups we ever consider
for H are the natural numbers, the integers, the reals, the cyclic groups Zk, and
(once) the Klein four-group.
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If f satisfies (F1), then

f(X, X) = 0

for all X ⊆ V . If f satisfies (F2), then

f(X, V ) =
∑
x∈X

f(x, V ) = 0 .

Together, these two basic observations imply that, in a circulation, the
net flow across any cut is zero:

Proposition 6.1.1. If f is a circulation, then f(X, X) = 0 for every
[ 6.3.1 ]
[ 6.5.2 ]
[ 6.6.1 ]set X ⊆ V .

Proof . f(X, X) = f(X, V )− f(X, X) = 0− 0 = 0. �

Since bridges form cuts by themselves, Proposition 6.1.1 implies
that circulations are always zero on bridges:

Corollary 6.1.2. If f is a circulation and e = xy is a bridge in G, then
f(e, x, y) = 0. �

6.2 Flows in networks

In this section we give a brief introduction to the kind of network flow
theory that is now a standard proof technique in areas such as matching
and connectivity. By way of example, we shall prove a classic result of
this theory, the so-called max-flow min-cut theorem of Ford and Fulk-
erson. This theorem alone implies Menger’s theorem without much dif-
ficulty (Exercise 33), which indicates some of the natural power lying in
this approach.

Consider the task of modelling a network with one source s and
one sink t, in which the amount of flow through a given link between
two nodes is subject to a certain capacity of that link. Our aim is to
determine the maximum net amount of flow through the network from
s to t. Somehow, this will depend both on the structure of the network
and on the various capacities of its connections—how exactly, is what
we wish to find out.

Let G = (V, E) be a multigraph, s, t ∈ V two fixed vertices, and G = (V, E)

c:
→
E → N a map; we call c a capacity function on G, and the tuple s, t, c, N

N := (G, s, t, c) a network . Note that c is defined independently for network

the two directions of an edge. A function f :
→
E →R is a flow in N if it flow

satisfies the following three conditions (Fig. 6.2.1):
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(F1) f(e, x, y) = −f(e, y, x) for all (e, x, y) ∈
→
E with x �= y;

(F2′) f(v, V ) = 0 for all v ∈ V � { s, t };
(F3) f(→e) � c(→e) for all →e ∈

→
E.

We call f integral if all its values are integers.integral

0

1

1

2

2

1

1

3

s

t
3

Fig. 6.2.1. A network flow in short notation: all values refer to
the direction indicated (capacities are not shown)

Let f be a flow in N . If S ⊆ V is such that s ∈ S and t ∈ S, we callf

the pair (S, S) a cut in N , and c(S, S) the capacity of this cut.cut in N

Since f now has to satisfy only (F2′) rather than (F2), we no longercapacity

have f(X, X) = 0 for all X ⊆ V (as in Proposition 6.1.1). However, the
value is the same for all cuts:

Proposition 6.2.1. Every cut (S, S) in N satisfies f(S, S) = f(s, V ).

Proof . As in the proof of Proposition 6.1.1, we have

f(S, S) = f(S, V )− f(S, S)

=
(F1)

f(s, V ) +
∑

v∈S�{ s }
f(v, V ) − 0

=
(F2′)

f(s, V ) .

�

The common value of f(S, S) in Proposition 6.2.1 will be called the total
value of f and denoted by |f |;3 the flow shown in Figure 6.2.1 has totaltotal value

|f |
value 3.

By (F3), we have

|f | = f(S, S) � c(S, S)

for every cut (S, S) in N . Hence the total value of a flow in N is never
larger than the smallest capacity of a cut. The following max-flow min-
cut theorem states that this upper bound is always attained by some
flow:

3 Thus, formally, |f | may be negative. In practice, however, we can change the
sign of |f | simply by swapping the roles of s and t.
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Theorem 6.2.2. (Ford & Fulkerson 1956)
In every network, the maximum total value of a flow equals the minimum

max-flow
min-cut
theoremcapacity of a cut.

Proof . Let N = (G, s, t, c) be a network, and G =: (V, E). We shall define
a sequence f0, f1, f2, . . . of integral flows in N of strictly increasing total
value, i.e. with

|f0| < |f1| < |f2| < . . .

Clearly, the total value of an integral flow is again an integer, so in fact
|fn+1| � |fn|+ 1 for all n. Since all these numbers are bounded above
by the capacity of any cut in N , our sequence will terminate with some
flow fn. Corresponding to this flow, we shall find a cut of capacity
cn = |fn|. Since no flow can have a total value greater than cn, and no
cut can have a capacity less than |fn|, this number is simultaneously the
maximum and the minimum referred to in the theorem.

For f0, we set f0(
→e) := 0 for all →e ∈

→
E. Having defined an integral

flow fn in N for some n ∈ N, we denote by Sn the set of all vertices v Sn

such that G contains an s–v walk x0e0 . . . e�−1x� with

fn(→ei) < c(→ei)

for all i < �; here, →ei := (ei, xi, xi+1) (and, of course, x0 = s and x� = v).
If t ∈ Sn, let W = x0e0 . . . e�−1x� be the corresponding s–t walk; W

without loss of generality we may assume that W does not repeat any
vertices. Let

ε := min { c(→ei)− fn(→ei) | i < � } . ε

Then ε > 0, and since fn (like c) is integral by assumption, ε is an integer.
Let

fn+1:
→e �→




fn(→e) + ε for →e = →ei, i = 0, . . . , �− 1;
fn(→e)− ε for →e = ←ei, i = 0, . . . , �− 1;
fn(→e) for e /∈ W .

Intuitively, fn+1 is obtained from fn by sending additional flow of value ε
along W from s to t (Fig. 6.2.2).

0

1

1

2

2

1

1

3

s

t
3

W

Fig. 6.2.2. An ‘augmenting path’ W with increment ε = 2, for
constant flow fn = 0 and capacities c = 3
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Clearly, fn+1 is again an integral flow in N . Let us compute its total
value |fn+1| = fn+1(s, V ). Since W contains the vertex s only once, →e0

is the only triple (e, x, y) with x = s and y ∈ V whose f -value was
changed. This value, and hence that of fn+1(s, V ) was raised. Therefore
|fn+1| > |fn| as desired.

If t /∈ Sn, then (Sn, Sn) is a cut in N . By (F3) for fn, and the
definition of Sn, we have

fn(→e) = c(→e)

for all →e ∈
→
E(Sn, Sn), so

|fn| = fn(Sn, Sn) = c(Sn, Sn)

as desired. �

Since the flow constructed in the proof of Theorem 6.2.2 is integral,
we have also proved the following:

Corollary 6.2.3. In every network (with integral capacity function)
there exists an integral flow of maximum total value. �

6.3 Group-valued flows

Let G = (V, E) be a multigraph and H an abelian group. If f and
g are two H-circulations then, clearly, (f + g): →e �→ f(→e) + g(→e) andf + g

−f : →e �→ −f(→e) are again H-circulations. The H-circulations on G thus−f

form a group in a natural way.
A function f :

→
E →H is nowhere zero if f(→e) �= 0 for all →e ∈

→
E. Annowhere

zero
H-circulation that is nowhere zero is called an H-flow .4 Note that the
set of H-flows on G is not closed under addition: if two H-flows addH-flow

up to zero on some edge →e, then their sum is no longer an H-flow. By
Corollary 6.1.2, a graph with an H-flow cannot have a bridge.

For finite groups H, the number of H-flows on G—and, in particular,
their existence—surprisingly depends only on the order of H, not on H
itself:

Theorem 6.3.1. (Tutte 1954)
For every multigraph G there exists a polynomial P such that, for any
finite abelian group H, the number of H-flows on G is P

(
|H| − 1

)
.

4 This terminology seems simplest for our purposes but is not standard; see the
footnote in the notes.
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Proof . Let G =: (V, E); we use induction on m := |E|. Let us assume (6.1.1)

first that all the edges of G are loops. Then, given any finite abelian
group H, every map

→
E →H � { 0 } is an H-flow on G. Since |

→
E| = |E|

when all edges are loops, there are
(
|H| − 1

)m such maps, and P := xm

is the polynomial sought.
Now assume there is an edge e0 = xy ∈ E that is not a loop; let e0 = xy

→e0 := (e0, x, y) and E′ := E � { e0 }. We consider the multigraphs E′

G1 := G− e0 and G2 := G/e0 .

By the induction hypothesis, there are polynomials Pi for i = 1, 2 such P1, P2

that, for any finite abelian group H and k := |H| − 1, the number of k

H-flows on Gi is Pi(k). We shall prove that the number of H-flows on
G equals P2(k)−P1(k); then P := P2 −P1 is the desired polynomial.

Let H be given, and denote the set of all H-flows on G by F . We H

are trying to show that F

|F | = P2(k)−P1(k) . (1)

The H-flows on G1 are precisely the restrictions to
→

E′ of those H-circu-
lations on G that are zero on e0 but nowhere else. Let us denote the set
of these circulations on G by F1; then F1

P1(k) = |F1| .

Our aim is to show that, likewise, the H-flows on G2 correspond bijec-
tively to those H-circulations on G that are nowhere zero except possibly
on e0. The set F2 of those circulations on G then satisfies F2

P2(k) = |F2| ,

and F2 is the disjoint union of F1 and F . This will prove (1), and hence
the theorem.

e0
v0

E′(x, y)

G2

x y

G

Fig. 6.3.1. Contracting the edge e0

In G2, let v0 := ve0 be the vertex contracted from e0 (Fig. 6.3.1; v0

see Chapter 1.10). We are looking for a bijection f �→ g between F2
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and the set of H-flows on G2. Given f , let g be the restriction of
f to

→
E′ �

→
E′(y, x). (As the x–y edges e ∈ E′ become loops in G2,

they have only the one direction (e, v0, v0) there; as its g-value, we
choose f(e, x, y).) Then g is indeed an H-flow on G2; note that (F2) holds
at v0 by Proposition 6.1.1 for G, with X := {x, y }.

It remains to show that the map f �→ g is a bijection. If we are given
an H-flow g on G2 and try to find an f ∈ F2 with f �→ g, then f(→e) is
already determined as f(→e) = g(→e) for all →e ∈

→
E′ �

→
E′(y, x); by (F1), we

further have f(→e) = −f(←e) for all →e ∈
→

E′(y, x). Thus our map f �→ g is
bijective if and only if for given g there is always a unique way to define
the remaining values of f(→e0) and f(←e0) so that f satisfies (F1) in e0 and
(F2) in x and y.

Now f(→e0) is already determined by (F2) for x and the known values
of f(→e) for edges e at x, while f(←e0) is already determined by (F2) for y
and the known values of f(→e) for edges e at y. Indeed, with

h :=
∑

�e ∈
→

E′(x,y)

f(→e)
(

=
∑

e ∈E′(x,y)

g(e, v0, v0)
)

and V ′ := V � {x, y }, (F2) will hold for f if and only if

0 = f(x, V ) = f(→e0) +h + f(x, V ′)
and

0 = f(y, V ) = f(←e0)−h + f(y, V ′) ,

that is, if and only if we set

f(→e0) := −f(x, V ′)−h and f(←e0) := −f(y, V ′) +h .

Fortunately, defining f(→e0) and f(←e0) in this way also satisfies (F1) for f ,
as

f(→e0) + f(←e0) = −f(x, V ′)− f(y, V ′) = −g(v0, V
′) = 0

by (F2) for g at v0. �

The polynomial P of Theorem 6.3.1 is known as the flow polynomialflow
polynomial

of G.

Corollary 6.3.2. If H and H ′ are two finite abelian groups of equal[ 6.4.5 ]

order, then G has an H-flow if and only if G has an H ′-flow. �
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Corollary 6.3.2 has fundamental implications for the theory of al-
gebraic flows: it indicates that crucial difficulties in existence proofs of
H-flows are unlikely to be of a group-theoretic nature. On the other
hand, being able to choose a convenient group can be quite helpful; we
shall see a pretty example for this in Proposition 6.4.5.

Let k � 1 be an integer and G = (V, E) a multigraph. A Z-flow f k

on G such that 0 < |f(→e)| < k for all →e ∈
→
E is called a k-flow . Clearly, k-flow

any k-flow is also an �-flow for all � > k. Thus, we may ask which is
the least integer k such that G admits a k-flow—assuming that such a k
exists. We call this least k the flow number of G and denote it by ϕ(G); flow

number
if G has no k-flow for any k, we put ϕ(G) := ∞. ϕ(G)

The task of determining flow numbers quickly leads to some of the
deepest open problems in graph theory. We shall consider these later
in the chapter. First, however, let us see how k-flows are related to the
more general concept of H-flows.

There is an intimate connection between k-flows and Zk-flows. Let
σk denote the natural homomorphism i �→ i from Z to Zk. By compo- σk

sition with σk, every k-flow defines a Zk-flow. As the following theorem
shows, the converse holds too: from every Zk-flow on G we can construct
a k-flow on G. In view of Corollary 6.3.2, this means that the general
question about the existence of H-flows for arbitrary groups H reduces
to the corresponding question for k-flows.

Theorem 6.3.3. (Tutte 1950)
[ 6.4.1 ]
[ 6.4.2 ]
[ 6.4.3 ]
[ 6.4.5 ]A multigraph admits a k-flow if and only if it admits a Zk-flow.

Proof . Let g be a Zk-flow on a multigraph G = (V, E); we construct a
k-flow f on G. We may assume without loss of generality that G has g

no loops. Let F be the set of all functions f :
→
E → Z that satisfy (F1), F

|f(→e)| < k for all →e ∈
→
E, and σk ◦ f = g; note that, like g, any f ∈ F is

nowhere zero.
Let us show first that F �= ∅. Since we can express every value

g(→e) ∈ Zk as i with |i| < k and then put f(→e) := i, there is clearly a map
f :

→
E →Z such that |f(→e)| < k for all →e ∈

→
E and σk ◦f = g. For each edge

e ∈ E, let us choose one of its two directions and denote this by →e. We
may then define f ′:

→
E →Z by setting f ′(→e) := f(→e) and f ′(←e) := −f(→e)

for every e ∈ E. Then f ′ is a function satisfying (F1) and with values in
the desired range; it remains to show that σk ◦ f ′ and g agree not only
on the chosen directions →e but also on their inverses ←e. Since σk is a
homomorphism, this is indeed so:

(σk ◦ f ′)(←e) = σk(−f(→e)) = −(σk ◦ f)(→e) = −g(→e) = g(←e) .

Hence f ′ ∈ F , so F is indeed non-empty.
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Our aim is to find an f ∈ F that satisfies Kirchhoff’s law (F2), and
is thus a k-flow. As a candidate, let us consider an f ∈ F for which thef

sum
K K(f) :=

∑
x∈V

|f(x, V )|

of all deviations from Kirchhoff’s law is least possible. We shall prove
that K(f) = 0; then, clearly, f(x, V ) = 0 for every x, as desired.

Suppose K(f) �= 0. Since f satisfies (F1), and hence
∑

x∈V f(x, V ) =
f(V, V ) = 0, there exists a vertex x withx

f(x, V ) > 0 . (1)

Let X ⊆ V be the set of all vertices x′ for which G contains a walkX

x0e0 . . . e�−1x� from x to x′ such that f(ei, xi, xi+1) > 0 for all i < �;
furthermore, let X ′ := X � {x }.X′

We first show that X ′ contains a vertex x′ with f(x′, V ) < 0. By
definition of X, we have f(e, x′, y) � 0 for all edges e = x′y such that
x′ ∈ X and y ∈ X. In particular, this holds for x′ = x. Thus, (1) implies
f(x, X ′) > 0. Then f(X ′, x) < 0 by (F1), as well as f(X ′, X ′) = 0.
Therefore

∑
x′∈X′

f(x′, V ) = f(X ′, V ) = f(X ′, X) + f(X ′, x) + f(X ′, X ′) < 0 ,

so some x′ ∈ X ′ must indeed satisfyx′

f(x′, V ) < 0 . (2)

As x′ ∈ X, there is an x–x′ walk W = x0e0 . . . e�−1x� such thatW

f(ei, xi, xi+1) > 0 for all i < �. We now modify f by sending some flow
back along W , letting f ′:

→
E →Z be given byf ′

f ′: →e �→




f(→e)− k for →e = (ei, xi, xi+1), i = 0, . . . , �− 1;
f(→e) + k for →e = (ei, xi+1, xi), i = 0, . . . , �− 1;
f(→e) for e /∈ W .

By definition of W , we have |f ′(→e)| < k for all →e ∈
→
E. Hence f ′, like f ,

lies in F .
How does the modification of f affect K? At all inner vertices v

of W , as well as outside W , the deviation from Kirchhoff’s law remains
unchanged:

f ′(v, V ) = f(v, V ) for all v ∈ V � {x, x′ }. (3)
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For x and x′, on the other hand, we have

f ′(x, V ) = f(x, V )− k and f ′(x′, V ) = f(x′, V ) + k . (4)

Since g is a Zk-flow and hence

σk(f(x, V )) = g(x, V ) = 0 ∈ Zk

and
σk(f(x′, V )) = g(x′, V ) = 0 ∈ Zk ,

f(x, V ) and f(x′, V ) are both multiples of k. Thus f(x, V ) � k and
f(x′, V ) � −k, by (1) and (2). But then (4) implies that

|f ′(x, V )| < |f(x, V )| and |f ′(x′, V )| < |f(x′, V )| .

Together with (3), this gives K(f ′) < K(f), a contradiction to the choice
of f .

Therefore K(f) = 0 as claimed, and f is indeed a k-flow. �

Since the sum of two Zk-circulations is always another Zk-circulation,
Zk-flows are often easier to construct (by summing over suitable partial
flows) than k-flows. In this way, Theorem 6.3.3 may be of considerable
help in determining whether or not some given graph has a k-flow. In
the following sections we shall meet a number of examples for this.

Although Theorem 6.3.3 tells us whether a given multigraph admits
a k-flow (assuming we know the value of its flow-polynomial for k − 1),
it does not say anything about the number of such flows. By a recent
result of Kochol, this number is also a polynomial in k, whose values can
be bounded above and below by the corresponding values of the flow
polynomial. See the notes for details.

6.4 k-Flows for small k

Trivially, a graph has a 1-flow (the empty set) if and only if it has no
edges. In this section we collect a few simple examples of sufficient
conditions under which a graph has a 2-, 3- or 4-flow. More examples
can be found in the exercises.

Proposition 6.4.1. A graph has a 2-flow if and only if all its degrees [ 6.6.1 ]

are even.

Proof . By Theorem 6.3.3, a graph G = (V, E) has a 2-flow if and only if (6.3.3)

it has a Z2-flow, i.e. if and only if the constant map
→
E →Z2 with value 1

satisfies (F2). This is the case if and only if all degrees are even. �
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For the remainder of this chapter, let us call a graph even if all its vertex
even
graph

degrees are even.

Proposition 6.4.2. A cubic graph has a 3-flow if and only if it is bi-
partite.

Proof . Let G = (V, E) be a cubic graph. Let us assume first that(1.6.1)
(6.3.3)

G has a 3-flow, and hence also a Z3-flow f . We show that any cycle
C = x0 . . . x�x0 in G has even length (cf. Proposition 1.6.1). Consider
two consecutive edges on C, say ei−1 := xi−1xi and ei := xixi+1. If f
assigned the same value to these edges in the direction of the forward
orientation of C, i.e. if f(ei−1, xi−1, xi) = f(ei, xi, xi+1), then f could
not satisfy (F2) at xi for any non-zero value of the third edge at xi.
Therefore f assigns the values 1 and 2 to the edges of C alternately, and
in particular C has even length.

Conversely, let G be bipartite, with vertex bipartition {X, Y }.
Since G is cubic, the map

→
E → Z3 defined by f(e, x, y) := 1 and

f(e, y, x) := 2 for all edges e = xy with x ∈ X and y ∈ Y is a Z3-
flow on G. By Theorem 6.3.3, then, G has a 3-flow. �

What are the flow numbers of the complete graphs Kn? For odd
n > 1, we have ϕ(Kn) = 2 by Proposition 6.4.1. Moreover, ϕ(K2) = ∞,
and ϕ(K4) = 4; this is easy to see directly (and it follows from Proposi-
tions 6.4.2 and 6.4.5). Interestingly, K4 is the only complete graph with
flow number 4:

Proposition 6.4.3. For all even n > 4, ϕ(Kn) = 3.

Proof . Proposition 6.4.1 implies that ϕ(Kn) � 3 for even n. We show,(6.3.3)

by induction on n, that every G = Kn with even n > 4 has a 3-flow.
For the induction start, let n = 6. Then G is the edge-disjoint union

of three graphs G1, G2, G3, with G1, G2 = K3 and G3 = K3,3. Clearly
G1 and G2 each have a 2-flow, while G3 has a 3-flow by Proposition 6.4.2.
The union of all these flows is a 3-flow on G.

Now let n > 6, and assume the assertion holds for n−2. Clearly, G is
the edge-disjoint union of a Kn−2 and a graph G′ = (V ′, E′) with G′ =
Kn−2 ∗K2. The Kn−2 has a 3-flow by induction. By Theorem 6.3.3, it
thus suffices to find a Z3-flow on G′. For every vertex z of the Kn−2 ⊆ G′,
let fz be a Z3-flow on the triangle zxyz ⊆ G′, where e = xy is the edge
of the K2 in G′. Let f :

→
E′ →Z3 be the sum of these flows. Clearly, f is

nowhere zero, except possibly in (e, x, y) and (e, y, x). If f(e, x, y) �= 0,
then f is the desired Z3-flow on G′. If f(e, x, y) = 0, then f + fz (for
any z) is a Z3-flow on G′. �

Proposition 6.4.4. Every 4-edge-connected graph has a 4-flow.
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Proof . Let G be a 4-edge-connected graph. By Corollary 2.4.2, G has (2.4.2)

two edge-disjoint spanning trees Ti, i = 1, 2. For each edge e /∈ Ti, let
Ci,e be the unique cycle in Ti + e, and let fi,e be a Z4-flow of value i f1,e, f2,e

around Ci,e—more precisely: a Z4-circulation on G with values i and −i
on the edges of Ci,e and zero otherwise.

Let f1 :=
∑

e/∈T1
f1,e. Since each e /∈ T1 lies on only one cycle C1,e′ f1

(namely, for e = e′), f1 takes only the values 1 and −1 (= 3) outside T1.
Let

F := { e ∈ E(T1) | f1(e) = 0 }

and f2 :=
∑

e∈F f2,e. As above, f2(e) = 2 = −2 for all e ∈ F . Now f2

f := f1 + f2 is the sum of Z4-circulations, and hence itself a Z4-circula- f

tion. Moreover, f is nowhere zero: on edges in F it takes the value 2, on
edges of T1 − F it agrees with f1 (and is hence non-zero by the choice
of F ), and on all edges outside T1 it takes one of the values 1 or 3. Hence,
f is a Z4-flow on G, and the assertion follows by Theorem 6.3.3. �

The following proposition describes the graphs with a 4-flow in terms
of those with a 2-flow:

Proposition 6.4.5.

(i) A graph has a 4-flow if and only if it is the union of two even
subgraphs.

(ii) A cubic graph has a 4-flow if and only if it is 3-edge-colourable.

Proof . Let Z2
2 = Z2×Z2 be the Klein four-group. (Thus, the elements of (6.3.2)

(6.3.3)
Z2

2 are the pairs (a, b) with a, b ∈ Z2, and (a, b)+(a′, b′) = (a+a′, b+b′).)
By Corollary 6.3.2 and Theorem 6.3.3, a graph has a 4-flow if and only
if it has a Z2

2 -flow.
(i) now follows directly from Proposition 6.4.1.
(ii) Let G = (V, E) be a cubic graph. We assume first that G has a

Z2
2 -flow f , and define an edge colouring E →Z2

2 � { 0 }. As a = −a for
all a ∈ Z2

2, we have f(→e) = f(←e) for every →e ∈
→
E; let us colour the edge

e with this colour f(→e). Now if two edges with a common end v had
the same colour, then these two values of f would sum to zero; by (F2),
f would then assign zero to the third edge at v. As this contradicts the
definition of f , our edge colouring is correct.

Conversely, since the three non-zero elements of Z2
2 sum to zero,

every 3-edge-colouring c:E→Z2
2 �{ 0 } defines a Z2

2 -flow on G by letting
f(→e) = f(←e) = c(e) for all →e ∈

→
E. �

Corollary 6.4.6. Every cubic 3-edge-colourable graph is bridgeless.
�
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6.5 Flow-colouring duality
In this section we shall see a surprising connection between flows and
colouring: every k-flow on a plane multigraph gives rise to a k-vertex-
colouring of its dual, and vice versa. In this way, the investigation of
k-flows appears as a natural generalization of the familiar map colouring
problems in the plane.

Let G = (V, E) and G∗ = (V ∗, E∗) be dual plane multigraphs. ForG = (V, E)

simplicity, let us assume that G and G∗ have neither bridges nor loopsG∗

and are non-trivial. For edge sets F ⊆ E, let us write

F ∗ := { e∗ ∈ E∗ | e ∈ F } .F ∗

Conversely, if a subset of E∗ is given, we shall usually write it immedi-
ately in the form F ∗, and thus let F ⊆ E be defined implicitly via the
bijection e �→ e∗.

Suppose we are given a circulation g on G∗: how can we employ the
duality between G and G∗ to derive from g some information about G?
The most general property of all circulations is Proposition 6.1.1, which
says that g(X, X) = 0 for all X ⊆ V ∗. By Proposition 4.6.1, the minimal
cuts E∗(X, X) in G∗ correspond precisely to the cycles in G. Thus if we
take the composition f of the maps e �→ e∗ and g, and sum its values
over the edges of a cycle in G, then this sum should again be zero.

Of course, there is still a technical hitch: since g takes its arguments
not in E∗ but in

→
E∗, we cannot simply define f as above: we first have

to refine the bijection e �→ e∗ into one from
→
E to

→
E∗, i.e. assign to every

→e ∈
→
E canonically one of the two directions of e∗. This will be the

purpose of our first lemma. After that, we shall show that f does indeed
sum to zero along any cycle in G.

If C = v0 . . . v�−1v0 is a cycle with edges ei = vivi+1 (and v� := v0),
we shall call

→
C := { (ei, vi, vi+1) | i < � }→

C

a cycle with orientation. Note that this definition of
→
C depends on thecycle with

orientation
vertex enumeration chosen to denote C: every cycle has two orientations.
Conversely, of course, C can be reconstructed from the set

→
C . In practice,

we shall therefore speak about C freely even when, formally, only
→
C has

been defined.

Lemma 6.5.1. There exists a bijection ∗: →e �→ →e ∗ from
→
E to

→
E∗ with

the following properties:

(i) The underlying edge of →e ∗ is always e∗, i.e. →e ∗ is one of the two
directions

→
e∗,

←
e∗ of e∗;

(ii) If C ⊆ G is a cycle, F := E(C), and if X ⊆ V ∗ is such that
F ∗ = E∗(X, X), then there exists an orientation

→
C of C with

{ →e ∗ | →e ∈
→
C } =

→
E∗(X, X).
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The proof of Lemma 6.5.1 is not entirely trivial: it is based on the
so-called orientability of the plane, and we cannot give it here. Still,
the assertion of the lemma is intuitively plausible. Indeed if we de-
fine for e = vw and e∗ = xy the assignment (e, v, w) �→ (e, v, w)∗ ∈
{ (e∗, x, y), (e∗, y, x) } simply by turning e and its ends clockwise onto e∗

(Fig. 6.5.1), then the resulting map →e �→ →e ∗ satisfies the two assertions
of the lemma.

X

X

→
C

Fig. 6.5.1. Oriented cycle-cut duality

Given an abelian group H, let f :
→
E →H and g:

→
E∗→H be two maps f, g

such that
f(→e) = g(→e ∗)

for all →e ∈
→
E. For

→
F ⊆

→
E, we set

f(
→
F ) :=

∑
�e ∈ �F

f(→e) . f(
→
C ) etc.

Lemma 6.5.2.
(i) The map g satisfies (F1) if and only if f does.

(ii) The map g is a circulation on G∗ if and only if f satisfies (F1)
and f(

→
C ) = 0 for every cycle

→
C with orientation.

Proof . (See also Exercise 1717.) Assertion (i) follows from Lemma 6.5.1 (i) (4.6.1)
(6.1.1)

and the fact that →e �→ →e ∗ is bijective.
For the forward implication of (ii), let us assume that g is a circu-

lation on G∗, and consider a cycle C ⊆ G with some given orientation.
Let F := E(C). By Proposition 4.6.1, F ∗ is a minimal cut in G∗, i.e.
F ∗ = E∗(X, X) for some suitable X ⊆ V ∗. By definition of f and g,
Lemma 6.5.1 (ii) and Proposition 6.1.1 give

f(
→
C ) =

∑
�e ∈ �C

f(→e) =
∑

�d ∈
→

E∗(X,X)

g(
→
d) = g(X, X) = 0

for one of the two orientations
→
C of C. Then, by f(

←
C ) = −f(

→
C ), also
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the corresponding value for our given orientation of C must be zero.
For the backward implication it suffices by (i) to show that g satis-

fies (F2), i.e. that g(x, V ∗) = 0 for every x ∈ V ∗. We shall prove that
g(x, V (B)) = 0 for every block B of G∗ containing x; since every edge
of G∗ at x lies in exactly one such block, this will imply g(x, V ∗) = 0.

So let x ∈ V ∗ be given, and let B be any block of G∗ contain-B

ing x. Since G∗ is a non-trivial plane dual, and hence connected, we
have B −x �= ∅. Let F ∗ be the set of all edges of B at x (Fig. 6.5.2),F ∗, F

X

X

x F ∗ B

C

Fig. 6.5.2. The cut F ∗ in G∗

and let X be the vertex set of the component of G∗ −F ∗ containing x.X

Then ∅ �= V (B − x) ⊆ X, by the maximality of B as a cutvertex-free
subgraph. Hence

F ∗ = E∗(X, X) (1)

by definition of X, i.e. F ∗ is a cut in G∗. As a dual, G∗ is connected,
so G∗[X ] too is connected. Indeed, every vertex of X is linked to x by
a path P ⊆ G∗ whose last edge lies in F ∗. Then P − x is a path in
G∗[ X ] meeting B. Since x does not separate B, this shows that G∗[X ]
is connected.

Thus, X and X are both connected in G∗, so F ∗ is even a minimal
cut in G∗. Let C ⊆ G be the cycle with E(C) = F that exists byC

Proposition 4.6.1. By Lemma 6.5.1 (ii), C has an orientation
→
C such that

{ →e ∗ | →e ∈
→
C } =

→
E∗(X, X). By (1), however,

→
E∗(X, X) =

→
E∗(x, V (B)),

so
g(x, V (B)) = g(X, X) = f(

→
C ) = 0

by definition of f and g. �

With the help of Lemma 6.5.2, we can now prove our colouring-flow
duality theorem for plane multigraphs. If P = v0 . . . v� is a path with
edges ei = vivi+1 (i < �), we set (depending on our vertex enumeration
of P )

→
P := { (ei, vi, vi+1) | i < � }→

P

and call
→
P a v0 → v� path. Again, P may be given implicitly by

→
P .

v0 → v�

path



6.5 Flow-colouring duality 155

Theorem 6.5.3. (Tutte 1954)
For every dual pair G, G∗ of plane multigraphs,

χ(G) = ϕ(G∗) .

Proof . Let G =: (V, E) and G∗ =: (V ∗, E∗). For |G| ∈ { 1, 2 } the (1.5.6)

assertion is easily checked; we shall assume that |G| � 3, and apply V, E

induction on the number of bridges in G. If e ∈ G is a bridge then e∗ V ∗, E∗

is a loop, and G∗ − e∗ is a plane dual of G/e (why?). Hence, by the
induction hypothesis,

χ(G) = χ(G/e) = ϕ(G∗ − e∗) = ϕ(G∗) ;

for the first and the last equality we use that, by |G| � 3, e is not the
only edge of G.

So all that remains to be checked is the induction start: let us
assume that G has no bridge. If G has a loop, then G∗ has a bridge,
and χ(G) = ∞ = ϕ(G∗) by convention. So we may also assume that G
has no loop. Then χ(G) is finite; we shall prove for given k � 2 that G k

is k-colourable if and only if G∗ has a k-flow. As G—and hence G∗—
has neither loops nor bridges, we may apply Lemmas 6.5.1 and 6.5.2
to G and G∗. Let →e �→ →e ∗ be the bijection between

→
E and

→
E∗ from

Lemma 6.5.1.
We first assume that G∗ has a k-flow. Then G∗ also has a Zk-flow g. g

As before, let f :
→
E →Zk be defined by f(→e) := g(→e ∗). We shall use f to f

define a vertex colouring c:V →Zk of G.
Let T be a normal spanning tree of G, with root r, say. Put c(r) := 0.

For every other vertex v ∈ V let c(v) := f(
→
P ), where

→
P is the r → v

path in T . To check that this is a proper colouring, consider an edge
e = vw ∈ E. As T is normal, we may assume that v < w in the tree-order
of T . If e is an edge of T then c(w)− c(v) = f(e, v, w) by definition of c,
so c(v) �= c(w) since g (and hence f) is nowhere zero. If e /∈ T , let

→
P

denote the v→w path in T . Then

c(w)− c(v) = f(
→
P ) = −f(e, w, v) �= 0

by Lemma 6.5.2 (ii).
Conversely, we now assume that G has a k-colouring c. Let us define c

f :
→
E →Z by

f(e, v, w) := c(w)− c(v) , f

and g:
→

E∗ → Z by g(→e ∗) := f(→e). Clearly, f satisfies (F1) and takes g

values in {±1, . . . ,±(k − 1) }, so by Lemma 6.5.2 (i) the same holds
for g. By definition of f , we further have f(

→
C ) = 0 for every cycle

→
C

with orientation. By Lemma 6.5.2 (ii), therefore, g is a k-flow. �
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6.6 Tutte’s flow conjectures

How can we determine the flow number of a graph? Indeed, does every
(bridgeless) graph have a flow number, a k-flow for some k? Can flow
numbers, like chromatic numbers, become arbitrarily large? Can we
characterize the graphs admitting a k-flow, for given k?

Of these four questions, we shall answer the second and third in this
section: we prove that every bridgeless graph has a 6-flow. In particular,
a graph has a flow number if and only if it has no bridge. The ques-
tion asking for a characterization of the graphs with a k-flow remains
interesting for k = 3, 4, 5. Partial answers are suggested by the following
three conjectures of Tutte, who initiated algebraic flow theory.

The oldest and best known of the Tutte conjectures is his 5-flow
conjecture:

Five-Flow Conjecture. (Tutte 1954)
Every bridgeless multigraph has a 5-flow.

Which graphs have a 4-flow? By Proposition 6.4.4, the 4-edge-
connected graphs are among them. The Petersen graph (Fig. 6.6.1), on
the other hand, is an example of a bridgeless graph without a 4-flow:
since it is cubic but not 3-edge-colourable, it cannot have a 4-flow by
Proposition 6.4.5 (ii).

Fig. 6.6.1. The Petersen graph

Tutte’s 4-flow conjecture states that the Petersen graph must be
present in every graph without a 4-flow:

Four-Flow Conjecture. (Tutte 1966)
Every bridgeless multigraph not containing the Petersen graph as a mi-
nor has a 4-flow.

By Proposition 1.7.2, we may replace the word ‘minor’ in the 4-flow
conjecture by ‘topological minor’.
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Even if true, the 4-flow conjecture will not be best possible: a K11,
for example, contains the Petersen graph as a minor but has a 4-flow,
even a 2-flow. The conjecture appears more natural for sparser graphs;
a proof for cubic graphs was announced in 1998 by Robertson, Sanders,
Seymour and Thomas.

A cubic bridgeless graph or multigraph without a 4-flow (equiva-
lently, without a 3-edge-colouring) is called a snark . The 4-flow conjec- snark

ture for cubic graphs says that every snark contains the Petersen graph
as a minor; in this sense, the Petersen graph has thus been shown to be
the smallest snark. Snarks form the hard core both of the four colour
theorem and of the 5-flow conjecture: the four colour theorem is equi-
valent to the assertion that no snark is planar (exercise), and it is not
difficult to reduce the 5-flow conjecture to the case of snarks.5 However,
although the snarks form a very special class of graphs, none of the
problems mentioned seems to become much easier by this reduction.6

Three-Flow Conjecture. (Tutte 1972)
Every multigraph without a cut consisting of exactly one or exactly three
edges has a 3-flow.

Again, the 3-flow conjecture will not be best possible: it is easy to con-
struct graphs with three-edge cuts that have a 3-flow (exercise).

By our duality theorem (6.5.3), all three flow conjectures are true
for planar graphs and thus motivated: the 3-flow conjecture translates
to Grötzsch’s theorem (5.1.3), the 4-flow conjecture to the four colour
theorem (since the Petersen graph is not planar, it is not a minor of a
planar graph), the 5-flow conjecture to the five colour theorem.

We finish this section with the main result of the chapter:

Theorem 6.6.1. (Seymour 1981)
Every bridgeless graph has a 6-flow.

Proof . Let G = (V, E) be a bridgeless graph. Since 6-flows on the
(3.3.6)
(6.1.1)
(6.4.1)components of G will add up to a 6-flow on G, we may assume that

G is connected; as G is bridgeless, it is then 2-edge-connected. Note
that any two vertices in a 2-edge-connected graph lie in some common
even connected subgraph—for example, in the union of two edge-disjoint
paths linking these vertices by Menger’s theorem (3.3.6 (ii)). We shall
use this fact repeatedly.

5 The same applies to another well-known conjecture, the cycle double cover con-
jecture; see Exercise 1313.

6 That snarks are elusive has been known to mathematicians for some time; cf.
Lewis Carroll, The Hunting of the Snark , Macmillan 1876.
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We shall construct a sequence H0, . . . , Hn of disjoint connected andH0, . . . , Hn

even subgraphs of G, together with a sequence F1, . . . , Fn of non-emptyF1, . . . , Fn

sets of edges between them. The sets Fi will each contain only one or
two edges, between Hi and H0 ∪ . . .∪Hi−1. We write Hi =: (Vi, Ei),Vi, Ei

Hi := (H0 ∪ . . .∪Hi) + (F1 ∪ . . .∪Fi)Hi

and Hi =: (V i, Ei). Note that each Hi = (Hi−1 ∪Hi)+Fi is connectedV i, Ei

(induction on i). Our assumption that Hi is even implies by Proposition
6.4.1 (or directly by Proposition 1.2.1) that Hi has no bridge.

As H0 we choose any K1 in G. Now assume that H0, . . . , Hi−1 and
F1, . . . , Fi−1 have been defined for some i > 0. If V i−1 = V , we terminate
the construction and set i− 1 =: n. Otherwise, we let Xi ⊆ V i−1 ben

minimal such that Xi �= ∅ andXi

∣∣E(Xi, V i−1 � Xi)
∣∣ � 1 (1)

(Fig. 6.6.2); such an Xi exists, because V i−1 is a candidate. Since G
is 2-edge-connected, (1) implies that E(Xi, V

i−1) �= ∅. By the mini-
mality of Xi, the graph G [Xi ] is connected and bridgeless, i.e. 2-edge-
connected or a K1. As the elements of Fi we pick one or two edgesFi

from E(Xi, V
i−1), if possible two. As Hi we choose any connected even

subgraph of G [Xi ] containing the ends in Xi of the edges in Fi.

Hi
Fi Xi

V i−1

V i−1 � Xi

Hi−1

Fig. 6.6.2. Constructing the Hi and Fi

When our construction is complete, we set Hn =: H and E′ :=H

E � E(H). By definition of n, H is a spanning connected subgraphE′

of G.
We now define, by ‘reverse’ induction, a sequence fn, . . . , f0 of Z3-fn, . . . , f0

circulations on G. For every edge e ∈ E′, let
→

Ce be a cycle (with orienta-→
Ce

tion) in H + e containing e, and fe a positive flow around
→

Ce; formally,
we let fe be a Z3-circulation on G such that f−1

e (0) =
→
E � (

→
Ce ∪

←
Ce).fe

Let fn be the sum of all these fe. Since each e′ ∈ E′ lies on just one offn

the cycles Ce (namely, on Ce′), we have fn(→e) �= 0 for all →e ∈
→

E′.
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Assume now that Z3-circulations fn, . . . , fi on G have been defined fi

for some i � n, and that

fi(
→e) �= 0 for all →e ∈

→
E′ ∪

⋃
j>i

→
Fj , (2)

where
→

Fj := { →e ∈
→
E | e ∈ Fj }. Our aim is to define fi−1 in such a way →

Fj

that (2) also holds for i− 1.
We first consider the case that |Fi| = 1, say Fi = { e }. We then e

let fi−1 := fi, and thus have to show that fi is non-zero on (the two
directions of) e. Our assumption of |Fi| = 1 implies by the choice of
Fi that G contains no Xi–V i−1 edge other than e. Since G is 2-edge-
connected, it therefore has at least—and thus, by (1), exactly—one edge
e′ between Xi and V i−1 � Xi. We show that fi is non-zero on e′; as e′

{ e, e′ } is a cut in G, this implies by Proposition 6.1.1 that fi is also
non-zero on e.

To show that fi is non-zero on e′, we use (2): we show that e′ ∈
E′ ∪

⋃
j>i Fj , i.e. that e′ lies in no Hk and in no Fj with j � i. Since e′

has both ends in V i−1, it clearly lies in no Fj with j � i and in no Hk

with k < i. But every Hk with k � i is a subgraph of G [ V i−1 ]. Since e′

is a bridge of G [ V i−1 ] but Hk has no bridge, this means that e′ /∈ Hk.
Hence, fi−1 does indeed satisfy (2) for i− 1 in the case considered.

It remains to consider the case that |Fi| = 2, say Fi = { e1, e2 }. e1, e2

Since Hi and Hi−1 are both connected, we can find a cycle C in Hi = C

(Hi ∪Hi−1)+Fi that contains e1 and e2. If fi is non-zero on both these
edges, we again let fi−1 := fi. Otherwise, there are directions →e1 and
→e2 of e1 and e2 such that, without loss of generality, fi(

→e1) = 0 and
fi(

→e2) ∈ { 0, 1 }. Let
→
C be the orientation of C with →e2 ∈

→
C , and let g be

a flow of value 1 around
→
C (formally: let g be a Z3-circulation on G such

that g( →e2) = 1 and g−1(0) =
→
E � (

→
C ∪

←
C )). We then let fi−1 := fi + g.

By choice of the directions →e1 and →e2, fi−1 is non-zero on both edges.
Since fi−1 agrees with fi on all of

→
E′ ∪

⋃
j>i

→
Fj and (2) holds for i, we

again have (2) also for i− 1.
Eventually, f0 will be a Z3-circulation on G that is nowhere zero

except possibly on edges of H0 ∪ . . .∪Hn. Composing f0 with the map
h �→ 2h from Z3 to Z6 (h ∈ { 1, 2 }), we obtain a Z6-circulation f on G f

with values in { 0, 2, 4 } for all edges lying in some Hi, and with values
in { 2, 4 } for all other edges. Adding to f a 2-flow on each Hi (formally:
a Z6-circulation on G with values in { 1,−1 } on the edges of Hi and 0
otherwise; this exists by Proposition 6.4.1), we obtain a Z6-circulation
on G that is nowhere zero. Hence, G has a 6-flow by Theorem 6.3.3.

�
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Exercises
1.− Prove Proposition 6.2.1 by induction on |S|.
2. (i)− Given n ∈ N, find a capacity function for the network below such

that the algorithm from the proof of the max-flow min-cut theorem will
need more than n augmenting paths W if these are badly chosen.

s t

(ii)+ Show that, if all augmenting paths are chosen as short as possible,
their number is bounded by a function of the size of the network.

3.+ Derive Menger’s Theorem 3.3.5 from the max-flow min-cut theorem.

(Hint. The edge version is easy. For the vertex version, apply the edge
version to a suitable auxiliary graph.)

4.− Let f be an H-circulation on G and g: H →H ′ a group homomorphism.
Show that g ◦ f is an H ′-circulation on G. Is g ◦ f an H ′-flow if f is an
H-flow?

5.− Given k � 1, show that a graph has a k-flow if and only if each of its
blocks has a k-flow.

6.− Show that ϕ(G/e) � ϕ(G) whenever G is a multigraph and e an edge
of G. Does this imply that, for every k, the class of all multigraphs
admitting a k-flow is closed under taking minors?

7.− Work out the flow number of K4 directly, without using any results
from the text.

8. Let H be a finite abelian group, G a graph, and T a spanning tree
of G. Show that every mapping from the directions of E(G) � E(T ) to
H that satisfies (F1) extends uniquely to an H-circulation on G.

Do not use the 6-flow Theorem 6.6.1 for the following three exercises.

9. Show that ϕ(G) < ∞ for every bridgeless multigraph G.

10. Assume that a graph G has m spanning trees such that no edge of G
lies in all of these trees. Show that ϕ(G) � 2m.

11. Let G be a bridgeless connected graph with n vertices and m edges. By
considering a normal spanning tree of G, show that ϕ(G) � m−n+2.

12. Show that every graph with a Hamilton cycle has a 4-flow. (A Hamilton
cycle of G is a cycle in G that contains all the vertices of G.)

13. A family of (not necessarily distinct) cycles in a graph G is called a
cycle double cover of G if every edge of G lies on exactly two of these
cycles. The cycle double cover conjecture asserts that every bridgeless
multigraph has a cycle double cover. Prove the conjecture for graphs
with a 4-flow.
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14.− Determine the flow number of C5 ∗K1, the wheel with 5 spokes.

15. Find bridgeless graphs G and H = G− e such that 2 < ϕ(G) < ϕ(H).

16. Prove Proposition 6.4.1 without using Theorem 6.3.3.

17. The proof of the backward implication of Lemma 6.5.2 (ii) is a bit pedes-
trian. Use Lemmas 1.9.4 and 3.1.1, Proposition 4.6.1, and Exercise 3131
of Chapter 4 for a shorter higher-level proof.

18.+ Prove Heawood’s theorem that a plane triangulation is 3-colourable if
and only if all its vertices have even degree.

19. Show that the 3-flow conjecture for planar multigraphs is equivalent to
Grötzsch’s Theorem 5.1.3.

20. (i)− Show that the four colour theorem is equivalent to the non-exist-
ence of a planar snark, i.e. to the statement that every cubic bridgeless
planar multigraph has a 4-flow.

(ii) Can ‘bridgeless’ in (i) be replaced by ‘3-connected’?

21.+ Show that a graph G = (V, E) has a k-flow if and only if it admits an
orientation D that directs, for every X ⊆ V , at least 1/k of the edges
in E(X, X) from X towards X.

22.− Generalize the 6-flow Theorem 6.6.1 to multigraphs.

Notes
Network flow theory is an application of graph theory that has had a major
and lasting impact on its development over decades. As is illustrated already
by the fact that Menger’s theorem can be deduced easily from the max-flow
min-cut theorem (Exercise 33), the interaction between graphs and networks
may go either way: while ‘pure’ results in areas such as connectivity, matching
and random graphs have found applications in network flows, the intuitive
power of the latter has boosted the development of proof techniques that have
in turn brought about theoretic advances.

The classical reference for network flows is L.R. Ford & D.R. Fulkerson,
Flows in Networks, Princeton University Press 1962. More recent and compre-
hensive accounts are given by R.K.Ahuja, T.L.Magnanti & J.B.Orlin, Net-
work flows, Prentice-Hall 1993, by A. Frank in his chapter in the Handbook of
Combinatorics (R.L.Graham, M.Grötschel & L. Lovász, eds.), North-Holland
1995, and by A. Schrijver, Combinatorial optimization, Springer 2003. An in-
troduction to graph algorithms in general is given in A.Gibbons, Algorithmic
Graph Theory , Cambridge University Press 1985.

If one recasts the maximum flow problem in linear programming terms,
one can derive the max-flow min-cut theorem from the linear programming
duality theorem; see A. Schrijver, Theory of integer and linear programming ,
Wiley 1986.

The more algebraic theory of group-valued flows and k-flows has been
developed largely by Tutte; he gives a thorough account in his monograph
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W.T.Tutte, Graph Theory , Addison-Wesley 1984. The fact that the number
of k-flows of a multigraph is a polynomial in k, whose values can be bounded
in terms of the corresponding values of the flow polynomial, was proved by
M.Kochol, Polynomials associated with nowhere-zero7 flows, J. Combin. The-
ory B 84 (2002), 260–269.

Tutte’s flow conjectures are covered also in F. Jaeger’s survey, Nowhere-
zero flow problems, in (L.W.Beineke & R.J.Wilson, eds.) Selected Topics in
Graph Theory 3, Academic Press 1988. For the flow conjectures, see also
T.R. Jensen & B.Toft, Graph Coloring Problems, Wiley 1995. Seymour’s 6-
flow theorem is proved in P.D. Seymour, Nowhere-zero 6-flows, J. Combin.
Theory B 30 (1981), 130–135. This paper also indicates how Tutte’s 5-flow
conjecture reduces to snarks. In 1998, Robertson, Sanders, Seymour and
Thomas announced a proof of the 4-flow conjecture for cubic graphs.

Finally, Tutte discovered a 2-variable polynomial associated with a graph,
which generalizes both its chromatic polynomial and its flow polynomial.
What little is known about this Tutte polynomial can hardly be more than
the tip of the iceberg: it has far-reaching, and largely unexplored, connections
to areas as diverse as knot theory and statistical physics. See D.J.A. Welsh,
Complexity: knots, colourings and counting (LMS Lecture Notes 186), Cam-
bridge University Press 1993.

7 In the literature, the term ‘flow’ is often used to mean what we have called ‘cir-
culation’, i.e. flows are not required to be nowhere zero unless this is stated explicitly.



7 Extremal
Graph Theory

In this chapter we study how global parameters of a graph, such as its
edge density or chromatic number, can influence its local substructures.
How many edges, for instance, do we have to give a graph on n vertices
to be sure that, no matter how these edges are arranged, the graph will
contain a Kr subgraph for some given r? Or at least a Kr minor? Will
some sufficiently high average degree or chromatic number ensure that
one of these substructures occurs?

Questions of this type are among the most natural ones in graph
theory, and there is a host of deep and interesting results. Collectively,
these are known as extremal graph theory .

Extremal graph problems in this sense fall neatly into two categories,
as follows. If we are looking for ways to ensure by global assumptions
that a graph G contains some given graph H as a minor (or topolo-
gical minor), it will suffice to raise ‖G‖ above the value of some linear
function of |G|, i.e., to make ε(G) large enough. The precise value of ε
needed to force a desired minor or topological minor will be our topic
in Section 7.2. Graphs whose number of edges is about1 linear in their
number of vertices are called sparse, so Section 7.2 is devoted to ‘sparse sparse

extremal graph theory’.
A particularly interesting way to force an H minor is to assume that

χ(G) is large. Recall that if χ(G) � k + 1, say, then G has a subgraph
G′ with 2ε(G′) � δ(G′) � k (Corollary 5.2.3). The question here is
whether the effect of large χ is limited to this indirect influence via ε,
or whether an assumption of χ � k + 1 can force bigger minors than

1 Formally, the notions of sparse and dense (below) make sense only for classes
of graphs whose order tends to infinity, not for individual graphs.
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the assumption of 2ε � k can. Hadwiger’s conjecture, which we meet
in Section 7.3, asserts that χ has this quality. The conjecture can be
viewed as a generalization of the four colour theorem, and is regarded
by many as the most challenging open problem in graph theory.

On the other hand, if we ask what global assumptions might imply
the existence of some given graph H as a subgraph, it will not help to
raise invariants such as ε or χ, let alone any of the other invariants dis-
cussed in Chapter 1. For as soon as H contains a cycle, there are graphs
of arbitrarily large chromatic number not containing H as a subgraph
(Theorem 5.2.5). In fact, unless H is bipartite, any function f such that
f(n) edges on n vertices force an H subgraph must grow quadratically
with n: since complete bipartite graphs can have 1

4n2 edges, f(n) must
exceed 1

4n2.
Graphs with a number of edges about quadratic in their number ofdense

vertices are usually called dense; the number ‖G‖
/(|G|

2

)
, the proportion

of its potential edges that G actually has, is the edge density of G. Theedge
density

question of exactly which edge density is needed to force a given subgraph
is the archetypal extremal graph problem, and it is our first topic in this
chapter (Section 7.1). Rather than attempting to survey the wide field of
‘dense extremal graph theory’, however, we shall concentrate on its two
most important results: we first prove Turán’s classical extremal graph
theorem for H = Kr—a result that has served as a model for countless
similar theorems for other graphs H—and then state the fundamental
Erdős-Stone theorem, which gives precise asymptotic information for all
H at once.

Although the Erdős-Stone theorem can be proved by elementary
means, we shall use the opportunity of its proof to portray a powerful
modern proof technique that has transformed much of extremal graph
theory in recent years: Szemerédi regularity lemma. This lemma is pre-
sented and proved in Section 7.4. In Section 7.5, we outline a general
method for applying it, and illustrate this in the proof of the Erdős-Stone
theorem. Another application of the regularity lemma will be given in
Chapter 9.2.

7.1 Subgraphs
Let H be a graph and n � |H|. How many edges will suffice to force an
H subgraph in any graph on n vertices, no matter how these edges are
arranged? Or, to rephrase the problem: which is the greatest possible
number of edges that a graph on n vertices can have without containing
a copy of H as a subgraph? What will such a graph look like? Will it
be unique?

A graph G �⊇ H on n vertices with the largest possible number of
edges is called extremal for n and H; its number of edges is denoted byextremal
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ex(n, H). Clearly, any graph G that is extremal for some n and H will ex(n, H)

also be edge-maximal with H �⊆ G. Conversely, though, edge-maximality
does not imply extremality: G may well be edge-maximal with H �⊆ G
while having fewer than ex(n, H) edges (Fig. 7.1.1).

Fig. 7.1.1. Two graphs that are edge-maximal with P 3 
⊆ G; is
the right one extremal?

As a case in point, we consider our problem for H = Kr (with r > 1).
A moment’s thought suggests some obvious candidates for extremality
here: all complete (r− 1)-partite graphs are edge-maximal without con-
taining Kr. But which among these have the greatest number of edges?
Clearly those whose partition sets are as equal as possible, i.e. differ in
size by at most 1: if V1, V2 are two partition sets with |V1|− |V2| � 2, we
may increase the number of edges in our complete (r− 1)-partite graph
by moving a vertex from V1 to V2.

The unique complete (r − 1)-partite graphs on n � r − 1 vertices
whose partition sets differ in size by at most 1 are called Turán graphs;
we denote them by T r−1(n) and their number of edges by tr−1(n) T r−1(n)

(Fig. 7.1.2). For n < r − 1 we shall formally continue to use these tr−1(n)

definitions, with the proviso that—contrary to our usual terminology—
the partition sets may now be empty; then, clearly, T r−1(n) = Kn for
all n � r− 1.

Fig. 7.1.2. The Turán graph T 3(8)

The following theorem tells us that T r−1(n) is indeed extremal for
n and Kr, and as such unique; in particular, ex(n, Kr) = tr−1(n).

Theorem 7.1.1. (Turán 1941) [ 9.2.2 ]

For all integers r, n with r > 1, every graph G �⊇ Kr with n vertices and
ex(n, Kr) edges is a T r−1(n).



166 7. Extremal Graph Theory

We give two proofs: one using induction, the other by a very short and
direct local argument.

First proof. We apply induction on n. For n � r − 1 we have G =
Kn = T r−1(n) as claimed. For the induction step, let now n � r.

Since G is edge-maximal without a Kr subgraph, G has a sub-
graph K = Kr−1. By the induction hypothesis, G − K has at mostK

tr−1(n − r + 1) edges, and each vertex of G − K has at most r − 2
neighbours in K. Hence,

‖G‖ � tr−1(n− r + 1) + (n− r +1)(r− 2) +
(

r− 1
2

)
= tr−1(n) ; (1)

the equality on the right follows by inspection of the Turán graph T r−1(n)
(Fig. 7.1.3).

(
r−1
2

)

r− 2

tr−1(n− r +1)

Fig. 7.1.3. The equation from (1) for r = 5 and n = 14

Since G is extremal for Kr (and T r−1(n) �⊇ Kr), we have equality
in (1). Thus, every vertex of G−K has exactly r−2 neighbours in K—
just like the vertices x1, . . . , xr−1 of K itself. For i = 1, . . . , r− 1 letx1, . . . , xr−1

Vi := { v ∈ V (G) | vxi /∈ E(G) }V1, . . . , Vr−1

be the set of all vertices of G whose r−2 neighbours in K are precisely the
vertices other than xi. Since Kr �⊆ G, each of the sets Vi is independent,
and they partition V (G). Hence, G is (r− 1)-partite. As T r−1(n) is the
unique (r−1)-partite graph with n vertices and the maximum number of
edges, our claim that G = T r−1(n) follows from the assumed extremality
of G. �

In our second proof of Turán’s theorem we shall use an operation
called vertex duplication. By duplicating a vertex v ∈ G we mean addingvertex

duplication
to G a new vertex v′ and joining it to exactly the neighbours of v (but
not to v itself).
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Second proof. We have already seen that among the complete k-partite
graphs on n vertices the Turán graphs T k(n) have the most edges, and
their degrees show that T r−1(n) has more edges than any T k(n) with
k < r− 1. So it suffices to show that G is complete multipartite.

If not, then non-adjacency is not an equivalence relation on V (G),
and so there are vertices y1, x, y2 such that y1x, xy2 /∈ E(G) but y1y2 ∈
E(G). If d(y1) > d(x), then deleting x and duplicating y1 yields another
Kr-free graph with more edges than G, contradicting the choice of G.
So d(y1) � d(x), and similarly d(y2) � d(x). But then deleting both y1

and y2 and duplicating x twice yields a Kr-free graph with more edges
than G, again contradicting the choice of G. �

The Turán graphs T r−1(n) are dense: in order of magnitude, they
have about n2 edges. More exactly, for every n and r we have

tr−1(n) � 1
2n2 r− 2

r− 1
,

with equality whenever r − 1 divides n (Exercise 77). It is therefore
remarkable that just εn2 more edges (for any fixed ε > 0 and n large)
give us not only a Kr subgraph (as does Turán’s theorem) but a Kr

s for
any given integer s—a graph itself teeming with Kr subgraphs:

Theorem 7.1.2. (Erdős & Stone 1946)
For all integers r � 2 and s � 1, and every ε > 0, there exists an integer
n0 such that every graph with n � n0 vertices and at least

tr−1(n) + εn2

edges contains Kr
s as a subgraph.

A proof of the Erdős-Stone theorem will be given in Section 7.5, as
an illustration of how the regularity lemma may be applied. But the
theorem can also be proved directly; see the notes for references.

The Erdős-Stone theorem is interesting not only in its own right: it
also has a most interesting corollary. In fact, it was this entirely unex-
pected corollary that established the theorem as a kind of meta-theorem
for the extremal theory of dense graphs, and thus made it famous.

Given a graph H and an integer n, consider the number hn :=
ex(n, H)/

(
n
2

)
: the maximum edge density that an n-vertex graph can

have without containing a copy of H. Could it be that this critical
density is essentially just a function of H, that hn converges as n→∞?
Theorem 7.1.2 implies this, and more: the limit of hn is determined by a
very simple function of a natural invariant of H—its chromatic number!
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Corollary 7.1.3. For every graph H with at least one edge,

lim
n→∞

ex(n, H)
(

n

2

)−1

=
χ(H)− 2
χ(H)− 1

.

For the proof of Corollary 7.1.3 we need as a lemma that tr−1(n)
never deviates much from the value it takes when r − 1 divides n (see
above), and that tr−1(n)/

(
n
2

)
converges accordingly. The proof of the

lemma is left as an easy exercise with hint (Exercise 88).

Lemma 7.1.4.[ 7.1.2 ]

lim
n→∞

tr−1(n)
(

n

2

)−1

=
r− 2
r− 1

.

�

Proof of Corollary 7.1.3. Let r := χ(H). Since H cannot be colouredr

with r− 1 colours, we have H �⊆ T r−1(n) for all n ∈ N, and hence

tr−1(n) � ex(n, H) .

On the other hand, H ⊆ Kr
s for all sufficiently large s, so

ex(n, H) � ex(n, Kr
s )

for all those s. Let us fix such an s. For every ε > 0, Theorem 7.1.2s

implies that eventually (i.e. for large enough n)

ex(n, Kr
s ) < tr−1(n) + εn2.

Hence for n large,

tr−1(n)/
(
n
2

)
� ex(n, H)/

(
n
2

)
� ex(n, Kr

s )/
(
n
2

)
< tr−1(n)/

(
n
2

)
+ εn2/

(
n
2

)
= tr−1(n)/

(
n
2

)
+ 2ε/(1− 1

n )

� tr−1(n)/
(
n
2

)
+ 4ε (assume n � 2).

Therefore, since tr−1(n)/
(
n
2

)
converges to r−2

r−1 (Lemma 7.1.4), so does
ex(n, H)/

(
n
2

)
. �
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For bipartite graphs H, Corollary 7.1.3 says that substantially fewer
than

(
n
2

)
edges suffice to force an H subgraph. It turns out that

c1n
2− 2

r+1 � ex(n, Kr,r) � c2n
2− 1

r

for suitable constants c1, c2 depending on r; the lower bound is obtained
by random graphs,2 the upper bound is calculated in Exercise 1111. If H
is a forest, then H ⊆ G as soon as ε(G) is large enough, so ex(n, H) is at
most linear in n (Exercise 1313). Erdős and Sós conjectured in 1963 that
ex(n, T ) � 1

2 (k− 1)n for all trees with k � 2 edges; as a general bound
for all n, this is best possible for every T (Exercises 1414–1616).

A related but rather different question is whether large values of ε or
χ can force a graph G to contain a given tree T as an induced subgraph.
Of course, we need some additional assumption for this to make sense—
for example, to prevent G from just being a large complete graph. The
weakest sensible such assumption is that G has bounded clique number,
i.e., that G �⊇ Kr for some fixed integer r. Then large average degree
still does not force an induced copy of T—consider complete bipartite
graphs—but large chromatic number might: according to a remarkable
conjecture of Gyárfás (1975), there exists for every r ∈ N and every
tree T an integer k = k(T, r) such that every graph G with χ(G) � k
and ω(G) < r contains T as an induced subgraph.

7.2 Minors

In this section and the next, we ask how global assumptions about a
graph—on its average degree, its chromatic number, or even its girth—
can force it to contain a given graph as a minor or topological minor.

For example, consider the analogue of Turán’s theorem: how many
edges on n vertices force a Kr minor or topological minor? We know
already from Chapter 3.5 that topological Kr minors can be forced in
sparse graphs, i.e., that some linear number crn of edges is enough. But
what can we say about cr as a function of r? The upper bound h(r) on
cr that we found in the proof of Lemma 3.5.1 was 2(

r
2); an easy lower

bound is 1
8r2 (Exercise 2525).

It was only in 1996 that this lower bound was shown to be of the
right order of magnitude. With the help of Theorem 3.5.3, the proof is
now just a few lines:

Theorem 7.2.1. There is a constant c ∈ R such that, for every r ∈ N,
every graph G of average degree d(G) � cr2 contains Kr as a topological
minor.

2 see Chapter 11
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Proof . We prove the theorem with c = 10. Let G be a graph of aver-(1.4.3)
(3.5.3)

age degree at least 10r2. By Theorem 1.4.3 with k := r2, G has an
r2-connected subgraph H with ε(H) > ε(G) − r2 � 4r2. To find a
TKr in H, we start by picking r vertices as branch vertices, and r − 1
neighbours of each of these as some initial subdividing vertices. These
are r2 vertices in total, so as δ(H) � κ(H) � r2 they can be chosen
distinct. Now all that remains is to link up the subdividing vertices in
pairs, by disjoint paths in H corresponding to the edges of the Kr of
which we wish to find a subdivision. Such paths exist, because H is
1
2r2-linked by Theorem 3.5.3. �

For small r, one can try to determine the exact number of edges
needed to force a TKr subgraph on n vertices. For r = 4, this number is
2n− 2; see Corollary 7.3.2. For r = 5, plane triangulations yield a lower
bound of 3n − 5 (Corollary 4.2.10). The converse, that 3n − 5 edges
do force a TK5—not just either a TK5 or a TK3,3, as they do by Co-
rollary 4.2.10 and Kuratowski’s theorem—is already a difficult theorem
(Mader 1998).

Let us now turn from topological minors to general minors. The
average degree needed to force a Kr minor is known almost precisely.
Thomason (2001) determined, asymptotically, the smallest constant c
that makes the following theorem true as α + o(1), where o(1) stands
for a function of r tending to zero as r →∞ and α = 0.53131 . . . is an
explicit constant.

Theorem 7.2.2. (Kostochka 1982)
There exists a constant c ∈ R such that, for every r ∈ N, every graph G
of average degree d(G) � c r

√
log r contains Kr as a minor. Up to the

value of c, this bound is best possible as a function of r.

The easier implication of the theorem, the fact that in general an average
degree of c r

√
log r is needed to force a Kr minor, follows from consid-

ering random graphs, to be introduced in Chapter 11. The converse
implication, that this average degree suffices, is proved by methods not
dissimilar to the proof of Theorem 3.5.3.

Rather than proving Theorem 7.2.2, therefore, we devote the re-
mainder of this section to another striking aspect of forcing minors: that
we can force a Kr minor in a graph simply by raising its girth (as long
as we do not merely subdivide edges). At first glance, this may seem
almost paradoxical. But it looks more plausible if, rather than trying to
force a Kr minor directly, we instead try to force a minor just of large
minimum or average degree—which suffices by Theorem 7.2.2. For if the
girth g of a graph is large then the ball { v | d(x, v) < �g/2� } around
a vertex x induces a tree with many leaves, each of which sends all but
one of its incident edges away from the tree. Contracting enough disjoint
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such trees we can thus hope to obtain a minor of large average degree,
which in turn will have a large complete minor.

The following lemma realizes this idea.

Lemma 7.2.3. Let d, k ∈ N with d � 3, and let G be a graph of minimum
degree δ(G) � d and girth g(G) � 8k + 3. Then G has a minor H of
minimum degree δ(H) � d(d− 1)k.

Proof . Let X ⊆ V (G) be maximal with d(x, y) > 2k for all x, y ∈ X. For X

each x ∈ X put T 0
x := {x }. Given i < 2k, assume that we have defined

disjoint trees T i
x ⊆ G (one for each x ∈ X) whose vertices together are

precisely the vertices at distance at most i from X in G. Joining each
vertex at distance i + 1 from X to a neighbour at distance i, we obtain
a similar set of disjoint trees T i+1

x . As every vertex of G has distance at
most 2k from X (by the maximality of X), the trees Tx := T 2k

x obtained Tx

in this way partition the entire vertex set of G. Let H be the minor of
G obtained by contracting every Tx.

To prove that δ(H) � d(d− 1)k, note first that the Tx are induced
subgraphs of G, because diam Tx � 4k and g(G) > 4k + 1. Similarly,
there is at most one edge in G between any two trees Tx and Ty: two
such edges, together with the paths joining their ends in Tx and Ty,
would form a cycle of length at most 8k + 2 < g(G). So all the edges
leaving Tx are preserved in the contraction.

How many such edges are there? Note that, for every vertex u ∈
T k−1

x , all its dG(u) � d neighbours v also lie in Tx: since d(v, x) � k
and d(x, y) > 2k for every other y ∈ X, we have d(v, y) > k � d(v, x),
so v was added to Tx rather than to Ty when those trees were defined.
Therefore T k

x , and hence also Tx, has at least d(d − 1)k−1 leaves. But
every leaf of Tx sends at least d− 1 edges away from Tx, so Tx sends at
least d(d− 1)k edges to (distinct) other trees Ty. �

Lemma 7.2.3 provides Theorem 7.2.2 with the following corollary:

Theorem 7.2.4. (Thomassen 1983)
There exists a function f : N → N such that every graph of minimum
degree at least 3 and girth at least f(r) has a Kr minor, for all r ∈ N.

Proof . We prove the theorem with f(r) := 8 log r + 4 log log r + c , for
some constant c ∈ R. Let k = k(r) ∈ N be minimal with 3 ·2k � c′r

√
log r,

where c′ ∈ R is the constant from Theorem 7.2.2. Then for a suitable
constant c ∈ R we have 8k + 3 � 8 log r + 4 log log r + c, and the result
follows by Lemma 7.2.3 and Theorem 7.2.2. �

Large girth can also be used to force a topological Kr minor . We
now need some vertices of degree at least r−1 to serve as branch vertices,
but if we assume a minimum degree of r−1 to secure these, we can even
get by with a girth bound that is independent of r:
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Theorem 7.2.5. (Kühn & Osthus 2002)[ 7.3.9 ]

There exists a constant g such that G ⊇ TKr for every graph G satisfying
δ(G) � r− 1 and g(G) � g.

7.3 Hadwiger’s conjecture

As we saw in Section 7.2, an average degree of c r
√

log r suffices to force
an arbitrary graph to have a Kr minor, and an average degree of cr2

forces it to have a topological Kr minor. If we replace ‘average degree’
above with ‘chromatic number’ then, with almost the same constants c,
the two assertions remain true: this is because every graph with chro-
matic number k has a subgraph of average degree at least k− 1 (Corol-
lary 5.2.3).

Although both functions above, c r
√

log r and cr2, are best possible
(up to the constant c) for the said implications with ‘average degree’,
the question arises whether they are still best possible with ‘chromatic
number’—or whether some slower-growing function would do in that
case. What lies hidden behind this problem about growth rates is a fun-
damental question about the nature of the invariant χ: can this invariant
have some direct structural effect on a graph in terms of forcing concrete
substructures, or is its effect no greater than that of the ‘unstructural’
property of having lots of edges somewhere, which it implies trivially?

Neither for general nor for topological minors is the answer to this
question known. For general minors, however, the following conjecture
of Hadwiger suggests a positive answer:

Conjecture. (Hadwiger 1943)
The following implication holds for every integer r > 0 and every
graph G:

χ(G) � r ⇒ G � Kr.

Hadwiger’s conjecture is trivial for r � 2, easy for r = 3 and r = 4
(exercises), and equivalent to the four colour theorem for r = 5 and
r = 6. For r � 7 the conjecture is open, but it is true for line graphs
(Exercise 3535) and for graphs of large girth (Exercise 3333; see also Corol-
lary 7.3.9). Rephrased as G � Kχ(G), it is true for almost all graphs.3

In general, the conjecture for r + 1 implies it for r (exercise).

3 See Chapter 11 for the notion of ‘almost all’.
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The Hadwiger conjecture for any fixed r is equivalent to the asser-
tion that every graph without a Kr minor has an (r − 1)-colouring. In
this reformulation, the conjecture raises the question of what the graphs
without a Kr minor look like: any sufficiently detailed structural de-
scription of those graphs should enable us to decide whether or not they
can be (r− 1)-coloured.

For r = 3, for example, the graphs without a Kr minor are precisely
the forests (why?), and these are indeed 2-colourable. For r = 4, there
is also a simple structural characterization of the graphs without a Kr

minor:

Proposition 7.3.1. A graph with at least three vertices is edge-maximal [ 12.4.2 ]

without a K4 minor if and only if it can be constructed recursively from
triangles by pasting4 along K2s.

Proof . Recall first that every MK4 contains a TK4, because ∆(K4) = 3 (1.7.2)
(4.4.4)

(Proposition 1.7.2); the graphs without a K4 minor thus coincide with
those without a topological K4 minor. The proof that any graph con-
structible as described is edge-maximal without a K4 minor is left as an
easy exercise; in order to deduce Hadwiger’s conjecture for r = 4, we
only need the converse implication anyhow. We prove this by induction
on |G|.

Let G be given, edge-maximal without a K4 minor. If |G| = 3 then
G is itself a triangle, so let |G| � 4 for the induction step. Then G is
not complete; let S ⊆ V (G) be a separator of size κ(G), and let C1, C2

be distinct components of G−S. Since S is a minimal separator, every
vertex in S has a neighbour in C1 and another in C2. If |S| � 3, this
implies that G contains three independent paths P1, P2, P3 between a
vertex v1 ∈ C1 and a vertex v2 ∈ C2. Since κ(G) = |S| � 3, the graph
G−{ v1, v2 } is connected and contains a (shortest) path P between two
different Pi. Then P ∪P1 ∪P2 ∪P3 = TK4, a contradiction.

Hence κ(G) � 2, and the assertion follows from Lemma 4.4.45 and
the induction hypothesis. �

One of the interesting consequences of Proposition 7.3.1 is that all
the edge-maximal graphs without a K4 minor have the same number of
edges, and are thus all ‘extremal’:

Corollary 7.3.2. Every edge-maximal graph G without a K4 minor
has 2 |G| − 3 edges.

Proof . Induction on |G|. �

4 This was defined formally in Chapter 5.5.
5 The proof of this lemma is elementary and can be read independently of the

rest of Chapter 4.
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Corollary 7.3.3. Hadwiger’s conjecture holds for r = 4.

Proof . If G arises from G1 and G2 by pasting along a complete graph,
then χ(G) = max {χ(G1), χ(G2) } (see the proof of Proposition 5.5.2).
Hence, Proposition 7.3.1 implies by induction on |G| that all edge-maxi-
mal (and hence all) graphs without a K4 minor can be 3-coloured. �

It is also possible to prove Corollary 7.3.3 by a simple direct argument
(Exercise 3434).

By the four colour theorem, Hadwiger’s conjecture for r = 5 follows
from the following structure theorem for the graphs without a K5 minor,
just as it follows from Proposition 7.3.1 for r = 4. The proof of Theorem
7.3.4 is similar to that of Proposition 7.3.1, but considerably longer. We
therefore state the theorem without proof:

Theorem 7.3.4. (Wagner 1937)
Let G be an edge-maximal graph without a K5 minor. If |G| � 4 then
G can be constructed recursively, by pasting along triangles and K2s,
from plane triangulations and copies of the graph W (Fig. 7.3.1).

==

Fig. 7.3.1. Three representations of the Wagner graph W

Using Corollary 4.2.10, one can easily compute which of the graphs(4.2.10)

constructed as in Theorem 7.3.4 have the most edges. It turns out that
these extremal graphs without a K5 minor have no more edges than those
that are extremal with respect to {MK5, MK3,3 }, i.e. the maximal
planar graphs:

Corollary 7.3.5. A graph with n vertices and no K5 minor has at most
3n− 6 edges. �

Since χ(W ) = 3, Theorem 7.3.4 and the four colour theorem imply
Hadwiger’s conjecture for r = 5:

Corollary 7.3.6. Hadwiger’s conjecture holds for r = 5. �

The Hadwiger conjecture for r = 6 is again substantially more dif-
ficult than the case r = 5, and again it relies on the four colour theo-
rem. The proof shows (without using the four colour theorem) that any
minimal-order counterexample arises from a planar graph by adding one
vertex—so by the four colour theorem it is not a counterexample after all.



7.3 Hadwiger’s conjecture 175

Theorem 7.3.7. (Robertson, Seymour & Thomas 1993)
Hadwiger’s conjecture holds for r = 6.

As mentioned earlier, the challenge posed by Hadwiger’s conjecture
is to devise a proof technique that makes better use of the assumption of
χ � r than just using its consequence of δ � r− 1 in a suitable subgraph,
which we know cannot force a Kr minor (Theorem 7.2.2). So far, no such
technique is known.

If we resign ourselves to using just δ � r− 1, we can still ask what
additional assumptions might help in making this force a Kr minor.
Theorem 7.2.5 says that an assumption of large girth has this effect;
see also Exercise 3333. In fact, a much weaker assumption suffices: for
any fixed s ∈ N and all large enough d depending only on s, the graphs
G �⊇ Ks,s of average degree at least d can be shown to have Kr minors
for r considerably larger than d. For Hadwiger’s conjecture, this implies
the following:

Theorem 7.3.8. (Kühn & Osthus 2005)
For every integer s there is an integer rs such that Hadwiger’s conjecture
holds for all graphs G �⊇ Ks,s and r � rs.

The strengthening of Hadwiger’s conjecture that graphs of chro-
matic number at least r contain Kr as a topological minor has become
known as Hajós’s conjecture. It is false in general, but Theorem 7.2.5
implies it for graphs of large girth:

Corollary 7.3.9. There is a constant g such that all graphs G of girth
at least g satisfy the implication χ(G) � r ⇒ G ⊇ TKr for all r.

Proof . If χ(G) � r then, by Corollary 5.2.3, G has a subgraph H of (5.2.3)
(7.2.5)

minimum degree δ(H) � r − 1. As g(H) � g(G) � g, Theorem 7.2.5
implies that G ⊇ H ⊇ TKr. �

7.4 Szemerédi’s regularity lemma

Almost 30 years ago, in the course of the proof of a major result on the
Ramsey properties of arithmetic progressions, Szemerédi developed a
graph theoretical tool whose fundamental importance has been realized
more and more in recent years: his so-called regularity or uniformity
lemma. Very roughly, the lemma says that all graphs can be approx-
imated by random graphs in the following sense: every graph can be
partitioned, into a bounded number of equal parts, so that most of its
edges run between different parts and the edges between any two parts
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are distributed fairly uniformly—just as we would expect it if they had
been generated at random.

In order to state the regularity lemma precisely, we need some defi-
nitions. Let G = (V, E) be a graph, and let X, Y ⊆ V be disjoint. Then
we denote by ‖X, Y ‖ the number of X–Y edges of G, and call‖X, Y ‖

d(X, Y ) :=
‖X, Y ‖
|X| |Y |d(X, Y )

the density of the pair (X, Y ). (This is a real number between 0 and 1.)density

Given some ε > 0, we call a pair (A, B) of disjoint sets A, B ⊆ V ε-regular
if all X ⊆ A and Y ⊆ B withε-regular

pair

|X| � ε |A| and |Y | � ε |B|
satisfy ∣∣d(X, Y )− d(A, B)

∣∣ � ε .

The edges in an ε-regular pair are thus distributed fairly uniformly, the
more so the smaller the ε we started with.

Consider a partition {V0, V1, . . . , Vk } of V in which one set V0 has
been singled out as an exceptional set . (This exceptional set V0 mayexceptional

set
be empty.6) We call such a partition an ε-regular partition of G if it
satisfies the following three conditions:

(i) |V0| � ε |V |;ε-regular
partition

(ii) |V1| = . . . = |Vk|;
(iii) all but at most εk2 of the pairs (Vi, Vj) with 1 � i < j � k are

ε-regular.

The role of the exceptional set V0 is one of pure convenience: it
makes it possible to require that all the other partition sets have exactly
the same size. Since condition (iii) affects only the sets V1, . . . , Vk, we
may think of V0 as a kind of bin: its vertices are disregarded when
the uniformity of the partition is assessed, but there are only few such
vertices.

Lemma 7.4.1. (Regularity Lemma)[ 9.2.2 ]

For every ε > 0 and every integer m � 1 there exists an integer M
such that every graph of order at least m admits an ε-regular partition
{V0, V1, . . . , Vk } with m � k � M .

6 So V0 may be an exception also to our terminological rule that partition sets
are not normally empty.
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The regularity lemma thus says that, given any ε > 0, every graph
has an ε-regular partition into a bounded number of sets. The upper
bound M on the number of partition sets ensures that for large graphs
the partition sets are large too; note that ε-regularity is trivial when
the partition sets are singletons, and a powerful property when they are
large. The lemma also allows us to specify a lower bound m for the
number of partition sets. This can be used to increase the proportion
of edges running between different partition sets (i.e., of edges governed
by the regularity assertion) over edges inside partition sets (about which
we know nothing). See Exercise 3939 for more details.

Note that the regularity lemma is designed for use with dense
graphs:7 for sparse graphs it becomes trivial, because all densities of
pairs—and hence their differences—tend to zero (Exercise 4040).

The remainder of this section is devoted to the proof of the regu-
larity lemma. Although the proof is not difficult, a reader meeting the
regularity lemma here for the first time is likely to draw more insight
from seeing how the lemma is typically applied than from studying the
technicalities of its proof. Any such reader is encouraged to skip to the
start of Section 7.5 now and come back to the proof at his or her leisure.

We shall need the following inequality for reals µ1, . . . , µk > 0 and
e1, . . . , ek � 0:

∑ e2
i

µi
� (

∑
ei)

2∑
µi

. (1)

This follows from the Cauchy-Schwarz inequality
∑

a2
i

∑
b2
i � (

∑
aibi)2

by taking ai :=
√

µi and bi := ei/
√

µi.
Let G = (V, E) be a graph and n := |V |. For disjoint sets A, B ⊆ V G = (V, E)

we define n

q(A, B) :=
|A| |B|

n2
d2(A, B) =

‖A, B‖2

|A| |B|n2
. q(A, B)

For partitions A of A and B of B we set

q(A,B) :=
∑

A′∈A; B′∈B
q(A′, B′) , q(A,B)

and for a partition P = {C1, . . . , Ck } of V we let

q(P) :=
∑
i<j

q(Ci, Cj) . q(P)

7 Sparse versions do exist, though; see the notes.
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However, if P = {C0, C1, . . . , Ck } is a partition of V with exceptional
set C0, we treat C0 as a set of singletons and define

q(P) := q(P̃) ,

where P̃ :=
{
C1, . . . , Ck

}
∪

{
{ v } : v ∈ C0

}
.P̃

The function q(P) plays a pivotal role in the proof of the regularity
lemma. On the one hand, it measures the uniformity of the partition P:
if P has too many irregular pairs (A, B), we may take the pairs (X, Y ) of
subsets violating the regularity of the pairs (A, B) and make those sets
X and Y into partition sets of their own; as we shall prove, this refines
P into a partition for which q is substantially greater than for P. Here,
‘substantial’ means that the increase of q(P) is bounded below by some
constant depending only on ε. On the other hand,

q(P) =
∑
i<j

q(Ci, Cj)

=
∑
i<j

|Ci| |Cj |
n2

d2(Ci, Cj)

� 1
n2

∑
i<j

|Ci| |Cj |

� 1 .

The number of times that q(P) can be increased by a constant is thus
also bounded by a constant—in other words, after some bounded number
of refinements our partition will be ε-regular! To complete the proof of
the regularity lemma, all we have to do then is to note how many sets
that last partition can possibly have if we start with a partition into m
sets, and to choose this number as our desired bound M .

Let us make all this precise. We begin by showing that, when we
refine a partition, the value of q will not decrease:

Lemma 7.4.2.
(i) Let C, D ⊆ V be disjoint. If C is a partition of C and D is a

partition of D, then q(C,D) � q(C, D).
(ii) If P,P ′ are partitions of V and P ′ refines P, then q(P ′) � q(P).

Proof . (i) Let C =: {C1, . . . , Ck } and D =: {D1, . . . , D� }. Then

q(C,D) =
∑
i,j

q(Ci, Dj)

=
1
n2

∑
i,j

‖Ci, Dj‖
2

|Ci| |Dj |
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�
(1)

1
n2

( ∑
i,j ‖Ci, Dj‖

)2

∑
i,j |Ci| |Dj |

=
1
n2

‖C, D‖2( ∑
i |Ci|

)( ∑
j |Dj |

)
= q(C, D) .

(ii) Let P =: {C1, . . . , Ck }, and for i = 1, . . . , k let Ci be the parti-
tion of Ci induced by P ′. Then

q(P) =
∑
i<j

q(Ci, Cj)

�
(i)

∑
i<j

q(Ci, Cj)

� q(P ′) ,

since q(P ′) =
∑

i q(Ci) +
∑

i<j q(Ci, Cj). �

Next, we show that refining a partition by subpartitioning an ir-
regular pair of partition sets increases the value of q a little; since we are
dealing here with a single pair only, the amount of this increase will still
be less than any constant.

Lemma 7.4.3. Let ε > 0, and let C, D ⊆ V be disjoint. If (C, D) is not ε-
regular, then there are partitions C = {C1, C2 } of C and D = {D1, D2 }
of D such that

q(C,D) � q(C, D) + ε4
|C| |D|

n2
.

Proof . Suppose (C, D) is not ε-regular. Then there are sets C1 ⊆ C and
D1 ⊆ D with |C1| > ε |C| and |D1| > ε |D| such that

|η| > ε (2)

for η := d(C1, D1)− d(C, D). Let C := {C1, C2 } and D := {D1, D2 }, η

where C2 := C � C1 and D2 := D � D1.
Let us show that C and D satisfy the conclusion of the lemma. We

shall write ci := |Ci|, di := |Di|, eij := ‖Ci, Dj‖, c := |C|, d := |D| ci, di, eij

and e := ‖C, D‖. As in the proof of Lemma 7.4.2, c, d, e

q(C,D) =
1
n2

∑
i,j

e2
ij

cidj

=
1
n2

(
e2
11

c1d1
+

∑
i+j>2

e2
ij

cidj

)



180 7. Extremal Graph Theory

�
(1)

1
n2

(
e2
11

c1d1
+

(e− e11)2

cd− c1d1

)
.

By definition of η, we have e11 = c1d1e/cd + ηc1d1, so

n2 q(C,D) � 1
c1d1

(
c1d1e

cd
+ ηc1d1

)2

+
1

cd− c1d1

(
cd− c1d1

cd
e− ηc1d1

)2

=
c1d1e

2

c2d2
+

2eηc1d1

cd
+ η2c1d1

+
cd− c1d1

c2d2
e2 − 2eηc1d1

cd
+

η2c2
1d

2
1

cd− c1d1

� e2

cd
+ η2c1d1

�
(2)

e2

cd
+ ε4cd

since c1 � εc and d1 � εd by the choice of C1 and D1. �

Finally, we show that if a partition has enough irregular pairs of
partition sets to fall short of the definition of an ε-regular partition,
then subpartitioning all those pairs at once results in an increase of q by
a constant:

Lemma 7.4.4. Let 0 < ε � 1/4, and let P = {C0, C1, . . . , Ck }
be a partition of V , with exceptional set C0 of size |C0| � εn and
|C1| = . . . = |Ck| =: c. If P is not ε-regular, then there is a partitionc

P ′ = {C ′
0, C

′
1, . . . , C

′
� } of V with exceptional set C ′

0, where k � � � k4k,
such that |C ′

0| � |C0|+n/2k, all other sets C ′
i have equal size, and

q(P ′) � q(P) + ε5/2 .

Proof . For all 1 � i < j � k, let us define a partition Cij of Ci andCij

a partition Cji of Cj , as follows. If the pair (Ci, Cj) is ε-regular, we let
Cij := {Ci } and Cji := {Cj }. If not, then by Lemma 7.4.3 there are
partitions Cij of Ci and Cji of Cj with |Cij | = |Cji| = 2 and

q(Cij , Cji) � q(Ci, Cj) + ε4
|Ci| |Cj |

n2
= q(Ci, Cj) +

ε4c2

n2
. (3)

For each i = 1, . . . , k, let Ci be the unique minimal partition of Ci thatCi

refines every partition Cij with j �= i. (In other words, if we consider two
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elements of Ci as equivalent whenever they lie in the same partition set
of Cij for every j �= i, then Ci is the set of equivalence classes.) Thus,
|Ci| � 2k−1. Now consider the partition

C := {C0 }∪
k⋃

i=1

Ci C

of V , with C0 as exceptional set. Then C refines P, and

k � |C| � k2k. (4)

Let C0 :=
{
{ v } : v ∈ C0

}
. Now if P is not ε-regular, then for more C0

than εk2 of the pairs (Ci, Cj) with 1 � i < j � k the partition Cij is
non-trivial. Hence, by our definition of q for partitions with exceptional
set, and Lemma 7.4.2 (i),

q(C) =
∑

1�i<j

q(Ci, Cj) +
∑
1�i

q(C0, Ci) +
∑
0�i

q(Ci)

�
∑

1�i<j

q(Cij , Cji) +
∑
1�i

q
(
C0, {Ci }

)
+ q(C0)

�
(3)

∑
1�i<j

q(Ci, Cj) + εk2 ε4c2

n2
+

∑
1�i

q
(
C0, {Ci }

)
+ q(C0)

= q(P) + ε5
(

kc

n

)2

� q(P) + ε5/2 .

(For the last inequality, recall that |C0| � εn � 1
4n, so kc � 3

4n.)
In order to turn C into our desired partition P ′, all that remains to

do is to cut its sets up into pieces of some common size, small enough that
all remaining vertices can be collected into the exceptional set without
making this too large. Let C ′

1, . . . , C
′
� be a maximal collection of dis-

joint sets of size d := �c/4k� such that each C ′
i is contained in some d

C ∈ C � {C0 }, and put C ′
0 := V �

⋃
C ′

i. Then P ′ = {C ′
0, C

′
1, . . . , C

′
� } P ′

is indeed a partition of V . Moreover, P̃ ′ refines C̃, so

q(P ′) � q(C) � q(P) + ε5/2

by Lemma 7.4.2 (ii). Since each set C ′
i �= C ′

0 is also contained in one
of the sets C1, . . . , Ck, but no more than 4k sets C ′

i can lie inside the
same Cj (by the choice of d), we also have k � � � k4k as required.
Finally, the sets C ′

1, . . . , C
′
� use all but at most d vertices from each set
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C �= C0 of C. Hence,

|C ′
0| � |C0|+ d |C|

�
(4)

|C0|+
c

4k
k2k

= |C0|+ ck/2k

� |C0|+n/2k.
�

The proof of the regularity lemma now follows easily by repeated
application of Lemma 7.4.4:

Proof of Lemma 7.4.1. Let ε > 0 and m � 1 be given; without lossε, m

of generality, ε � 1/4. Let s := 2/ε5. This number s is an upper bounds

on the number of iterations of Lemma 7.4.4 that can be applied to a
partition of a graph before it becomes ε-regular; recall that q(P) � 1 for
all partitions P.

There is one formal requirement which a partition {C0, C1, . . . , Ck }
with |C1| = . . . = |Ck| has to satisfy before Lemma 7.4.4 can be (re-)
applied: the size |C0| of its exceptional set must not exceed εn. With
each iteration of the lemma, however, the size of the exceptional set can
grow by up to n/2k. (More precisely, by up to n/2�, where � is the
number of other sets in the current partition; but � � k by the lemma,
so n/2k is certainly an upper bound for the increase.) We thus want
to choose k large enough that even s increments of n/2k add up to at
most 1

2εn, and n large enough that, for any initial value of |C0| < k, we
have |C0| � 1

2εn. (If we give our starting partition k non-exceptional
sets C1, . . . , Ck, we should allow an initial size of up to k for C0, to be
able to achieve |C1| = . . . = |Ck|.)

So let k � m be large enough that 2k−1 � s/ε. Then s/2k � ε/2,k

and hence

k +
s

2k
n � εn (5)

whenever k/n � ε/2, i.e. for all n � 2k/ε.
Let us now choose M . This should be an upper bound on the

number of (non-exceptional) sets in our partition after up to s iterations
of Lemma 7.4.4, where in each iteration this number may grow from its
current value r to at most r4r. So let f be the function x �→ x4x, and
take M := max{ fs(k), 2k/ε }; the second term in the maximum ensuresM

that any n � M is large enough to satisfy (5).
We finally have to show that every graph G = (V, E) of order at

least m has an ε-regular partition {V0, V1, . . . , Vk } with m � k � M . So
let G be given, and let n := |G|. If n � M , we partition G into k := nn

singletons, choosing V0 := ∅ and |V1| = . . . = |Vk| = 1. This partition of
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G is clearly ε-regular. Suppose now that n > M . Let C0 ⊆ V be minimal
such that k divides |V � C0|, and let {C1, . . . , Ck } be any partition of
V �C0 into sets of equal size. Then |C0| < k, and hence |C0| � εn by (5).
Starting with {C0, C1, . . . , Ck } we apply Lemma 7.4.4 again and again,
until the partition of G obtained is ε-regular; this will happen after at
most s iterations, since by (5) the size of the exceptional set in the
partitions stays below εn, so the lemma could indeed be reapplied up to
the theoretical maximum of s times. �

7.5 Applying the regularity lemma

The purpose of this section is to illustrate how the regularity lemma
is typically applied in the context of (dense) extremal graph theory.
Suppose we are trying to prove that a certain edge density of a graph
G suffices to force the occurrence of some given subgraph H, and that
we have an ε-regular partition of G. For most of the pairs (Vi, Vj) of
partition sets, the edges between Vi and Vj are distributed fairly uni-
formly; their density, however, may depend on the pair. But since G has
many edges, this density cannot be zero for all the pairs: some sizeable
proportion of the pairs will have positive density. Now if G is large, then
so are the pairs: recall that the number of partition sets is bounded, and
they have equal size. But any large enough bipartite graph with equal
partition sets, fixed positive edge density (however small) and a uniform
distribution of edges will contain any given bipartite subgraph8—this
will be made precise below. Thus if enough pairs in our partition of G
have positive density that H can be written as the union of bipartite
graphs each arising in one of those pairs, we may hope that H ⊆ G as
desired.

These ideas will be formalized by Lemma 7.5.2 below. We shall then
use this and the regularity lemma to prove the Erdős-Stone theorem
from Section 7.1; another application will be given later, in the proof
of Theorem 9.2.2. We wind up the section with an informal review of
the application of the regularity lemma that we have seen, summarizing
what it can teach us for similar applications. In particular, we look at
how the various parameters involved depend on each other, and in which
order they have to be chosen to make the lemma work.

Let us begin by noting a simple consequence of the ε-regularity of a
pair (A, B). For any subset Y ⊆ B that is not too small, most vertices
of A have about the expected number of neighbours in Y :

8 Readers already acquainted with random graphs may find it instructive to com-
pare this statement with Proposition 11.3.1.
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Lemma 7.5.1. Let (A, B) be an ε-regular pair, of density d say, and
let Y ⊆ B have size |Y | � ε |B|. Then all but fewer than ε |A| of the
vertices in A have (each) at least (d− ε)|Y | neighbours in Y .

Proof . Let X ⊆ A be the set of vertices with fewer than (d − ε)|Y |
neighbours in Y . Then ‖X, Y ‖ < |X|(d− ε)|Y |, so

d(X, Y ) =
‖X, Y ‖
|X| |Y | < d− ε = d(A, B)− ε .

As (A, B) is ε-regular and |Y | � ε |B|, this implies that |X| < ε |A|. �

Let G be a graph with an ε-regular partition {V0, V1, . . . , Vk }, with
exceptional set V0 and |V1| = . . . = |Vk| =: �. Given d ∈ [ 0, 1 ], let RR

be the graph on {V1, . . . , Vk } in which two vertices Vi, Vj are adjacent if
and only if they form an ε-regular pair in G of density � d. We shall call
R a regularity graph of G with parameters ε, � and d. Given s ∈ N, letregularity

graph
us now replace every vertex Vi of R by a set V s

i of s vertices, and everyV s
i

edge by a complete bipartite graph between the corresponding s-sets.
The resulting graph will be denoted by Rs. (For R = Kr, for example,Rs

we have Rs = Kr
s .)

The following lemma says that subgraphs of Rs can also be found
in G, provided that d > 0, that ε is small enough, and that the Vi are
large enough. In fact, the values of ε and � required depend only on
(d and) the maximum degree of the subgraph:

Lemma 7.5.2. For all d ∈ (0, 1 ] and ∆ � 1 there exists an ε0 > 0 with[ 9.2.2 ]

the following property: if G is any graph, H is a graph with ∆(H) � ∆,
s ∈ N, and R is any regularity graph of G with parameters ε � ε0,
� � 2s/d∆ and d, then

H ⊆ Rs ⇒ H ⊆ G .

Proof . Given d and ∆, choose ε0 > 0 small enough that ε0 < d andd, ∆, ε0

(d− ε0)∆ −∆ε0 � 1
2d∆ ; (1)

such a choice is possible, since (d − ε)∆ − ∆ε → d∆ as ε → 0. Now letG, H, R, Rs

G, H, s and R be given as stated. Let {V0, V1, . . . , Vk } be the ε-regularVi

partition of G that gave rise to R; thus, ε � ε0, V (R) = {V1, . . . , Vk }ε, k, �

and |V1| = . . . = |Vk| = � � 2s/d∆. Let us assume that H is actually
a subgraph of Rs (not just isomorphic to one), with vertices u1, . . . , uhui, h

say. Each vertex ui lies in one of the s-sets V s
j of Rs, which defines a

map σ: i �→ j. Our aim is to define an embedding ui �→ vi ∈ Vσ(i) of Hσ

in G as a subgraph; thus, v1, . . . , vh will be distinct, and vivj will be anvi

edge of G whenever uiuj is an edge of H.
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Our plan is to choose the vertices v1, . . . , vh inductively. Throughout
the induction, we shall have a ‘target set’ Yi ⊆ Vσ(i) assigned to each ui;
this contains the vertices that are still candidates for the choice of vi.
Initially, Yi is the entire set Vσ(i). As the embedding proceeds, Yi will
get smaller and smaller (until it collapses to { vi } when vi is chosen):
whenever we choose a vertex vj with j < i and ujui ∈ E(H), we delete
all those vertices from Yi that are not adjacent to vj . The set Yi thus
evolves as

Vσ(i) = Y 0
i ⊇ . . . ⊇ Y i

i = { vi } ,

where Y j
i denotes the version of Yi current after the definition of vj and

the resulting deletion of vertices from Y j−1
i .

In order to make this approach work, we have to ensure that the
target sets Yi do not get too small. When we come to embed a vertex uj ,
we consider all the indices i > j with ujui ∈ E(H); there are at most ∆
such i. For each of these i, we wish to select vj so that

Y j
i = N(vj)∩Y j−1

i (2)

is still relatively large: smaller than Y j−1
i by no more than a constant

factor such as (d − ε). Now this can be done by Lemma 7.5.1 (with
A = Vσ(j), B = Vσ(i) and Y = Y j−1

i ): provided that Y j−1
i still has size

at least ε� (which induction will ensure), all but at most ε� choices of vj

will be such that the new set Y j
i as in (2) satisfies

|Y j
i | � (d− ε)|Y j−1

i | . (3)

Excluding the bad choices for vj for all the relevant values of i simulta-
neously, we find that all but at most ∆ε� choices of vj from Vσ(j), and
in particular from Y j−1

j ⊆ Vσ(j), satisfy (3) for all i.
It remains to show that the sets Y j−1

i considered above as Y for
Lemma 7.5.1 never fall below the size of ε�, and that when we come to
select vj ∈ Y j−1

j we have a choice of at least s suitable candidates: since
before uj at most s− 1 vertices u were given an image in Vσ(j), we can
then choose vj distinct from these.

But all this follows from our choice of ε0. Indeed, the initial target
sets Y 0

i have size �, and each Yi shrinks at most ∆ times by a factor of
(d− ε) when some vj with j < i and ujui ∈ E(H) is defined. Thus,

|Y j−1
i | −∆ε� �

(3)
(d− ε)∆�−∆ε� � (d− ε0)∆�−∆ε0� �

(1)

1
2d∆� � s

for all j � i; in particular, we have |Y j−1
i | � ε� and |Y j−1

j |−∆ε� � s as
desired. �

We are now ready to prove the Erdős-Stone theorem.



186 7. Extremal Graph Theory

Proof of Theorem 7.1.2. Let r � 2 and s � 1 be given as in the(7.1.1)
(7.1.4)

statement of the theorem. For s = 1 the assertion follows from Turán’s
theorem, so we assume that s � 2. Let γ > 0 be given; this γ will play

r, s
γ

the role of the ε of the theorem. If any graph G with |G| =: n has

‖G‖ � tr−1(n) + γn2‖G‖

edges, then γ < 1. We want to show that Kr
s ⊆ G if n is large enough.

Our plan is to use the regularity lemma to show that G has a regu-
larity graph R dense enough to contain a Kr by Turán’s theorem. Then
Rs contains a Kr

s , so we may hope to use Lemma 7.5.2 to deduce that
Kr

s ⊆ G.
On input d := γ and ∆ := ∆(Kr

s ) Lemma 7.5.2 returns an ε0 > 0.d, ∆, ε0

To apply the regularity lemma, let m > 1/γ and choose ε > 0 smallm, ε

enough that ε � ε0,
ε < γ/2 < 1 , (1)

and
δ := 2γ − ε2 − 4ε− d− 1

m
> 0 ;δ

this is possible, since 2γ − d− 1
m > 0. On input ε and m, the regularity

lemma returns an integer M . Let us assume thatM

n � 2Ms

d∆(1− ε)
.n

Since this number is at least m, the regularity lemma provides us with
an ε-regular partition {V0, V1, . . . , Vk } of G, where m � k � M ; letk

|V1| = . . . = |Vk| =: �. Then�

n � k� , (2)

and
� =

n− |V0|
k

� n− εn

M
= n

1− ε

M
� 2s

d∆

by the choice of n. Let R be the regularity graph of G with parametersR

ε, �, d corresponding to the above partition. Then Lemma 7.5.2 will imply
Kr

s ⊆ G as desired if Kr ⊆ R (and hence Kr
s ⊆ Rs).

Our plan was to show Kr ⊆ R by Turán’s theorem. We thus have to
check that R has enough edges, i.e. that enough ε-regular pairs (Vi, Vj)
have density at least d. This should follow from our assumption that G
has at least tr−1(n)+ γn2 edges, i.e. an edge density of about r−2

r−1 +2γ:
this lies substantially above the approximate density of r−2

r−1 of the Turán
graph T r−1(k), and hence substantially above any density that G could
derive from tr−1(k) dense pairs alone, even if all these had density 1.
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Let us then estimate ‖R‖ more precisely. How many edges of G
lie outside ε-regular pairs? At most

(|V0|
2

)
edges lie inside V0, and by

condition (i) in the definition of ε-regularity these are at most 1
2 (εn)2

edges. At most |V0|k� � εnk� edges join V0 to other partition sets. The
at most εk2 other pairs (Vi, Vj) that are not ε-regular contain at most
�2 edges each, together at most εk2�2. The ε-regular pairs of insufficient
density (< d) each contain no more than d�2 edges, altogether at most
1
2k2d�2 edges. Finally, there are at most

(
�
2

)
edges inside each of the

partition sets V1, . . . , Vk, together at most 1
2�2k edges. All other edges

of G lie in ε-regular pairs of density at least d, and thus contribute to
edges of R. Since each edge of R corresponds to at most �2 edges of G,
we thus have in total

‖G‖ ≤ 1
2ε2n2 + εnk�+ εk2�2 + 1

2k2d�2 + 1
2�2k + ‖R‖ �2.

Hence, for all sufficiently large n,

‖R‖ ≥ 1
2k2 ‖G‖− 1

2ε2n2 − εnk�− εk2�2 − 1
2dk2�2 − 1

2k�2

1
2k2�2

≥
(1,2)

1
2k2

(
tr−1(n) + γn2 − 1

2ε2n2 − εnk�

n2/2
− 2ε− d− 1

k

)

≥
(2)

1
2k2

(
tr−1(n)
n2/2

+ 2γ − ε2 − 4ε− d− 1
m

)

= 1
2k2

(
tr−1(n)

(
n

2

)−1(
1− 1

n

)
+ δ

)

> 1
2k2 r− 2

r− 1

� tr−1(k) .

(The strict inequality follows from Lemma 7.1.4.) Therefore Kr ⊆ R by
Theorem 7.1.1, as desired. �

Having seen a typical application of the regularity lemma in full
detail, let us now step back and try to separate the wheat from the
chaff: what were the main ideas, how do the various parameters depend
on each other, and in which order were they chosen?

The task was to show that γn2 more edges than can be accommo-
dated on n vertices without creating a Kr force a Kr

s subgraph, provided
that G is large enough. The plan was to do this using Lemma 7.5.2, which
asks for the input of two parameters: d and ∆. As we wish to find a
copy of H = Kr

s in G, it is clear that we must choose ∆ := ∆(Kr
s ). We

shall return to the question of how to choose d in a moment.
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Given d and ∆, Lemma 7.5.2 tells us how small we must choose ε
to make the regularity lemma provide us with a suitable partition. The
regularity lemma also requires the input of a lower bound m for the
number of partition classes; we shall discuss this below, together with d.

All that remains now is to choose G large enough that the partition
classes have size at least 2s/d∆, as required by Lemma 7.5.2. (The s
here depends on the graph H we wish to embed, and s := |H| would
certainly be big enough. In our case, we can use the s from our H = Kr

s .)
How large is ‘large enough’ for |G| follows straight from the upper bound
M on the number of partition classes returned by the regularity lemma:
roughly, i.e. disregarding V0, an assumption of |G| � 2Ms/d∆ suffices.

So far, everything was entirely straightforward, and standard for
any application of the regularity lemma of this kind. But now comes
the interesting bit, the part specific to this proof: the observation that,
if only d is small enough, our γn2 ‘additional edges’ force an ‘additional
dense ε-regular pair’ of partition sets, giving us more than tr−1(k) dense
ε-regular pairs in total (where ‘dense’ means ‘of density at least d’), thus
forcing R to contain a Kr and hence Rs to contain a Kr

s .
Let us examine why this is so. Suppose we have at most tr−1(k)

dense ε-regular pairs . Inside these, G has at most

1
2k2 r− 2

r− 1
�2 � 1

2n2 r− 2
r− 1

edges, even if we use those pairs to their full capacity of �2 edges each
(where � is again the common size of the partition sets other than V0, so
that k� is nearly n). Thus, we have almost exactly our γn2 additional
edges left to accommodate elsewhere in the graph: either in ε-regular
pairs of density less than d, or in some exceptional way, i.e. in irregular
pairs, inside a partition set, or with an end in V0. Now the number of
edges in low-density ε-regular pairs is less than

1
2k2d�2 � 1

2dn2,

and hence less than half of our extra edges if d � γ. The other half,
the remaining 1

2γn2 edges, are more than can be accommodated in ex-
ceptional ways, provided we choose m large enough and ε small enough
(giving an additional upper bound for ε). It is now a routine matter to
compute the values of m and ε that will work.
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Exercises

1.− Show that K1,3 is extremal without a P 3.

2.− Given k > 0, determine the extremal graphs of chromatic number at
most k.

3. Determine the value of ex(n, K1,r) for all r, n ∈ N.

4. Is there a graph that is edge-maximal without a K3 minor but not
extremal?

5.+ Given k > 0, determine the extremal graphs without a matching of
size k.

(Hint. Theorem 2.2.3 and Ex. 1515, Ch. 2.)

6. Without using Turán’s theorem, show that the maximum number of
edges in a triangle-free graph of order n > 1 is �n2/4�.

7. Show that

tr−1(n) � 1
2
n2 r− 2

r− 1
,

with equality whenever r− 1 divides n.

8. Show that tr−1(n)/
(

n
2

)
converges to (r− 2)/(r− 1) as n→∞.

(Hint. tr−1((r− 1)� n
r−1

�) � tr−1(n) � tr−1((r− 1)� n
r−1

�).)

9. Show that deleting at most (m − s)(n − t)/s edges from a Km,n will
never destroy all its Ks,t subgraphs.

10. For 0 < s � t � n let z(n, s, t) denote the maximum number of edges in
a bipartite graph whose partition sets both have size n, and which does
not contain a Ks,t. Show that 2 ex(n, Ks,t) ≤ z(n, s, t) ≤ ex(2n, Ks,t).

11.+ Let 1 � r � n be integers. Let G be a bipartite graph with bipartition
{A, B }, where |A| = |B| = n, and assume that Kr,r 
⊆ G. Show that

∑
x∈A

(
d(x)

r

)
� (r− 1)

(
n

r

)
.

Using the previous exercise, deduce that ex(n, Kr,r) � cn2−1/r for some
constant c depending only on r.

12. The upper density of an infinite graph G is the infimum of all reals α

such that the finite graphs H ⊆ G with ‖H‖
(|H|

2

)−1
> α have bounded

order. Use the Erdős-Stone theorem to show that this number always
takes one of the countably many values 0, 1, 1

2
, 2

3
, 3

4
, . . ..

13. Given a tree T , find an upper bound for ex(n, T ) that is linear in n and
independent of the structure of T , i.e. depends only on |T |.

14. Show that, as a general bound for arbitrary n, the bound on ex(n, T )
claimed by the Erdős-Sós conjecture is best possible for every tree T .
Is it best possible even for every n and every T?
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15.− Prove the Erdős-Sós conjecture for the case when the tree considered
is a star.

16. Prove the Erdős-Sós conjecture for the case when the tree considered
is a path.

(Hint. Use Exercise 77 of Chapter 1.)

17.+ For which trees T is there a function f : N→N tending to infinity, such
that every graph G with χ(G) < f(d(G)) contains an induced copy of T?
(In other words: can we force the chromatic number up by raising the
average degree, as long as T does not occur as an induced subgraph?
Or, as in Gyárfás’s conjecture: will a large average degree force an
induced copy of T if the chromatic number is kept small?)

18. Given two graph invariants i1 and i2, write i1 � i2 if we can force
i2 arbitrarily high on a subgraph of G by making i1(G) large enough.
(Formally: write i1 � i2 if there exists a function f : N→N such that,
given any k ∈ N, every graph G with i1(G) � f(k) has a subgraph H
with i2(H) � k.) If i1 � i2 as well as i1 � i2, write i1 ∼ i2. Show that
this is an equivalence relation for graph invariants, and sort the follow-
ing invariants into equivalence classes ordered by <: minimum degree;
average degree; connectivity; arboricity; chromatic number; colouring
number; choice number; max { r | Kr ⊆ G }; max { r | TKr ⊆ G };
max { r | Kr � G }; min max d+(v), where the maximum is taken over
all vertices v of the graph, and the minimum over all its orientations.

19.+ Prove, from first principles, the theorem of Wagner (1964) that every
graph of chromatic number at least 2r contains Kr as a minor.

(Hint. Use induction on r. For the induction step, contract a connected
subgraph chosen so that the remaining graph still needs at least half as
many colours as the given graph.)

20. Let G be a graph of average degree at least 2r−2. By considering the
neighbourhood of a vertex in a minimal minor H � G with ε(H) � ε(G),
prove Mader’s (1967) theorem that G � Kr.

21.− Derive Wagner’s theorem (Ex. 1919) from Mader’s theorem (Ex. 2020).

22.+ Given a graph G with ε(G) � k ∈ N, find a minor H � G such that
both δ(H) � k and δ(H) � |H|/2.

23.+ Find a constant c such that every graph with n vertices and at least
n+2k(log k +log log k + c) edges contains k edge-disjoint cycles (for all
k ∈ N). Deduce an edge-analogue of the Erdős-Pósa theorem (2.3.2).

(Hint. Assuming δ � 3, delete the edges of a short cycle and apply
induction. The calculations are similar to the proof of Lemma 2.3.1.)

24.− Use Exercise 2222 of Chapter 3 to reduce the constant c in Theorem 7.2.1
from 10 to 5.

25.+ Show that any function h as in Lemma 3.5.1 satisfies the inequality
h(r) > 1

8
r2 for all even r, and hence that Theorem 7.2.1 is best possible

up to the value of the constant c.
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26. Characterize the graphs with n vertices and more than 3n − 6 edges
that contain no TK3,3. In particular, determine ex(n, TK3,3).

(Hint. By a theorem of Wagner, every edge-maximal graph without a
K3,3 minor can be constructed recursively from maximal planar graphs
and copies of K5 by pasting along K2s.)

27.− Derive the four colour theorem from Hadwiger’s conjecture for r = 5.

28.− Show that Hadwiger’s conjecture for r +1 implies the conjecture for r.

29.− Prove the following weakening of Hadwiger’s conjecture: given any
ε > 0, every graph of chromatic number at least r1+ε has a Kr minor,
provided that r is large enough.

30. Show that any graph constructed as in Proposition 7.3.1 is edge-
maximal without a K4 minor.

31. Prove the implication δ(G) � 3 ⇒ G ⊇ TK4.

(Hint. Proposition 7.3.1.)

32. A multigraph is called series-parallel if it can be constructed recursively
from a K2 by the operations of subdividing and of doubling edges. Show
that a 2-connected multigraph is series-parallel if and only if it has no
(topological) K4 minor.

33. Without using Theorem 7.3.8, prove Hadwiger’s conjecture for all
graphs of girth at least 11 and r large enough. Without using Co-
rollary 7.3.9, show that there is a constant g ∈ N such that all graphs
of girth at least g satisfy Hadwiger’s conjecture, irrespective of r.

34.+ Prove Hadwiger’s conjecture for r = 4 from first principles.

35.+ Prove Hadwiger’s conjecture for line graphs.

36. Prove Corollary 7.3.5.

37.− In the definition of an ε-regular pair, what is the purpose of the re-
quirement that |X| > ε |A| and |Y | > ε |B|?

38.− Show that any ε-regular pair in G is also ε-regular in G.

39. Consider a partition {V1 . . . Vk } of a finite set V . Show that the com-
plete graph on V has about k − 1 as many edges between different
partition sets as edges inside partition sets. Explain how this leads to
the choice of m := 1/γ in the proof of the Erdős-Stone theorem.

40. (i) Deduce the regularity lemma from the assumption that it holds,
given ε > 0 and m � 1, for all graphs of order at least some n = n(ε, m).

(ii) Prove the regularity lemma for sparse graphs, that is, for every
sequence (Gn)n∈N of graphs Gn of order n such that ‖Gn‖/n2 → 0 as
n→∞.
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Notes
The standard reference work for results and open problems in extremal graph
theory (in a very broad sense) is still B. Bollobás, Extremal Graph Theory,
Academic Press 1978. A kind of update on the book is given by its author in
his chapter of the Handbook of Combinatorics (R.L.Graham, M.Grötschel &
L. Lovász, eds.), North-Holland 1995. An instructive survey of extremal graph
theory in the narrower sense of Section 7.1 is given by M. Simonovits in
(L.W.Beineke & R.J.Wilson, eds.) Selected Topics in Graph Theory 2, Aca-
demic Press 1983. This paper focuses among other things on the particular
role played by the Turán graphs. A more recent survey by the same author
can be found in (R.L.Graham & J.Nešetřil, eds.) The Mathematics of Paul
Erdős, Vol. 2, Springer 1996.

Turán’s theorem is not merely one extremal result among others: it is the
result that sparked off the entire line of research. Our first proof of Turán’s
theorem is essentially the original one; the second is a version of a proof of
Zykov due to Brandt.

Our version of the Erdős-Stone theorem is a slight simplification of the
original. A direct proof, not using the regularity lemma, is given in L. Lovász,
Combinatorial Problems and Exercises (2nd edn.), North-Holland 1993. Its
most fundamental application, Corollary 7.1.3, was only found 20 years after
the theorem, by Erdős and Simonovits (1966).

Of our two bounds on ex(n, Kr,r) the upper one is thought to give the
correct order of magnitude. For vastly off-diagonal complete bipartite graphs
this was verified by J.Kollár, L. Rónyai & T. Szabó, Norm-graphs and bi-
partite Turán numbers, Combinatorica 16 (1996), 399–406, who proved that

ex(n, Kr,s) � crn
2− 1

r when s > r! .

Details about the Erdős-Sós conjecture, including an approximate solu-
tion for large k, can be found in the survey by Komlós and Simonovits cited
below. The case where the tree T is a path (Exercise 1616) was proved by
Erdős & Gallai in 1959. It was this result, together with the easy case of stars
(Exercise 1515) at the other extreme, that inspired the conjecture as a possible
unifying result.

Theorem 7.2.1 was first proved by B.Bollobás & A.G.Thomason, Proof
of a conjecture of Mader, Erdős and Hajnal on topological complete sub-
graphs, Europ. J. Combinatorics 19 (1998), 883–887, and independently by
J.Komlós & E. Szemerédi, Topological cliques in graphs II, Combinatorics,
Probability and Computing 5 (1996), 79–90. For large G, the latter authors
show that the constant c in the theorem can be brought down to about 1

2
,

which is not far from the lower bound of 1
8

given in Exercise 2525.

Theorem 7.2.2 was first proved in 1982 by Kostochka, and in 1984 with
a better constant by Thomason. For references and more insight also in these
early proofs, see A.G.Thomason, The extremal function for complete minors,
J. Combin. Theory B 81 (2001), 318–338, where he determines the value
of α. Surprisingly, the average degree needed to force an incomplete minor H
remains at cr

√
log r, with c = α

√
ε+ o(1) for almost all H with r vertices and

r1+ε edges, for every fixed ε ∈ (0, 1); see J.S.Myers & A.G.Thomason, The
extremal function for noncomplete minors, Combinatorica (to appear).

As Theorem 7.2.2 is best possible, there is no constant c such that all
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graphs of average degree at least cr have a Kr minor. Strengthening this
assumption to κ � cr, however, can force a Kr minor in all large enough graphs;
this was proved by T.Böhme, K.Kawarabayashi, J.Maharry and B.Mohar,
Linear connectivity forces large complete bipartite minors, preprint 2004.

The fact that large enough girth can force minors of arbitrarily high min-
imum degree, and hence large complete minors, was discovered by Thomassen
in 1983. The reference can be found in W.Mader, Topological subgraphs
in graphs of large girth, Combinatorica 18 (1998), 405–412, from which our
Lemma 7.2.3 is extracted. Our girth assumption of 8k +3 has been reduced to
about 4k by D.Kühn and D.Osthus, Minors in graphs of large girth, Random
Struct. Alg. 22 (2003), 213–225, which is conjectured to be best possible.

The original reference for Theorem 7.2.5 can be found in D.Kühn and
D.Osthus, Improved bounds for topological cliques in graphs of large girth
(preprint 2005), where they re-prove their theorem with g � 27. See also
D.Kühn & D.Osthus, Subdivisions of Kr+2 in graphs of average degree at least
r +ε and large but constant girth, Combinatorics, Probability and Computing
13 (2004), 361–371.

The proof of Hadwiger’s conjecture for r = 4 hinted at in Exercise 3434
was given by Hadwiger himself, in the 1943 paper containing his conjecture.
A counterexample to Hajós’s conjecture was found as early as 1979 by Catlin.
A little later, Erdős and Fajtlowicz proved that Hajós’s conjecture is false for
‘almost all’ graphs (see Chapter 11). Proofs of Wagner’s Theorem 7.3.4 (with
Hadwiger’s conjecture for r = 5 as a corollary) can be found in Bollobás’s
Extremal Graph Theory (see above) and in Halin’s Graphentheorie (2nd ed.),
Wissenschaftliche Buchgesellschaft 1989. Hadwiger’s conjecture for r = 6 was
proved by N.Robertson, P.D. Seymour and R.Thomas, Hadwiger’s conjecture
for K6-free graphs, Combinatorica 13 (1993), 279–361.

The investigation of graphs not containing a given graph as a minor, or
topological minor, has a long history. It probably started with Wagner’s 1935
PhD thesis, in which he sought to ‘detopologize’ the four colour problem by
classifying the graphs without a K5 minor. His hope was to be able to show
abstractly that all those graphs were 4-colourable; since the graphs without
a K5 minor include the planar graphs, this would amount to a proof of the
four colour conjecture involving no topology whatsoever. The result of Wag-
ner’s efforts, Theorem 7.3.4, falls tantalizingly short of this goal: although it
succeeds in classifying the graphs without a K5 minor in structural terms,
planarity re-emerges as one of the criteria used in the classification. From this
point of view, it is instructive to compare Wagner’s K5 theorem with similar
classification theorems, such as his analogue for K4 (Proposition 7.3.1), where
the graphs are decomposed into parts from a finite set of irreducible graphs.
See R.Diestel, Graph Decompositions, Oxford University Press 1990, for more
such classification theorems.

Despite its failure to resolve the four colour problem, Wagner’s K5 struc-
ture theorem had consequences for the development of graph theory like few
others. To mention just two: it prompted Hadwiger to make his famous conjec-
ture; and it inspired the notion of a tree-decomposition, which is fundamental
to the work of Robertson and Seymour on minors (see Chapter 12). Wagner
himself responded to Hadwiger’s conjecture with a proof that, in order to force
a Kr minor, it does suffice to raise the chromatic number of a graph to some
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value depending only on r (Exercise 1919). This theorem, along with its analogue
for topological minors proved independently by Dirac and by Jung, prompted
the question which average degree suffices to force the desired minor.

Theorem 7.3.8 is a consequence of the more fundamental result of D.Kühn
and D.Osthus, Complete minors in Ks,s-free graphs, Combinatorica 25 (2005)
49–64, that every graph without a Ks,s subgraph that has average degree r � rs

has a Kp minor for p = �r1+ 1
2(s−1) /(log r)3�.

As in Gyárfás’s conjecture, one may ask under what additional assump-
tions large average degree forces an induced subdivision of a given graph H.
This was answered for arbitrary H by D.Kühn and D.Osthus, Induced subdi-
visions in Ks,s-free graphs of large average degree, Combinatorica 24 (2004)
287–304, who proved that for all r, s ∈ N there exists d ∈ N such that every
graph G 
⊇ Ks,s with d(G) � d contains a TKr as an induced subgraph. See
there also for the source of Gyárfás’s conjecture and related results.

The regularity lemma is proved in E. Szemerédi, Regular partitions of
graphs, Colloques Internationaux CNRS 260—Problèmes Combinatoires et
Théorie des Graphes, Orsay (1976), 399–401. Our rendering follows an ac-
count by Scott (personal communication). A broad survey on the regular-
ity lemma and its applications is given by J.Komlós & M. Simonovits in
(D.Miklós, V.T. Sós & T. Szőnyi, eds.) Paul Erdős is 80, Vol. 2, Proc. Col-
loq. Math. Soc. János Bolyai (1996); the concept of a regularity graph and
Lemma 7.5.2 are taken from this paper. An adaptation of the regularity lemma
for use with sparse graphs was developed independently by Kohayakawa and
by Rödl; see Y.Kohayakawa, Szemerédi’s regularity lemma for sparse graphs,
in (F.Cucker & M. Shub, eds.) Foundations of Computational Mathematics,
Selected papers of a conference held at IMPA in Rio de Janeiro, January 1997,
Springer 1997.



8 Infinite Graphs

The study of infinite graphs is an attractive, but often neglected, part of
graph theory. This chapter aims to give an introduction that starts gent-
ly, but then moves on in several directions to display both the breadth
and some of the depth that this field has to offer.1 Our overall theme will
be to highlight the typical kinds of phenomena that will always appear
when graphs are infinite, and to show how they can lead to deep and
fascinating problems.

Perhaps the most typical such phenomena occur already when the
graphs are ‘only just’ infinite, when they have only countably many
vertices and perhaps only finitely many edges at each vertex. This is not
surprising: after all, some of the most basic structural features of graphs,
such as paths, are intrinsically countable. Problems that become really
interesting only for uncountable graphs tend to be interesting for reasons
that have more to do with sets than with graphs, and are studied in com-
binatorial set theory . This, too, is a fascinating field, but not our topic
in this chapter. The problems we shall consider will all be interesting
for countable graphs, and set-theoretic problems will not arise.

The terminology we need is exactly the same as for finite graphs,
except when we wish to describe an aspect of infinite graphs that has no
finite counterpart. One important such aspect is the eventual behaviour
of the infinite paths in a graph, which is captured by the notion of ends.
The ends of a graph can be thought of as additional limit points at in-
finity to which its infinite paths converge. This convergence is described
formally in terms of a natural topology placed on the graph together
with its ends. In our last section we shall therefore assume familiarity
with the basic concepts of point-set topology; reminders of the relevant
definitions will be included as they arise.

1 The sections will alternate in difficulty: while Sections 8.1, 8.3 and 8.5 are easier,
Sections 8.2 and 8.4 contain some more substantial proofs.



196 8. Infinite Graphs

8.1 Basic notions, facts and techniques

This section gives a gentle introduction to the aspects of infinity most
commonly encountered in graph theory.2

After just a couple of definitions, we begin by looking at a few
obvious properties of infinite sets, and how they can be employed in
the context of graphs. We then illustrate how to use the three most
basic common tools in infinite graph theory: Zorn’s lemma, transfinite
induction, and something called ‘compactness’. We complete the section
with the combinatorial definition of an end; topological aspects will be
treated in Section 8.5.

A graph is locally finite if all its vertices have finite degrees. An in-locally
finite

finite graph (V, E) of the form

V = {x0, x1, x2, . . . } E = {x0x1, x1x2, x2x3, . . . }

is called a ray , and a double ray is an infinite graph (V, E) of the formrays

V = { . . . , x−1, x0, x1, . . . } E = { . . . , x−1x0, x0x1, x1x2, . . . } ;

in both cases the xn are assumed to be distinct. Thus, up to isomor-
phism, there is only one ray and one double ray, the latter being the
unique infinite 2-regular connected graph. In the context of infinite
graphs, finite paths rays and double rays are all called paths.path

The subrays of a ray or double ray are its tails. Formally, everytail

ray has infinitely many tails, but any two of them differ only by a finite
initial segment. The union of a ray R with infinitely many disjoint finite
paths having precisely their first vertex on R is a comb; the last verticescomb

of those paths are the teeth of this comb, and R is its spine. (If such ateeth, spine

path is trivial, which we allow, then its unique vertex lies on R and also
counts as a tooth; see Figure 8.1.1.)

x0 x1 x2 R

. . .

Fig. 8.1.1. A comb with white teeth and spine R = x0x1 . . .

2 This introductory section is deliberately kept informal, with the emphasis on
ideas rather than definitions that do not belong in a graph theory book. A more
formal reminder of those basic definitions about infinite sets and numbers that we
shall need is given in an appendix at the end of the book.
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Let us now look at a few very basic properties of infinite sets, and
see how they appear in some typical arguments about graphs.

An infinite set minus a finite subset is still infinite. (1)

This trivial property is eminently useful when the infinite set in
question plays the role of ‘supplies’ that keep an iterated process going.
For example, let us show that if a graph G is infinitely connected (that
is, if G is k-connected for every k ∈ N), then G contains a subdivision
of Kℵ0 , the complete graph of order |N|. We embed Kℵ0 in G (as a Kℵ0

topological minor) in one infinite sequence3 of steps, as follows. We
begin by enumerating its vertices. Then at each step we embed the next
vertex in G, connecting it to the images of its earlier neighbours by paths
in G that avoid any other vertices used so far. The point here is that
each new path has to avoid only finitely many previously used vertices,
which is not a problem since deleting any finite set of vertices keeps G
infinitely connected.

If G, too, is countable, can we then also find a TKℵ0 as a spanning
subgraph of G? Although embedding Kℵ0 in G topologically as above
takes infinitely many steps, it is by no means guaranteed that the TKℵ0

constructed uses all the vertices of G. However, it is not difficult to
ensure this: since we are free to choose the image of each new vertex
of Kℵ0 , we can choose this as the next unused vertex from some fixed
enumeration of V (G). In this way, every vertex of G gets chosen eventu-
ally, unless it becomes part of the TKℵ0 before its time, as a subdividing
vertex on one of the paths.

Unions of countably many countable sets are countable. (2)

This fact can be applied in two ways: to show that sets that come
to us as countable unions are ‘small’, but also to rewrite a countable set
deliberately as a disjoint union of infinitely many infinite subsets. For an
example of the latter type of application, let us show that an infinitely
edge-connected countable graph has infinitely many edge-disjoint span-
ning trees. (Note that the converse implication is trivial.) The trick is
to construct the trees simultaneously, in one infinite sequence of steps.
We first use (2) to partition N into infinitely many infinite subsets Ni

(i ∈ N). Then at step n we look which Ni contains n, and add a further
vertex v to the ith tree Ti. As before, we choose v minimal in some fixed
enumeration of V (G) among the vertices not yet in Ti, and join v to Ti

by a path avoiding the finitely many edges used so far.
Clearly, a countable set cannot have uncountably many disjoint sub-

sets. However,

3 We reserve the term ‘infinite sequence’ for sequences indexed by the set of
natural numbers. (In the language of well-orderings: for sequences of order type ω.)
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A countable set can have uncountably many subsets whose
pairwise intersections are all finite.

(3)

This is a remarkable property of countable sets, and a good source of
counterexamples to rash conjectures. Can you prove it without looking
at Figure 8.1.4?

Another common pitfall in dealing with infinite sets is to assume
that the intersection of an infinite nested sequence A0 ⊇ A1 ⊇ . . . of
uncountable sets must still be uncountable. It need not be; in fact it
may be empty. (Example?)

There are a few basic proof techniques that are specific to infinite
combinatorics. The two most common of these are the use of Zorn’s
lemma and transfinite induction. Rather than describing these formally,4

we illustrate their use by a simple example.

Proposition 8.1.1. Every connected graph contains a spanning tree.

First proof (by Zorn’s lemma).
Given a connected graph G, consider the set of all trees T ⊆ G, ordered
by the subgraph relation. Since G is connected, any maximal such tree
contains every vertex of G, i.e. is a spanning tree of G.

To prove that a maximal tree exists, we have to show that for any
chain C of such trees there is an upper bound: a tree T ∗ ⊆ G containing
every tree in C as a subgraph. We claim that T ∗ :=

⋃
C is such a tree.

To show that T ∗ is connected, let u, v ∈ T ∗ be two vertices. Then
in C there is a tree Tu containing u and a tree Tv containing v. One of
these is a subgraph of the other, say Tu ⊆ Tv. Then Tv contains a path
from u to v, and this path is also contained in T ∗.

To show that T ∗ is acyclic, suppose it contains a cycle C. Each of the
edges of C lies in some tree in C. These trees form a finite subchain of C,
which has a maximal element T . Then C ⊆ T , a contradiction. �

Transfinite induction and recursion are very similar to finite induc-
tive proofs and constructions, respectively. Basically, one proceeds step
by step, and may at each step assume as known what was shown or
constructed before. The only difference is that one may ‘start again’
after performing any infinite number of steps. This is formalized by the
use of ordinals rather than natural numbers for counting the steps; see
the appendix.

Just as with finite graphs, it is usually more intuitive to construct a
desired object (such as a spanning tree) step by step, rather than start-
ing with some unknown ‘maximal’ object and then proving that it has
the desired properties. More importantly, a step-by-step construction is

4 The appendix offers brief introductions to both, enough to enable the reader to
use these tools with confidence in practice.
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almost always the best way to find the desired object: only later, when
one understands the construction well, can one devise an inductive order-
ing (one whose chains have upper bounds) in which the desired objects
appear as the maximal elements. Thus, although Zorn’s lemma may at
times provide an elegant way to wrap up a constructive proof, it cannot
in general replace a good understanding of transfinite induction—just
as a preference for elegant direct definitions of finite objects cannot,
for a thorough understanding, replace the more pedestrian algorithmic
approach.

Our second proof of Proposition 8.1.1 illustrates both the construct-
ive and the proof aspect of transfinite induction in a typical manner: we
first define a subgraph T ∗ ⊆ G recursively, hoping that it turns out to
be a spanning tree, and then prove inductively that it is.

Second proof (by transfinite induction).
Let G be a connected graph. We define non-empty subgraphs Tα ⊆ G
recursively, as follows. Let T0 consist of a single vertex. Now consider an
ordinal α > 0. If α is a limit, we put Tα :=

⋃
β<α Tβ . If α is a successor,

of β say, we check whether G−Tβ = ∅. If so, we terminate the recursion
and put Tβ =: T . If not, then G − Tβ has a vertex vα that sends an
edge eα to a vertex in Tβ . Let Tα be obtained from Tβ by adding vα

and eα. This recursion terminates, since if vβ+1 (where β +1 denotes the
successor of β) gets defined for all β < γ then β �→ vβ+1 is an injective
map showing that |γ| � |G|, which cannot hold for all ordinals γ.

We now prove by induction on α that every graph Tα we defined is a
tree. Since T is one of the Tα and is, by definition, a spanning subgraph
of G, this will complete the proof. Let α be given, and assume that every
Tβ with β < α is a tree. If α is a successor, of β say, then Tα is clearly
connected and acyclic, because Tβ is.

Suppose now that α is a limit. To show that Tα is connected,
let u, v be any two of its vertices. Since Tα =

⋃
β<α Tβ , there exist

β(u), β(v) < α such that u ∈ Tβ(u) and v ∈ Tβ(v), say with β(u) � β(v).
Then Tβ(v) contains a u–v path, which is also contained in Tα. Now
suppose that Tα contains a cycle C. For each of its vertices v there is an
ordinal β(v) < α with v ∈ Tβ(v); let β be the largest among these. Then
C ⊆ Tβ , contradicting our assumption that Tβ is a tree. �

Why did these proofs work so smoothly? The reason is that the
forbidden or required substructures, cycles and connecting paths, were
finite and therefore could not arise or vanish unexpectedly at limit steps.
This has helped to keep our two model proofs simple, but it is not typical.
If we want to construct a rayless graph, for example, the edges of different
rayless graphs Gβ might combine to form a ray in Gα =

⋃
β<α Gβ when

α is a limit. And indeed, here lies the challenge in most transfinite
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constructions: to make the right choices at successor steps to ensure
that the structure will also be as desired at limits.

Our third basic proof technique, somewhat mysteriously referred to
as compactness (see below for why), offers a formalized way to make thecompactness

proofs
right choices in certain standard cases. These are cases where, unlike in
the above examples, a wrong choice may necessarily lead to a dead end
after another finite number of steps, even though nothing unexpected
happens at limits.

For example, let G be a graph whose finite subgraphs are all k-
colourable. It is natural then to try to construct a k-colouring of G as
a limit of k-colourings of its finite subgraphs. Now each finite subgraph
will have several k-colourings; will it matter which we choose? Clearly, it
will. When G′ ⊆ G′′ are two finite subgraphs and u, v are vertices of G′

that receive the same colour in every k-colouring of G′′ (and hence also
in any k-colouring of G), we must not give them different colours in the
colouring we choose for G′, even if such a colouring exists. However if
we do manage, somehow, to colour the finite subgraphs of G compatibly,
we shall automatically have a colouring of all of G.

For countable graphs, compactness proofs are formalized by the
following lemma:

Lemma 8.1.2. (König’s Infinity Lemma)
Let V0, V1, . . . be an infinite sequence of disjoint non-empty finite sets,

[ 8.2.1 ]
[ 8.2.6 ]
[ 8.5.1 ]
[ 8.5.11 ]
[ 9.1.3 ]

and let G be a graph on their union. Assume that every vertex v in a
set Vn with n � 1 has a neighbour f(v) in Vn−1. Then G contains a ray
v0v1 . . . with vn ∈ Vn for all n.

V0

V1 V2 V3

f(v)

f(f( v))

v

Fig. 8.1.2. König’s infinity lemma

Proof . Let P be the set of all finite paths of the form v f(v) f(f(v)) . . .
ending in V0. Since V0 is finite but P is infinite, infinitely many of the
paths in P end at the same vertex v0 ∈ V0. Of these paths, infinitely
many also agree on their penultimate vertex v1 ∈ V1, because V1 is finite.
Of those paths, infinitely many agree even on their vertex v2 in V2—and
so on. Although the set of paths considered decreases from step to step,
it is still infinite after any finite number of steps, so vn gets defined for
every n ∈ N. By definition, each vertex vn is adjacent to vn−1 on one of
those paths, so v0v1 . . . is indeed a ray. �
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The following ‘compactness theorem’, the first of its kind in graph
theory, answers our question about colourings:

Theorem 8.1.3. (de Bruijn & Erdős, 1951)
Let G = (V, E) be a graph and k ∈ N. If every finite subgraph of G has
chromatic number at most k, then so does G.

First proof (for G countable, by the infinity lemma).
Let v0, v1, . . . be an enumeration of V and put Gn := G [ v0, . . . , vn ].
Write Vn for the set of all k-colourings of Gn with colours in { 1, . . . , k }.
Define a graph on

⋃
n∈N

Vn by inserting all edges cc′ such that c ∈ Vn

and c′ ∈ Vn−1 is the restriction of c to { v0, . . . , vn−1 }. Let c0c1 . . . be a
ray in this graph with cn ∈ Vn for all n. Then c :=

⋃
n∈N

cn is a colouring
of G with colours in { 1, . . . , k }. �

Our second proof of Theorem 8.1.3 appeals directly to compactness
as defined in topology. Recall that a topological space is compact if its
closed sets have the ‘finite intersection property’, which means that the
overall intersection

⋂
A of a set A of closed sets is non-empty whenever

every finite subset of A has a non-empty intersection. By Tychonoff’s
theorem of general topology, any product of compact spaces is compact
in the usual product topology.

Second proof (for G arbitrary, by Tychonoff’s theorem).
Consider the product space

X :=
∏
V

{ 1, . . . , k } = { 1, . . . , k }V

of |V | copies of the finite set { 1, . . . , k } endowed with the discrete topol-
ogy. By Tychonoff’s theorem, this is a compact space. Its basic open
sets have the form

Oh := { f ∈ X : f |U = h } ,

where h is some map from a finite set U ⊆ V to { 1, . . . , k }.
For every finite set U ⊆ V , let AU be the set of all f ∈ X whose

restriction to U is a k-colouring of G [ U ]. These sets AU are closed (as
well as open—why?), and for any finite set U of finite subsets of V we
have

⋂
U ∈U AU �= ∅, because G [

⋃
U ] has a k-colouring. By the finite

intersection property of the sets AU , their overall intersection is non-
empty, and every element of this intersection is a k-colouring of G. �

Although our two compactness proofs look formally different, it is
instructive to compare them in detail, checking how the requirements in
one are reflected in the other (cf. Exercise 1010).
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As the reader may expect, the standard use for compactness proofs
is to transfer theorems from finite to infinite graphs, or conversely. This
is not always quite as straightforward as above; often, the statement has
to be modified a little to make it susceptible to a compactness argument.

As an example—see Exercises 1212–1717 for more—let us prove the lo-
cally finite version of the following famous conjecture. Call a bipartition
of the vertex set of a graph unfriendly if every vertex has at least as many
neighbours in the other class as in its own. Clearly, every finite graph
has an unfriendly partition: just take any partition that maximizes the
number of edges between the partition classes. At the other extreme,
it can be shown by set-theoretic methods that uncountable graphs need
not have such partitions. Thus, intriguingly, it is the countable case that
has remained unsolved:

Unfriendly Partition Conjecture. Every countable graph admits an
unfriendly partition of its vertex set.

Proof for locally finite graphs. Let G = (V, E) be an infinite but locally
finite graph, and enumerate its vertices as v0, v1, . . .. For every n ∈ N,
let Vn be the set of partitions of Vn := { v0, . . . , vn } into two sets Un

and Wn such that every vertex v ∈ Vn with NG(v) ⊆ Vn has at least as
many neighbours in the other class as in its own. Since the conjecture
holds for finite graphs, the sets Vn are non-empty. For all n � 1, every
(Un, Wn) ∈ Vn induces a partition (Un−1, Wn−1) of Vn−1, which lies
in Vn−1. By the infinity lemma, there is an infinite sequence of partitions
(Un, Wn) ∈ Vn, one for every n ∈ N, such that each is induced by the
next. Then (

⋃
n∈N

Un,
⋃

n∈N
Wn) is an unfriendly partition of G. �

The trick that made this proof possible was to require, for the par-
titions of Vn, correct positions only of vertices that send no edge out
of Vn: this weakening is necessary to ensure that partitions from Vn

induce partitions in Vn−1; but since, by local finiteness, every vertex has
this property eventually (for large enough n), the weaker assumption
suffices to ensure that the limit partition is unfriendly.

Let us complete this section with an introduction to the one im-
portant concept of infinite graph theory that has no finite counterpart,
the notion of an end. An end5 of a graph G is an equivalence class ofend

rays in G, where two rays are considered equivalent if, for every finite
set S ⊆ V (G), both have a tail in the same component of G−S. This
is indeed an equivalence relation: note that, since S is finite, there is
exactly one such component for each ray. If two rays are equivalent—
and only then—they can be linked by infinitely many disjoint paths: just

5 Not to be confused with the ends, or endvertices, of an edge. In the context of
infinite graphs, we use the term ‘endvertices’ to avoid confusion.
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choose these inductively, taking as S the union of the vertex sets of the
first finitely many paths to find the next. The set of ends of G is denoted
by Ω(G), and we write G = (V, E, Ω) to express that G has vertex, edge Ω(G)

and end sets V, E, Ω.
For example, let us determine the ends of the 2-way infinite ladder

shown in Figure 8.1.3. Every ray in this graph contains vertices arbi-
trarily far to the left or vertices arbitrarily far to the right, but not both.
These two types of rays are clearly equivalence classes, so the ladder
has exactly two ends. (In Figure 8.1.3 these are shown as two isolated
dots—one on the left, the other on the right.)

Fig. 8.1.3. The 2-way ladder has two ends

The ends of a tree are particularly simple: two rays in a tree are
equivalent if and only if they share a tail, and for every fixed vertex v each
end contains exactly one ray starting at v. Even a locally finite tree can
have uncountably many ends. The prototype example (see Exercise 2121)
is the binary tree T2, the rooted tree in which every vertex has exactly binary

tree T2
two upper neighbours. Often, the vertex set of T2 is taken to be the
set of finite 0–1 sequences (with the empty sequence as the root), as
indicated in Figure 8.1.4. The ends of T2 then correspond bijectively to
its rays starting at ∅, and hence to the infinite 0–1 sequences.

01

011

0110

10

101

1100

10

∅

T2

Fig. 8.1.4. The binary tree T2 has continuum many ends, one
for every infinite 0–1 sequence

These examples suggest that the ends of a graph can be thought of
as ‘points at infinity’ to which its rays converge. We shall formalize this
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in Section 8.5, where we define a natural topology on a graph and its
ends in which rays will indeed converge to their respective ends.

The maximum number of disjoint rays in an end is the (combina-
torial) vertex-degree of that end, the maximum number of edge-disjointend degrees

rays in it is its (combinatorial) edge-degree. These maxima are indeed
attained: if an end contains a set of k (edge-) disjoint rays for every inte-
ger k, it also contains an infinite set of (edge-) disjoint rays (Exercise 3333).
Thus, every end has a vertex-degree and an edge-degree in N∪{∞}.

8.2 Paths, trees, and ends

There are two fundamentally different aspects to the infinity of an infinite
connected graph: one of ‘length’, expressed in the presence of rays, and
one of ‘width’, expressed locally by infinite degrees. The infinity lemma
tells us that at least one of these must occur:

Proposition 8.2.1. Every infinite connected graph has a vertex of in-
finite degree or contains a ray.

Proof . Let G be an infinite connected graph with all degrees finite. Let(8.1.2)

v0 be a vertex, and for every n ∈ N let Vn be the set of vertices at
distance n from v0. Induction on n shows that the sets Vn are finite, and
hence that Vn+1 �= ∅ (because G is infinite and connected). Furthermore,
the neighbour of a vertex v ∈ Vn+1 on any shortest v–v0 path lies in Vn.
By Lemma 8.1.2, G contains a ray. �

Often it is useful to have more detailed information on how this ray
or vertex of infinite degree lies in G. The following lemma enables us to
find it ‘close to’ any given infinite set of vertices.

Lemma 8.2.2. (Star-Comb Lemma)[ 8.5.5 ]

Let U be an infinite set of vertices in a connected graph G. Then G
contains either a comb with all teeth in U or a subdivision of an infinite
star with all leaves in U .

Proof . As G is connected, it contains a path between two vertices in U .
This path is a tree T ⊆ G every edge of which lies on a path in T between
two vertices in U . By Zorn’s lemma there is a maximal such tree T ∗.
Since U is infinite and G is connected, T ∗ is infinite. If T ∗ has a vertex
of infinite degree, it contains the desired subdivided star.

Suppose now that T ∗ is locally finite. Then T ∗ contains a ray R
(Proposition 8.2.1). Let us construct a sequence P1, P2, . . . of disjoint
R–U paths in T ∗. Having chosen Pi for every i < n for some n, pick
v ∈ R so that vR meets none of those paths Pi. The first edge of vR
lies on a path P in T ∗ between two vertices in U ; let us think of P as
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traversing this edge in the same direction as R. Let w be the last vertex
of vP on vR. Then Pn := wP contains an R–U path, and Pn ∩Pi = ∅
for all i < n because Pi ∪Rw∪Pn contains no cycle. �

We shall often apply Lemma 8.2.2 in locally finite graphs, in which
case it always yields a comb.

Recall that a rooted tree T ⊆ G is normal in G if the endvertices
of every T -path in G are comparable in the tree-order of T . If T is a
spanning tree, the only T - paths are edges of G that are not edges of T .

Normal spanning trees are perhaps the single most important struc-
tural tool in infinite graph theory. As in finite graphs, they exhibit the
separation properties of the graph they span.6 Moreover, their normal
rays, those that start at the root, reflect its end structure: normal ray

Lemma 8.2.3. If T is a normal spanning tree of G, then every end of [ 8.5.7 ]

G contains exactly one normal ray of T .

Proof . Let ω ∈ Ω(G) be given. Apply the star-comb lemma in T with (1.5.5)

U the vertex set of a ray R ∈ ω. If the lemma gives a subdivided star
with leaves in U and centre z, say, then the finite down-closure �z�
of z in T separates infinitely many vertices u > z of U pairwise in G
(Lemma 1.5.5). This contradicts our choice of U .

So T contains a comb with teeth on R. Let R′ ⊆ T be its spine.
Since every ray in T has an increasing tail (Exercise 44), we may assume
that R′ is a normal ray. Since R′ is equivalent to R, it lies in ω.

Conversely, distinct normal rays of T are separated in G by the
(finite) down-closure of their greatest common vertex (Lemma 1.5.5), so
they cannot belong to the same end of G. �

Not all connected graphs have a normal spanning tree; complete
uncountable graphs, for example, have none. (Why not?) The quest to
characterize the graphs that have a normal spanning tree is not entirely
over, and it has held some surprises.7 One of the most useful sufficient
conditions is that the graph contains no TKℵ0 ; see Theorem 12.4.13.
For our purposes, the following result suffices:

Theorem 8.2.4. (Jung 1967) [ 8.5.9 ]

Every countable connected graph has a normal spanning tree.

Proof . The proof follows that of Proposition 1.5.6; we only sketch the (1.5.6)

differences. Starting with a single vertex, we construct an infinite se-

6 Lemma 1.5.5 continues to hold for infinite graphs, with the same proof.
7 One of these is Theorem 8.5.2; for more see the notes.
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quence T0 ⊆ T1 ⊆ . . . of finite normal trees in G, all with the same root,
whose union T will be a normal spanning tree.

To ensure that T spans G, we fix an enumeration v0, v1, . . . of V (G)
and see to it that Tn contains vn. It is clear that T will be a tree (since
any cycle in T would lie in some Tn, and every two vertices of T lie in
a common Tn and can be linked there), and clearly the tree order of T
induces that of the Tn. Finally, T will be normal, because the endvertices
of any edge of G that is not an edge of T lie in some Tn: since that Tn

is normal, they must be comparable there, and hence in T .
It remains to specify how to construct Tn+1 from Tn. If vn+1 ∈ Tn,

put Tn+1 := Tn. If not, let C be the component of G − Tn contain-
ing vn+1. Let x be the greatest element of the chain N(C) in Tn, and
let Tn+1 be the union of Tn and an x–vn+1 path P with P̊ ⊆ C. Then
the neighbourhood in Tn+1 of any new component C ′ ⊆ C of G−Tn+1

is a chain in Tn+1, so Tn+1 is again normal. �

One of the most basic problems in an infinite setting that has no
finite equivalent is whether or not ‘arbitrarily many’, in some context,
implies ‘infinitely many’. Suppose we can find k disjoint rays in some
given graph G, for every k ∈ N; does G also contain an infinite set of
disjoint rays?

The answer to the corresponding question for finite paths (of any
fixed length) is clearly ‘yes’, since a finite path P can never get in the way
of more than |P | disjoint other paths. A badly chosen ray, however, can
meet infinitely many other rays, preventing them from being selected for
the same disjoint set. Rather than collecting our disjoint rays greedily,
we therefore have to construct them carefully and all simultaneously.

The proof of the following theorem is a nice example of a construc-
tion in an infinite sequence of steps, where the final object emerges only
at the limit step. Each of the steps in the sequence will involve a non-
trivial application of Menger’s theorem (3.3.1).

Theorem 8.2.5. (Halin 1965)
(i) If an infinite graph G contains k disjoint rays for every k ∈ N,

then G contains infinitely many disjoint rays.

(ii) If an infinite graph G contains k edge-disjoint rays for every k ∈ N,
then G contains infinitely many edge-disjoint rays.

Proof . (i) We construct our infinite system of disjoint rays inductively(3.3.1)

in ω steps. After step n, we shall have found n disjoint rays Rn
1 , . . . , Rn

n

and chosen initial segments Rn
i xn

i of these rays. In step n+1 we choose
the rays Rn+1

1 , . . . , Rn+1
n+1 so as to extend these initial segments, i.e. so

that Rn
i xn

i is a proper initial segment of Rn+1
i xn+1

i , for i = 1, . . . , n.
Then, clearly, the graphs R∗

i :=
⋃

n∈N
Rn

i xn
i will form an infinite family

(R∗
i )i∈N

of disjoint rays in G.
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For n = 0 the empty set of rays is as required. So let us assume
that Rn

1 , . . . , Rn
n have been chosen, and describe step n + 1. For sim- n

plicity, let us abbreviate Rn
i =: Ri and xn

i =: xi. Let R be any set of Ri, xi

|R1x1 ∪ . . .∪Rnxn|+ n2 + 1 disjoint rays (which exists by assumption),
and immediately delete those rays from R that meet any of the paths
R1x1, . . . , Rnxn; then R still contains at least n2 + 1 rays.

We begin by repeating the following step as often as possible. If
there exists an i ∈ { 1, . . . , n } such that Rn+1

i has not yet been defined
and x̊iRi meets at most n of the rays currently in R, we delete those
rays from R, put Rn+1

i := Ri, and choose as xn+1
i the successor of xi

on Ri. Having performed this step as often as possible, we let I denote I

the set of those i ∈ { 1, . . . , n } for which Rn+1
i is still undefined, and put

|I| =: m. Then R still contains at least n2 + 1 − (n − m)n � m2 + 1 m

rays. Every Ri with i ∈ I meets more than n � m of the rays in R; let
zi be its first vertex on the mth ray it meets. Then Z :=

⋃
i∈I xiRizi Z

meets at most m2 of the rays in R; we delete all the other rays from R,
choosing one of them as Rn+1

n+1 (with xn+1
n+1 arbitrary).

On each remaining ray R ∈ R we now pick a vertex y = y(R) after
its last vertex in Z, and put Y := { y(R) | R ∈ R}. Let H be the union
of Z and all the paths Ry (R ∈ R). Then X := {xi | i ∈ I } cannot be
separated from Y in H by fewer than m vertices, because these would
miss both one of the m rays Ri with i ∈ I and one of the m rays in
R that meet xiRizi for this i. So by Menger’s theorem (3.3.1) there
are m disjoint X–Y paths Pi = xi . . . yi (i ∈ I) in H. For each i ∈ I yi

let R′
i denote the ray from R that contains yi, choose as Rn+1

i the ray
RixiPiyiR

′
i, and put xn+1

i := yi.
(ii) is analogous. �

Does Theorem 8.2.5 generalize to other graphs than rays? Let us
call a graph H ubiquitous with respect to a relation � between graphs
(such as the subgraph relation ⊆, or the minor relation �) if nH � G
for all n ∈ N implies ℵ0H � G, where nH denotes the disjoint union of n
copies of H. Ubiquity appears to be closely related to questions of well-
quasi-ordering as discussed in Chapter 12. Non-ubiquitous graphs exist
for all the standard graph orderings; see Exercise 3636 for an example of a
locally finite graph that is not ubiquitous under the subgraph relation.

Ubiquity conjecture. (Andreae 2002)
Every locally finite connected graph is ubiquitous with respect to the
minor relation.

Just as in Theorem 8.2.5 one can show that an end contains in-
finitely many disjoint rays as soon as the number of disjoint rays in it is
not finitely bounded, and similarly for edge-disjoint rays (Exercise 3333).
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Hence, the maxima in our earlier definitions of the vertex- and edge-
degrees of an end exist as claimed. Ends of infinite vertex-degree are
called thick ; ends of finite vertex-degree are thin.thick/thin

The N×N grid , for example, the graph on N2 in which two vertices
(n, m) and (n′, m′) are adjacent if and only if |n− n′|+ |m−m′| = 1,grid

has only one end, which is thick. In fact, the N × N grid is a kind of
prototype for thick ends: every graph with a thick end contains it as a
minor. This is another classical result of Halin, which we prove in the
remainder of this section.

For technical reasons, we shall prove Halin’s theorem for hexagonal
rather than square grids. These may seem a little unwieldy at first, but
have the advantage that they can be found as topological rather than
ordinary minors (Proposition 1.7.2), which makes them much easier to
handle. We shall define the hexagonal grid H∞ so that it is a subgraph
of the N×N grid, and it will be easy to see that, conversely, the N×N
grid is a minor of H∞ (cf. Ex. 4747, Ch. 12.)

To define our standard copy of the hexagonal quarter grid H∞, weH∞

delete from the N×N grid H the vertex (0, 0), the vertices (n, m) with
n > m, and all edges (n, m)(n + 1, m) such that n and m have equal
parity (Fig. 8.2.1). Thus, H∞ consists of the vertical rays

Un
U0 := H [ { (0, m) | 1 � m } ]
Un := H [ { (n, m) | n � m } ] (n � 1)

and between these a set of horizontal edges,

E := { (n, m)(n + 1, m) | n �≡ m (mod 2) } .

To enumerate these edges, as e1, e2, . . . say, we order them colexicograph-e1, e2, . . .

ically: the edge (n, m)(n+1, m) precedes the edge (n′, m′)(n′ +1, m′) if
m < m′, or if m = m′ and n < n′ (Fig. 8.2.1).

Theorem 8.2.6. (Halin 1965)
Whenever a graph contains a thick end, it has a TH∞ subgraph whose
rays belong to that end.

Proof . Given two infinite sets P,P ′ of finite or infinite paths, let us(8.1.2)

write P � P ′ if P ′ consists of final segments of paths in P. (Thus, if P�
is a set of rays, then so is P ′.)

Let G be any graph with a thick end ω. Our task is to find disjointω

rays in ω that can serve as ‘vertical’ (subdivided) rays Un for our desired
grid, and to link these up by suitable disjoint ‘horizontal’ paths. We
begin by constructing a sequence Q0, Q1, . . . of rays (of which we shall
later choose some tails Q′

n as ‘vertical rays’), together with path systems
P(Qi) between the Qi and suitable Qp(i) with p(i) < i (from which we
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U0 U1 U2

(0, 1) (1, 1)

(2, 2)

(3, 3)(0, 3)

(0, 5) e7

e3

e5 e6

e2

e8 e9

e4

e1

Fig. 8.2.1. The hexagonal quarter grid H∞.

shall later choose the ‘horizontal paths’). We shall aim to find the Qn

in ‘supply sets’ R0 � R1 � . . . of unused rays.
We start with any infinite set R0 of disjoint rays in ω; this exists by R0

our assumption that ω is a thick end. At step n ∈ N of the construction,
we shall choose the following:

(1) a ray Qn ∈ ω disjoint from Q0 ∪ . . .∪Qn−1;

(2) if n � 1, an integer p(n) < n;

(3) for every i with 1 � i � n, an infinite set Pn(Qi) of disjoint
Qi–Qp(i) paths, such that

(i)
⋃
Pn(Qi)∩

⋃
Pn(Qj) = ∅ for distinct i, j � n, and

(ii)
⋃
Pn(Qi)∩Qj = ∅ for distinct i, j � n with j �= p(i);

(4) an infinite set Rn+1 � Rn of disjoint rays that are disjoint from
Q0 ∪ . . .∪Qn and from

⋃
Pn(Qi) whenever 1 � i � n.

Thus, while the rays Qi and the predecessor map i �→ p(i) remain
unchanged once defined for some i, the path system Pn(Qi) between Qi

and Qp(i) changes as n increases. More precisely, we shall have

(5) Pn(Qi) ⊆ Pn−1(Qi) whenever 1 � i < n.

Informally, we think of Pn(Qi) as our best candidate at time n for a
system of horizontal paths linking Qi to Qp(i). But, as new rays Qm with
m > n get selected, we may have to change our mind about Pn(Qi) and,
again and again, prune it to a smaller system Pm(Qi). This may leave us
with an empty system at the end of of the construction. Thus, when we
later come to construct our grid, we shall have to choose its horizontal
paths between Qi and Qp(i) from these provisional sets Pn(Qi), not from
their (possibly empty) intersection over all n.
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Let n ∈ N be given. If n = 0, choose any ray from R0 as Q0, and
put R1 := R0 \ {Q0 }. Then conditions (1)–(5) hold for n = 0.

Suppose now that n � 1, and consider a ray R0
n ∈ Rn. By (4), R0

n isR0
n

disjoint from

H := Q0 ∪ . . .∪Qn−1 ∪
n−1⋃
i=1

Pn−1(Qi) .

By the choice of R0 and (4), we know that R0
n ∈ ω. As also Q0 ∈ ω,

there exists an infinite set P of disjoint R0
n–H paths. If possible, we

choose P so that
⋃
P ∩

⋃
Pn−1(Qi) = ∅ for all i � n − 1. We may

then further choose P so that
⋃
P ∩ Qi �= ∅ for only one i, since by

(1) the Qi are disjoint for different i. We define p(n) as this i, and put
Pn(Qj) := Pn−1(Qj) for all j � n− 1.

If P cannot be chosen in this way, we may choose it so that all its
vertices in H lie in

⋃
Pn−1(Qi) for the same i, since by (3) the graphs⋃

Pn−1(Qi) are disjoint for different i. We can then find infinite disjoint
subsets Pn(Qi) of Pn−1(Qi) and P ′ of P. We continue infinitely many of
the paths in P ′ along paths from Pn−1(Qi)\Pn(Qi) to Qi or to Qp(i), to
obtain an infinite set P ′′ of disjoint R0

n–Qi or R0
n–Qp(i) paths, and define

p(n) as i or as p(i) accordingly. The paths in P ′′ then avoid
⋃
Pn(Qj)

for all j � n− 1 (with Pn(Qj) := Pn−1(Qj) for j �= i) and Qj for all
j �= p(n). We rename P ′′ as P, to simplify notation.

In either case, we have now defined Pn(Qi) for all i < n so as toPn(Qi)
for i < n

satisfy (5) for n, chosen p(n) as in (2), and found an infinite set P of
disjoint R0

n–Qp(n) paths that avoid all other Qj and all the sets Pn(Qi).p(n), P
All that can prevent us from choosing R0

n as Qn and P as Pn(Qn) and
Rn+1 � Rn \ {R0

n } is condition (4): if P meets all but finitely many
rays in Rn infinitely, we cannot find an infinite set Rn+1 � Rn of rays
avoiding P.

However, we may now assume the following:

Whenever R ∈ Rn and P ′ � P is an infinite set of R–Qp(n)

paths, there is a ray R′ �= R in Rn that meets P ′ infinitely.
(∗)

For if (∗) failed, we could choose R as Qn and P ′ as Pn(Qn), and select
from every ray R′ �= R in Rn a tail avoiding P ′ to form Rn+1. This
would satisfy conditions (1)–(5) for n.

Consider the paths in P as linearly ordered by the natural order of
their starting vertices on R0

n. This induces an ordering on every P ′ � P.
If P ′ is a set of R–Qp(n) paths for some ray R, we shall call this ordering
of P ′ compatible with R if the ordering it induces on the first vertices of
its paths coincides with the natural ordering of those vertices on R.

Using assumption (∗), let us choose two sequences R0
n, R1

n, . . . and
P0 � P1 � . . . such that every Rk

n is a tail of a ray in Rn and each
Pk is an infinite set of Rk

n–Qp(n) paths whose ordering is compatible
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with Rk
n. The first path of Pk in this ordering will be denoted by Pk, its Pk

starting vertex on Rk
n by vk, and the path in Pk−1 containing Pk by P−

k vk

(Fig. 8.2.2). Clearly, P0 := P is as required for k = 0; put P−
0 := P0. P−

k

For k � 1, we may use (∗) with R ⊇ Rk−1
n and P ′ = Pk−1 to find in Rn

a ray R′ �⊇ Rk−1
n that meets Pk−1 infinitely but has a tail Rk

n avoiding
the finite subgraph P−

0 ∪ . . . ∪ P−
k−1. Let P−

k be a path in Pk−1 that
meets Rk

n and let v be its ‘highest’ vertex on Rk
n, that is, the last vertex

of Rk
n in V (P−

k ). Replacing Rk
n with its tail vRk

n, we can arrange that Rk
n

P−
k has only the vertex v on Rk

n. Then Pk := vP−
k is an Rk

n–Qp(n) path
starting at vk = v. We may now select an infinite set Pk � Pk−1 of
Rk

n–Qp(n) paths compatible with Rk
n and containing Pk is its first path.

Qp(n)

Qn

R3
n R2

n R1
n R0

n

P2

P3

P1

P0

P−
2

P−
1

P3

P2

P1

P0

v−
1

v−
2

v−
3

v1

v2

v0

v3

Fig. 8.2.2. Constructing Qn from condition (∗)

Since P−
k contains vk ∈ Rk

n but Rk
n ∩Pk−1 = ∅, we have P−

k �= Pk−1,
so the Pk are all disjoint. For each k, let v−k+1 denote the starting vertex v−

k

of P−
k+1 on Rk

n, and put Rk
n+1 := v̊−k+1R

k
n. Then let Rk

n+1

Qn := v0R
0
nv−1 P−

1 v1R
1
nv−2 P−

2 v2R
2
n . . .

Pn(Qn) := {P0, P1, P2, . . . }

Rn+1 := {Rk
n+1 | k ∈ N } .

Let us check that these definitions satisfy (1)–(5) for n. We have
already verified (2) and (5). For the disjointness requirements in (1)
and (3), recall that Qn and Pn(Qn) consist of segments of paths in Rn

and P; these are disjoint from Qi and Pn(Qi) for all i < n by definition
of P and (4) for n − 1 (together with (5) for n). For the disjointness
requirement in (4) note that Rk

n+1 does not meet Qn or Pn(Qn) inside
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any path P−
j with j > k + 1, since these P−

j are proper final segments
of Rk

n–Qp(n) paths in Pk. Since Rk
n+1 does not, by definition, meet Qn

or Pn(Qn) inside any path P−
j with j � k +1, condition (4) holds for n.

It remains to use our rays Qn, path systems Pn(Qi), and supply sets
Rn of rays to construct the desired grid. By the infinity lemma (8.1.2),
there is a sequence n0 < n1 < n2 < . . . such that either p(ni) = ni−1 for
every i � 1 or p(ni) = n0 for every i � 1. We treat these two cases in turn.

In the first case, let us assume for notational simplicity that ni = i
for all i, i.e. discard any Qn with n /∈ {n0, n1, . . . }. Then for every i � 1
and every n � i we have an infinite set Pn(Qi) of disjoint Qi–Qi−1 paths.
Our aim is to choose tails Q′

n of our rays Qn that will correspond to the
vertical rays Un ⊆ H∞, and paths S1, S2, . . . between the Q′

n that will
correspond to the horizontal edges e1, e2, . . . of H∞. We shall find the
paths S1, S2, . . . inductively, choosing the Q′

n as needed as we go along
(but also in the order of increasing n, starting with Q′

0 := Q0). At every
step of the construction, we shall have selected only finitely many Sk

and only finitely many Q′
n.

Let k and n be minimal such that Sk and Q′
n are still undefined.

We describe how to choose Sk, and Q′
n if the definition of Sk requires it.

Let i be such that ek joins Ui−1 to Ui in H∞. If i = n, let Q′
n be a tail of

Qn that avoids the finitely many paths S1, . . . , Sk−1; otherwise, Q′
i has

already been defined, and so has Q′
i−1. Now choose Sk ∈ Pn(Qi) ‘high

enough’ between Q′
i−1 and Q′

i to mirror the position of ek in H∞, and
to avoid S1 ∪ . . . ∪ Sk−1. By (3)(ii), Sk will also avoid every other Q′

j

already defined. Since every Q′
n is chosen so as to avoid all previously

defined Sk, and every Sk avoids all previously defined Q′
j (except Q′

i−1

and Q′
i), the Q′

n and Sk are pairwise disjoint for all n, k ∈ N, except
for the required incidences. Our construction thus yields the desired
subdivision of H∞.

It remains to treat the case that p(ni) = n0 for all i � 1. Let us
rename Qn0 as Q, and ni as i−1 for i � 1. Then our sets Pn(Qi) consist
of disjoint Qi–Q paths. We choose rays Q′

n ⊆ Qn and paths Sk induc-
tively as before, except that Sk now consists of three parts: an initial
segment from Pn(Qi−1), followed by a middle segment from Q, and a
final segment from Pn(Qi). Such Sk can again be found, since at every
stage of the construction only a finite part of Q has been used. �

8.3 Homogeneous and universal graphs
Unlike finite graphs, infinite graphs offer the possibility to represent
an entire graph property P by just one specimen, a single graph that
contains all the graphs in P up to some fixed cardinality. Such graphs
are called ‘universal’ for this property.
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More precisely, if � is a graph relation (such as the minor, topolo-
gical minor, subgraph, or induced subgraph relation up to isomorphism),
we call a countable graph G∗ universal in P (for �) if G∗ ∈ P and G � G∗ universal

for every countable graph G ∈ P.
Is there a graph that is universal in the class of all countable graphs?

Suppose a graph R has the following property:

Whenever U and W are disjoint finite sets of vertices in R,
there exists a vertex v ∈ R−U −W that is adjacent in R
to all the vertices in U but to none in W .

(∗)

Then R is universal even for the strongest of all graph relations, the
induced subgraph relation. Indeed, in order to embed a given countable
graph G in R we just map its vertices v1, v2, . . . to R inductively, making
sure that vn gets mapped to a vertex v ∈ R adjacent to the images of
all the neighbours of vn in G [ v1, . . . , vn ] but not adjacent to the image
of any non-neighbour of vn in G [ v1, . . . , vn ]. Clearly, this map is an
isomorphism between G and the subgraph of R induced by its image.

Theorem 8.3.1. (Erdős and Rényi 1963) [ 11.3.5 ]

There exists a unique countable graph R with property (∗). R

Proof . To prove existence, we construct a graph R with property (∗)
inductively. Let R0 := K1. For all n ∈ N, let Rn+1 be obtained from
Rn by adding for every set U ⊆ V (Rn) a new vertex v joined to all the
vertices in U but to none outside U . (In particular, the new vertices form
an independent set in Rn+1.) Clearly R :=

⋃
n∈N

Rn has property (∗).
To prove uniqueness, let R = (V, E) and R′ = (V ′, E′) be two graphs

with property (∗), each given with a fixed vertex enumeration. We con-
struct a bijection ϕ:V →V ′ in an infinite sequence of steps, defining ϕ(v)
for one new vertex v ∈ V at each step.

At every odd step we look at the first vertex v in the enumeration
of V for which ϕ(v) has not yet been defined. Let U be the set of those
of its neighbours u in R for which ϕ(u) has already been defined. This
is a finite set. Using (∗) for R′, find a vertex v′ ∈ V ′ that is adjacent in
R′ to all the vertices in ϕ(U) but to no other vertex in the image of ϕ
(which, so far, is still a finite set). Put ϕ(v) := v′.

At even steps in the definition process we do the same thing with
the roles of R and R′ interchanged: we look at the first vertex v′ in
the enumeration of V ′ that does not yet lie in the image of ϕ, and set
ϕ(v) = v′ for a vertex v that matches the adjacencies and non-adjacencies
of v′ among the vertices for which ϕ (resp. ϕ−1) has already been defined.

By our minimum choices of v and v′, the bijection gets defined on
all of V and all of V ′, and it is clearly an isomorphism. �
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The graph R in Theorem 8.3.1 is usually called the Rado graph,Rado graph

named after Richard Rado who gave one of its earliest explicit definitions.
The method of constructing a bijection in alternating steps, as in the
uniqueness part of the proof, is known as the back-and-forth technique.

The Rado graph R is unique in another rather fascinating respect.
We shall hear more about this in Chapter 11.3, but in a nutshell it
is the following. If we generate a countably infinite random graph by
admitting its pairs of vertices as edges independently with some fixed
positive probability p ∈ (0, 1), then with probability 1 the resulting graph
has property (∗), and is hence isomorphic to R ! In the context of infinite
graphs, the Rado graph is therefore also called the (countably infinite)

‘the’
random
graph random graph.

As one would expect of a random graph, the Rado graph shows
a high degree of uniformity. One aspect of this is its resilience against
small changes: the deletion of finitely many vertices or edges, and similar
local changes, leave it ‘unchanged’ and result in just another copy of R
(Exercise 4141).

The following rather extreme aspect of uniformity, however, is still
surprising: no matter how we partition the vertex set of R into two
parts, at least one of the parts will induce another isomorphic copy of R.
Trivial examples aside, the Rado graph is the only countable graph with
this property, and hence unique in yet another respect:

Proposition 8.3.2. The Rado graph is the only countable graph G
other than Kℵ0 and Kℵ0 such that, no matter how V (G) is partitioned
into two parts, one of the parts induces an isomorphic copy of G.

Proof . We first show that the Rado graph R has the partition prop-
erty. Let {V1, V2 } be a partition of V (R). If (∗) fails in both R [V1 ]
and R [V2 ], say for sets U1, W1 and U2, W2, respectively, then (∗) fails
for U = U1 ∪U2 and W = W1 ∪W2 in R, a contradiction.

To show uniqueness, let G = (V, E) be a countable graph with the
partition property. Let V1 be its set of isolated vertices, and V2 the rest.
If V1 �= ∅ then G �
 G [V2 ], since G has isolated vertices but G [V2 ] does
not. Hence G = G [V1 ] 
 Kℵ0 . Similarly, if G has a vertex adjacent to
all other vertices, then G = Kℵ0 .

Assume now that G has no isolated vertex and no vertex joined
to all other vertices. If G is not the Rado graph then there are sets
U, W for which (∗) fails in G; choose these with |U ∪ W | minimum.
Assume first that U �= ∅, and pick u ∈ U . Let V1 consist of u and all
vertices outside U ∪ W that are not adjacent to u, and let V2 contain
the remaining vertices. As u is isolated in G [V1 ], we have G �
 G [V1 ]
and hence G 
 G [V2 ]. By the minimality of |U ∪W |, there is a vertex
v ∈ G [V2 ]−U −W that is adjacent to every vertex in U \ {u } and to
none in W . But v is also adjacent to u, because it lies in V2. So U , W
and v satisfy (∗) for G, contrary to assumption.
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Finally, assume that U = ∅. Then W �= ∅. Pick w ∈ W , and consider
the partition {V1, V2 } of V where V1 consists of w and all its neighbours
outside W . As before, G �
 G [V1 ] and hence G 
 G [V2 ]. Therefore
U and W \ {w } satisfy (∗) in G [V2 ], with v ∈ V2 � W say, and then
U, W, v satisfy (∗) in G. �

Another indication of the high degree of uniformity in the structure
of the Rado graph is its large automorphism group. For example, R is
easily seen to be vertex-transitive: given any two vertices x and y, there
is an automorphism of R mapping x to y.

In fact, much more is true: using the back-and-forth technique, one
can easily show that the Rado graph is homogeneous: every isomorphism homo-

geneous
between two finite induced subgraphs can be extended to an automor-
phism of the entire graph (Exercise 4242).

Which other countable graphs are homogeneous? The complete
graph Kℵ0 and its complement are again obvious examples. Moreover,
for every integer r � 3 there is a homogeneous Kr-free graph Rr, con-
structed as follows. Let Rr

0 := K1, and let Rr
n+1 be obtained from Rr

n by
joining, for every subgraph H �
 Kr−1 of Rr

n, a new vertex vH to every
vertex in H. Then let Rr :=

⋃
n∈N

Rr
n. Clearly, as the new vertices Rr

vH of Rr
n+1 are independent, there is no Kr in Rr

n+1 if there was none
in Rr

n, so Rr �⊇ Kr by induction on n. Just like the Rado graph, Rr is
clearly universal among the Kr-free countable graphs, and it is clearly
homogeneous.

By the following deep theorem of Lachlan and Woodrow, the count-
able homogeneous graphs we have seen so far are essentially all:

Theorem 8.3.3. (Lachlan & Woodrow 1980)
Every countably infinite homogeneous graph is one of the following:

• a disjoint union of complete graphs of the same order, or the
complement of such a graph;

• the graph Rr or its complement, for some r � 3;

• the Rado graph R.

To conclude this section, let us return to our original problem: for
which graph properties is there a graph that is universal with this prop-
erty? Most investigations into this problem have addressed it from a
more general model-theoretic point of view, and have therefore been
based on the strongest of all graph relations, the induced subgraph re-
lation. Unfortunately, most of these results are negative; see the notes.

From a graph-theoretic point of view, it seems more promising to
look instead for universal graphs for the weaker subgraph relation, or
even the topological minor or minor relation. For example, while there
is no universal planar graph for subgraphs or induced subgraphs, there
is one for minors:
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Theorem 8.3.4. (Diestel & Kühn 1999)
There exists a universal planar graph for the minor relation.

So far, this theorem is the only one of its kind. But it should be
possible to find more. For instance: for which graphs X is there a minor-
universal graph in the class Forb�(X) = {G | X �� G }?

8.4 Connectivity and matching

In this section we look at infinite versions of Menger’s theorem and of the
matching theorems from Chapter 2. This area of infinite graph theory is
one of its best developed fields, with several deep results. One of these,
however, stands out among the rest: a version of Menger’s theorem that
had been conjectured by Erdős and was proved only recently by Aharoni
and Berger. The techniques developed for its proof inspired, over the
years, much of the theory in this area.

We shall prove this theorem for countable graphs, which will take
up most of this section. Although the countable case is much easier, it
is still quite hard and will give a good impression of the general proof.
We then wind up with an overview of infinite matching theorems and a
conjecture conceived in the same spirit.

Recall that Menger’s theorem, in its simplest form, says that if A
and B are sets of vertices in a finite graph G, not necessarily disjoint,
and if k = k(G, A, B) is the minimum number of vertices separating A
from B in G, then G contains k disjoint A–B paths. (Clearly, it cannot
contain more.) The same holds, and is easily deduced from the finite
case, when G is infinite but k is still finite:

Proposition 8.4.1. Let G be any graph, k ∈ N, and let A, B be two
sets of vertices in G that can be separated by k but no fewer than k
vertices. Then G contains k disjoint A–B paths.

Proof . By assumption, every set of disjoint A–B paths has cardinality at(3.3.1)

most k. Choose one, P say, of maximum cardinality. Suppose |P| < k.
Then no set X consisting of one vertex from each path in P separates A
from B. For each X, let PX be an A–B path avoiding X. Let H be the
union of

⋃
P with all these paths PX . This is a finite graph in which no

set of |P| vertices separates A from B. So H ⊆ G contains more than
|P| paths from A to B by Menger’s theorem (3.3.1), which contradicts
the choice of P. �

When k is infinite, however, the result suddenly becomes trivial.
Indeed, let P be any maximal set of disjoint A–B paths in G. Then the
union of all these paths separates A from B, so P must be infinite. But
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then the cardinality of this union is no bigger than |P|. Thus, P contains
|P| =

∣∣ ⋃
P

∣∣ � k disjoint A–B paths, as desired.
Of course, this is no more than a trick played on us by infinite car-

dinal arithmetic: although, numerically, the A–B separator consisting of
all the inner vertices of paths in P is no bigger than |P|, it uses far more
vertices to separate A from B than should be necessary. Or put another
way: when our path systems and separators are infinite, their cardinal-
ities alone are no longer a sufficiently fine tool to distinguish carefully
chosen ‘small’ separators from unnecessarily large and wasteful ones.

To overcome this problem, Erdős suggested an alternative form of
Menger’s theorem, which for finite graphs is clearly equivalent to the
standard version. Recall that an A–B separator X is said to lie on a set P
of disjoint A–B paths if X consists of a choice of exactly one vertex from
each path in P. The following so-called Erdős-Menger conjecture, now

Erdős-
Menger

conjecturea theorem, influenced much of the development of infinite connectivity
and matching theory:

Theorem 8.4.2. (Aharoni & Berger 2005)
Let G be any graph, and let A, B ⊆ V (G). Then G contains a set P of
disjoint A–B paths and an A–B separator on P.

The next few pages give a proof of Theorem 8.4.2 for countable G.

Of the three proofs we gave for the finite case of Menger’s theorem,
only the last has any chance of being adaptable to the infinite case: the
others were by induction on |P| or on |G|+ ‖G‖, and both these param-
eters may now be infinite. The third proof, however, looks more promis-
ing: recall that, by Lemmas 3.3.2 and 3.3.3, it provided us with a tool to
either find a separator on a given system of A–B paths, or to construct
another system of A–B paths that covers more vertices in A and in B.

Lemmas 3.3.2 and 3.3.3 (whose proofs work for infinite graphs too)
will indeed form a cornerstone of our proof for Theorem 8.4.2. However,
it will not do just to apply these lemmas infinitely often. Indeed, al-
though any finite number of applications of Lemma 3.3.2 leaves us with
another system of disjoint A–B paths, an infinite number of iterations
may leave nothing at all: each edge may be toggled on and off infinitely
often by successive alternating paths, so that no ‘limit system’ of A–B
paths will be defined. We shall therefore take another tack: starting at A,
we grow simultaneously as many disjoint paths towards B as possible.

To make this precise, we need some terminology. Given a set X ⊆
V (G), let us write GX→B for the subgraph of G induced by X and all GX→B

the components of G−X that meet B.
Let W = (Wa | a ∈ A ) be a family of disjoint paths such that every

Wa starts in a. We call W an A → B wave in G if the set Z of final wave

vertices of paths in W separates A from B in G. (Note that W may
contain infinite paths, which have no final vertex.) Sometimes, we shall
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wish to consider A→B waves in subgraphs of G that contain A but not
all of B. For this reason we do not formally require that B ⊆ V (G).

A

GX→B

B

X

Z

Fig. 8.4.1. A small A→B wave W with boundary X

When W is a wave, then the set X ⊆ Z of those vertices in Z
that either lie in B or have a neighbour in GZ→B − Z is a minimal
A–B separator in G; note that z ∈ Z lies in X if and only if it can be
linked to B by a path that has no vertex other than z on W. We call
X the boundary of W, and often use (W, X) as shorthand for the waveboundary

(W, X)
W together with its boundary X. If all the paths in W are finite and
X = Z, we call the wave W large; otherwise it is small . We shall calllarge/small

W proper if at least one of the paths in W is non-trivial, or if all itsproper

paths are trivial but its boundary is a proper subset of A. Every small
wave, for example, is proper. Note that while some A→B wave always
exists, e.g. the family ( { a } | a ∈ A ) of singleton paths, G need not
have a proper A→B wave. (For example, if A consists of two vertices of
G = K10 and B of three other vertices, there is no proper A→B wave.)

If (U , X) is an A → B wave in G and (V, Y ) is an X → B wave
in GX→B , then the family W = U + V obtained from U by appendingU +V
the paths of V (to those paths of U that end in X) is clearly an A→B
wave in G, with boundary Y . Note that W is large if and only if both
V and U are large. W is greater than U in the following sense.

Given two path systems U = (Ua | a ∈ A ) and W = (Wa | a ∈ A ),
write U � W if Ua ⊆ Wa for every a ∈ A. Given a chain (Wi, Xi)i∈I of�
waves in this ordering, with Wi = (W i

a | a ∈ A ) say, let W∗ = (W ∗
a |

a ∈ A ) be defined by W ∗
a :=

⋃
i∈I W i

a. Then W∗ is an A → B wave:
any A–B path is finite but meets every Xi, so at least one of its vertices
lies in Xi for arbitrarily large (Wi, Xi) and hence is the final vertex of
a path in W∗. Clearly Wi � W∗ for all i ∈ I; we call W∗ the limit oflimit wave

the waves Wi.
As every chain of A→B waves is bounded above by its limit wave,

Zorn’s lemma implies that G has a maximal A→B wave W; let X bemaximal
wave

its boundary. This wave (W, X) forms the first step in our proof for
Theorem 8.4.2: if we can now find disjoint paths in GX→B linking all
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the vertices of X to B, then X will be an A–B separator on these paths
preceded by the paths of W that end in X.

By the maximality of W, there is no proper X →B wave in GX→B .
For our proof it will thus suffice to prove the following (renaming X as A):

Lemma 8.4.3. If G has no proper A→B wave, then G contains a set
of disjoint A–B paths linking all of A to B.

Our approach to the proof of Lemma 8.4.3 is to enumerate the
vertices in A =: { a1, a2, . . . }, and to find the required A–B paths Pn = a1, a2, . . .

an . . . bn in turn for n = 1, 2, . . . . Since our premise in Lemma 8.4.3 is Pn

that G has no proper A→B wave, we would like to choose P1 so that
G−P1 has no proper (A�{ a1 })→B wave: this would restore the same
premise to G−P1, and we could proceed to find P2 in G−P1 in the same
way.

We shall not be able to choose P1 just like this, but we shall be able
to do something almost as good. We shall construct P1 so that deleting
it (as well as a few more vertices outside A) leaves a graph that has
a large maximal (A � { a1 })→B wave (W, A′). We then earmark the
paths Wn = an . . . a′

n (n � 2) of this wave as initial segments for the
paths Pn. By the maximality of W, there is no proper A′ →B wave in
GA′→B . In other words, we have restored our original premise to GA′→B ,
and can find there an A′–B path P ′

2 = a′
2 . . . b2. Then P2 := a2W2a

′
2P

′
2

is our second path for Lemma 8.4.3, and we continue inductively inside
GA′→B .

Given a set Â of vertices in G, let us call a vertex a /∈ Â linkable linkable

for (G, Â, B) if G − Â contains an a–B path P and a set X ⊇ V (P )
of vertices such that G − X has a large maximal Â → B wave. (The
first such a we shall be considering will be a1, and Â will be the set
{ a2, a3, . . . }.)

Lemma 8.4.4. Let a∗ ∈ A and Â := A� { a∗ }, and assume that G has
no proper A→B wave. Then a∗ is linkable for (G, Â, B).

Proof of Lemma 8.4.3 (assuming Lemma 8.4.4). Let G be as in
Lemma 8.4.3, i.e. assume that G has no proper A → B wave. We
construct subgraphs G1, G2, . . . of G satisfying the following statement
(Fig. 8.4.2):

Gn contains a set An = { an
n, an

n+1, a
n
n+2, . . . } of distinct

vertices such that Gn has no proper An → B wave. In
G there are disjoint paths Pi (i < n) and Wn

i (i � n)
starting at ai. The Pi are disjoint from Gn and end in B.
The Wn

i end in an
i and are otherwise disjoint from Gn.

(∗)

Clearly, the paths P1, P2, . . . will satisfy Lemma 8.4.3.
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P1

an
n+1
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n

Gn

A

an

an−1

W n
i

Pn−1

An

Fig. 8.4.2. Gn has no proper An →B wave

Let G1 := G, and put a1
i := ai and W 1

i := { ai } for all i � 1.
Since by assumption G has no proper A → B wave, these definitions
satisfy (∗) for n = 1. Suppose now that (∗) has been satisfied for n.
Put Ân := An � { an

n }. By Lemma 8.4.4 applied to Gn, we can find in
Gn − Ân an an

n–B path P and a set Xn ⊇ V (P ) such that Gn −Xn has
a large maximal Ân →B wave (W, An+1). Let Pn be the path Wn

n ∪P .
For i � n + 1, let Wn+1

i be Wn
i followed by the path of W starting

at an
i , and call its last vertex an+1

i . By the maximality of W there is no
proper An+1 →B wave in Gn+1 := (Gn −Xn)An+1→B , so (∗) is satisfied
for n + 1. �

To complete our proof of Theorem 8.4.2, it remains to prove
Lemma 8.4.4. For this, we need another lemma:

Lemma 8.4.5. Let x be a vertex in G−A. If G has no proper A→B
wave but G−x does, then every A→B wave in G−x is large.

Proof . Suppose G − x has a small A → B wave (W, X). Put B′ :=(3.3.2)
(3.3.3)

X ∪{x }, and let P denote the set of A–X paths in W (Fig. 8.4.3). If G
contains an A–B′ separator S on P, then replacing in W every P ∈ P

x

B′

S

P

W

BA X

Fig. 8.4.3. A hypothetical small A→B wave in G−x
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with its initial segment ending in S we obtain a small (and hence proper)
A → B wave in G, which by assumption does not exist. By Lemmas
3.3.3 and 3.3.2, therefore, G contains a set P ′ of disjoint A–B′ paths
exceeding P. The set of last vertices of these paths contains X properly,
and hence must be all of B′ = X ∪ {x }. But B′ separates A from B
in G, so we can turn P ′ into an A→B wave in G by adding as singleton
paths any vertices of A it does not cover. As x lies on P ′ but not in A,
this is a proper wave, which by assumption does not exist. �

Proof of Lemma 8.4.4. We inductively construct trees T0 ⊆ T1 ⊆ . . .
in G− (Â∪B) and path systems W0 � W1 � . . . in G so that each Wn Wn

is a large maximal Â→B wave in G−Tn.
Let W0 := ({ a } | a ∈ Â). Clearly, W0 is an Â→B wave in G−a∗,

and it is large and maximal: if not, then G − a∗ has a proper Â → B
wave, and adding the trivial path { a∗ } to this wave turns it into a
proper A → B wave (which by assumption does not exist). If a∗ ∈ B,
the existence of W0 makes a∗ linkable for (G, Â, B). So we assume that
a∗ /∈ B. Now T0 := { a∗ } and W0 are as desired.

Suppose now that Tn and Wn have been defined, and let An denote An

the set of last vertices of the paths in Wn. Since Wn is large, An is its
boundary, and since Wn is maximal, Gn := (G−Tn)An→B has no proper Gn

An →B wave (Fig. 8.4.4).

..
.

..
. ..
.n

..
.

..
.

a∗

An

B

Tn tn

Â

Gn An+1

Gn+1

Pn

Pn

xn

pn

W
W

Fig. 8.4.4. As Wn is maximal, Gn has no proper An →B wave

Note that An does not separate A from B in G: if it did, then
Wn ∪ { a∗ } would be a small A → B wave in G, which does not ex-
ist. Hence, G−An contains an A–B path P , which meets Tn because
(Wn, An) is a wave in G−Tn. Let Pn be such a path P , chosen so that Pn

its vertex pn following its last vertex tn in Tn is chosen minimal in some pn, tn

fixed enumeration of V (G). Note that pnPn ⊆ Gn −An, by definition
of Gn.

Now P ′
n = a∗TntnPn is an a∗–B path in G− Â−An. If Gn − pnPn

has no proper An →B wave, then Wn is large and maximal not only in
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G−Tn but also in G−Tn − pnPn, and a∗ is linkable for (G, Â, B) with
a∗–B path P ′

n and X = V (Tn ∪ pnPn). We may therefore assume that
Gn − pnPn has a proper An →B wave.

Let xn be the first vertex on pnPn such that Gn − pnPnxn has a
proper An →B wave. Then G′

n := Gn − pnPnx̊n has no proper An →B
wave but G′

n − xn does, so by Lemma 8.4.5 every An → B wave in
G′

n − xn = Gn − pnPnxn is large. Let W be a maximal such wave, put
Wn+1 := Wn +W, and let Tn+1 := Tn ∪ tnPnxn. Then Wn+1 is a largeTn+1

maximal Â→B wave in G−Tn+1. If xn ∈ B, then Tn+1 contains a path
linking a∗ to B, which satisfies the lemma with Wn+1 and X = V (Tn+1).
We may therefore assume that xn /∈ B, giving Tn+1 ⊆ G− (Â∪B) as
required.

Put T ∗ :=
⋃

n∈N
Tn. Then the Wn are Â→B waves in G−T ∗; let

(W∗, A∗) be their limit. Our aim is to show that A∗ separates A from
B not only in G− T ∗ but even in G: then (W∗ ∪ { a∗} , A∗) is a small
A→B wave in G, a contradiction.

Suppose there exists an A–B path Q in G − A∗. Let t be its last
vertex in T ∗. Since T ∗ does not meet B, there is a vertex p following t
on Q. Since T ∗ contains every pn but not p, the path P = a∗T ∗tQ was
never chosen as Pn. Now let n be large enough that t ∈ Tn, and that p
precedes pn in our fixed enumeration of V (G). The fact that P was not
chosen as Pn then means that its portion pQ outside Tn meets An, say in
a vertex q. Now q /∈ A∗ by the choice of Q. Let W be the path in Wn that
joins Â to q; this path too avoids A∗. But then WqQ contains an Â–B
path in G−T ∗ avoiding A∗, which contradicts the definition of A∗. �

The proof of Theorem 8.4.2 for countable G is now complete.

Turning now to matching, let us begin with a simple problem that is
intrinsically infinite. Given two sets A, B and injective functions A→B
and B→A, is there necessarily also a bijection between A and B? Indeed
there is—this is the famous Cantor-Bernstein theorem from elementary
set theory. Recast in terms of matchings, the proof becomes very simple:

Proposition 8.4.6. Let G be a bipartite graph, with bipartition {A, B }
say. If G contains a matching of A and a matching of B, then G has a
1-factor.

Proof . Let H be the multigraph on V (G) whose edge set is the disjoint
union of the two matchings. (Thus, any edge that lies in both matchings
becomes a double edge in H.) Every vertex in H has degree 1 or 2. In
fact, it is easy to check that every component of H is an even cycle or an
infinite path. Picking every other edge from each component, we obtain
a 1-factor of G. �



8.4 Connectivity and matching 223

The corresponding path problem in non-bipartite graphs, with sets
of disjoint A–B paths instead of matchings, is less trivial. Let us say
that a set P of paths in G covers a set U of vertices if every vertex in U covers

is an endvertex of a path in P.

Theorem 8.4.7. (Pym 1969)
Let G be a graph, and let A, B ⊆ V (G). Suppose that G contains two
sets of disjoint A–B paths, one covering A and one covering B. Then G
contains a set of disjoint A–B paths covering A∪B.

Some hints for a proof of Theorem 8.4.7 are included with Exercise 5252.

Next, let us see how the standard matching theorems for finite
graphs—König, Hall, Tutte, Gallai-Edmonds—extend to infinite graphs.
For locally finite graphs, they all have straightforward extensions by
compactness; see Exercises 1414–1616. But there are also very satisfactory
extensions to graphs of arbitrary cardinality. Their proofs form a co-
herent body of theory and are much deeper, so we shall only be able to
state those results and point out how some of them are related. But, as
with Menger’s theorem, the statements themselves are interesting too:
finding the ‘right’ restatement of a given finite result to make a substan-
tial infinite theorem is by no means easy, and most of them were found
only as the theory itself developed over the years.

Let us start with bipartite graphs. The following Erdős-Menger-type
extension of König’s theorem (2.1.1) is now a corollary of Theorem 8.4.2:

Theorem 8.4.8. (Aharoni 1984)
Every bipartite graph has a matching, M say, and a vertex cover of its
edge set that consists of exactly one vertex from every edge in M .

What about an infinite version of the marriage theorem (2.1.2)?
The finite theorem says that a matching exists as soon as every subset
S of the first partition class has enough neighbours in the second. But
how do we measure ‘enough’ in an infinite graph? Just as in Menger’s
theorem, comparing cardinalities is not enough (Exercise 1515).

However, there is a neat way of rephrasing the marriage condition
for a finite graph without appealing to cardinalities. Call a subset X of
one partition class matchable to a subset Y of the other if the subgraph matchable

spanned by X and Y contains a matching of X. Now if S is minimal
with |S| > |N(S)|, then S is ‘larger’ than N(S) in the sense that S is
not matchable to N(S) but N(S) is matchable to S—by the marriage
theorem! (Indeed, by the minimality of S and the marriage theorem, any
S′ ⊆ S with |S′| = |S|− 1 can be matched to N(S). As |S′| = |S|− 1 �
|N(S)|, this matching covers N(S).) Thus, if there is any obstruction S
to a perfect matching of the type |S| > |N(S)|, there is also one where
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S is larger than N(S) in this other sense: that S is not matchable to
N(S) but N(S) is matchable to S.

Rewriting the marriage condition in this way does indeed yield an
infinite version of Hall’s theorem, which follows from Theorem 8.4.8 just
as the marriage theorem follows from König’s theorem:

Corollary 8.4.9. A bipartite graph with bipartition {A, B } contains a
matching of A unless there is a set S ⊆ A such that S is not matchable
to N(S) but N(S) is matchable to S.

Proof . Consider a matching M and a cover U as in Theorem 8.4.8. Then
U ∩B ⊇ N(A � U) is matchable to A � U , by the edges of M . And if
A�U is matchable to N(A�U), then adding this matching to the edges
of M incident with A∩U yields a matching of A. �

Applied to a finite graph, Corollary 8.4.9 implies the marriage
theorem: if N(S) is matchable to S but not conversely, then clearly
|S| > |N(S)|.

Let us now turn to non-bipartite graphs. If a finite graph has a 1-
factor, then the set of vertices covered by any partial matching—one thatpartial

matching
leaves some vertices unmatched—can be increased by an augmenting
path, an alternating path whose first and last vertex are unmatched
(Ex. 11, Ch. 2). In an infinite graph we no longer insist that augmenting
paths be finite, as long as they have a first vertex. Then, starting at anyaugmenting

path
unmatched vertex with an edge of the 1-factor that we are assuming to
exist, we can likewise find a unique maximal alternating path that will
either be a ray or end at another unmatched vertex. Switching edges
along this path we can then improve our current matching to increase
the set of matched vertices, just as in a finite graph.

The existence of an inaugmentable partial matching, therefore, is an
obvious obstruction to the existence of a 1-factor. The following theorem
asserts that this obstruction is the only one:

Theorem 8.4.10. (Steffens 1977)
A countable graph has a 1-factor if and only if for every partial matching
there exists an augmenting path.

Unlike its finite counterpart, Theorem 8.4.10 is far from trivial: aug-
menting a given matching ‘blindly’ need not lead to a well-defined match-
ing at limit steps, since a given edge may get toggled on and off infinitely
often (in which case its status will be undefined at the limit—example?).
We therefore cannot simply find the desired 1-factor inductively.

In fact, Theorem 8.4.10 does not extend to uncountable graphs
(Exercise 5555). However, from the obstruction of inaugmentable par-
tial matchings one can derive a Tutte-type condition that does extend.
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Given a set S of vertices in a graph G, let us write C′
G−S for the set of C′

G−S

factor-critical components of G−S, and G′
S for the bipartite graph with

vertex set S ∪C′
G−S and edge set { sC | ∃ c ∈ C : sc ∈ E(G) }. G′

S

Theorem 8.4.11. (Aharoni 1988)
A graph G has a 1-factor if and only if, for every set S ⊆ V (G), the set
C′

G−S is matchable to S in G′
S .

Applied to a finite graph, Theorem 8.4.11 implies Tutte’s 1-factor
theorem (2.2.1): if C′

G−S is not matchable to S in G′
S , then by the

marriage theorem there is a subset S′ of S that sends edges to more
than |S′| components in C′

G−S that are also components of G−S′, and
these components are odd because they are factor-critical.

Theorems 8.4.8 and 8.4.11 also imply an infinite version of the
Gallai-Edmonds theorem (2.2.3):

Corollary 8.4.12. Every graph G = (V, E) has a set S of vertices that
is matchable to C′

G−S in G′
S and such that every component of G − S

not in C′
G−S has a 1-factor. Given any such set S, the graph G has a

1-factor if and only if C′
G−S is matchable to S in G′

S .

Proof . Given a pair (S, M) where S ⊆ V and M is a matching of S
in G′

S , and given another such pair (S′, M ′), write (S, M) � (S′, M ′) if

S ⊆ S′ ⊆ V �
⋃

{V (C) | C ∈ C′
G−S }

and M ⊆ M ′. Since C′
G−S ⊆ C′

G−S′ for any such S and S′, Zorn’s lemma
implies that there is a maximal such pair (S, M). S, M

For the first statement, we have to show that every component C
of G − S that is not in C′

G−S has a 1-factor. If it does not, then by
Theorem 8.4.11 there is a set T ⊆ V (C) such that C′

C−T is not matchable
to T in C ′

T . By Corollary 8.4.9, this means that C′
C−T has a subset

C that is not matchable in C ′
T to the set T ′ ⊆ T of its neighbours,

while T ′ is matchable to C; let M ′ be such a matching. Then (S, M) <
(S ∪T ′, M ∪M ′), contradicting the maximality of (S, M).

Of the second statement, only the backward implication is non-
trivial. Our assumptions now are that C′

G−S is matchable to S in G′
S

and vice versa (by the choice of S), so Proposition 8.4.6 yields that G′
S

has a 1-factor. This defines a matching of S in G that picks one vertex
xC from every component C ∈ C′

G−S and leaves the other components
of G− S untouched. Adding to this matching a 1-factor of C − xC for
every C ∈ C′

G−S and a 1-factor of every other component of G− S, we
obtain the desired 1-factor of G. �
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Infinite matching theory may seem rather mature and complete as
it stands, but there are still fascinating unsolved problems in the Erdős-
Menger spirit concerning related discrete structures, such as posets or
hypergraphs. We conclude with one about graphs.

Call an infinite graph G perfect if every induced subgraph H ⊆ G
has a complete subgraph K of order χ(H), and strongly perfect if K

strongly
perfect

can always be chosen so that it meets every colour class of some χ(H)-
colouring of H. (Exercise 5858 gives an example of a perfect graph that is
not strongly perfect.) Call G weakly perfect if the chromatic number ofweakly

perfect
every induced subgraph H ⊆ G is at most the supremum of the orders
of its complete subgraphs.

Conjecture. (Aharoni & Korman 1993)
Every weakly perfect graph without infinite independent sets of vertices
is strongly perfect.

8.5 The topological end space

In this last section we shall develop a deeper understanding of the global
structure of infinite graphs, especially locally finite ones, that can be
attained only by studying their ends. This structure is intrinsically to-
pological, but no more than the most basic concepts of point-set topology
will be needed.

Our starting point will be to make precise the intuitive idea that
the ends of a graph are the ‘points at infinity’ to which its rays converge.
To do so, we shall define a topological space |G| associated with a graph|G|
G = (V, E, Ω) and its ends.8 By considering topological versions of
paths, cycles and spanning trees in this space, we shall then be able to
extend to infinite graphs some parts of finite graph theory that would not
otherwise have infinite counterparts (see the notes for more examples).
Thus, the ends of an infinite graph turn out to be more than a curious
new phenomenon: they form an integral part of the picture, without
which it cannot be properly understood.

To build the space |G| formally, we start with the set V ∪Ω. For
every edge e = uv we add a set e̊ = (u, v) of continuum many points, mak-(u, v)

ing these sets e̊ disjoint from each other and from V ∪Ω. We then choose
for each e some fixed bijection between e̊ and the real interval (0, 1), and
extend this bijection to one between [u, v ] := {u }∪ e̊∪{ v } and [ 0, 1 ].[ u, v ]

This bijection defines a metric on [u, v ]; we call [ u, v ] a topological edge
with inner points x ∈ e̊. Given any F ⊆ E we write F̊ :=

⋃
{ e̊ | e ∈ F }.F̊

8 The notation of |G| comes from topology and clashes with our notation for the
order of G. But there is little danger of confusion, so we keep both.
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When we speak of a ‘graph’ H ⊆ G, we shall often also mean its corre-
sponding point set V (H)∪ E̊(H).

Having thus defined the point set of |G|, let us choose a basis of
open sets to define its topology. For every edge uv, declare as open all
subsets of (u, v) that correspond, by our fixed bijection between (u, v)
and (0, 1), to an open set in (0, 1). For every vertex u and ε > 0, declare
as open the ‘open star around u of radius ε’, that is, the set of all points
on edges [ u, v ] at distance less than ε from u, measured individually for
each edge in its metric inherited from [ 0, 1 ]. Finally, for every end ω and
every finite set S ⊆ V , there is a unique component C(S, ω) of G−S that C(S, ω)

contains a ray from ω. Let Ω(S, ω) := {ω′ ∈ Ω | C(S, ω′) = C(S, ω) }.
For every ε > 0, write E̊ε(S, ω) for the set of all inner points of S–
C(S, ω) edges at distance less than ε from their endpoint in C(S, ω).
Then declare as open all sets of the form

Ĉε(S, ω) := C(S, ω)∪Ω(S, ω)∪ E̊ε(S, ω) . Ĉε(S, ω)

This completes the definition of |G|, whose open sets are the unions of
the sets we explicitly chose as open above.

Any subsets of |G| we consider, including those that are ‘graphs’ in
their own right (i.e., unions of vertices and topological edges of G), will
carry the subspace topology in |G|. Such sets may contain ends of G,
quite independently of whether they contain any rays from such ends:
they are just subsets of the point set |G|.9 A standard subspace of |G| standard

subspace
is one that contains every edge (including its endvertices) of which it
contains an inner point.

The closure of a set X ⊆ |G| will be denoted by X. For example, closure X

V = V ∪Ω (because every neighbourhood of an end contains a vertex),
and the closure of a ray is obtained by adding its end. More generally, if
X ⊆ V is the set of teeth of a comb then X contains the end of its spine,
while conversely for every end ω ∈ X and every ray R ∈ ω there is a comb
with spine R and teeth in X (Exercise 5959). In particular, the closure of
the subgraph C(S, ω) considered above is the set C(S, ω)∪Ω(S, ω).

By definition, |G| is always Hausdorff. When G is connected and
locally finite, then |G| is also compact:10

Proposition 8.5.1. If G is connected and locally finite, then |G| is a
compact Hausdorff space.

Proof . Let O be an open cover of |G|; we show that O has a finite (8.1.2)

subcover. Pick a vertex v0 ∈ G, write Dn for the (finite) set of vertices
at distance n from v0, and put Sn := D0 ∪ . . .∪Dn−1. For every v ∈ Dn,
let C(v) denote the component of G−Sn containing v, and let Ĉ(v) be

9 Except in Exercise 6262, we never consider the ends of subgraphs as such.
10 Topologists call |G| the Freudenthal compactification of G.
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its closure together with all inner points of C(v)–Sn edges. Then G [Sn ]
and these Ĉ(v) together partition |G|.

We wish to prove that, for some n, each of the sets Ĉ(v) with v ∈ Dn

is contained in some O(v) ∈ O. For then we can take a finite subcover
of O for G [Sn ] (which is compact, being a finite union of edges and
vertices), and add to it these finitely many sets O(v) to obtain the desired
finite subcover for |G|.

Suppose there is no such n. Then for each n the set Vn of vertices
v ∈ Dn such that no set from O contains Ĉ(v) is non-empty. Moreover,
for every neighbour u ∈ Dn−1 of v ∈ Vn we have C(v) ⊆ C(u) because
Sn−1 ⊆ Sn , and hence u ∈ Vn−1; let f(v) be such a vertex u. By the
infinity lemma (8.1.2) there is a ray R = v0v1 . . . with vn ∈ Vn for all n.
Let ω be its end, and let O ∈ O contain ω. Since O is open, it contains a
basic open neighbourhood of ω: there exist a finite set S ⊆ V and ε > 0
such that Ĉε(S, ω) ⊆ O. Now choose n large enough that Sn contains
S and all its neighbours. Then Ĉ(vn) lies inside a component of G−S.
As C(vn) contains vnR ∈ ω, this component must be C(S, ω). Thus

Ĉ(vn) ⊆ C(S, ω) ⊆ O ∈ O ,

contradicting the fact that vn ∈ Vn. �

If G has a vertex of infinite degree then |G| cannot be compact.
(Why not?) But Ω(G) can be compact; see Exercise 6161 for when it is.

What else can we say about the space |G| in general? For example,
is it metrizable? Using a normal spanning tree T of G, it is indeed
not difficult to define a metric on |G| that induces its topology. But
not every connected graph has a normal spanning tree, and it is not
easy to determine which graphs do. Surprisingly, though, it is possible
conversely to deduce the existence of a normal spanning tree just from
the assumption that the subspace V ∪Ω of |G| is metric. Thus whenever
|G| is metrizable, a natural metric can be made visible in this simple
structural way:

Theorem 8.5.2. For a connected graph G, the space |G| is metrizable
if and only if G has a normal spanning tree.

The proof of Theorem 8.5.2 is indicated in Exercises 3030 and 6363.

Our next aim is to review, or newly define, some topological notions
of paths and connectedness, of cycles, and of spanning trees. By substi-
tuting these topological notions with respect to |G| for the corresponding
graph-theoretical notions with respect to G, one can extend to locally
finite graphs a number of theorems about paths, cycles and spanning
trees in finite graphs that would not otherwise extend. We shall do this,
as a case in point, for the tree-packing theorem of Nash-Williams and
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Tutte (Theorem 2.4.1); references for more such results are given in the
notes.

Let X be an arbitrary Hausdorff space. (Later, this will be a sub- X

space of |G|.) X is (topologically) connected if it is not a union of two connected

disjoint non-empty open subsets. If we think of two points of X as
equivalent if X has a connected subspace containing both, we have an
equivalence relation whose classes are the (connected) components of X. component

These are the maximal connected subspaces of X. Components are al-
ways closed, but if X has infinitely many components they need not be
open.

We shall need the following lemma; see the notes for a reference.

Lemma 8.5.3. If X is compact and A1, A2 are distinct components
of X, then X is a union of disjoint open sets X1, X2 such that A1 ⊆ X1

and A2 ⊆ X2.

An arc in X is a homeomorphic image in X of the real unit inter- arc

val [ 0, 1 ]; it links the images of 0 and 1, which are its endpoints. Being
linked by an arc is also an equivalence relation on X (since every x–y

arc-
component

arc A has a first point p on any y–z arc B, because B is closed, so ApB
is an x–z arc); the equivalence classes are the arc-components of X. If
there is only one arc-component, then X is arc-connected . Since [ 0, 1 ]

arc-
connected

is connected, arc-connectedness implies connectedness. The converse
implication is false in general, even for spaces X ⊆ |G| with G locally
finite. But it holds in an important special case:

Lemma 8.5.4. If G is a locally finite graph, then every closed connected
subspace of |G| is arc-connected.

The proof of Lemma 8.5.4 is not easy; see the notes for a reference.

Every finite path in G defines an arc in |G| in an obvious way.
Similarly, every ray is an arc linking its starting vertex to its end, and a
double ray in G forms an arc in |G| together with the two ends of its tails,
if these ends are distinct. Consider an end ω in a standard subspace X
of |G|, and k ∈ N∪{∞}. If k is the maximum number of arcs in X that
have ω as their common endpoint and are otherwise disjoint, then k is
the (topological) vertex-degree of ω in X. The (topological) edge-degree end degrees

in subspaces
of ω in X is defined analogously, using edge-disjoint arcs. In analogy to
Theorem 8.2.5 one can show that these maxima are always attained, so
every end of G that lies in X has a topological vertex- and edge-degree
there. For X = |G| and G locally finite, the (topological) end degrees in
X coincide with the combinatorial end degrees defined earlier.

Unlike finite paths, arcs can jump across a vertex partition with-
out containing an edge from the corresponding cut, provided the cut is
infinite:
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Lemma 8.5.5. Let G be connected and locally finite, {X, Y } a parti-
tion of V (G), and F := E(X, Y ).

(i) F is finite if and only if X ∩Y = ∅.
(ii) If F is finite, there is no arc in |G| \ F̊ with one endpoint in X

and the other in Y .

(iii) If F is infinite and X and Y are both connected in G, there is
such an arc.

Proof . (i) Suppose first that F is infinite. Since G is locally finite, the(8.2.2)

set X ′ of endvertices of F in X is also infinite. By the star-comb lemma
(8.2.2), there is a comb in G with teeth in X ′; let ω be the end of its
spine. Then every basic open neighbourhood Ĉε(S, ω) of ω meets X ′

infinitely and hence also meets Y , giving ω ∈ X ∩Y .
Suppose now that F is finite. Let S be the set of vertices incident

with edges in F . Then S is finite and separates X from Y . Since every
basic open set of the form Ĉε(S, ω) misses X or Y , no end ω lies in the
closure of both.

(ii) Clearly |G|� F̊ = G [X ]∪G [ Y ], and by (i) this union is dis-
joint. Hence no connected subset of |G| � F̊ can meet both X and Y ,
but arcs are continuous images of [ 0, 1 ] and hence connected.

(iii) By (i), there is an end ω ∈ X ∩Y . Apply the star-comb lemma
in G [X ] to any sequence of vertices in X converging to ω; this yields a
comb whose spine R lies in ω. Similarly, there is a comb in G [Y ] whose
spine R′ lies in ω. Now R∪{ω }∪R′ is the desired arc. �

A circle in a topological space is a homeomorphic image of the unitcircle

circle S1 ⊆ R2. For example, if G is the 2-way infinite ladder shown
in Figure 8.1.3, and we delete all its rungs (the vertical edges), what
remains is a disjoint union D of two double rays; the closure of D in |G|,
obtained by adding the two ends of G, is a circle. Similarly, the double
ray ‘around the outside’ of the 1-way ladder forms a circle together with
the unique end of that ladder.

A more adventurous example of a circle is shown in Figure 8.5.1.
Let G be the graph obtained from the binary tree T2 by joining for
every finite 0–1 sequence � the vertices �01 and �10 by a new edge e�.
Together with all the ends of G, the double rays D� 	 e� shown in the
figure form an arc A in |G|, whose union with the bottom double ray
D is a circle in |G| (Exercise 6969). Note that no two of the double rays
in A are consecutive: between any two there lies a third. This is why
end degrees in subspaces are defined in terms of arcs rather than rays,
so that the ends in a circle can always have degree 2 in it. And indeed
they do (Exercise 7070):
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Fig. 8.5.1. A circle containing uncountably many ends

Lemma 8.5.6. Let G be locally finite. A closed standard subspace
C of |G| is a circle in |G| if and only if C is connected, every vertex
in C is incident with exactly two edges in C, and every end in C has
vertex-degree 2 (equivalently: edge-degree 2) in C.

It is not hard to show that every circle C in a space |G| is a standard
subspace; the set D of edges it contains will be called its circuit . Then circuit

C is the closure of the point set
⋃

D, as every neighbourhood in C of
a vertex or end meets an edge, which must then be contained in C and
hence lie in D. In particular, there are no circles consisting only of ends,
and every circle is uniquely determined by its circuit.

A topological spanning tree of G is an arc-connected standard sub-
topological

spanning
treespace of |G| that contains every vertex and every end but contains no

circle. Clearly, such a subspace X must be closed. With respect to
the addition or deletion of edges, it is both minimally arc-connected
and maximally ‘acirclic’. As with ordinary trees, one can show that
every two points of X are joined by a unique arc in X. Thus, adding
a new edge e to X creates a unique circle in X ∪ e; its edges form the
fundamental circuit Ce of e with respect to X. Similarly, for every edge
e ⊆ X the space X � e̊ has exactly two arc-components; the set of edges
between these is the fundamental cut De. If G is locally finite, then its
fundamental cuts are finite (Exercise 7474).

One might expect that the closure T of an ordinary spanning tree
T of G is always a topological spanning tree of |G|. However, this can
fail in two ways: if T has a vertex of infinite degree then T may fail to
be arc-connected (although it will be topologically connected, because
T is); if T is locally finite, then T will be arc-connected but may contain
a circle (Figure 8.5.2). On the other hand, a subgraph whose closure is
a topological spanning tree may well be disconnected: the vertical rays
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T2T1

Fig. 8.5.2. T 1 is a topological spanning tree, but T 2 contains
three circles

in the N×N grid, for example, form a topological spanning tree of the
grid together with its unique end.

In general, there seems to be no canonical way to construct to-
pological spanning trees, and it is unknown whether every connected
graph has one. Countable connected graphs, however, do have topolo-
gical spanning trees, by Theorem 8.2.4:(8.2.4)

Lemma 8.5.7. The closure of any normal spanning tree is a topological
spanning tree.

Proof . Let T be a normal spanning tree of G. By Lemma 8.2.3, every(1.5.5)
(8.2.3)

end ω of G contains a normal ray R of T . Then R∪{ω } is an arc linking
ω to the root of T , so T is arc-connected.

It remains to check that T contains no circle. Suppose it does, and
let A be the u–v arc obtained from that circle by deleting the inner
points of an edge e = uv it contains. Clearly, e ∈ T . Assume that u < v
in the tree-order of T , let Tu and Tv denote the components of T − e
containing u and v, and notice that V (Tv) is the up-closure �v� of v in T .

Now let S := �u�. By Lemma 1.5.5 (ii), �v� is the vertex set of a
component C of G−S. Thus, V (C) = V (Tv) and V (G−C) = V (Tu),
so the set E(C, S) of edges between these sets contains no edge of A.
But C and G−C partition |G| � E̊(C, S) into two open sets.11 As
A ⊆ |G|� E̊(C, S), this contradicts the fact that A is topologically con-
nected. �

We now extend the notion of the cycle space to locally finite infinite
graphs G, based on their (possibly infinite) circuits.

Call a family (Di)i∈I of subsets of E(G) thin if no edge lies in Dithin

for infinitely many i. Let the sum
∑

i∈I Di of this family be the setsum

of all edges that lie in Di for an odd number of indices i. Now define
the (topological) cycle space C(G) of G as the subspace of its edge spacetopological

cycle space
E(G) consisting of all sums of (thin families of) circuits. (Note that C(G)
is closed under addition: just combine the two thin families into one.)
Clearly, this definition of C(G) agrees with that from Chapter 1.9 when
G is finite.

11 Open in the subspace topology: add E̊(C, S) to obtain open sets in |G|.
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We say that a given set Z of circuits generates C(G) if every element generates

of C(G) is a sum of elements of Z. For example, the cycle space of the
ladder in Figure 8.1.3 can be generated by all its squares (the 4-element
circuits), or by the infinite circuit consisting of all horizontal edges and
all squares but one. Similarly, the ‘wild’ circuit of Figure 8.5.1 is the
sum of all the finite face boundaries in that graph.

The following two theorems summarize how the properties of the
cycle spaces of finite graphs, familiar from Chapter 1, extend to locally
finite graphs with topological cycle spaces.

Theorem 8.5.8. (Diestel & Kühn 2004)
Let G = (V, E, Ω) be a locally finite connected graph.

(i) C(G) contains precisely those subsets of E that meet every finite
cut in an even number of edges.

(ii) Every element of C(G) is a disjoint sum of circuits.

(iii) The fundamental circuits of any topological spanning tree of G
generate C(G).

While the proofs of parts (i) and (iii) of Theorem 8.5.8 are straight-
forward, part (ii) is not that easy. This is because it is no longer straight-
forward to isolate a single circuit from a given element of C(G). For
example, we know that the ‘wild’ circuit of the graph in Figure 8.5.1
must lie in its cycle space, since it is clearly the sum of the finite circuits
bounding a face. But in order to construct a ‘decomposition’ of this
element of C(G) into ‘disjoint circuits’, the proof of (ii) has to, somehow,
construct this circuit without appealing to the special structure of the
graph. Our proof below circumvents these difficulties by appealing to
our unproved Lemma 8.5.4 that closed connected subsets of |G| are arc-
connected, and to the unproved topological Lemma 8.5.3.

Proof of Theorem 8.5.8. (i) Let D ∈ C(G) be given, and consider (1.5.5)
(8.2.4)

a finite cut F . By definition, D is a sum of a thin family of circuits.
Only finitely many of these can meet F , so it suffices to show that every
circuit meets F evenly.

To prove this, consider a circle C in |G|. As F is a finite cut, any
arc in |G| that links the two sides of the corresponding vertex partition
contains an edge from F , by Lemma 8.5.5 (ii). Hence every arc on C
between two consecutive edges from F links these at their endvertices
on the same side of F , which implies that C contains an even number of
edges from F .

Conversely, let D be any set of edges that meets every finite cut
evenly. Let T be a normal spanning tree of G (Theorem 8.2.4). We
claim that

D =
∑

e∈D�E(T )

Ce , (∗)
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where Ce denotes the fundamental circuit of e with respect to T . To
prove this, consider the edges f of G separately. If f /∈ T , then clearly
f ∈ D if and only if f lies in the sum in (∗), since Cf is the unique
fundamental circuit containing f . Suppose now that f ∈ T . Then f lies
in precisely those Ce for which e lies in the fundamental cut Df of f .
Thus all we need to show is that Df is finite: then D ∩Df is even by
assumption, so f ∈ D if and only if an odd number of other edges e ∈ Df

lie in D, which is the case if and only if f lies in the sum in (∗). (In
particular, the sum is one over a thin family, and hence well-defined.)

To show that Df is finite, assume that f = xy with x < y in the
tree-order of T . Then the up-closure �y� of y in T is one of the two
components of T − f , and by Lemma 1.5.5 it spans a component of
G−�x�. Hence every edge in Df has one endvertex in �y� and the other
in �x�. As �x� is finite and G is locally finite, this means that there are
only finitely many such edges.

(ii) Let D ∈ C(G) be given. Consider a maximal set of disjoint
circuits contained in D, and let Z be their union. Clearly Z ∈ C(G), and
hence Z ′ := D−Z ∈ C(G). We wish to show that Z ′ = ∅.

Suppose not. Let e = uv be an edge in Z ′ and put

X := (V ∪Ω∪
⋃

Z ′) � e̊ .

Clearly, X is a closed in |G|, and hence is a compact subspace (Proposi-
tion 8.5.1). Let us show that u and v lie in different components of X.
If they lie in the same component, A say, then A is closed in X (being a
component) and hence in |G|, so A is arc-connected by Lemma 8.5.4. But
any u–v arc in A forms a circle with e that contradicts the maximality
of Z. Thus, u and v lie in different components of X.

By Lemma 8.5.3, X is a union of disjoint open subsets Xu 	 u and
Xv 	 v. Put Vu := Xu ∩ V and Vv := Xv ∩ V . As Xu and Xv are
complements in X, they are closed (as well as open) in X and hence
closed in |G|, so Vu ⊆ Xu and Vv ⊆ Xv. In particular, Vu ∩ Vv = ∅,
so by Lemma 8.5.5 (i) the cut F := E(Vu, Vv) of G is finite. Moreover,
F ∩Z ′ = { e }, since every other edge of Z ′ lies in X, and hence in Xu

or in Xv. As Z ′ ∈ C(G), this contradicts (i).
(iii) In our proof of (i) we already proved the most important case

of (iii), where the topological spanning tree in question is the closure of
a normal spanning tree. The proof for arbitrary topological spanning
trees is the same, except for the proof that all their fundamental cuts
are finite (Exercise 7474). �

Corollary 8.5.9. C(G) is generated by finite circuits, and is closed un-
der infinite (thin) sums.
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Proof . By Theorem 8.2.4, G has a normal spanning tree, T say. By (8.2.4)

Lemma 8.5.7, its closure T in |G| is a topological spanning tree. The
fundamental circuits of T coincide with those of T , and are therefore
finite. By Theorem 8.5.8 (iii), they generate C(G).

Let
∑

i∈I Di be a sum of elements of C(G). By Theorem 8.5.8 (ii),
each Di is a disjoint union of circuits. Together, these form a thin family,
whose sum equals

∑
i∈I Di and lies in C(G). �

To complete this section, we apply our new notions to extend the
tree-packing theorem of Nash-Williams and Tutte (2.4.1) to locally finite
graphs. Note that all our definitions extend naturally to multigraphs.

Theorem 8.5.10. The following statements are equivalent for all k ∈ N k

and locally finite multigraphs G: G

(i) G has k edge-disjoint topological spanning trees.

(ii) For every finite partition of V (G), into � sets say, G has at least
k (�− 1) cross-edges.

We begin our proof of Theorem 8.5.10 with a compactness extension
of the finite theorem, which will give us a slightly weaker statement at
the limit. Following Tutte, let us call a spanning submultigraph H of G
semiconnected in G if every finite cut of G contains an edge of H. semi-

connected

Lemma 8.5.11. If for every finite partition of V (G), into � sets say,
G has at least k (�− 1) cross-edges, then G has k edge-disjoint semicon-
nected spanning subgraphs.

Proof . Pick an enumeration v0, v1, . . . of V (G). For every n ∈ N let Gn (8.1.2)

be the finite multigraph obtained from G by contracting every compo-
nent of G−{ v0, . . . , vn } to a vertex, deleting any loops but no parallel
edges that arise in the contraction. Then G [ v0, . . . , vn ] is an induced
submultigraph of Gn. Let Vn denote the set of all k-tuples (H1

n , . . . , Hk
n)

of edge-disjoint connected spanning subgraphs of Gn.
Since every partition P of V (Gn) induces a partition of V (G), since

G has enough cross-edges for that partition, and since all these cross-
edges are also cross-edges of P , Theorem 2.4.1 implies that Vn �= ∅.
Since every (H1

n , . . . , Hk
n) ∈ Vn induces an element (H1

n−1, . . . , H
k
n−1)

of Vn−1, the infinity lemma (8.1.2), yields a sequence (H1
n , . . . , Hk

n)n∈N

of k-tuples, one from each Vn, with a limit (H1, . . . , Hk) defined by the
nested unions

Hi :=
⋃
n∈N

Hi
n [ v0, . . . , vn ] .

These Hi are edge-disjoint for distinct i (because the Hi
n are), but

they need not be connected. To show that they are semiconnected in G,
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consider a finite cut F of G. Choose n large enough that all the end-
vertices of edges in F are among v0, . . . , vn. Then F is also a cut of Gn.
Now consider the k-tuple (H1

n , . . . , Hk
n) which the infinity lemma picked

from Vn. Each of these Hi
n is a connected spanning subgraph of Gn , so

it contains an edge from F . But Hi
n agrees with Hi on { v0, . . . , vn }, so

Hi too contains this edge from F . �

At first glance, the notion of semiconnectedness appears to be some-
what ad-hoc: it summarizes what happens to be left of the connectedness
of the graphs Hi

n at their limit Hi—and this, no doubt, is why Tutte
introduced it. In our context, however, it acquires an unexpected natural
meaning:

Lemma 8.5.12. A spanning subgraph H ⊆ G is semiconnected in G if
and only if its closure H in |G| is topologically connected.

Proof . If H is disconnected, it is contained in the union of two closed
subsets O1, O2 of |G| that both meet H and satisfy O1 ∩O2 ∩H = ∅.
Since H is a standard subspace containing V (G), the sets Oi partition
V (G) into two non-empty sets X1, X2. Then

X1 ∩X2 ⊆ O1 ∩O2 ∩Ω(G) ⊆ O1 ∩O2 ∩H = ∅ .

By Lemma 8.5.5 (i), this implies that G has only finitely many X1–X2

edges. As edges are connected, none of them can lie in H. Hence, H is
not semiconnected.

The converse implication is straightforward (and not needed in our
proof of Theorem 8.5.10): a finite cut of G containing no edge of H
defines a partition of H into non-empty open subsets, showing that H
is disconnected. �

Lemma 8.5.13. Every closed, connected, standard subspace X of |G|
that contains V (G) also contains a topological spanning tree of G.

Proof . By Lemma 8.5.4, X is arc-connected. Since X contains all ver-
tices, G cannot be disconnected, so its local finiteness implies that it is
countable. Let e0, e1, . . . be an enumeration of the edges in X.

We now delete these edges one by one, keeping X arc-connected.
Starting with X0 := X, we define Xn+1 := Xn � e̊n if this keeps Xn+1 arc-
connected; if not, we put Xn+1 := Xn. Finally, we put T :=

⋂
n∈N

Xn.
Clearly, T is closed, contains every vertex and every end of G, but

contains no circle: any circle in T would contain an edge, which should
have got deleted. To show that T is arc-connected, it suffices by Lemmas
8.5.4 and 8.5.12 to check that every finite cut of G contains an edge
from T . By Lemma 8.5.5 (ii), the edges in such a cut could not all be
deleted, so one of them lies in T . �
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Proof of Theorem 8.5.10. The implication (ii)→(i) follows from our
three lemmas. For (i)→(ii), let G have edge-disjoint topological spanning
trees T1, . . . , Tk, and consider a partition P of V (G) into � sets. If there
are infinitely many cross-edges, there is nothing to show; so we assume
there are only finitely many. For each i ∈ { 1, . . . , k }, let T ′

i be the
multigraph of order � which the edges of Ti induce on P .

To establish that G has at least k(�− 1) cross-edges, we show that
the graphs T ′

i are connected. If not, then some T ′
i has a vertex partition

crossed by no edge of Ti. This partition induces a cut of G that contains
no edge of Ti. By our assumption that G has only finitely many cross-
edges, this cut is finite. By Lemma 8.5.5 (ii), this contradicts the arc-
connectedness of Ti. �

Exercises

1.− Show that a connected graph is countable if all its vertices have count-
able degrees.

2.− Given countably many sequences σi = si
1, s

i
2, . . . (i ∈ N) of natural

numbers, find one sequence σ = s1, s2, . . . that beats every σi eventually,
i.e. such that for every i there exists an n(i) such that sn > si

n for all
n � n(i).

3. Can a countable set have uncountably many subsets whose intersections
have finitely bounded size?

4.− Let T be an infinite rooted tree. Show that every ray in T has an
increasing tail, that is, a tail whose sequence of vertices increases in the
tree-order associated with T and its root.

5.− Let G be an infinite graph and A, B ⊆ V (G). Show that if no finite set
of vertices separates A from B in G, then G contains an infinite set of
disjoint A–B paths.

6.− In Proposition 8.1.1, the existence of a spanning tree was proved using
Zorn’s lemma ‘from below’, to find a maximal acyclic subgraph. For
finite graphs, one can also use induction ‘from above’, to find a minimal
spanning connected subgraph. What happens if we apply Zorn’s lemma
‘from above’ to find such a subgraph?

7.− Show that for every k ∈ N there exists an infinitely connected graph of
girth at least k.

8. Construct, for any given k ∈ N, a planar k-connected graph. Can you
construct one whose girth is also at least k? Can you construct an
infinitely connected planar graph?
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9.− Theorem 8.1.3 implies that there exists an N→N function fχ such that,
for every k ∈ N, every infinite graph of chromatic number at least fχ(k)
has a finite subgraph of chromatic number at least k. (Namely, let fχ

be the identity on N.) Are there similar functions fδ and fκ for the
minimum degree and connectivity?

10. Prove Theorem 8.1.3 for countable graphs using the fact that, in this
case, the topological space X defined in the second proof of the theorem
is sequentially compact. (Thus, every infinite sequence of points in
X has a convergent subsequence: there is an x ∈ X such that every
neighbourhood of X contains a tail of the subsequence.)

11.+ Show that, given k ∈ N and an edge e in a graph G, there are only finitely
many bonds in G that consist of exactly k edges and contain e.

12.− Extend Theorem 2.4.4 to infinite graphs.

13. Rephrase Gallai’s cycle-cocycle partition theorem (Ex. 3535, Ch. 1) in
terms of degrees, and extend the equivalent version to locally finite
graphs.

14. Prove Theorem 8.4.8 for locally finite graphs. Does your proof extend
to arbitrary countable graphs?

15. Extend the marriage theorem to locally finite graphs, but show that it
fails for countable graphs with infinite degrees.

16.+ Show that a locally finite graph G has a 1-factor if and only if, for
every finite set S ⊆ V (G), the graph G−S has at most |S| odd (finite)
components. Find a counterexample that is not locally finite.

17.+ Extend Kuratowski’s theorem to countable graphs.

18.− A vertex v ∈ G is said to dominate an end ω of G if any of the following
three assertions holds; show that they are equivalent.

(i) For some ray R ∈ ω there is an infinite v–R fan in G.

(ii) For every ray R ∈ ω there is an infinite v–R fan in G.

(iii) No finite subset of V (G− v) separates v from a ray in ω.

19. Show that a graph G contains a TKℵ0 if and only if some end of G is
dominated by infinitely many vertices.

20. Construct a countable graph with uncountably many thick ends.

21. Show that a countable tree has uncountably many ends if and only if
it contains a subdivision of the binary tree T2.

22. A graph G = (V, E) is called bounded if for every vertex labelling
�: V → N there exists a function f : N → N that exceeds the labelling
along any ray in G eventually. (Formally: for every ray v1v2 . . . in G
there exists an n0 such that f(n) > �(vn) for every n > n0.) Prove the
following assertions:

(i) The ray is bounded.

(ii) Every locally finite connected graph is bounded.
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(iii)+ A countable tree is bounded if and only if it contains no subdi-
vision of the ℵ0-regular tree Tℵ0 .

23.+ Let T be a tree with root r, and let � denote the tree-order on V (T )
associated with T and r. Show that T contains no subdivision of the
ℵ1-regular tree Tℵ1 if and only if T has an ordinal labelling t �→ o(t)
such that o(t) � o(t′) whenever t < t′ but no more than countably
many vertices of T have the same label.

24. Show that a locally finite connected vertex-transitive graph has exactly
0, 1, 2 or infinitely many ends.

25.+ Show that the automorphisms of a graph G = (V, E) act naturally on
its ends, i.e., that every automorphism σ: V →V can be extended to a
map σ: Ω(G)→Ω(G) such that σ(R) ∈ σ(ω) whenever R is a ray in an
end ω. Prove that, if G is connected, every automorphism σ of G fixes
a finite set of vertices or an end. If σ fixes no finite set of vertices, can
it fix more than one end? More than two?

26.− Show that a locally finite spanning tree of a graph G contains a ray
from every end of G.

27. A ray in a graph follows another ray if the two have infinitely many
vertices in common. Show that if T is a normal spanning tree of G
then every ray of G follows a unique normal ray of T .

28. Show that the following assertions are equivalent for connected count-
able graphs G.

(i) G has a locally finite spanning tree.

(ii) G has a locally finite normal spanning tree.

(iii) Every normal spanning tree of G is locally finite.

(iv) For no finite separator X ⊆ V (G) does G − X have infinitely
many components.

29. Use the previous exercise to show that every (countable) planar 3-
connected graph has a locally finite spanning tree.

30. Let G be a connected graph. Call a set U ⊆ V (G) dispersed if every
ray in G can be separated from U by a finite set of vertices. (In the
topology of Section 8.5, these are precisely the closed subsets of V (G).)

(i) Prove Jung’s theorem that G has a normal spanning tree if and
only if V (G) is a countable union of dispersed sets.

(ii) Deduce that if G has a normal spanning tree then so does every
connected minor of G.

31.− Use Exercise 2121 to prove that a countable graph with uncountably many
ends has continuum many ends.

32.+ Show that the vertices of any infinite connected locally finite graph can
be enumerated in such a way that every vertex is adjacent to some later
vertex.
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33. (i) Prove that if a given end of a graph contains k disjoint rays for every
k ∈ N then it contains infinitely many disjoint rays.

(ii) Prove that if a given end of a graph contains k edge-disjoint rays
for every k ∈ N then it contains infinitely many edge-disjoint rays.

34.+ Prove that if a graph contains k disjoint double rays for every k ∈ N
then it contains infinitely many disjoint double rays.

35. Show that, in the ubiquity conjecture, the host graphs G considered
can be assumed to be locally finite too.

36. Show that the modified comb below is not ubiquitous with respect to
the subgraph relation. Does it become ubiquitous if we delete its 3-star
on the left?

37. Show that if a graph contains infinitely many distinct cycles then it
contains infinitely many edge-disjoint cycles.

38. Imitate the proof of Theorem 8.2.6 to find a function f : N → N such
that whenever an end ω of a graph G contains f(k) disjoint rays there
is a k×N grid in G whose rays all belong to ω.

39. Show that there is no universal locally finite connected graph for the
subgraph relation.

40. Construct a universal locally finite connected graph for the minor rela-
tion. Is there one for the topological minor relation?

41.− Show that each of the following operations performed on the Rado
graph R leaves a graph isomorphic to R:

(i) taking the complement, i.e. changing all edges into non-edges
and vice versa;

(ii) deleting finitely many vertices;

(iii) changing finitely many edges into non-edges or vice versa;

(iv) changing all the edges between a finite vertex set X ⊆ V (R) and
its complement V (R) \X into non-edges, and vice versa.

42.− Prove that the Rado graph is homogeneous.

43. Show that a homogeneous countable graph is determined uniquely, up
to isomorphism, by the class of (the isomorphism types of) its finite
subgraphs.

44. Recall that subgraphs H1, H2, . . . of a graph G are said to partition G if
their edge sets form a partition of E(G). Show that the Rado graph can
be partitioned into any given countable set of countable locally finite
graphs, as long as each of them contains at least one edge.
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45.− A linear order is called dense if between any two elements there lies a
third.

(i) Find, or construct, a countable dense linear order that has nei-
ther a maximal nor a minimal element.

(ii) Show that this order is unique, i.e. that every two such orders
are order-isomorphic. (Definition?)

(iii) Show that this ordering is universal among the countable linear
orders. Is it homogeneous? (Supply appropriate definitions.)

46. Given a bijection f between N and [ N ]<ω, let Gf be the graph on N
in which u, v ∈ N are adjacent if u ∈ f(v) or vice versa. Prove that all
such graphs Gf are isomorphic.

47. (for set theorists) Show that, given any countable model of set theory,
the graph whose vertices are the sets and in which two sets are adjacent
if and only if one contains the other as an element, is the Rado graph.

48. Let G be a locally finite graph. Let us say that a finite set S of vertices
separates two ends ω and ω′ if C(S, ω) 
= C(S, ω′). Use Proposition
8.4.1 to show that if ω can be separated from ω′ by k ∈ N but no fewer
vertices, then G contains k disjoint double rays each with one tail in ω
and one in ω′. Is the same true for all graphs that are not locally finite?

49.+ Prove the following more structural version of Exercise 3333 (i). Let ω be
an end of a countable graph G. Show that either G contains a TKℵ0

with all its rays in ω, or there are disjoint finite sets S0, S1, S2, . . . such
that |S1| � |S2| � . . . and, with Ci := C(S0 ∪ Si , ω), we have for all
i < j that Ci ⊇ Cj and Gi := G [ Si ∪Ci ] contains |Si| disjoint Si–Si+1

paths.

50. Construct an example of a small limit of large waves.

51.+ Prove Theorem 8.4.2 for trees.

52.+ Prove Pym’s theorem (8.4.7).

53. (i)− Prove the naive extension of Dilworth’s theorem to arbitrary in-
finite posets P : if P has no antichain of order k ∈ N, then P can be
partitioned into fewer than k chains. (A proof for countable P will do.)

(ii)− Find a poset that has no infinite antichain and no partition into
finitely many chains.

(iii) For posets without infinite chains, deduce from Theorem 8.4.8 the
following Erdős-Menger-type extension of Dilworth’s theorem: every
such poset has a partition C into chains such that some antichain meets
all the chains in C.

54. Let G be a countable graph in which for every partial matching there
is an augmenting path. Let M be any matching. Is there a sequence,
possibly transfinite, of augmenting paths (each for the then current
matching) that turns M into a 1-factor?

55. Find an uncountable graph in which every partial matching admits an
augmenting path but which has no 1-factor.
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56. Construct a locally finite factor-critical graph (or prove that none ex-
ists).

57.− Let G be a countable graph whose finite subgraphs are all perfect. Show
that G is weakly perfect but not necessarily perfect.

58.+ Let G be the incomparability graph of the binary tree. (Thus, V (G) =
V (T2), and two vertices are adjacent if and only if they are incompa-
rable in the tree-order of T2.) Show that G is perfect but not strongly
perfect.

59. Let G be a graph, X ⊆ V (G), and R ∈ ω ∈ Ω(G). Show that G contains
a comb with spine R and teeth in X if and only if ω ∈ X.

60. Give an independent proof of Proposition 8.5.1 using sequential com-
pactness and the infinity lemma.

61.+ Let G be a connected countable graph that is not locally finite. Show
that |G| is not compact, but that Ω(G) is compact if and only if for
every finite set S ⊆ V (G) only finitely many components of G − S
contain a ray.

62. Given graphs H ⊆ G, let η: Ω(H)→Ω(G) assign to every end of H the
unique end of G containing it as a subset (of rays). For the following
questions, assume that H is connected and V (H) = V (G).

(i) Show that η need not be injective. Must it be surjective?

(ii) Investigate how η relates the subspace Ω(H) of |H| to its image
in |G|. Is η always continuous? Is it open? Do the answers to
these questions change if η is known to be injective?

(iii) A spanning tree is called end-faithful if η is bijective, and topo-
logically end-faithful if η is a homeomorphism. Show that every
connected countable graph has a topologically end-faithful span-
ning tree.

63.+ Let G be a connected graph. Assuming that G has a normal spanning
tree, define a metric on |G| that induces its usual topology. Conversely,
use Jung’s theorem of Exercise 3030 to show that if V ∪ Ω ⊆ |G| is
metrizable then G has a normal spanning tree.

64.+ (for topologists) In a locally compact, connected, and locally connected
Hausdorff space X, consider sequences U1 ⊇ U2 ⊇ . . . of open, non-
empty, connected subsets with compact frontiers such that

⋂
i∈N

Ui = ∅.
Call such a sequence equivalent to another such sequence if every set of
one sequence contains some set of the other, and vice versa. Note that
this is indeed an equivalence relation, and call its classes the Freudenthal
ends of X. Now add these to the space X, and define a natural topology
on the extended space X̂ that makes it homeomorphic to |X| if X is a
graph, by a homeomorphism that is the identity on X.

65. Let F be a set of edges in a locally finite graph G, and let A :=
⋃

F be
its closure in |G|. Show that F is a circuit if and only if, for every two
edges e, e′ ∈ F , the set A� e̊ is connected but A� (̊e∪ e̊′) is disconnected
in |G|.
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66. Does every infinite locally finite 2-connected graph contain an infinite
circuit? Does it contain an infinite bond?

67. Show that the union of all the edges contained in an arc or circle C in
|G| is dense in C.

68. Let T be a spanning tree of a graph G. Note that T is a connected
subset of |G|. Without using Lemma 8.5.4, show that if T is locally
finite then T is arc-connected. Find an example where T is not arc-
connected.

69. Prove that the circle shown in Figure 8.5.1 is really a circle, by exhibit-
ing a homeomorphism with S1.

70. Deduce Lemma 8.5.6 from Lemma 8.5.4.

71. Let G be a connected locally finite graph. Show that the following
assertions are equivalent for a spanning subgraph T of G:

(i) T is a topological spanning tree of |G|;
(ii) T is edge-maximal such that T contains no circle;

(iii) T is edge-minimal with T arc-connected.

72.− Observe that a topological spanning tree need not be homeomorphic to
a tree. Is it homeomorphic to the space |T | for a suitable tree T?

73. Show that connected graphs with only one end have topological span-
ning trees.

74.+ Let G be a locally finite graph and X a standard subspace of |G|.
Prove that arc-components A of X are closed in X. Deduce that the
fundamental cuts of any topological spanning tree of G are finite.

75. To show that Theorem 3.2.3 does not generalize to infinite graphs
with the ‘finite’ cycle space as defined in Chapter 1.9, construct a 3-
connected locally finite planar graph with a separating cycle that is not
a finite sum of non-separating induced cycles. Can you find an example
where even infinite sums of finite non-separating induced cycles do not
generate all separating cycles?

76.− As a converse to Theorem 8.5.8 (iii), show that the fundamental cir-
cuits of an ordinary spanning tree T of a locally finite graph G do not
generate C(G) unless T is a topological spanning tree.

77. Prove that the edge set of a countable graph G can be partitioned into
finite circuits if G has no odd cut. Where does your argument break
down if G is uncountable?

78. Explain why Theorem 8.5.8 (ii) is needed in the proof of Corollary 8.5.9:
can’t we just combine the constituent sums of circuits for the Di (from
our assumption that Di ∈ C(G)) into one big family? If not, can you
still prove the same statement without appealing to Theorem 8.5.8 (ii)?
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79.+ Call a continuous (but not necessarily injective) map σ: S1 → |G| a
topological Euler tour of G if every inner point of an edge of G is the
image of exactly one point of S1. (Thus, every edge is traversed exactly
once, and in a ‘straight’ manner.) Use Theorem 8.5.8 (ii) to show that
G admits a topological Euler tour if and only if G is connected and
E(G) ∈ C(G).

80.+ An open Euler tour in an infinite graph G is a 2-way infinite walk
. . . e−1v0e0 . . . that contains every edge of G exactly once. Show that
G contains an open Euler tour if and only if G is countable, G is
connected, every vertex has even or infinite degree, and any finite cut
F = E(V1, V2) with both V1 and V2 infinite is odd.

Notes
There is no comprehensive monograph on infinite graph theory, but over time
several surveys have been published. A relatively wide-ranging collection of
survey articles can be found in R.Diestel (ed.), Directions in Infinite Graph
Theory and Combinatorics, North-Holland 1992. (This has been reprinted as
Volume 95 of the journal Discrete Mathematics.) Some of the articles there
address purely graph-theoretic aspects of infinite graphs, while others point
to connections with other fields in mathematics such as differential geometry,
topological groups, or logic.

A survey of infinite graph theory as a whole was given by C.Thomas-
sen, Infinite graphs, in (L.W.Beineke & R.J.Wilson, eds.) Selected Topics in
Graph Theory 2, Academic Press 1983. This also treats a number of aspects
of infinite graph theory not considered in our chapter here, including prob-
lems of Erdős concerning infinite chromatic number, infinite Ramsey theory
(also known as partition calculus), and reconstruction. The first two of these
topics receive much attention also in A.Hajnal’s chapter of the Handbook of
Combinatorics (R.L.Graham, M.Grötschel & L. Lovász, eds.), North-Holland
1995, which has a strong set-theoretical flavour. (See the end of these notes
for more references in this direction.) A specific survey on reconstruction by
Nash-Williams can be found in the Directions volume cited above. A relatively
recent collection of various unsolved problems is offered in R.Halin, Miscella-
neous problems on infinite graphs, J. Graph Theory 35 (2000), 128–151.

A good general reference for infinite graphs (as well as finite) is R.Halin,
Graphentheorie (2nd ed.), Wissenschaftliche Buchgesellschaft 1989. A more
specific monograph on the theory of simplicial decompositions (see Chapter 12)
is R.Diestel, Graph Decompositions, Oxford University Press 1990. Chap-
ter 12.4 closes with a few theorems about forbidden minors in infinite graphs.

Infinite graph theory has a number of interesting individual results
which, as yet, stand essentially by themselves. One such is a theorem of
A.Huck, F.Niedermeyer and S. Shelah, Large κ-preserving sets in infinite
graphs, J. Graph Theory 18 (1994), 413–426, which says that every infinitely
connected graph G has a set S of |G| vertices such that κ(G−S′) = κ(G) for
every S′ ⊆ S. Another is Halin’s bounded graph conjecture, which characterizes
the bounded graphs by four forbidden substructures. (See Exercise 2222 (iii) for
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the definition of ‘bounded’ and the tree case of the conjecture.) A proof can
be found in R.Diestel & I.B. Leader, A proof of the bounded graph conjecture,
Invent. math. 108 (1992), 131–162.

König’s infinity lemma, or König’s lemma for short, is as old as the first-
ever book on graph theory, which includes it: D.König, Theorie der endlichen
und unendlichen Graphen, Akademische Verlagsgesellschaft, Leipzig 1936. In
addition to this and Tychonoff’s theorem, compactness proofs can also come
in the following two guises (see Hajnal’s Handbook chapter): as applications
of Rado’s selection lemma, or of Gödel’s compactness theorem from first-order
logic. Both are logically equivalent to Tychonoff’s theorem; the choice of which
to use is more a matter of familiarity with one terminology or the other than
of any material importance.

Theorem 8.1.3 is due to N.G. de Bruijn and P.Erdős, A colour problem
for infinite graphs and a problem in the theory of relations, Indag. Math. 13
(1951), 371–373. Unlike for the chromatic number, a bound on the colouring
number of all finite subgraphs does not extend to the whole graph by com-
pactness. P. Erdős & A.Hajnal, On the chromatic number of graphs and set
systems, Acta Math. Acad. Sci. Hung. 17 (1966), 61–99, proved that if every
finite subgraph of G has colouring number at most k then G has colouring
number at most 2k− 2, and showed that this is best possible.

The unfriendly partition conjecture is one of the best-known open prob-
lems in infinite graph theory, but there are few results. E.C.Milner and
S. Shelah, Graphs with no unfriendly partitions, in (A.Baker, B.Bollobás &
A.Hajnal, eds.), A tribute to Paul Erdős, Cambridge University Press 1990,
construct an uncountable counterexample, but show that every graph has an
unfriendly partition into three classes. (The original conjecture, which they
attribute to R.Cowan and W.Emerson (unpublished), appears to have as-
serted for every graph the existence of a vertex partition into any given finite
number of classes such that every vertex has at least as many neighbours
in other classes as in its own.) Some positive results for bipartitions were
obtained by R.Aharoni, E.C.Milner and K.Prikry, Unfriendly partitions of
graphs, J. Combin. Theory B 50 (1990), 1–10.

Theorem 8.2.4 is a special case of the result stated in Exercise 3030 (i),
which is due to H.A. Jung, Wurzelbäume und unendliche Wege in Graphen,
Math. Nachr. 41 (1969), 1–22. The graphs that admit a normal spanning tree
can be characterized by forbidden minors: as shown in R.Diestel & I. Leader,
Normal spanning trees, Aronszajn trees and excluded minors, J. London Math.
Soc. 63 (2001), 16–32, there are two types of graphs that are easily seen not to
have normal spanning trees, and one of these must occur as a minor in every
graph without a normal spanning tree. Note that such a characterization is
possible only because the class of graphs admitting a normal spanning tree is
closed under taking connected minors—a consequence of Jung’s theorem (see
Exercise 3030 (ii)) for which, oddly, no direct proof is known. One corollary of
the characterization is that a connected graph has a normal spanning tree if
and only if all its minors have countable colouring number.

Theorems 8.2.5 and 8.2.6 are from R.Halin, Über die Maximalzahl frem-
der unendlicher Wege, Math. Nachr. 30 (1965), 63–85. Our proof of Theorem
8.2.5 is due to Andreae (unpublished); our proof of Theorem 8.2.6 is new.
Halin’s paper also includes a structure theorem for graphs that do not contain
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infinitely many disjoint rays. Except for a finite set of vertices, such a graph
can be written as an infinite chain of rayless subgraphs each overlapping the
previous in exactly m vertices, where m is the maximum number of disjoint
rays (which exists by Theorem 8.2.5). These overlap sets are disjoint, and
there are m disjoint rays containing exactly one vertex from each of them.

A good reference on ubiquity, including the ubiquity conjecture, is
Th.Andreae, On disjoint configurations in infinite graphs, J. Graph Theory 39
(2002), 222–229.

Universal graphs have been studied mostly with respect to the induced
subgraph relation, with numerous but mostly negative results. See G.Cherlin,
S. Shelah & N. Shi, Universal graphs with forbidden subgraphs and algebraic
closure, Adv. Appl. Math. 22 (1999), 454–491, for an overview and a model-
theoretic framework for the proof techniques typically applied.

The Rado graph is probably the best-studied single graph in the graph
theory literature (with the Petersen graph a close runner-up). The most com-
prehensive source for anything related to it (and far beyond) is R. Fräıssé,
Theory of Relations (2nd edn.), Elsevier 2000. More accessible introductions
are given by N. Sauer in his appendix to Fräıssé’s book, and by P.J. Cameron,
The random graph, in (R.L.Graham & J.Nešetřil, eds.): The Mathematics of
Paul Erdős, Springer 1997, and its references.

Theorem 8.3.1 is due to P. Erdős and A.Rényi, Asymmetric graphs, Acta
Math. Acad. Sci. Hung. 14 (1963), 295–315. The existence part of their proof
is probabilistic and will be given in Theorem 11.3.5. Rado’s explicit definition
of the graph R was given in R.Rado, Universal graphs and universal functions,
Acta Arithm. 9 (1964), 393–407. However, its universality and that of Rr are
already included in more general results of B. Jónsson, Universal relational
systems, Math. Scand. 4 (1956), 193–208.

Theorem 8.3.3 is due to A.H. Lachlan and R.E.Woodrow, Countable ul-
trahomogeneous undirected graphs, Trans. Amer. Math. Soc. 262 (1980), 51–
94. The classification of the countable homogeneous directed graphs is much
more difficult still. It was achieved by G.Cherlin, The classification of count-
able homogeneous directed graphs and countable homogeneous n-tournaments,
Mem. Am. Math. Soc. 621 (1998), which also includes a shorter proof of The-
orem 8.3.3.

Proposition 8.3.2, too, has a less trivial directed analogue: the countable
directed graphs that are isomorphic to at least one of the two sides induced by
any bipartition of their vertex set are precisely the edgeless graph, the random
tournament, the transitive tournaments of order type ωα, and two specific
orientations of the Rado graph (R.Diestel, I. Leader, A. Scott & S.Thomassé,
Partitions and orientations of the Rado graph, Trans. Amer. Math. Soc. (to
appear).

Theorem 8.3.4 is proved in R.Diestel & D.Kühn, A universal planar
graph under the minor relation, J. Graph Theory 32 (1999), 191–206. It is
not known whether or not there is a universal planar graph for the topological
minor relation. However it can be shown that there is no minor-universal
graph for embeddability in any closed surface other than the sphere; see the
above paper.

When Erdős conjectured his extension of Menger’s theorem is not known;
C.St.J.A.Nash-Williams, Infinite graphs – a survey, J. Combin. Theory B 3
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(1967), 286–301, cites the proceedings of a 1963 conference as its source. Its
proof as Theorem 8.4.2 by Aharoni and Berger, Menger’s theorem for infinite
graphs (preprint 2005), came as the culmination of a long effort over many
years, for the most part also due to Aharoni. Our proof of its countable case is
adapted from R.Aharoni, Menger’s theorem for countable graphs, J. Combin.
Theory B 43 (1987), 303–313.

Theorem 8.4.2 can be extended to ends, as follows. Given two sets A, B ⊆
V (G) ∪ Ω(G), let us say that G satisfies the Erdős-Menger conjecture for A
and B if G contains a set P of paths (finite or infinite) whose closures in the
space |G| defined in Section 8.5 are disjoint arcs each linking a point of A to
a point of B, and there is a set X consisting of one vertex or end from each
path in P such that every path in G whose closure links a point of A to one of
B has a vertex or end in X. (Note that if A, B ⊆ V (G) then this statement
coincides with Theorem 8.4.2.) Then every graph G satisfies the Erdős-Menger
conjecture for all sets A, B ⊆ V (G) ∪ Ω(G) satisfying A ∩ B = ∅ = A ∩ B,
and there are counterexamples when this condition is violated. See H.Bruhn,
R.Diestel & M. Stein, Menger’s theorem for infinite graphs with ends, J. Graph
Theory (to appear).

There is also a purely topological version of the Erdős-Menger conjecture
that asks for any set of disjoint A–B arcs in |G| together with a selection X
of points, one from each of these arcs, that meets every A–B arc in |G|. An
example of Kühn shows that this version of the Erdős-Menger conjecture can
fail if A∩B 
= ∅. However if we assume that A∩B = ∅, then the separator X
provided by the theorem stated at the end of the last paragraph can be shown
to meet every A–B arc in |G|, not only those that are paths or closures of rays
or double rays. Thus, the theorem cited above implies the purely topological
version of the Erdős-Menger conjecture too.

Theorem 8.4.7 is due to J.S. Pym, A proof of the linkage theorem, J.Math.
Anal. Appl. 27 (1969), 636–638. The short proof outlined in Exercise 5252 can
be found in R.Diestel & C.Thomassen, A Cantor-Bernstein theorem for paths
in graphs, Amer. Math. Monthly (to appear).

The matching theorems of Chapter 2—König’s duality theorem, Hall’s
marriage theorem, Tutte’s 1-factor theorem, and the Gallai-Edmonds match-
ing theorem—extend essentially unchanged to locally finite graphs by compact-
ness; see e.g. Exercises 1414–1616. For non-locally-finite graphs, matching theory
is considerably deeper. A good survey and open problems can be found in
R.Aharoni, Infinite matching theory, in the Directions volume cited earlier.
A thorough account is given in M.Holz, K.P. Podewski & K. Steffens, Injective
choice functions, Lecture Notes in Mathematics 1238 Springer-Verlag 1987.

Most of the results and techniques for infinite matching were developed
first for countable graphs, by Podewski and Steffens in the 1970s. In the 1980s,
Aharoni extended them to arbitrary graphs, where things are more difficult
still and additional methods are required. Theorem 8.4.8 is due to R.Aharoni,
König’s duality theorem for infinite bipartite graphs, J. London Math. Soc.
29 (1984), 1–12. The proof builds on R.Aharoni, C.St.J.A.Nash-Willaims &
S. Shelah, A general criterion for the existence of transversals, Proc. London
Math. Soc. 47 (1983), 43–68, and is described in detail in the book of Holz,
Podewski and Steffens. Theorem 8.4.10 can be derived from the material in
K. Steffens, Matchings in countable graphs, Can. J.Math. 29 (1977), 165–168.
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Theorem 8.4.11 is due to R.Aharoni, Matchings in infinite graphs, J. Com-
bin. Theory B 44 (1988), 87–125; a shorter proof was given by Niedermeyer
and Podewski, Matchable infinite graphs, J. Combin. Theory B 62 (1994),
213–227. The theorem was extended to f -factors by F.Niedermeyer, f -optimal
factors of infinite graphs, also in the Directions volume cited earlier.

The topology on G introduced in Section 8.5 coincides, when G is locally
finite, with the usual topology of a 1-dimensional CW-complex. Then |G|
can be interpreted as the compactification of G suggested by H. Freudenthal,
Über die Enden topologischer Räume und Gruppen, Math. Zeit. 33 (1931),
692–713; see Exercise 6464. For graphs that are not locally finite, the graph-
theoretical notion of an end is more general than the topological one; see
R.Diestel & D.Kühn, Graph-theoretical versus topological ends of graphs,
J. Combin. Theory B 87 (2003), 197–206. Topological aspects of the subspaces
Ω and V ∪ Ω were studied extensively by Polat; see e.g. N. Polat, Ends and
multi-endings I & II, J. Combin. Theory B 67 (1996), 56–110.

The usual notion of an x–y path in a topological space X is that of a
continuous (but not necessarily injective) map from [ 0, 1 ] to X that maps 0
to x and 1 to y. One can show that the image of an x–y path in a Haus-
dorff space always contains an x–y arc— in particular, arc-connectedness is
the same as the more common topological notion of path-connectedness—so
it is largely a matter of convenience which of the two notions to consider.
In the context of graphs it seems best to consider arcs: not only because
topological paths could be confused with graph-theoretical paths, but also
because the latter are ‘injective’ by definition, and are hence best generalized
by arcs. A locally finite graph G for which |G| has a connected subset that is
not arc-connected has been constructed by A.Georgakopoulos, Connected but
not path-connected subspaces of infinite graphs, preprint 2005. A proof that
closed connected subsets of |G| are arc-connected (Lemma 8.5.4) is given in
R.Diestel & D.Kühn, Topological paths, cycles and spanning trees in infinite
graphs, Europ. J. Combinatorics 25 (2004), 835–862.

The (combinatorial) vertex-degree of an end is traditionally known as its
multiplicity . The term ‘degree’, as well as its topological counterpart based on
arcs, was introduced by H.Bruhn and M. Stein, On end degrees and infinite
circuits in locally finite graphs (preprint 2004). Their paper includes proofs
that the maxima in the definitions of topological end degrees are attained,
that the topological degrees of the ends of G taken in the entire space |G|
coincide with their combinatorial degrees, and of Lemma 8.5.6. Their main
result is that the entire edge set of a locally finite graph lies in its cycle space
if and only if every vertex and every end has even degree, with an appropriate
division of the ends of infinite degree into ‘even’ and ‘odd’. They conjecture
that, like Proposition 1.9.2, this equivalence should extend to arbitrary sets
F ⊆ E(G), with topological edge-degrees of ends.

An interesting new aspect of end degrees is that they could make it pos-
sible to study extremal-type problems for infinite graphs that would otherwise
make sense only for finite graphs. For example, while finite graphs of large
enough minimum degree contain any desired topological minor or minor (see
Chapter 7), an infinite graph of large minimum degree can be a tree. The ends
of a tree, however, have degree 1. An assumption that the degrees of both ver-
tices and ends of an infinite graph are large can still not force a non-planar
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minor (because such graphs can be planar), but it might force arbitrarily
highly connected subgraphs. Another approach to ‘extremal’ infinite graph
theory, which seeks to force infinite substructures by assuming a lower bound
for ‖G [ v1, . . . vn ]‖ when V (G) = { v1, v2, . . . }, is taken by J.Czipszer, P. Erdős
and A.Hajnal, Some extremal problems on infinite graphs, Publ. Math. Inst.
Hung. Acad. Sci., Ser. A 7 (1962), 441–457.

For graphs G that are not locally finite, it can be natural to consider a
coarser topology on |G|, obtained by taking as basic open sets Ĉε(S, ω) only
those with ε = 1. Under this topology, |G| is no longer Hausdorff, because
every vertex dominating an end ω will lie in the closure of every Ĉ(S, ω).
But |G| can now be compact, and it can have a natural quotient space—in
which ends are identified with vertices dominating them and rays converge
to vertices—that is both Hausdorff and compact. For details see R.Diestel,
On end spaces and spanning trees (preprint 2004), where also Theorem 8.5.2
is proved. A proof of Lemma 8.5.3 can be found in § 47 of K.Kuratowski,
Topology II , Academic Press 1968.

Unlike the cycle space, the cut space C∗(G) of an infinite graph G can
be defined as for finite graphs. It then contains infinite as well as finite cuts
(which makes it a suitable partner of the cycle space, e.g. for plane duality),
but this does not affect the proofs of its basic properties: it is still generated
by the cuts of the form E(v) (Proposition 1.9.3); it consists of precisely those
sets of edges that meet every finite circuit in an even number of edges (Ex. 3030,
Ch. 1); and every cut is a disjoint union of bonds (Proposition 1.9.4).

Our topological notion of the cycle space C(G) may appear natural in an
infinite setting, but historically it is very young. It was developed in order
to extend the classical applications of the cycle space of finite graphs, such
as in planarity and duality, to locally finite graphs. As in the case of the
tree-packing theorem (Theorem 8.5.10), those extensions fail when only finite
circuits and sums are permitted, but they do hold for topological cycle spaces.
Examples include Tutte’s theorem (3.2.3) that the non-separating induced
cycles generate the whole cycle space; MacLane’s (4.5.1), Kelmans’s (4.5.2)
and Whitney’s (4.6.3) characterizations of planarity; and Gallai’s cycle-cocycle
partition theorem (Ex. 3535, Ch. 1). An expository account of examples and
ideas that led to the topological definition of C(G) is given in R.Diestel, The
cycle space of an infinite graph, Combinatorics, Probability and Computing
14 (2005), 59–79. These show that C(G) is not unnecessarily complicated,
in that no smaller collection of circuits suffices to generalize even the most
basic facts about the cycle space of a finite graph. It also gives a survey of
applications of C(G) and of open problems, as well as references for all the
results of Section 8.5 other than Theorem 8.5.10 (which is new). For graphs
that are not locally finite, the problem of how best to define their cycle space
is still far from solved.

Theorem 8.5.8 is from R.Diestel & D.Kühn, On infinite cycles I–II, Com-
binatorica 24 (2004), 69–116. Our proof of part (ii) via Lemma 8.5.4 was
inspired by A.Vella, A fundamentally topological perspective on graph theory ,
PhD thesis, Waterloo 2004. Its corollary that locally finite graphs without
odd cuts have edge-partitions into finite circuits easily extends to arbitrary
countable graphs (Exercise 7777), and is true even for uncountable graphs. This
is a difficult theorem of C.St.J.A.Nash-Williams, Decomposition of graphs into
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closed and endless chains, Proc. London Math. Soc. 10 (1960), 221–238.
Lacking the concept of an infinite circuit as we defined it here, Nash-

Williams also sought to generalize the above and other theorems about finite
cycles by replacing ‘cycle’ with ‘2-regular connected graph’ (which may be
finite or infinite). The resulting statements are not always as smooth as the
finite theorems they generalize, but some substantial work has been done in
this direction. C.St.J.A.Nash-Williams, Decompositions of graphs into two-
way infinite paths, Can. J.Math. 15 (1963), 479–485, characterizes the graphs
admitting edge-decompositions into double rays. F. Laviolette, Decomposi-
tions of infinite graphs I–II, J. Combin. Theory B 94 (2005), 259–333, charac-
terizes the graphs admitting edge-decompositions into cycles and double rays.
Results on the existence of spanning rays or double rays are referenced in the
notes for Chapter 10.

Topological spanning trees were introduced by R.Diestel and D.Kühn,
Topological paths, cycles and spanning trees in infinite graphs, Europ. J. Com-
binatorics 25 (2004), 835–862. They are essential for the infinite tree packing
theorem: if we replace them by ordinary spanning trees, Theorem 8.5.10 be-
comes false. This was shown by J.G.Oxley, On a packing problem for infinite
graphs and independence spaces, J. Combin. Theory B 26 (1979), 123–130,
disproving Nash-Williams’s conjecture that the finite theorem should extend
verbatim. What Tutte thought about an infinite version of the tree pack-
ing theorem is not recorded: in his original paper he treats the infinite case
by defining ‘semiconnected’ subgraphs and proving Lemma 8.5.11, and leaves
things at that.

The companion to the finite tree-packing theorem, Nash-Williams’s The-
orem 2.4.4 that the edges of a graph can be covered by k forests if no set of
� vertices spans more than k(�− 1) edges, extends easily by compactness (Ex-
ercise 1212). However, in the infinite case it seems natural to ask for more: that
the forests also have ‘acirclic’ closures. Suprisingly, perhaps, the assumption
that no set of � vertices spans more than k(�− 1) edges does not imply that
the edges of G (locally finite) can be covered by k such topological forests.
However, if we assume in addition that every end of G has degree less than 2k,
then such a cover was shown to exist by M. Stein, Arboricity and tree-packing
in locally finite graphs, preprint 2004.

Finally, when sets get bigger than countable, combinatorial set theory
offers some interesting ways other than cardinality to distinguish ‘small’ from
‘large’ sets. Among these are the use of clubs and stationary sets, of ultrafilters,
and of measure and category . See P. Erdős, A.Hajnal, A.Máté & R.Rado,
Combinatorial Set Theory: partition relations for cardinals, North-Holland
1984; W.W.Comfort & S.Negropontis, The Theory of Ultrafilters, Springer
1974; J.C.Oxtoby, Measure and Category: a survey of the analogies between
topological and measure spaces (2nd ed.), Springer 1980.



9 Ramsey Theory
for Graphs

In this chapter we set out from a type of problem which, on the face of
it, appears to be similar to the theme of the last chapter: what kind of
substructures are necessarily present in every large enough graph?

The regularity lemma of Chapter 7.4 provides one possible answer
to this question: every (large) graph G contains large random-like sub-
graphs. If we are looking for a concrete interesting subgraph H, on the
other hand, our problem becomes more like Hadwiger’s conjecture: we
cannot expect an arbitrary graph G to contain a copy of H, but if it
does not then this might have some interesting structural implications
for G.

The kind of structural implication that will be typical for this chap-
ter is simply that of containing some other (induced) subgraph. For
example: given an integer r, does every large enough graph contain ei-
ther a Kr or an induced Kr? Does every large enough connected graph
contain either a Kr or else a large induced path or star?

Despite its superficial similarity to extremal problems, the above
type of question leads to a kind of mathematics with a distinctive flavour
of its own. Indeed, the theorems and proofs in this chapter have more in
common with similar results in algebra or geometry, say, than with most
other areas of graph theory. The study of their underlying methods,
therefore, is generally regarded as a combinatorial subject in its own
right: the discipline of Ramsey theory .

In line with the subject of this book, we shall focus on results that
are naturally expressed in terms of graphs. Even from the viewpoint of
general Ramsey theory, however, this is not as much of a limitation as
it might seem: graphs are a natural setting for Ramsey problems, and
the material in this chapter brings out a sufficient variety of ideas and
methods to convey some of the fascination of the theory as a whole.
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9.1 Ramsey’s original theorems

In its simplest version, Ramsey’s theorem says that, given an integer
r � 0, every large enough graph G contains either Kr or Kr as an induced
subgraph. At first glance, this may seem surprising: after all, we need
about (r − 2)/(r − 1) of all possible edges to force a Kr subgraph in G
(Corollary 7.1.3), but neither G nor G can be expected to have more than
half of all possible edges. However, as the Turán graphs illustrate well,
squeezing many edges into G without creating a Kr imposes additional
structure on G, which may help us find an induced Kr.

So how could we go about proving Ramsey’s theorem? Let us try
to build a Kr or Kr in G inductively, starting with an arbitrary vertex
v1 ∈ V1 := V (G). If |G| is large, there will be a large set V2 ⊆ V1 �{ v1 }
of vertices that are either all adjacent to v1 or all non-adjacent to v1.
Accordingly, we may think of v1 as the first vertex of a Kr or Kr whose
other vertices all lie in V2. Let us then choose another vertex v2 ∈ V2

for our Kr or Kr. Since V2 is large, it will have a subset V3, still fairly
large, of vertices that are all ‘of the same type’ with respect to v2 as
well: either all adjacent or all non-adjacent to it. We then continue our
search for vertices inside V3, and so on (Fig. 9.1.1).

v1 v1

v2

V2 V3

Fig. 9.1.1. Choosing the sequence v1, v2, . . .

How long can we go on in this way? This depends on the size of
our initial set V1: each set Vi has at least half the size of its predeces-
sor Vi−1, so we shall be able to complete s construction steps if G has
order about 2s. As the following proof shows, the choice of s = 2r − 3
vertices vi suffices to find among them the vertices of a Kr or Kr.

Theorem 9.1.1. (Ramsey 1930)[ 9.2.2 ]

For every r ∈ N there exists an n ∈ N such that every graph of order at
least n contains either Kr or Kr as an induced subgraph.

Proof . The assertion is trivial for r � 1; we assume that r � 2. Let
n := 22r−3, and let G be a graph of order at least n. We shall define
a sequence V1, . . . , V2r−2 of sets and choose vertices vi ∈ Vi with the
following properties:

(i) |Vi| = 22r−2−i (i = 1, . . . , 2r− 2);
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(ii) Vi ⊆ Vi−1 � { vi−1 } (i = 2, . . . , 2r− 2);
(iii) vi−1 is adjacent either to all vertices in Vi or to no vertex in Vi

(i = 2, . . . , 2r− 2).

Let V1 ⊆ V (G) be any set of 22r−3 vertices, and pick v1 ∈ V1 arbitrarily.
Then (i) holds for i = 1, while (ii) and (iii) hold trivially. Suppose now
that Vi−1 and vi−1 ∈ Vi−1 have been chosen so as to satisfy (i)–(iii) for
i− 1, where 1 < i � 2r− 2. Since

|Vi−1 � { vi−1 }| = 22r−1−i − 1

is odd, Vi−1 has a subset Vi satisfying (i)–(iii); we pick vi ∈ Vi arbitrarily.
Among the 2r−3 vertices v1, . . . , v2r−3, there are r−1 vertices that

show the same behaviour when viewed as vi−1 in (iii), being adjacent
either to all the vertices in Vi or to none. Accordingly, these r−1 vertices
and v2r−2 induce either a Kr or a Kr in G, because vi, . . . , v2r−2 ∈ Vi

for all i. �

The least integer n associated with r as in Theorem 9.1.1 is the Ramsey
number R(r) of r; our proof shows that R(r) � 22r−3. In Chapter 11 we

Ramsey
number

R(r)shall use a simple probabilistic argument to show that R(r) is bounded
below by 2r/2 (Theorem 11.1.3).

It is customary in Ramsey theory to think of partitions as colourings:
a colouring of (the elements of) a set X with c colours, or c-colouring for c-colouring

short, is simply a partition of X into c classes (indexed by the ‘colours’).
In particular, these colourings need not satisfy any non-adjacency re-
quirements as in Chapter 5. Given a c-colouring of [X]k, the set of all [X]k

k-subsets of X, we call a set Y ⊆ X monochromatic if all the elements
of [Y ]k have the same colour,1 i.e. belong to the same of the c partition

mono-
chromatic

classes of [X]k. Similarly, if G = (V, E) is a graph and all the edges of
H ⊆ G have the same colour in some colouring of E, we call H a mono-
chromatic subgraph of G, speak of a red (green, etc.) H in G, and so on.

In the above terminology, Ramsey’s theorem can be expressed as
follows: for every r there exists an n such that, given any n-set X,
every 2-colouring of [X]2 yields a monochromatic r-set Y ⊆ X. Interest-
ingly, this assertion remains true for c-colourings of [X]k with arbitrary
c and k—with almost exactly the same proof!

We first prove the infinite version, which is easier, and then deduce
the finite version.

Theorem 9.1.2. Let k, c be positive integers, and X an infinite set. If [ 12.1.1 ]

[X]k is coloured with c colours, then X has an infinite monochromatic
subset.

1 Note that Y is called monochromatic, but it is the elements of [Y ]k, not of Y ,
that are (equally) coloured.



254 9. Ramsey Theory

Proof . We prove the theorem by induction on k, with c fixed. For k = 1
the assertion holds, so let k > 1 and assume the assertion for smaller
values of k.

Let [X]k be coloured with c colours. We shall construct an infinite
sequence X0, X1, . . . of infinite subsets of X and choose elements xi ∈ Xi

with the following properties (for all i):

(i) Xi+1 ⊆ Xi � {xi };
(ii) all k-sets {xi } ∪ Z with Z ∈ [Xi+1]k−1 have the same colour,

which we associate with xi.

We start with X0 := X and pick x0 ∈ X0 arbitrarily. By assumption,
X0 is infinite. Having chosen an infinite set Xi and xi ∈ Xi for some i,
we c-colour [Xi � {xi }]k−1 by giving each set Z the colour of {xi }∪Z
from our c-colouring of [X]k. By the induction hypothesis, Xi � {xi }
has an infinite monochromatic subset, which we choose as Xi+1. Clearly,
this choice satisfies (i) and (ii). Finally, we pick xi+1 ∈ Xi+1 arbitrarily.

Since c is finite, one of the c colours is associated with infinitely
many xi. These xi form an infinite monochromatic subset of X. �

If desired, the finite version of Theorem 9.1.2 could be proved just
like the infinite version above. However to ensure that the relevant sets
are large enough at all stages of the induction, we have to keep track of
their sizes, which involves a good deal of boring calculation. As long as
we are not interested in bounds, the more elegant route is to deduce the
finite version from the infinite ‘by compactness’, that is, using König’s
infinity lemma (8.1.2).

Theorem 9.1.3. For all k, c, r � 1 there exists an n � k such that every[ 9.3.3 ]

n-set X has a monochromatic r-subset with respect to any c-colouring
of [X]k.

Proof . As is customary in set theory, we denote by n ∈ N (also) the(8.1.2)

set { 0, . . . , n− 1 }. Suppose the assertion fails for some k, c, r. Then fork, c, r

every n � k there exist an n-set, without loss of generality the set n, and
a c-colouring [n]k → c such that n contains no monochromatic r-set. Let
us call such colourings bad ; we are thus assuming that for every n � k

bad
colouring

there exists a bad colouring of [n]k. Our aim is to combine these into a
bad colouring of [N]k, which will contradict Theorem 9.1.2.

For every n � k let Vn �= ∅ be the set of bad colourings of [n]k. For
n > k, the restriction f(g) of any g ∈ Vn to [n−1]k is still bad, and hence
lies in Vn−1. By the infinity lemma (8.1.2), there is an infinite sequence
gk, gk+1, . . . of bad colourings gn ∈ Vn such that f(gn) = gn−1 for all
n > k. For every m � k, all colourings gn with n � m agree on [m]k, so
for each Y ∈ [N]k the value of gn(Y ) coincides for all n > max Y . Let
us define g(Y ) as this common value gn(Y ). Then g is a bad colouring
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of [N]k: every r-set S ⊆ N is contained in some sufficiently large n,
so S cannot be monochromatic since g coincides on [n]k with the bad
colouring gn. �

The least integer n associated with k, c, r as in Theorem 9.1.3 is the
Ramsey number for these parameters; we denote it by R(k, c, r).

Ramsey
number

R(k, c, r)

9.2 Ramsey numbers
Ramsey’s theorem may be rephrased as follows: if H = Kr and G
is a graph with sufficiently many vertices, then either G itself or its
complement G contains a copy of H as a subgraph. Clearly, the same is
true for any graph H, simply because H ⊆ Kh for h := |H|.

However, if we ask for the least n such that every graph G of order n
has the above property—this is the Ramsey number R(H) of H—then

Ramsey
number

R(H)the above question makes sense: if H has only few edges, it should embed
more easily in G or G, and we would expect R(H) to be smaller than
the Ramsey number R(h) = R(Kh).

A little more generally, let R(H1, H2) denote the least n ∈ N such R(H1, H2)

that H1 ⊆ G or H2 ⊆ G for every graph G of order n. For most graphs
H1, H2, only very rough estimates are known for R(H1, H2). Interest-
ingly, lower bounds given by random graphs (as in Theorem 11.1.3) are
often sharper than even the best bounds provided by explicit construc-
tions.

The following proposition describes one of the few cases where exact
Ramsey numbers are known for a relatively large class of graphs:

Proposition 9.2.1. Let s, t be positive integers, and let T be a tree of
order t. Then R(T, Ks) = (s− 1)(t− 1) + 1.

Proof . The disjoint union of s− 1 graphs Kt−1 contains no copy of T , (5.2.3)
(1.5.4)

while the complement of this graph, the complete (s− 1)-partite graph
Ks−1

t−1 , does not contain Ks. This proves R(T, Ks) � (s− 1)(t− 1) + 1.
Conversely, let G be any graph of order n = (s−1)(t−1)+1 whose

complement contains no Ks. Then s > 1, and in any vertex colouring
of G (in the sense of Chapter 5) at most s−1 vertices can have the same
colour. Hence, χ(G) � �n/(s − 1)� = t. By Corollary 5.2.3, G has a
subgraph H with δ(H) � t−1, which by Corollary 1.5.4 contains a copy
of T . �

As the main result of this section, we shall now prove one of those
rare general theorems providing a relatively good upper bound for the
Ramsey numbers of a large class of graphs, a class defined in terms
of a standard graph invariant. The theorem deals with the Ramsey
numbers of sparse graphs: it says that the Ramsey number of graphs H
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with bounded maximum degree grows only linearly in |H|—an enormous
improvement on the exponential bound from the proof of Theorem 9.1.1.

Theorem 9.2.2. (Chvátal, Rödl, Szemerédi & Trotter 1983)
For every positive integer ∆ there is a constant c such that

R(H) � c |H|

for all graphs H with ∆(H) � ∆.

Proof . The basic idea of the proof is as follows. We wish to show that
(7.1.1)
(7.4.1)
(7.5.2)
(9.1.1) H ⊆ G or H ⊆ G if |G| is large enough (though not too large). Consider

an ε-regular partition of G, as provided by the regularity lemma. If
enough of the ε-regular pairs in this partition have high density, we may
hope to find a copy of H in G. If most pairs have low density, we try
to find H in G. Let R, R′ and R′′ be the regularity graphs of G whose
edges correspond to the pairs of density � 0; � 1/2; < 1/2 respectively.2

Then R is the edge-disjoint union of R′ and R′′.
Now to obtain H ⊆ G or H ⊆ G, it suffices by Lemma 7.5.2 to

ensure that H is contained in a suitable ‘inflated regularity graph’ R′
s

or R′′
s . Since χ(H) � ∆(H)+1 � ∆+1, this will be the case if s � α(H)

and we can find a K∆+1 in R′ or in R′′. But that is easy to ensure: we
just need that Kr ⊆ R, where r is the Ramsey number of ∆ + 1, which
will follow from Turán’s theorem because R is dense.

For the formal proof let now ∆ � 1 be given. On input d := 1/2∆, d

and ∆, Lemma 7.5.2 returns an ε0. Let m := R(∆ + 1) be the Ramseyε0, m

number of ∆+1. Let ε � ε0 be positive but small enough that for k = mε

(and hence for all k � m)

2ε <
1

m− 1
− 1

k
; (1)

then in particular ε < 1. Finally, let M be the integer returned by theM

regularity lemma (7.4.1) on input ε and m.
All the quantities defined so far depend only on ∆. We shall prove

the theorem with

c :=
2∆+1M

1− ε
.c

Let H with ∆(H) � ∆ be given, and let s := |H|. Let G be an arbitrarys

graph of order n � c |H|; we show that H ⊆ G or H ⊆ G.G, n

2 In our formal proof later we shall define R′′ a little differently, so that it complies
properly with our definition of a regularity graph.
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By Lemma 7.4.1, G has an ε-regular partition {V0, V1, . . . , Vk } with k

exceptional set V0 and |V1| = . . . = |Vk| =: �, where m � k � M . Then �

� =
n− |V0|

k
� n

1− ε

M
� cs

1− ε

M
� 2∆+1s = 2s/d∆. (2)

Let R be the regularity graph with parameters ε, �, 0 corresponding to R

this partition. By definition, R has k vertices and

‖R‖ �
(

k

2

)
− εk2

= 1
2k2

(
1− 1

k
− 2ε

)

>
(1)

1
2k2

(
1− 1

k
− 1

m− 1
+

1
k

)

= 1
2k2 m− 2

m− 1

� tm−1(k)

edges. By Theorem 7.1.1, therefore, R has a subgraph K = Km. K

We now colour the edges of R with two colours: red if the edge
corresponds to a pair (Vi, Vj) of density at least 1/2, and green otherwise.
Let R′ be the spanning subgraph of R formed by the red edges, and R′′

the spanning subgraph of R formed by the green edges and those whose
corresponding pair has density exactly 1/2. Then R′ is a regularity graph
of G with parameters ε, � and 1/2. And R′′ is a regularity graph of G,
with the same parameters: as one easily checks, every pair (Vi, Vj) that
is ε-regular for G is also ε-regular for G.

By definition of m, our graph K contains a red or a green Kr, for
r := χ(H) � ∆ + 1. Correspondingly, H ⊆ R′

s or H ⊆ R′′
s . Since

ε � ε0 and � � 2s/d∆ by (2), both R′ and R′′ satisfy the requirements
of Lemma 7.5.2, so H ⊆ G or H ⊆ G as desired. �

So far in this section, we have been asking what is the least order of a
graph G such that every 2-colouring of its edges yields a monochromatic
copy of some given graph H. Rather than focusing on the order of G, we
might alternatively try to minimize G itself, with respect to the subgraph
relation. Given a graph H, let us call a graph G Ramsey-minimal for H

Ramsey-
minimal

if G is minimal with the property that every 2-colouring of its edges
yields a monochromatic copy of H.

What do such Ramsey-minimal graphs look like? Are they unique?
The following result, which we include for its pretty proof, answers the
second question for some H:



258 9. Ramsey Theory

Proposition 9.2.3. If T is a tree but not a star, then infinitely many
graphs are Ramsey-minimal for T .

Proof . Let |T | =: r. We show that for every n ∈ N there is a graph of
(1.5.4)
(5.2.3)
(5.2.5) order at least n that is Ramsey-minimal for T .

By Theorem 5.2.5, there exists a graph G with chromatic number
χ(G) > r2 and girth g(G) > n. If we colour the edges of G red and
green, then the red and the green subgraph cannot both have an r-
(vertex-)colouring in the sense of Chapter 5: otherwise we could colour
the vertices of G with the pairs of colours from those colourings and
obtain a contradiction to χ(G) > r2. So let G′ ⊆ G be monochromatic
with χ(G′) > r. By Corollary 5.2.3, G′ has a subgraph of minimum
degree at least r, which contains a copy of T by Corollary 1.5.4.

Let G∗ ⊆ G be Ramsey-minimal for T . Clearly, G∗ is not a for-
est: the edges of any forest can be 2-coloured (partitioned) so that no
monochromatic subforest contains a path of length 3, let alone a copy
of T . (Here we use that T is not a star, and hence contains a P 3.) So G∗

contains a cycle, which has length g(G) > n since G∗ ⊆ G. In particular,
|G∗| > n as desired. �

9.3 Induced Ramsey theorems

Ramsey’s theorem can be rephrased as follows. For every graph H = Kr

there exists a graph G such that every 2-colouring of the edges of G
yields a monochromatic H ⊆ G; as it turns out, this is witnessed by
any large enough complete graph as G. Let us now change the problem
slightly and ask for a graph G in which every 2-edge-colouring yields
a monochromatic induced H ⊆ G, where H is now an arbitrary given
graph.

This slight modification changes the character of the problem dra-
matically. What is needed now is no longer a simple proof that G is
‘big enough’ (as for Theorem 9.1.1), but a careful construction: the
construction of a graph that, however we bipartition its edges, contains
an induced copy of H with all edges in one partition class. We shall call
such a graph a Ramsey graph for H.Ramsey

graph
The fact that such a Ramsey graph exists for every choice of H is

one of the fundamental results of graph Ramsey theory. It was proved
around 1973, independently by Deuber, by Erdős, Hajnal & Pósa, and
by Rödl.

Theorem 9.3.1. Every graph has a Ramsey graph. In other words, for
every graph H there exists a graph G that, for every partition {E1, E2 }
of E(G), has an induced subgraph H with E(H) ⊆ E1 or E(H) ⊆ E2.
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We give two proofs. Each of these is highly individual, yet each offers a
glimpse of true Ramsey theory: the graphs involved are used as hardly
more than bricks in the construction, but the edifice is impressive.

First proof. In our construction of the desired Ramsey graph we shall
repeatedly replace vertices of a graph G = (V, E) already constructed
by copies of another graph H. For a vertex set U ⊆ V let G [U →H ] G [ U →H ]

denote the graph obtained from G by replacing the vertices u ∈ U with
copies H(u) of H and joining each H(u) completely to all H(u′) with H(u)

uu′ ∈ E and to all vertices v ∈ V �U with uv ∈ E (Fig. 9.3.1). Formally,

U

G

Fig. 9.3.1. A graph G [ U →H ] with H = K3

G [U →H ] is the graph on

(U ×V (H)) ∪ ((V � U)×{∅ })

in which two vertices (v, w) and (v′, w′) are adjacent if and only if either
vv′ ∈ E, or else v = v′ ∈ U and ww′ ∈ E(H).3

We prove the following formal strengthening of Theorem 9.3.1:

G(H1, H2)

For any two graphs H1, H2 there exists a graph G =
G(H1, H2) such that every edge colouring of G with the
colours 1 and 2 yields either an induced H1 ⊆ G with all
its edges coloured 1 or an induced H2 ⊆ G with all its
edges coloured 2.

(∗)

This formal strengthening makes it possible to apply induction on
|H1|+ |H2|, as follows.

If either H1 or H2 has no edges (in particular, if |H1|+ |H2| � 1),
then (∗) holds with G = Kn for large enough n. For the induction step,
we now assume that both H1 and H2 have at least one edge, and that
(∗) holds for all pairs (H ′

1, H
′
2) with smaller |H ′

1|+ |H ′
2|.

3 The replacement of V � U by (V � U)×{∅ } is just a formal device to ensure
that all vertices of G [ U → H ] have the same form (v, w), and that G [ U → H ] is
formally disjoint from G.
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For each i = 1, 2, pick a vertex xi ∈ Hi that is incident with anxi

edge. Let H ′
i := Hi −xi, and let H ′′

i be the subgraph of H ′
i induced byH′

i, H
′′
i

the neighbours of xi.
We shall construct a sequence G0, . . . , Gn of disjoint graphs; Gn will

be the desired Ramsey graph G(H1, H2). Along with the graphs Gi, we
shall define subsets V i ⊆ V (Gi) and a map

f :V 1 ∪ . . .∪V n →V 0 ∪ . . .∪V n−1

such that

f(V i) = V i−1 (1)

for all i � 1. Writing f i := f ◦ . . . ◦ f for the i-fold composition of f ,f i

and f0 for the identity map on V 0 = V (G0), we thus have f i(v) ∈ V 0

for all v ∈ V i. We call f i(v) the origin of v.origin

The subgraphs Gi [V i ] will reflect the structure of G0 as follows:

Vertices in V i with different origins are adjacent in Gi if
and only if their origins are adjacent in G0.

(2)

Assertion (2) will not be used formally in the proof below. However,
it can help us to visualize the graphs Gi: every Gi (more precisely, every
Gi [V i ]—there will also be some vertices x ∈ Gi −V i) is essentially an
inflated copy of G0 in which every vertex w ∈ G0 has been replaced by
the set of all vertices in V i with origin w, and the map f links vertices
with the same origin across the various Gi.

By the induction hypothesis, there are Ramsey graphs

G1 := G(H1, H
′
2) and G2 := G(H ′

1, H2) .G1, G2

Let G0 be a copy of G1, and set V 0 := V (G0). Let W ′
0, . . . , W

′
n−1 be theG0, V 0

subsets of V 0 spanning an H ′
2 in G0. Thus, n is defined as the numberW ′

i

of induced copies of H ′
2 in G0, and we shall construct a graph Gi forn

every set W ′
i−1, i = 1, . . . , n. For i = 0, . . . , n− 1, let W ′′

i be the imageW ′′
i

of V (H ′′
2 ) under some isomorphism H ′

2 →G0 [W ′
i ].

Assume now that G0, . . . , Gi−1 and V 0, . . . , V i−1 have been defined
for some i � 1, and that f has been defined on V 1 ∪ . . . ∪ V i−1 and
satisfies (1) for all j � i. We construct Gi from Gi−1 in two steps. For
the first step, consider the set U i−1 of all the vertices v ∈ V i−1 whoseU i−1

origin f i−1(v) lies in W ′′
i−1. (For i = 1, this gives U0 = W ′′

0 .) Expand
Gi−1 to a new graph G̃i−1 (disjoint from Gi−1) by replacing every vertex
u ∈ U i−1 with a copy G2(u) of G2, i.e. letG2(u)

G̃i−1 := Gi−1 [U i−1 →G2 ]G̃i−1
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G0

u
W ′

0 W ′′
0

v

G1

V 1V 1

H ′
1(u)

H ′′
1 (u)

x(F )

v′G2(u)

u′

{ {

Fig. 9.3.2. The construction of G1

(see Figures 9.3.2 and 9.3.3). Set f(u′) := u for all u ∈ U i−1 and
u′ ∈ G2(u), and f(v′) := v for all v′ = (v, ∅) with v ∈ V i−1 � U i−1.
(Recall that (v, ∅) is simply the unexpanded copy of a vertex v ∈ Gi−1

in G̃i−1.) Let V i be the set of those vertices v′ or u′ of G̃i−1 for which V i

f has thus been defined, i.e. the vertices that either correspond directly
to a vertex v in V i−1 or else belong to an expansion G2(u) of such a
vertex u. Then (1) holds for i. Also, if we assume (2) inductively for
i− 1, then (2) holds again for i (in G̃i−1). The graph G̃i−1 is already
the essential part of Gi: the part that looks like an inflated copy of G0.

In the second step we now extend G̃i−1 to the desired graph Gi by
adding some further vertices x /∈ V i. Let F denote the set of all families F
F of the form

F =
(
H ′

1(u) | u ∈ U i−1
)
,

where each H ′
1(u) is an induced subgraph of G2(u) isomorphic to H ′

1. H′
1(u)

(Less formally: F is the collection of ways to select simultaneously from
each G2(u) exactly one induced copy of H ′

1.) For each F ∈ F , add a
vertex x(F ) to G̃i−1 and join it, for every u ∈ U i−1, to all the vertices in x(F )

the image H ′′
1 (u) ⊆ H ′

1(u) of H ′′
1 under some isomorphism from H ′

1 to H′′
1 (u)

the H ′
1(u) ⊆ G2(u) selected by F (Fig. 9.3.2). Denote the resulting graph

by Gi. This completes the inductive definition of the graphs G0, . . . , Gn. Gi

Let us now show that G := Gn satisfies (∗). To this end, we prove
the following assertion (∗∗) about Gi for i = 0, . . . , n:

For every edge colouring with the colours 1 and 2, Gi con-
tains either an induced H1 coloured 1, or an induced H2

coloured 2, or an induced subgraph H coloured 2 such that
V (H) ⊆ V i and the restriction of f i to V (H) is an isomor-
phism between H and G0 [W ′

k ] for some k ∈ { i, . . . , n−1 }.

(∗∗)
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Note that the third of the above cases cannot arise for i = n, so (∗∗) for
n is equivalent to (∗) with G := Gn.

For i = 0, (∗∗) follows from the choice of G0 as a copy of G1 =
G(H1, H

′
2) and the definition of the sets W ′

k. Now let 1 � i � n, and
assume (∗∗) for smaller values of i.

Let an edge colouring of Gi be given. For each u ∈ U i−1 there is a
copy of G2 in Gi:

Gi ⊇ G2(u) 
 G(H ′
1, H2) .

If G2(u) contains an induced H2 coloured 2 for some u ∈ U i−1, we are
done. If not, then every G2(u) has an induced subgraph H ′

1(u) 
 H ′
1

coloured 1. Let F be the family of these graphs H ′
1(u), one for each

u ∈ U i−1, and let x := x(F ). If, for some u ∈ U i−1, all the x–H ′′
1 (u)x

edges in Gi are also coloured 1, we have an induced copy of H1 in Gi

and are again done. We may therefore assume that each H ′′
1 (u) has a

vertex yu for which the edge xyu is coloured 2. The restriction yu �→ uyu

of f to

Û i−1 := { yu | u ∈ U i−1 } ⊆ V i
Û i−1

extends by (v, ∅) �→ v to an isomorphism from

Ĝi−1 := Gi
[
Û i−1 ∪

{
(v, ∅) | v ∈ V (Gi−1) � U i−1

} ]
Ĝi−1

to Gi−1, and so our edge colouring of Gi induces an edge colouring
of Gi−1. If this colouring yields an induced H1 ⊆ Gi−1 coloured 1 or an
induced H2 ⊆ Gi−1 coloured 2, we have these also in Ĝi−1 ⊆ Gi and are
again home.

By (∗∗) for i−1 we may therefore assume that Gi−1 has an induced
subgraph H ′ coloured 2, with V (H ′) ⊆ V i−1, and such that the restric-H′

tion of f i−1 to V (H ′) is an isomorphism from H ′ to G0 [W ′
k ] 
 H ′

2

for some k ∈ { i− 1, . . . , n− 1 }. Let Ĥ ′ be the corresponding inducedĤ′

subgraph of Ĝi−1 ⊆ Gi (also coloured 2); then V (Ĥ ′) ⊆ V i,

f i(V (Ĥ ′)) = f i−1(V (H ′)) = W ′
k ,

and f i: Ĥ ′ →G0 [W ′
k ] is an isomorphism.

If k � i, this completes the proof of (∗∗) with H := Ĥ ′; we therefore
assume that k < i, and hence k = i − 1 (Fig. 9.3.3). By definition
of U i−1 and Ĝi−1, the inverse image of W ′′

i−1 under the isomorphism
f i: Ĥ ′ → G0 [W ′

i−1 ] is a subset of Û i−1. Since x is joined to precisely
those vertices of Ĥ ′ that lie in Û i−1, and all these edges xyu have colour 2,
the graph Ĥ ′ and x together induce in Gi a copy of H2 coloured 2, and
the proof of (∗∗) is complete. �
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′Ĥ

′Ĥ
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Fig. 9.3.3. A monochromatic copy of H2 in Gi

Let us return once more to the reformulation of Ramsey’s theorem
considered at the beginning of this section: for every graph H there
exists a graph G such that every 2-colouring of the edges of G yields
a monochromatic H ⊆ G. The graph G for which this follows at once
from Ramsey’s theorem is a sufficiently large complete graph. If we
ask, however, that G shall not contain any complete subgraphs larger
than those in H, i.e. that ω(G) = ω(H), the problem again becomes
difficult—even if we do not require H to be induced in G.

Our second proof of Theorem 9.3.1 solves both problems at once:
given H, we shall construct a Ramsey graph for H with the same clique
number as H.

For this proof, i.e. for the remainder of this section, let us view
bipartite graphs P as triples (V1, V2, E), where V1 and V2 are the two bipartite

vertex classes and E ⊆ V1 × V2 is the set of edges. The reason for this
more explicit notation is that we want embeddings between bipartite
graphs to respect their bipartitions: given another bipartite graph P ′ =
(V ′

1 , V ′
2 , E′), an injective map ϕ:V1 ∪ V2 → V ′

1 ∪ V ′
2 will be called an

embedding of P in P ′ if ϕ(Vi) ⊆ V ′
i for i = 1, 2 and ϕ(v1)ϕ(v2) is an edge embedding

P →P ′

of P ′ if and only if v1v2 is an edge of P . (Note that such embeddings
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are ‘induced’.) Instead of ϕ:V1 ∪ V2 → V ′
1 ∪ V ′

2 we may simply write
ϕ:P →P ′.

We need two lemmas.

Lemma 9.3.2. Every bipartite graph can be embedded in a bipartite
graph of the form (X, [X]k, E) with E = {xY | x ∈ Y }.E

Proof . Let P be any bipartite graph, with vertex classes { a1, . . . , an }
and { b1, . . . , bm }, say. Let X be a set with 2n +m elements, say

X = {x1, . . . , xn, y1, . . . , yn, z1, . . . , zm } ;

we shall define an embedding ϕ:P → (X, [X]n+1, E).
Let us start by setting ϕ(ai) := xi for all i = 1, . . . , n. Which

(n + 1)-sets Y ⊆ X are suitable candidates for the choice of ϕ(bi) for
a given vertex bi? Clearly those adjacent exactly to the images of the
neighbours of bi, i.e. those satisfying

Y ∩{x1, . . . , xn } = ϕ(NP (bi)) . (1)

Since d(bi) � n, the requirement of (1) leaves at least one of the n + 1
elements of Y unspecified. In addition to ϕ(NP (bi)), we may therefore
include in each Y = ϕ(bi) the vertex zi as an ‘index’; this ensures that
ϕ(bi) �= ϕ(bj) for i �= j, even when bi and bj have the same neighbours
in P . To specify the sets Y = ϕ(bi) completely, we finally fill them up
with ‘dummy’ elements yj until |Y | = n + 1. �

Our second lemma already covers the bipartite case of the theorem:
it says that every bipartite graph has a Ramsey graph—even a bipartite
one.

Lemma 9.3.3. For every bipartite graph P there exists a bipartite
graph P ′ such that for every 2-colouring of the edges of P ′ there is
an embedding ϕ:P →P ′ for which all the edges of ϕ(P ) have the same
colour.

Proof . We may assume by Lemma 9.3.2 that P has the form (X, [X]k, E)(9.1.3)

with E = {xY | x ∈ Y }. We show the assertion for the graph P ′ :=P, X, k, E

(X ′, [X ′]k
′
, E′), where k′ := 2k− 1, X ′ is any set of cardinalityP ′, X′, k′

|X ′| = R
(
k′, 2

(
k′

k

)
, k |X|+ k− 1

)
,

(this is the Ramsey number defined after Theorem 9.1.3), and

E′ := {x′Y ′ | x′ ∈ Y ′ } .E′



9.3 Induced Ramsey theorems 265

Let us then colour the edges of P ′ with two colours α and β. Of the α, β

|Y ′| = 2k − 1 edges incident with a vertex Y ′ ∈ [X ′]k
′
, at least k must

have the same colour. For each Y ′ we may therefore choose a fixed k-set
Z ′ ⊆ Y ′ such that all the edges x′Y ′ with x′ ∈ Z ′ have the same colour; Z′

we shall call this colour associated with Y ′. associated

The sets Z ′ can lie within their supersets Y ′ in
(
k′

k

)
ways, as follows.

Let X ′ be linearly ordered. Then for every Y ′ ∈ [X ′]k
′
there is a unique

order-preserving bijection σY ′ :Y ′ →{ 1, . . . , k′ }, which maps Z ′ to one σY ′

of
(
k′

k

)
possible images.

We now colour [X ′]k
′
with the 2

(
k′

k

)
elements of the set

[{ 1, . . . , k′ }]k ×{α, β }

as colours, giving each Y ′ ∈ [X ′]k
′

as its colour the pair (σY ′(Z ′), γ),
where γ is the colour α or β associated with Y ′. Since |X ′| was chosen
as the Ramsey number with parameters k′, 2

(
k′

k

)
and k |X|+ k − 1, we

know that X ′ has a monochromatic subset W of cardinality k |X|+k−1. W

All Z ′ with Y ′ ⊆ W thus lie within their Y ′ in the same way, i.e. there
exists an S ∈ [{ 1, . . . , k′ }]k such that σY ′(Z ′) = S for all Y ′ ∈ [W ]k

′
,

and all Y ′ ∈ [W ]k
′
are associated with the same colour, say with α. α

We now construct the desired embedding ϕ of P in P ′. We first ϕ|X
define ϕ on X =: {x1, . . . , xn }, choosing images ϕ(xi) =: wi ∈ W so xi, wi, n

that wi < wj in our ordering of X ′ whenever i < j. Moreover, we choose
the wi so that exactly k− 1 elements of W are smaller than w1, exactly
k − 1 lie between wi and wi+1 for i = 1, . . . , n − 1, and exactly k − 1
are bigger than wn. Since |W | = kn + k − 1, this can indeed be done
(Fig. 9.3.4).

We now define ϕ on [X]k. Given Y ∈ [X]k, we wish to choose ϕ|[X]k

ϕ(Y ) =: Y ′ ∈ [X ′]k
′

so that the neighbours of Y ′ among the vertices
in ϕ(X) are precisely the images of the neighbours of Y in P , i.e. the k
vertices ϕ(x) with x ∈ Y , and so that all these edges at Y ′ are coloured α.
To find such a set Y ′, we first fix its subset Z ′ as {ϕ(x) | x ∈ Y }
(these are k vertices of type wi) and then extend Z ′ by k′ − k further
vertices u ∈ W � ϕ(X) to a set Y ′ ∈ [W ]k

′
, in such a way that Z ′ lies

correctly within Y ′, i.e. so that σY ′(Z ′) = S. This can be done, because
k− 1 = k′ − k other vertices of W lie between any two wi. Then

Y ′ ∩ϕ(X) = Z ′ = {ϕ(x) | x ∈ Y } ,

so Y ′ has the correct neighbours in ϕ(X), and all the edges between Y ′

and these neighbours are coloured α (because those neighbours lie in Z ′

and Y ′ is associated with α). Finally, ϕ is injective on [X]k: the images
Y ′ of different vertices Y are distinct, because their intersections with
ϕ(X) differ. Hence, our map ϕ is indeed an embedding of P in P ′. �
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Fig. 9.3.4. The graph of Lemma 9.3.3

Second proof of Theorem 9.3.1. Let H be given as in the theorem,
and let n := R(r) be the Ramsey number of r := |H|. Then, for everyr, n

2-colouring of its edges, the graph K = Kn contains a monochromaticK

copy of H—although not necessarily induced.
We start by constructing a graph G0, as follows. Imagine the ver-

tices of K to be arranged in a column, and replace every vertex by a row
of

(
n
r

)
vertices. Then each of the

(
n
r

)
columns arising can be associated

with one of the
(
n
r

)
ways of embedding V (H) in V (K); let us furnish

this column with the edges of such a copy of H. The graph G0 thus aris-
ing consists of

(
n
r

)
disjoint copies of H and (n− r)

(
n
r

)
isolated vertices

(Fig. 9.3.5).
In order to define G0 formally, we assume that V (K) = { 1, . . . , n }

and choose copies H1, . . . , H(n
r) of H in K with pairwise distinct vertex

sets. (Thus, on each r-set in V (K) we have one fixed copy Hj of H.)
We then defineG0

V (G0) :=
{
(i, j) | i = 1, . . . , n; j = 1, . . . ,

(
n
r

)}
and
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Fig. 9.3.5. The graph G0

E(G0) :=
(n

r)⋃
j=1

{
(i, j)(i′, j) | ii′ ∈ E(Hj)

}
.

The idea of the proof now is as follows. Our aim is to reduce the gen-
eral case of the theorem to the bipartite case dealt with in Lemma 9.3.3.
Applying the lemma iteratively to all the pairs of rows of G0, we con-
struct a very large graph G such that for every edge colouring of G there
is an induced copy of G0 in G that is monochromatic on all the bipartite
subgraphs induced by its pairs of rows, i.e. in which edges between the
same two rows always have the same colour. The projection of this
G0 ⊆ G to { 1, . . . , n } (by contracting its rows) then defines an edge
colouring of K. (If the contraction does not yield all the edges of K,
colour the missing edges arbitrarily.) By the choice of |K|, some Kr ⊆ K
will be monochromatic. The Hj inside this Kr then occurs with the same
colouring in the jth column of our G0, where it is an induced subgraph
of G0, and hence of G.

Formally, we shall define a sequence G0, . . . , Gm of n-partite graphs
Gk, with n-partition {V k

1 , . . . , V k
n } say, and then let G := Gm. The

graph G0 has been defined above; let V 0
1 , . . . , V 0

n be its rows:

V 0
i :=

{
(i, j) | j = 1, . . . ,

(
n
r

)}
. V 0

i

Now let e1, . . . , em be an enumeration of the edges of K. For k = ek, m

0, . . . , m − 1, construct Gk+1 from Gk as follows. If ek+1 = i1i2, say, i1, i2

let P = (V k
i1

, V k
i2

, E) be the bipartite subgraph of Gk induced by its P

i1th and i2th row. By Lemma 9.3.3, P has a bipartite Ramsey graph P ′

P ′ = (W1, W2, E
′). We wish to define Gk+1 ⊇ P ′ in such a way that every W1, W2

(monochromatic) embedding P →P ′ can be extended to an embedding
Gk →Gk+1 respecting their n-partitions. Let {ϕ1, . . . , ϕq } be the set of ϕp, q

all embeddings of P in P ′, and let

V (Gk+1) := V k+1
1 ∪ . . .∪V k+1

n ,
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where

V k+1
i :=




W1 for i = i1
W2 for i = i2⋃q

p=1(V
k
i ×{ p }) for i /∈ { i1, i2 }.

(Thus for i �= i1, i2, we take as V k+1
i just q disjoint copies of V k

i .) We
now define the edge set of Gk+1 so that the obvious extensions of ϕp to
all of V (Gk) become embeddings of Gk in Gk+1: for p = 1, . . . , q, let
ψp:V (Gk)→V (Gk+1) be defined by

ψp(v) :=
{

ϕp(v) for v ∈ P
(v, p) for v /∈ P

and let

E(Gk+1) :=
q⋃

p=1

{ψp(v)ψp(v′) | vv′ ∈ E(Gk) } .

Now for every 2-colouring of its edges, Gk+1 contains an induced copy
ψp(Gk) of Gk whose edges in P , i.e. those between its i1th and i2th row,
have the same colour: just choose p so that ϕp(P ) is the monochromatic
induced copy of P in P ′ that exists by Lemma 9.3.3.

We claim that G := Gm satisfies the assertion of the theorem. So
let a 2-colouring of the edges of G be given. By the construction of
Gm from Gm−1, we can find in Gm an induced copy of Gm−1 such that
for em = ii′ all edges between the ith and the i′th row have the same
colour. In the same way, we find inside this copy of Gm−1 an induced
copy of Gm−2 whose edges between the ith and the i′th row have the
same colour also for ii′ = em−1. Continuing in this way, we finally arrive
at an induced copy of G0 in G such that, for each pair (i, i′), all the
edges between V 0

i and V 0
i′ have the same colour. As shown earlier, this

G0 contains a monochromatic induced copy Hj of H. �

9.4 Ramsey properties and connectivity

According to Ramsey’s theorem, every large enough graph G has a very
dense or a very sparse induced subgraph of given order, a Kr or Kr. If
we assume that G is connected, we can say a little more:

Proposition 9.4.1. For every r ∈ N there is an n ∈ N such that every
connected graph of order at least n contains Kr, K1,r or P r as an induced
subgraph.
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Proof . Let d + 1 be the Ramsey number of r, let n := d
d−2 (d − 1)r, (1.3.3)

and let G be a graph of order at least n. If G has a vertex v of degree
at least d + 1 then, by Theorem 9.1.1 and the choice of d, either N(v)
induces a Kr in G or { v } ∪N(v) induces a K1,r. On the other hand,
if ∆(G) � d, then by Proposition 1.3.3 G has radius > r, and hence
contains two vertices at a distance � r. Any shortest path in G between
these two vertices contains a P r. �

In principle, we could now look for a similar set of ‘unavoidable’
k-connected subgraphs for any given connectivity k. To keep thse ‘un-
avoidable sets’ small, it helps to relax the containment relation from
‘induced subgraph’ for k = 1 (as above) to ‘topological minor’ for k = 2,
and on to ‘minor’ for k = 3 and k = 4. For larger k, no similar results
are known.

Proposition 9.4.2. For every r ∈ N there is an n ∈ N such that every
2-connected graph of order at least n contains Cr or K2,r as a topological
minor.

Proof . Let d be the n associated with r in Proposition 9.4.1, and let G be (1.3.3)
(3.3.6)

a 2-connected graph with at least d
d−2 (d− 1)r vertices. By Proposition

1.3.3, either G has a vertex of degree > d or diamG � radG > r.
In the latter case let a, b ∈ G be two vertices at distance > r. By

Menger’s theorem (3.3.6), G contains two independent a–b paths. These
form a cycle of length > r.

Assume now that G has a vertex v of degree > d. Since G is 2-
connected, G − v is connected and thus has a spanning tree; let T be
a minimal tree in G − v that contains all the neighbours of v. Then
every leaf of T is a neighbour of v. By the choice of d, either T has a
vertex of degree � r or T contains a path of length � r, without loss of
generality linking two leaves. Together with v, such a path forms a cycle
of length � r. A vertex u of degree � r in T can be joined to v by r
independent paths through T , to form a TK2,r. �

Theorem 9.4.3. (Oporowski, Oxley & Thomas 1993)
For every r ∈ N there is an n ∈ N such that every 3-connected graph of
order at least n contains a wheel of order r or a K3,r as a minor.

Let us call a graph of the form Cn ∗K2 (n � 4) a double wheel , the
1-skeleton of a triangulation of the cylinder as in Fig. 9.4.1 a crown, and
the 1-skeleton of a triangulation of the Möbius strip a Möbius crown.

Fig. 9.4.1. A crown and a Möbius crown
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Theorem 9.4.4. (Oporowski, Oxley & Thomas 1993)
For every r ∈ N there is an n ∈ N such that every 4-connected graph
with at least n vertices has a minor of order � r that is a double wheel,
a crown, a Möbius crown, or a K4,s.

At first glance, the ‘unavoidable’ substructures presented in the four
theorems above may seem to be chosen somewhat arbitrarily. In fact,
the contrary is true: these sets are smallest possible, and as such unique.

To make this precise, let us consider graph properties P each con-
taining arbitrarily large graphs. Given an order relation � between
graphs (such as the subgraph relation ⊆, or the minor relation �), we
write P � P ′ if for every G ∈ P there is a G′ ∈ P ′ such that G � G′.
If P � P ′ as well as P � P ′, we call P and P ′ equivalent and write
P ∼ P ′. For example, if � is the subgraph relation, P is the class of all∼
paths, P ′ is the class of paths of even length, and S is the class of all
subdivisions of stars, then P ∼ P ′ � S �� P.

If C is a collection of such properties, we call a finite subset
{P1, . . . ,Pk } of C a Kuratowski set for C (with respect to �) if theKuratowski

set
Pi are incomparable (i.e., Pi �� Pj whenever i �= j) and for every P ∈ C
there is an i such that Pi � P. We call this Kuratowski set unique ifunique

every Kuratowski set for C can be written as {Q1, . . . ,Qk } with Qi ∼ Pi

for all i.
The essence of our last four theorems can now be stated more com-

prehensively as follows (cf. Exercise 1818).

Theorem 9.4.5.

(i) The stars and the paths form the unique (2-element) Kuratowski
set for the properties of connected graphs, with respect to the
subgraph relation.

(ii) The cycles and the graphs K2,r (r ∈ N) form the unique (2-
element) Kuratowski set for the properties of 2-connected graphs,
with respect to the topological minor relation.

(iii) The wheels and the graphs K3,r (r ∈ N) form the unique (2-
element) Kuratowski set for the properties of 3-connected graphs,
with respect to the minor relation.

(iv) The double wheels, the crowns, the Möbius crowns, and the
graphs K4,r (r ∈ N) form the unique (4-element) Kuratowski set
for the properties of 4-connected graphs, with respect to the minor
relation. �
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Exercises

1.− Determine the Ramsey number R(3).

2.− Deduce the case k = 2 (but c arbitrary) of Theorem 9.1.3 directly from
Theorem 9.1.1.

3. Can you improve the exponential upper bound on the Ramsey number
R(n) for perfect graphs?

4.+ Construct a graph on R that has neither a complete nor an edgeless
induced subgraph on |R| = 2ℵ0 vertices. (So Ramsey’s theorem does
not extend to uncountable sets.)

5.+ Prove the edge version of the Erdős-Pósa theorem (2.3.2): there exists a
function g: N→R such that, given k ∈ N, every graph contains either k
edge-disjoint cycles or a set of at most g(k) edges meeting all its cycles.

(Hint. Consider in each component a normal spanning tree T . If T has
many chords xy, use any regular pattern of how the paths xTy intersect
to find many edge-disjoint cycles.)

6.+ Use Ramsey’s theorem to show that for any k, � ∈ N there is an n ∈ N
such that every sequence of n distinct integers contains an increasing
subsequence of length k +1 or a decreasing subsequence of length �+1.
Find an example showing that n > k�. Then prove the theorem of
Erdős and Szekeres that n = k� +1 will do.

7. Sketch a proof of the following theorem of Erdős and Szekeres: for every
k ∈ N there is an n ∈ N such that among any n points in the plane,
no three of them collinear, there are k points spanning a convex k-gon,
i.e. such that none of them lies in the convex hull of the others.

8. Prove the following result of Schur: for every k ∈ N there is an n ∈ N
such that, for every partition of { 1, . . . , n } into k sets, at least one of
the subsets contains numbers x, y, z such that x + y = z.

9. Let (X, �) be a totally ordered set, and let G = (V, E) be the graph
on V := [X]2 with E := {(x, y)(x′, y′) | x < y = x′ < y′}.

(i) Show that G contains no triangle.

(ii) Show that χ(G) will get arbitrarily large if |X| is chosen large
enough.

10. A family of sets is called a ∆-system if every two of the sets have the
same intersection. Show that every infinite family of sets of the same
finite cardinality contains an infinite ∆-system.

11. Prove that for every r ∈ N and every tree T there exists a k ∈ N such
that every graph G with χ(G) � k and ω(G) < r contains a subdivision
of T in which no two branch vertices are adjacent in G (unless they are
adjacent in T ).

12. Let m, n ∈ N, and assume that m− 1 divides n− 1. Show that every
tree T of order m satisfies R(T, K1,n) = m + n− 1.
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13. Prove that 2c < R(2, c, 3) � 3c! for every c ∈ N.

(Hint. Induction on c.)

14.− Derive the statement (∗) in the first proof of Theorem 9.3.1 from the
theorem itself, i.e. show that (∗) is only formally stronger than the
theorem.

15. Show that, given any two graphs H1 and H2, there exists a graph
G = G(H1, H2) such that, for every vertex-colouring of G with colours
1 and 2, there is either an induced copy of H1 coloured 1 or an induced
copy of H2 coloured 2 in G.

16. Show that the Ramsey graph G for H constructed in the second proof
of Theorem 9.3.1 does indeed satisfy ω(G) = ω(H).

17.− The Kr from Ramsey’s theorem, last sighted in Proposition 9.4.1, con-
spicuously fails to make an appearance from Proposition 9.4.2 onwards.
Can it be excused?

18. Deduce Theorem 9.4.5 from the other four results in Section 9.4, and
vice versa.

Notes
Due to increased interaction with research on random and pseudo-random4

structures (the latter being provided, for example, by the regularity lemma),
the Ramsey theory of graphs has recently seen a period of major activity and
advance. Theorem 9.2.2 is an early example of this development.

For the more classical approach, the introductory text by R.L.Graham,
B.L.Rothschild & J.H. Spencer, Ramsey Theory (2nd edn.), Wiley 1990,
makes stimulating reading. This book includes a chapter on graph Ramsey
theory, but is not confined to it. Surveys of finite and infinite Ramsey theory
are given by J.Nešetřil and A.Hajnal in their chapters in the Handbook of
Combinatorics (R.L.Graham, M.Grötschel & L. Lovász, eds.), North-Holland
1995. The Ramsey theory of infinite sets forms a substantial part of combi-
natorial set theory, and is treated in depth in P. Erdős, A.Hajnal, A.Máté &
R.Rado, Combinatorial Set Theory , North-Holland 1984. An attractive col-
lection of highlights from various branches of Ramsey theory, including appli-
cations in algebra, geometry and point-set topology, is offered in B.Bollobás,
Graph Theory , Springer GTM63, 1979.

Theorem 9.2.2 is due to V.Chvátal, V.Rödl, E. Szemerédi & W.T.Trot-
ter, The Ramsey number of a graph with bounded maximum degree, J. Com-
bin. Theory B 34 (1983), 239–243. Our proof follows the sketch in J.Komlós &
M. Simonovits, Szemerédi’s Regularity Lemma and its applications in graph
theory, in (D.Miklós, V.T. Sós & T. Szőnyi, eds.) Paul Erdős is 80, Vol. 2,
Proc. Colloq. Math. Soc. János Bolyai (1996). The theorem marks a break-
through towards a conjecture of Burr and Erdős (1975), which asserts that the

4 Concrete graphs whose structure resembles the structure expected of a random
graph are called pseudo-random. For example, the bipartite graphs spanned by an
ε-regular pair of vertex sets in a graph are pseudo-random.
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Ramsey numbers of graphs with bounded average degree in every subgraph are
linear: for every d ∈ N, the conjecture says, there exists a constant c such that
R(H) � c |H| for all graphs H with d(H ′) � d for all H ′ ⊆ H. This conjecture
has been verified approximately by A.Kostochka and B. Sudakov, On Ram-
sey numbers of sparse graphs, Combinatorics, Probability and Computing 12
(2003), 627–641, who proved that R(H) � |H|1+o(1).

Our first proof of Theorem 9.3.1 is based on W.Deuber, A generalization
of Ramsey’s theorem, in (A.Hajnal, R.Rado & V.T. Sós, eds.) Infinite and
finite sets, North-Holland 1975. The same volume contains the alternative
proof of this theorem by Erdős, Hajnal and Pósa. Rödl proved the same result
in his MSc thesis at the Charles University, Prague, in 1973. Our second
proof of Theorem 9.3.1, which preserves the clique number of H for G, is due
to J.Nešetřil & V.Rödl, A short proof of the existence of restricted Ramsey
graphs by means of a partite construction, Combinatorica 1 (1981), 199–202.

The two theorems in Section 9.4 are due to B.Oporowski, J.Oxley &
R.Thomas, Typical subgraphs of 3- and 4-connected graphs, J. Combin. The-
ory B 57 (1993), 239–257.





10 Hamilton Cycles

In Chapter 1.8 we briefly discussed the problem of when a graph contains
an Euler tour, a closed walk traversing every edge exactly once. The
simple Theorem 1.8.1 solved that problem quite satisfactorily. Let us
now ask the analogous question for vertices: when does a graph G contain
a closed walk that contains every vertex of G exactly once? If |G| � 3,
then any such walk is a cycle: a Hamilton cycle of G. If G has a Hamilton Hamilton

cycle
cycle, it is called hamiltonian. Similarly, a path in G containing every
vertex of G is a Hamilton path. Hamilton

path
To determine whether or not a given graph has a Hamilton cycle is

much harder than deciding whether it is Eulerian, and no good charac-
terization is known1 of the graphs that do. We shall begin this chapter
by presenting the standard sufficient conditions for the existence of a
Hamilton cycle (Sections 10.1 and 10.2). The rest of the chapter is then
devoted to the beautiful theorem of Fleischner that the ‘square’ of every
2-connected graph has a Hamilton cycle. This is one of the main results
in the field of Hamilton cycles. The simple proof we present (due to Ř́ıha)
is still a little longer than other proofs in this book, but not difficult.

10.1 Simple sufficient conditions
What kind of condition might be sufficient for the existence of a Hamilton
cycle in a graph G? Purely global assumptions, like high edge density,
will not be enough: we cannot do without the local property that every
vertex has at least two neighbours. But neither is any large (but con-
stant) minimum degree sufficient: it is easy to find graphs without a Ha-
milton cycle whose minimum degree exceeds any given constant bound.

The following classic result derives its significance from this back-
ground:

1 . . . or indeed expected to exist; see the notes for details.
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Theorem 10.1.1. (Dirac 1952)
Every graph with n � 3 vertices and minimum degree at least n/2 has
a Hamilton cycle.

Proof . Let G = (V, E) be a graph with |G| = n � 3 and δ(G) � n/2.
Then G is connected: otherwise, the degree of any vertex in the smallest
component C of G would be less than |C| � n/2.

Let P = x0 . . . xk be a longest path in G. By the maximality of P ,
all the neighbours of x0 and all the neighbours of xk lie on P . Hence
at least n/2 of the vertices x0, . . . , xk−1 are adjacent to xk, and at least
n/2 of these same k < n vertices xi are such that x0xi+1 ∈ E. By the
pigeon hole principle, there is a vertex xi that has both properties, so
we have x0xi+1 ∈ E and xixk ∈ E for some i < k (Fig. 10.1.1).

x0 xi

xi+1

xkP
. . . . . .

Fig. 10.1.1. Finding a Hamilton cycle in the proof Theorem 10.1.1

We claim that the cycle C := x0xi+1PxkxiPx0 is a Hamilton cycle
of G. Indeed, since G is connected, C would otherwise have a neighbour
in G − C, which could be combined with a spanning path of C into a
path longer than P . �

Theorem 10.1.1 is best possible in that we cannot replace the bound
of n/2 with �n/2�: if n is odd and G is the union of two copies of K
n/2�

meeting in one vertex, then δ(G) = �n/2� but κ(G) = 1, so G cannot
have a Hamilton cycle. In other words, the high level of the bound of
δ � n/2 is needed to ensure, if nothing else, that G is 2-connected:
a condition just as trivially necessary for hamiltonicity as a minimum
degree of at least 2. It would seem, therefore, that prescribing some
high (constant) value for κ rather than for δ stands a better chance of
implying hamiltonicity. However, this is not so: although every large
enough k-connected graph contains a cycle of length at least 2k (Ex. 1616,
Ch. 3), the graphs Kk,n show that this is already best possible.

Slightly more generally, a graph G with a separating set S of k
vertices such that G − S has more than k components is clearly not
hamiltonian. Could it be true that all non-hamiltonian graphs have
such a separating set, one that leaves many components compared with
its size? We shall address this question in a moment.

For now, just note that such graphs as above also have relatively
large independent sets: pick one vertex from each component of G−S to
obtain one of order at least k +1. Might we be able to force a Hamilton
cycle by forbidding large independent sets?
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By itself, the assumption of α(G) � k already guarantees a cycle of
length at least |G|/k (Ex. 1313, Ch. 5). And combined with the assumption
of k-connectedness, it does indeed imply hamiltonicity:

Proposition 10.1.2. Every graph G with |G| � 3 and α(G) � κ(G)
has a Hamilton cycle.

Proof . Put κ(G) =: k, and let C be a longest cycle in G. Enumerate the (3.3.4)

vertices of C cyclically, say as V (C) = { vi | i ∈ Zn } with vivi+1 ∈ E(C) k

for all i ∈ Zn. If C is not a Hamilton cycle, pick a vertex v ∈ G−C and
a v–C fan F = {Pi | i ∈ I } in G, where I ⊆ Zn and each Pi ends in vi.
Let F be chosen with maximum cardinality; then vvj /∈ E(G) for any
j /∈ I, and

|F| � min { k, |C| } (1)

by Menger’s theorem (3.3.4).

vi+1 Pi vi+1

Pj

vi

Pi

vj+1 vj

CC

v v

vi

F
Pi+1

Fig. 10.1.2. Two cycles longer than C

For every i ∈ I, we have i+1 /∈ I: otherwise, (C ∪Pi∪Pi+1)−vivi+1

would be a cycle longer than C (Fig. 10.1.2, left). Thus |F| < |C|, and
hence |I| = |F| � k by (1). Furthermore, vi+1vj+1 /∈ E(G) for all i, j ∈ I,
as otherwise (C ∪Pi ∪Pj)+ vi+1vj+1 − vivi+1 − vjvj+1 would be a cycle
longer than C (Fig. 10.1.2, right). Hence { vi+1 | i ∈ I }∪{ v } is a set of
k +1 or more independent vertices in G, contradicting α(G) � k. �

Let us return to the question whether an assumption that no small
separator leaves many components can guarantee a Hamilton cycle.
A graph G is called t-tough, where t > 0 is any real number, if for every t-tough

separator S the graph G − S has at most |S|/t components. Clearly,
hamiltonian graphs must be 1-tough—so what about the converse?

Unfortunately, it is not difficult to find even small graphs that are
1-tough but have no Hamilton cycle (Exercise 55), so toughness does not
provide a characterization of hamiltonian graphs in the spirit of Menger’s
theorem or Tutte’s 1-factor theorem. However, a famous conjecture as-
serts that t-toughness for some t will force hamiltonicity:
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Toughness Conjecture. (Chvátal 1973)
There exists an integer t such that every t-tough graph has a Hamilton
cycle.

The toughness conjecture was long expected to hold even with t = 2.
This has recently been disproved, but the general conjecture remains
open. See the exercises for how the conjecture ties in with the results
given in the remainder of this chapter.

It may come as a surprise to learn that hamiltonicity is also related
to the four colour problem. As we noted in Chapter 6.6, the four colour
theorem is equivalent to the non-existence of a planar snark, i.e. to the
assertion that every bridgeless planar cubic graph has a 4-flow. It is
easily checked that ‘bridgeless’ can be replaced with ‘3-connected’ in
this assertion, and that every hamiltonian graph has a 4-flow (Ex. 1212,
Ch. 6). For a proof of the four colour theorem, therefore, it would suffice
to show that every 3-connected planar cubic graph has a Hamilton cycle!

Unfortunately, this is not the case: the first counterexample was
found by Tutte in 1946. Ten years later, Tutte proved the following
deep theorem as a best possible weakening:

Theorem 10.1.3. (Tutte 1956)
Every 4-connected planar graph has a Hamilton cycle.

Although, at first glance, it appears that the study of Hamilton
cycles is a part of graph theory that cannot possibly extend to infinite
graphs, there is a fascinating conjecture that does just that. Recall that a
circle in an infinite graph G is a homeomorphic copy of the unit circle S1

in the topological space |G| formed by G and its ends (see Chapter 8.5).
A Hamilton circle of G is a circle that contains every vertex of G.Hamilton

circle

Conjecture. (Bruhn 2003)
Every locally finite 4-connected planar graph has a Hamilton circle.

10.2 Hamilton cycles and degree sequences

Historically, Dirac’s theorem formed the point of departure for the dis-
covery of a series of weaker and weaker degree conditions, all sufficient
for hamiltonicity. The development culminated in a single theorem that
encompasses all the earlier results: the theorem we shall prove in this
section.

If G is a graph with n vertices and degrees d1 � . . . � dn, then the
n-tuple (d1, . . . , dn) is called the degree sequence of G. Note that thisdegree

sequence
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sequence is unique, even though G has several vertex enumerations giving
rise to its degree sequence. Let us call an arbitrary integer sequence
(a1, . . . , an) hamiltonian if every graph with n vertices and a degree hamiltonian

sequence
sequence pointwise greater than (a1, . . . , an) is hamiltonian. (A sequence
(d1, . . . , dn) is pointwise greater than (a1, . . . , an) if di � ai for all i.) pointwise

greater
The following theorem characterizes all hamiltonian sequences:

Theorem 10.2.1. (Chvátal 1972)
An integer sequence (a1, . . . , an) such that 0 � a1 � . . . � an < n and
n � 3 is hamiltonian if and only if the following holds for every i < n/2:

ai � i ⇒ an−i � n− i .

Proof . Let (a1, . . . , an) be an arbitrary integer sequence such that (a1, . . . , an)

0 � a1 � . . . � an < n and n � 3. We first assume that this sequence
satisfies the condition of the theorem and prove that it is hamiltonian.

Suppose not. Then there exists a graph whose degree sequence
(d1, . . . , dn) satisfies (d1, . . . , dn)

di � ai for all i (1)

but which has no Hamilton cycle. Let G = (V, E) be such a graph, G = (V, E)

chosen with the maximum number of edges.
By (1), our assumptions for (a1, . . . , an) transfer to the degree se-

quence (d1, . . . , dn) of G; thus,

di � i ⇒ dn−i � n− i for all i < n/2. (2)

Let x, y be distinct and non-adjacent vertices in G, with d(x) � d(y) x, y

and d(x) + d(y) as large as possible. One easily checks that the degree
sequence of G+xy is pointwise greater than (d1, . . . , dn), and hence than
(a1, . . . , an). Hence, by the maximality of G, the new edge xy lies on a
Hamilton cycle H of G+xy. Then H −xy is a Hamilton path x1, . . . , xn x1, . . . , xn

in G, with x1 = x and xn = y say.
As in the proof of Dirac’s theorem, we now consider the index sets

I := { i | xxi+1 ∈ E } and J := { j | xjy ∈ E } .

Then I ∪J ⊆ { 1, . . . , n− 1 }, and I ∩J = ∅ because G has no Hamilton
cycle. Hence

d(x) + d(y) = |I|+ |J | < n , (3)

so h := d(x) < n/2 by the choice of x. h

Since xiy /∈ E for all i ∈ I, all these xi were candidates for the
choice of x (together with y). Our choice of {x, y } with d(x) + d(y)
maximum thus implies that d(xi) � d(x) for all i ∈ I. Hence G has at
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least |I| = h vertices of degree at most h, so dh � h. By (2), this implies
that dn−h � n− h, i.e. the h + 1 vertices with the degrees dn−h, . . . , dn

all have degree at least n − h. Since d(x) = h, one of these vertices,
z say, is not adjacent to x. Sincez

d(x) + d(z) � h + (n−h) = n ,

this contradicts the choice of x and y by (3).

Let us now show that, conversely, for every sequence (a1, . . . , an) as
in the theorem, but with

ah � h and an−h � n−h− 1

for some h < n/2, there exists a graph that has a pointwise greater degreeh

sequence than (a1, . . . , an) but no Hamilton cycle. As the sequence

(h, . . . , h︸ ︷︷ ︸
h times

, n−h− 1, . . . , n−h− 1︸ ︷︷ ︸
n−2h times

, n− 1, . . . , n− 1︸ ︷︷ ︸
h times

)

is pointwise greater than (a1, . . . , an), it suffices to find a graph with this
degree sequence that has no Hamilton cycle.

vh

Kh,h

vn−h+1

vh+1

Kn−h

vn

v1

v2

..
.

..
.

..
.

Fig. 10.2.1. Any cycle containing v1, . . . , vh misses vh+1

Figure 10.2.1 shows such a graph, with vertices v1, . . . , vn and the
edge set

{ vivj | i, j > h }∪ { vivj | i � h; j > n−h } ;

it is the union of a Kn−h on the vertices vh+1, . . . , vn and a Kh,h with
partition sets { v1, . . . , vh } and { vn−h+1, . . . , vn }. �

By applying Theorem 10.2.1 to G ∗ K1, one can easily prove the
following adaptation of the theorem to Hamilton paths. Let an inte-
ger sequence be called path-hamiltonian if every graph with a pointwise
greater degree sequence has a Hamilton path.
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Corollary 10.2.2. An integer sequence (a1, . . . , an) such that n � 2 and
0 � a1 � . . . � an < n is path-hamiltonian if and only if every i � n/2
is such that ai < i ⇒ an+1−i � n− i. �

10.3 Hamilton cycles in the square of a graph

Given a graph G and a positive integer d, we denote by Gd the graph on Gd

V (G) in which two vertices are adjacent if and only if they have distance
at most d in G. Clearly, G = G1 ⊆ G2 ⊆ . . . Our goal in this section is
to prove the following fundamental result:

Theorem 10.3.1. (Fleischner 1974)
If G is a 2-connected graph, then G2 has a Hamilton cycle.

We begin with three simple lemmas. Let us say that an edge e ∈ G2

bridges a vertex v ∈ G if its ends are neighbours of v in G. bridges

Lemma 10.3.2. Let P = v0 . . . vk be a path (k � 1), and let G be the
graph obtained from P by adding two vertices u, w, together with the
edges uv1 and wvk (Fig. 10.3.1).

(i) P 2 contains a path Q from v0 to v1 with V (Q) = V (P ) and
vk−1vk ∈ E(Q), such that each of the vertices v1, . . . , vk−1 is
bridged by an edge of Q.

(ii) G2 contains disjoint paths Q from v0 to vk and Q′ from u to w,
such that V (Q)∪V (Q′) = V (G) and each of the vertices v1, . . . , vk

is bridged by an edge of Q or Q′.

vk

wu

v1

P

v0

Fig. 10.3.1. The graph G in Lemma 10.3.2

Proof . (i) If k is even, let Q := v0v2 . . . vk−2vkvk−1vk−3 . . . v3v1. If k is
odd, let Q := v0v2 . . . vk−1vkvk−2 . . . v3v1.

(ii) If k is even, let Q := v0v2 . . . vk−2vk; if k is odd, let Q :=
v0v1v3 . . . vk−2vk. In both cases, let Q′ be the u–w path on the remaining
vertices of G2. �
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Lemma 10.3.3. Let G = (V, E) be a cubic multigraph with a Hamilton
cycle C. Let e ∈ E(C) and f ∈ E �E(C) be edges with a common end v
(Fig. 10.3.2). Then there exists a closed walk in G that traverses e once,
every other edge of C once or twice, and every edge in E � E(C) once.
This walk can be chosen to contain the triple (e, v, f), that is, it traverses
e in the direction of v and then leaves v by the edge f .

e

f

e

f

G

v v′

v′′

G′

Fig. 10.3.2. The multigraphs G and G′ in Lemma 10.3.3

Proof . By Proposition 1.2.1, C has even length. Replace every other(1.2.1)
(1.8.1)

edge of C by a double edge, in such a way that e does not get replaced.
In the arising 4-regular multigraph G′, split v into two vertices v′, v′′,
making v′ incident with e and f , and v′′ incident with the other two
edges at v (Fig. 10.3.2). By Theorem 1.8.1 this multigraph has an Euler
tour, which induces the desired walk in G. �

Lemma 10.3.4. For every 2-connected graph G and x ∈ V (G), there is a
cycle C ⊆ G that contains x as well as a vertex y �= x with NG(y) ⊆ V (C).

Proof . If G has a Hamilton cycle, there is nothing more to show. If
not, let C ′ ⊆ G be any cycle containing x; such a cycle exists, since G
is 2-connected. Let D be a component of G−C ′. Assume that C ′ and
D are chosen so that |D| is minimal. Since G is 2-connected, D has
at least two neighbours on C ′. Then C ′ contains a path P between
two such neighbours u and v, whose interior P̊ does not contain x and
has no neighbour in D (Fig. 10.3.3). Replacing P in C ′ by a u–v path

x

C

D

P

u

v
y

Fig. 10.3.3. The proof of Lemma 10.3.4
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through D, we obtain a cycle C that contains x and a vertex y ∈ D. If
y had a neighbour z in G−C, then z would lie in a component D′ � D
of G−C, contradicting the choice of C ′ and D. Hence all the neighbours
of y lie on C, and C satisfies the assertion of the lemma. �

Proof of Theorem 10.3.1. We show by induction on |G| that, given
any vertex x∗ ∈ G, there is a Hamilton cycle H in G2 with the following
property:

Both edges of H at x∗ lie in G. (∗)

For |G| = 3 we have G = K3, and the assertion is trivial. So
let |G| � 4, assume the assertion for graphs of smaller order, and let
x∗ ∈ V (G) be given. By Lemma 10.3.4, there is a cycle C ⊆ G that x∗

contains both x∗ and a vertex y∗ �= x∗ whose neighbours in G all lie y∗

on C. C

If C is a Hamilton cycle of G, there is nothing to show; so assume
that G − C �= ∅. Consider a component D of G − C. Let D̃ denote
the graph G/(G−D) obtained from G by contracting G−D into a new
vertex x̃. If |D| = 1, set P(D) := {D }. If |D| > 1, then D̃ is again P(D)

2-connected. Hence, by the induction hypothesis, D̃2 has a Hamilton
cycle C̃ whose edges at x̃ both lie in D̃. Note that the path C̃ − x̃ may C̃

have some edges that do not lie in G2: edges joining two neighbours of x̃
that have no common neighbour in G (and are themselves non-adjacent
in G). Let Ẽ denote the set of these edges, and let P(D) denote the set P(D)

of components of (C̃ − x̃)− Ẽ; this is a set of paths in G2 whose ends
are adjacent to x̃ in D̃ (Fig. 10.3.4).

P(D)

x̃

D

Fig. 10.3.4. P(D) consists of three paths, one of which is trivial

Let P denote the union of the sets P(D) over all components D P
of G−C. Clearly, P has the following properties:

foot

The elements of P are pairwise disjoint paths in G2 avoid-
ing C, and V (G) = V (C)∪

⋃
P ∈P V (P ). Every end y of a

path P ∈ P has a neighbour on C in G; we choose such a
neighbour and call it the foot of P at y.

(1)
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If P ∈ P is trivial, then P has exactly one foot. If P is non-trivial, then
P has a foot at each of its ends. These two feet need not be distinct,
however; so any non-trivial P has either one or two feet.

We shall now modify P a little, preserving the properties summa-
rized under (1); no properties of P other than those will be used later in
the proof. If a vertex of C is a foot of two distinct paths P, P ′ ∈ P, say
at y ∈ P and at y′ ∈ P ′, then yy′ is an edge and Pyy′P ′ is a path in G2;
we replace P and P ′ in P by this path. We repeat this modification of
P until the following holds:

No vertex of C is a foot of two distinct paths in P. (2)

For i = 1, 2 let Pi ⊆ P denote the set of all paths in P with exactly iP1,P2

feet, and let Xi ⊆ V (C) denote the set of all feet of paths in Pi. ThenX1, X2

X1 ∩X2 = ∅ by (2), and y∗ /∈ X1 ∪X2.
Let us also simplify G a little; again, these changes will affect neither

the paths in P nor the validity of (1) and (2). First, we shall assume from
now on that all elements of P are paths in G itself, not just in G2. This
assumption may give us some additional edges for G2, but we shall not
use these in our construction of the desired Hamilton cycle H. (Indeed,
H will contain all the paths from P whole, as subpaths.) Thus if H lies
in G2 and satisfies (∗) for the modified version of G, it will do so also
for the original. For every P ∈ P, we further delete all P–C edges in G
except those between the ends of P and its corresponding feet. Finally,
we delete all chords of C in G. We are thus assuming without loss of
generality:

The only edges of G between C and a path P ∈ P are
the two edges between the ends of P and its corresponding
feet. (If |P | = 1, these two edges coincide.) The only edges
of G with both ends on C are the edges of C itself.

(3)

Our goal is to construct the desired Hamilton cycle H of G2 from
the paths in P and suitable paths in C2. As a first approximation, we
shall construct a closed walk W in the graph

G̃ := G−
⋃

P1 ,G̃

a walk that will already satisfy a (∗)-type condition and traverse every
path in P2 exactly once. Later, we shall modify W so that it passes
through every vertex of C exactly once and, finally, so as to include the
paths from P1. For the construction of W we assume that P2 �= ∅; the
case of P2 = ∅ is much simpler and will be treated later.

We start by choosing a fixed cyclic orientation of C, a bijection
i �→ vi from Z|C| to V (C) with vivi+1 ∈ E(C) for all i ∈ Z|C|. Let us
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think of this orientation as clockwise; then every vertex vi ∈ C has a right
neighbour v+

i := vi+1 and a left neighbour v−i := vi−1. Accordingly, the v+, right

edge v−v lies to the left of v, the edge vv+ lies on its right , and so on. v−, left

A non-trivial path P = vivi+1 . . . vj−1vj in C such that V (P )∩X2 =
{ vi, vj } will be called an interval , with left end vi and right end vj . interval

Thus, C is the union of |X2| = 2 |P2| intervals. As usual, we write P =:
[ vi, vj ] and set (vi, vj) := P̊ as well as [ vi, vj) := P v̊j and (vi, vj ] := v̊iP . [ v, w ] etc.

For intervals [u, v ] and [ v, w ] with a common end v we say that [u, v ]
lies to the left of [ v, w ], and [ v, w ] lies to the right of [u, v ]. We denote
the unique interval [ v, w ] with x∗ ∈ (v, w ] as I∗, the path in P2 with I∗, P ∗

foot w as P ∗, and the path I∗wP ∗ as Q∗. Q∗

For the construction of W , we may think of G̃ as a multigraph M
on X2 whose edges are the intervals on C and the paths in P2 (with their
feet as ends). By (2), M is cubic, so we may apply Lemma 10.3.3 with
e := I∗ and f := P ∗. The lemma provides us with a closed walk W in G̃ W

which traverses I∗ once, every other interval of C once or twice, and
every path in P2 once. Moreover, W contains Q∗ as a subpath. The two
edges at x∗ of this path lie in G; in this sense, W already satisfies (∗).

Let us now modify W so that W passes through every vertex of C
exactly once. Simultaneously, we shall prepare for the later inclusion of
the paths from P1 by defining a map v �→ e(v) that is injective on X1 e(v)

and assigns to every v ∈ X1 an edge e(v) of the modified W with the
following property:

The edge e(v) either bridges v or is incident with it. In the
latter case, e(v) ∈ C and e(v) �= vx∗.

(∗∗)

For simplicity, we shall define the map v �→ e(v) on all of V (C) � X2,
a set that includes X1 by (2). To ensure injectivity on X1, we only
have to make sure that no edge vw ∈ C is chosen both as e(v) and
as e(w). Indeed, since |X1| � 2 if injectivity is a problem, and P2 �= ∅
by assumption, we have |C − y∗| � |X1|+2 |P2| � 4 and hence |C| � 5;
thus, no edge of G2 can bridge more than one vertex of C, or bridge a
vertex of C and lie on C at the same time.

For our intended adjustments of W at the vertices of C, we consider
the intervals of C one at a time. By definition of W , every interval is of
one of the following three types:

Type 1 : W traverses I once;

Type 2 : W traverses I twice, in one direction and back immediately
afterwards (formally: W contains a triple (e, x, e) with x ∈ X2

and e ∈ E(I));

Type 3 : W traverses I twice, on separate occasions (i.e., there is no
triple as above).
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By definition of W , the interval I∗ is of type 1. The vertex x in the
definition of a type 2 interval will be called the dead end of that interval.dead end

Finally, since Q∗ is a subpath of W and W traverses both I∗ and P ∗

only once, we have:

The interval to the right of I∗ is of type 2 and has its dead
end on the left.

(4)

Consider a fixed interval I = [x1, x2 ]. Let y1 be the neighbourI, x1, x2

of x1, and y2 the neighbour of x2 on a path in P2. Let I− denote they1, y2

interval to the left of I.I−

Suppose first that I is of type 1. We then leave W unchanged on I.
If I �= I∗ we choose as e(v), for each v ∈ I̊, the edge to the left of v. As
I− �= I∗ by (4), and hence x1 �= x∗, these choices of e(v) satisfy (∗∗). If
I = I∗, we define e(v) as the edge left of v if v ∈ (x1, x

∗ ]∩ I̊, and as the
edge right of v if v ∈ (x∗, x2). These choices of e(v) are again compatible
with (∗∗).

Suppose now that I is of type 2. Assume first that x2 is the dead
end of I. Then W contains the walk y1x1Ix2Ix1I

− (possibly in reverse
order). We now apply Lemma 10.3.2 (i) with P := y1x1Ix̊2, and replace
in W the subwalk y1x1Ix2Ix1 by the y1–x1 path Q ⊆ G2 of the lemma
(Fig. 10.3.5). Then V (Q̊) = V (P ) � { y1, x1 } = V (I̊). The vertices

e(x−
2 )x1 x2

y1

I− Ix1 x2

y1

W
Q

Fig. 10.3.5. How to modify W on an interval of type 2

v ∈ (x1, x
−
2 ) are each bridged by an edge of Q, which we choose as e(v).

As e(x−
2 ) we choose the edge to the left of x−

2 (unless x−
2 = x1). This

edge, too, lies on Q, by the lemma. Moreover, by (4) it is not inci-
dent with x∗ (since x2 is the dead end of I, by assumption) and hence
satisfies (∗∗). The case that x1 is the dead end of I can be treated in
the same way: using Lemma 10.3.2 (i), we replace in W the subwalk
y2x2Ix1Ix2 by a y2–x2 path Q ⊆ G2 with V (Q̊) = V (I̊), choose as e(v)
for v ∈ (x+

1 , x2) an edge of Q bridging v, and define e(x+
1 ) as the edge

to the right of x+
1 (unless x+

1 = x2).
Suppose finally that I is of type 3. Since W traverses the edge y1x1

only once and the interval I− no more than twice, W contains y1x1I
and I− ∪ I as subpaths, and I− is of type 1. By (4), however, I− �= I∗.
Hence, when e(v) was defined for the vertices v ∈ I̊−, the rightmost edge
x−

1 x1 of I− was not chosen as e(v) for any v, so we may now replace this
edge. Since W traverses I+ no more than twice, it must traverse the
edge x2y2 immediately after one of its two subpaths y1x1I and x−

1 x1I.
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Take the starting vertex of this subpath (y1 or x−
1 ) as the vertex u in

Lemma 10.3.2 (ii), and the other vertex in { y1, x
−
1 } as v0; moreover, set

vk := x2 and w := y2. Then the lemma enables us to replace these two
subpaths of W between { y1, x

−
1 } and {x2, y2 } by disjoint paths in G2

(Fig. 10.3.6), and furthermore assigns to every vertex v ∈ I̊ an edge e(v)
of one of those paths, bridging v.

I v0 x2 = vkx1 x2

y2y1y2

x1

y1

Fig. 10.3.6. A type 3 modification for the case u = y1 and k odd

Following the above modifications, W is now a closed walk in G̃2.
Let us check that, moreover, W contains every vertex of G̃ exactly once.
For vertices of the paths in P2 this is clear, because W still traverses every
such path once and avoids it otherwise. For the vertices of C −X2, it
follows from the above modifications by Lemma 10.3.2. So how about
the vertices in X2?

Let x ∈ X2 be given, and let y be its neighbour on a path in P2. Let
I1 denote the interval I that satisfied yxI ⊆ W before the modification
of W , and let I2 denote the other interval ending in x. If I1 is of type 1,
then I2 is of type 2 with dead end x. In this case, x was retained in W
when W was modified on I1 but skipped when W was modified on I2,
and is thus contained exactly once in W now. If I1 is of type 2, then x
is not its dead end, and I2 is of type 1. The subwalk of W that started
with yx and then went along I1 and back, was replaced with a y–x path.
This path is now followed on W by the unchanged interval I2, so in this
case too the vertex x is now contained in W exactly once. Finally, if I1

is of type 3, then x was contained in one of the replacement paths Q, Q′

from Lemma 10.3.2 (ii); as these paths were disjoint by the assertion of
the lemma, x is once more left on W exactly once.

We have thus shown that W , after the modifications, is a closed walk
in G̃2 containing every vertex of G̃ exactly once, so W defines a Hamilton
cycle H̃ of G̃2. Since W still contains the path Q∗, H̃ satisfies (∗). H̃

Up until now, we have assumed that P2 is non-empty. If P2 = ∅,
let us set H̃ := G̃ = C; then, again, H̃ satisfies (∗). It remains to turn H̃

H̃ into a Hamilton cycle H of G2 by incorporating the paths from P1.
In order to be able to treat the case of P2 = ∅ along with the case of
P2 �= ∅, we define a map v �→ e(v) also when P2 = ∅, as follows: for
every v ∈ C − y∗, set

e(v) :=
{

vv+ if v ∈ [x∗, y∗)
vv− if v ∈ (y∗, x∗).
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(Here, [ x∗, y∗) and (y∗, x∗) denote the obvious paths in C defined ana-
logously to intervals.) As before, this map v �→ e(v) is injective, satis-
fies (∗∗), and is defined on a superset of X1; recall that y∗ cannot lie
in X1 by definition.

Let P ∈ P1 be a path to be incorporated into H̃, say with footP, v

v ∈ X1 and ends y1, y2. (If |P | = 1, then y1 = y2.) Our aim is to replacey1, y2

the edge e := e(v) in H̃ by P ; we thus have to show that the ends of Pe

are joined to those of e by suitable edges of G2.
By (2) and (3), v has only two neighbours in G̃, its neighbours

x1, x2 on C. If v is incident with e, i.e. if e = vxi with i ∈ { 1, 2 }, we
replace e by the path vy1Py2xi ⊆ G2 (Fig. 10.3.7). If v is not incident

x1 x2

y1 y2P

v e

C

Fig. 10.3.7. Replacing the edge e in H̃

with e then e bridges v, by (∗∗). Then e = x1x2, and we replace e
by the path x1y1Py2x2 ⊆ G2 (Fig. 10.3.8). Since v �→ e(v) is injective
on X1, assertion (2) implies that all these modifications of H̃ (one for
every P ∈ P1) can be performed independently, and hence produce a
Hamilton cycle H of G2.H

x1 x2

y1 y2P

v

eC

Fig. 10.3.8. Replacing the edge e in H̃

Let us finally check that H satisfies (∗), i.e. that both edges of H
at x∗ lie in G. Since (∗) holds for H̃, it suffices to show that any edge
e = x∗z of H̃ that is not in H (and hence has the form e = e(v) for somee, z

v ∈ X1) was replaced by an x∗–z path whose first edge lies in G.v

Where can the vertex v lie? Let us show that v must be incident
with e. If not then P2 �= ∅, and e bridges v. Now P2 �= ∅ and v ∈ X1

together imply that |C − y∗| � |X1|+ 2 |P2| � 3, so |C| � 4. As e ∈ G
(by (∗) for H̃), the fact that e bridges v thus contradicts (3).

So v is indeed incident with e. Hence v ∈ {x∗, z } by definition of e,
while e �= vx∗ by (∗∗). Thus v = x∗, and e was replaced by a path of
the form x∗y1Py2z. Since x∗y1 is an edge of G, this replacement again
preserves (∗). Therefore H does indeed satisfy (∗), and our induction is
complete. �
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Just like Tutte’s theorem (10.1.3), Fleischner’s theorem might ex-
tend to infinite graphs with circles:

Conjecture. The square of every 2-connected locally finite graph con-
tains a Hamilton circle.

We close the chapter with a far-reaching conjecture generalizing
Dirac’s theorem:

Conjecture. (Seymour 1974)
Let G be a graph of order n � 3, and let k be a positive integer. If G
has minimum degree

δ(G) � k

k + 1
n ,

then G has a Hamilton cycle H such that Hk ⊆ G.

For k = 1, this is precisely Dirac’s theorem. The conjecture was proved
for large enough n (depending on k) by Komlós, Sárközy and Szemerédi
(1998).

Exercises

1. An oriented complete graph is called a tournament . Show that every
tournament contains a (directed) Hamilton path.

2. Show that every uniquely 3-edge-colourable cubic graph is hamilton-
ian. (‘Unique’ means that all 3-edge-colourings induce the same edge
partition.)

3. Given an even positive integer k, construct for every n � k a k-regular
graph of order 2n +1.

4.− Prove or disprove the following strengthening of Proposition 10.1.2:
‘Every k-connected graph G with |G| � 3 and χ(G) � |G|/k has a
Hamilton cycle.’

5. (i)− Show that hamiltonian graphs are 1-tough.

(ii) Find a graph that is 1-tough but not hamiltonian.

6. Prove the toughness conjecture for planar graphs. Does it hold with
t = 2, or even with some t < 2?

7.− Find a hamiltonian graph whose degree sequence is not hamiltonian.

8.− Let G be a graph with fewer than i vertices of degree at most i, for
every i < |G|/2. Use Chvátal’s theorem to show that G is hamiltonian.
(Thus in particular, Chvátal’s theorem implies Dirac’s theorem.)
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9. Prove that the square G2 of a k-connected graph G is k-tough. Use
this to deduce Fleischner’s theorem for graphs satisfying the toughness
conjecture with t = 2.

10. Show that Exercise 55 (i) has the following weak converse: for every
non-hamiltonian graph G there exists a graph G′ that has a pointwise
greater degree-sequence than G but is not 1-tough.

11. Find a connected graph G whose square G2 has no Hamilton cycle.

12.+ Show by induction on |G| that the third power G3 of a connected graph
G contains a Hamilton path between any two vertices. Deduce that G3

is hamiltonian.

13.+ Let G be a graph in which every vertex has odd degree. Show that
every edge of G lies on an even number of Hamilton cycles.

(Hint. Let xy ∈ E(G) be given. The Hamilton cycles through xy
correspond to the Hamilton paths in G−xy from x to y. Consider the
set H of all Hamilton paths in G−xy starting at x, and show that an
even number of these end in y. To show this, define a graph on H so
that the desired assertion follows from Proposition 1.2.1.)

Notes
The problem of finding a Hamilton cycle in a graph has the same kind of origin
as its Euler tour counterpart and the four colour problem: all three problems
come from mathematical puzzles older than graph theory itself. What began
as a game invented by W.R.Hamilton in 1857—in which ‘Hamilton cycles’
had to be found on the graph of the dodecahedron—reemerged over a hun-
dred years later as a combinatorial optimization problem of prime importance:
the travelling salesman problem. Here, a salesman has to visit a number of
customers, and his problem is to arrange these in a suitable circular route.
(For reasons not included in the mathematical brief, the route has to be such
that after visiting a customer the salesman does not pass through that town
again.) Much of the motivation for considering Hamilton cycles comes from
variations of this algorithmic problem.

The lack of a good characterization of hamiltonicity also has to do with
an algorithmic problem: deciding whether or not a given graph is hamiltonian
is NP-hard (indeed, this was one of the early prototypes of an NP-complete
decision problem), while the existence of a good characterization would place
it in NP∩ co-NP, which is widely believed to equal P. Thus, unless P = NP, no
good characterization of hamiltonicity exists. See the introduction to Chap-
ter 12.5, or the end of the notes for Chapter 12, for more.

The ‘proof’ of the four colour theorem indicated at the end of Section 10.1,
which is based on the (false) premise that every 3-connected cubic planar graph
is hamiltonian, is usually attributed to the Scottish mathematician P.G.Tait.
Following Kempe’s flawed proof of 1879 (see the notes for Chapter 5), it seems
that Tait believed to be in possession of at least one ‘new proof of Kempe’s the-
orem’. However, when he addressed the Edinburgh Mathematical Society on
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this subject in 1883, he seems to have been aware that he could not—really—
prove the above statement about Hamilton cycles. His account in P.G.Tait,
Listing’s topologie, Phil. Mag. 17 (1884), 30–46, makes some entertaining
reading.

A shorter proof of Tutte’s theorem that 4-connected planar graphs are
hamiltonian has been given by C.Thomassen, A theorem on paths in planar
graphs, J. Graph Theory 7 (1983), 169–176. Tutte’s counterexample to Tait’s
assumption that even 3-connectedness suffices (at least for cubic graphs) is
shown in Bollobás, and in J.A.Bondy & U.S.R.Murty, Graph Theory with
Applications, Macmillan 1976 (where Tait’s attempted proof is discussed in
some detail).

Bruhn’s conjecture generalizing Tutte’s theorem to infinite graphs was
first stated in R.Diestel, The cycle space of an infinite graph, Combinatorics,
Probability and Computing 14 (2005), 59–79. As the notion of a Hamilton
circle is relatively recent, earlier generalizations of Hamilton cycle theorems
asked for spanning double rays. Now a ray can pass through a finite separator
only finitely often, so a necessary condition for the existence of a spanning
ray or double ray is that the graph has at most one or two ends, respectively.
Confirming a long-standing conjecture of Nash-Williams, X.Yu, Infinite paths
in planar graphs I–III (preprints 2004) announced that a 4-connected pla-
nar graph with at most two ends contains a spanning double ray. N.Dean,
R.Thomas and XYu, Spanning paths in infinite planar graphs, J. Graph The-
ory 23 (1996), 163–174, proved Nash-Williams’s conjecture that a one-ended
4-connected planar graph has a spanning ray.

Proposition 10.1.2 is due to Chvátal and Erdős (1972). The toughness in-
variant and conjecture were proposed by V.Chvátal, Tough graphs and hamil-
tonian circuits, Discrete Math. 5 (1973), 215–228. If true with t = 2, the
conjecture would have implied Fleischner’s thereom; see Exercise 99. However,
it was disproved for t = 2 by D.Bauer, H.J. Broersma & H.J.Veldman, Not
every 2-tough graph is hamiltonian, Discrete Appl. Math. 99 (2000), 317–
321. Theorem 10.2.1 is due to V.Chvátal, On Hamilton’s ideals, J. Combin.
Theory B 12 (1972), 163–168.

Our proof of Fleischner’s theorem is based on S. Ř́ıha, A new proof of the
theorem by Fleischner, J. Combin. Theory B 52 (1991), 117–123. C.Thomas-
sen, Hamiltonian paths in squares of infinite locally finite blocks, Ann. Discrete
Math. 3 (1978), 269–277, proved that the square of every 2-connected one-
ended locally finite graph contains a spanning ray.

Seymour’s conjecture is from P.D. Seymour, Problem 3, in (T.P.McDon-
ough and V.C.Mavron, eds.) Combinatorics, Cambridge University Press
1974. Its proof for large n is due to J.Komlós, G.N. Sárközy & E. Szemerédi,
Proof of the Seymour conjecture for large graphs, Ann. Comb. 2 (1998), 43–60.





11 Random Graphs

At various points in this book, we already encountered the following
fundamental theorem of Erdős: for every integer k there is a graph
G with g(G) > k and χ(G) > k. In plain English: there exist graphs
combining arbitrarily large girth with arbitrarily high chromatic number.

How could one prove such a theorem? The standard approach would
be to construct a graph with those two properties, possibly in steps
by induction on k. However, this is anything but straightforward: the
global nature of the second property forced by the first, namely, that
the graph should have high chromatic number ‘overall’ but be acyclic
(and hence 2-colourable) locally, flies in the face of any attempt to build
it up, constructively, from smaller pieces that have the same or similar
properties.

In his pioneering paper of 1959, Erdős took a radically different
approach: for each n he defined a probability space on the set of graphs
with n vertices, and showed that, for some carefully chosen probability
measures, the probability that an n-vertex graph has both of the above
properties is positive for all large enough n.

This approach, now called the probabilistic method , has since un-
folded into a sophisticated and versatile proof technique, in graph the-
ory as much as in other branches of discrete mathematics. The theory
of random graphs is now a subject in its own right. The aim of this
chapter is to offer an elementary but rigorous introduction to random
graphs: no more than is necessary to understand its basic concepts, ideas
and techniques, but enough to give an inkling of the power and elegance
hidden behind the calculations.

Erdős’s theorem asserts the existence of a graph with certain prop-
erties: it is a perfectly ordinary assertion showing no trace of the ran-
domness employed in its proof. There are also results in random graphs
that are generically random even in their statement: these are theorems
about almost all graphs, a notion we shall meet in Section 11.3. In the
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last section, we give a detailed proof of a theorem of Erdős and Rényi
that illustrates a proof technique frequently used in random graphs, the
so-called second moment method .

11.1 The notion of a random graph

Let V be a fixed set of n elements, say V = { 0, . . . , n− 1 }. Our aim isV

to turn the set G of all graphs on V into a probability space, and thenG
to consider the kind of questions typically asked about random objects:
What is the probability that a graph G ∈ G has this or that property?
What is the expected value of a given invariant on G, say its expected
girth or chromatic number?

Intuitively, we should be able to generate G randomly as follows.
For each e ∈ [V ]2 we decide by some random experiment whether or not
e shall be an edge of G; these experiments are performed independently,
and for each the probability of success—i.e. of accepting e as an edge
for G—is equal to some fixed1 number p ∈ [ 0, 1 ]. Then if G0 is somep

fixed graph on V , with m edges say, the elementary event {G0 } has a
probability of pmq(

n
2)−m (where q := 1− p): with this probability, ourq

randomly generated graph G is this particular graph G0. (The proba-
bility that G is isomorphic to G0 will usually be greater.) But if the
probabilities of all the elementary events are thus determined, then so
is the entire probability measure of our desired space G. Hence all that
remains to be checked is that such a probability measure on G, one for
which all individual edges occur independently with probability p, does
indeed exist.2

In order to construct such a measure on G formally, we start by
defining for every potential edge e ∈ [V ]2 its own little probability space
Ωe := { 0e, 1e }, choosing Pe({ 1e }) := p and Pe({ 0e }) := q as theΩe

probabilities of its two elementary events. As our desired probabilityPe

space G = G(n, p) we then take the product spaceG(n, p)

Ω :=
∏

e∈[V ]2

Ωe .Ω

1 Often, the value of p will depend on the cardinality n of the set V on which our
random graphs are generated; thus, p will be the value p = p(n) of some function
n �→ p(n). Note, however, that V (and hence n) is fixed for the definition of G:
for each n separately, we are constructing a probability space of the graphs G on
V = { 0, . . . , n− 1 }, and within each space the probability that e ∈ [V ]2 is an edge
of G has the same value for all e.

2 Any reader ready to believe this may skip ahead now to the end of Proposi-
tion 11.1.1, without missing anything.
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Thus, formally, an element of Ω is a map ω assigning to every e ∈ [V ]2

either 0e or 1e, and the probability measure P on Ω is the product P

measure of all the measures Pe. In practice, of course, we identify ω
with the graph G on V whose edge set is

E(G) = { e | ω(e) = 1e } ,

and call G a random graph on V with edge probability p. random
graph

Following standard probabilistic terminology, we may now call any
set of graphs on V an event in G(n, p). In particular, for every e ∈ [V ]2 event

the set
Ae := {ω | ω(e) = 1e } Ae

of all graphs G on V with e ∈ E(G) is an event: the event that e is an
edge of G. For these events, we can now prove formally what had been
our guiding intuition all along:

Proposition 11.1.1. The events Ae are independent and occur with
probability p.

Proof . By definition,

Ae = { 1e }×
∏
e′ �=e

Ωe′ .

Since P is the product measure of all the measures Pe, this implies

P (Ae) = p ·
∏
e′ �=e

1 = p .

Similarly, if { e1, . . . , ek } is any subset of [V ]2, then

P (Ae1 ∩ . . .∩Aek
) = P

(
{ 1e1 }× . . .×{ 1ek

}×
∏

e/∈{ e1,...,ek }
Ωe

)
= pk

= P (Ae1) · · ·P (Aek
) .

�

As noted before, P is determined uniquely by the value of p and our
assumption that the events Ae are independent. In order to calculate
probabilities in G(n, p), it therefore generally suffices to work with these
two assumptions: our concrete model for G(n, p) has served its purpose
and will not be needed again.

As a simple example of such a calculation, consider the event that G
contains some fixed graph H on a subset of V as a subgraph; let |H| =: k k

and ‖H‖ =: �. The probability of this event H ⊆ G is the product of �

the probabilities Ae over all the edges e ∈ H, so P [H ⊆ G ] = p�. In
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contrast, the probability that H is an induced subgraph of G is p�q(
k
2)−�:

now the edges missing from H are required to be missing from G too,
and they do so independently with probability q.

The probability PH that G has an induced subgraph isomorphic
to H is usually more difficult to compute: since the possible instances
of H on subsets of V overlap, the events that they occur in G are not
independent. However, the sum (over all k-sets U ⊆ V ) of the probabil-
ities P [H 
 G [U ] ] is always an upper bound for PH , since PH is the
measure of the union of all those events. For example, if H = Kk, we
have the following trivial upper bound on the probability that G contains
an induced copy of H:

Lemma 11.1.2. For all integers n, k with n � k � 2, the probability[ 11.2.1 ]
[ 11.3.4 ]

that G ∈ G(n, p) has a set of k independent vertices is at most

P [α(G) � k ] �
(

n

k

)
q(

k
2).

Proof . The probability that a fixed k-set U ⊆ V is independent in
G is q(

k
2). The assertion thus follows from the fact that there are only(

n
k

)
such sets U . �

Analogously, the probability that G ∈ G(n, p) contains a Kk is at
most

P [ω(G) � k ] �
(

n

k

)
p(k

2).

Now if k is fixed, and n is small enough that these bounds for the prob-
abilities P [α(G) � k ] and P [ω(G) � k ] sum to less than 1, then G
contains graphs that have neither property: graphs which contain nei-
ther a Kk nor a Kk induced. But then any such n is a lower bound for
the Ramsey number of k !

As the following theorem shows, this lower bound is quite close to
the upper bound of 22k−3 implied by the proof of Theorem 9.1.1:

Theorem 11.1.3. (Erdős 1947)
For every integer k � 3, the Ramsey number of k satisfies

R(k) > 2k/2.

Proof . For k = 3 we trivially have R(3) � 3 > 23/2, so let k � 4. We show
that, for all n � 2k/2 and G ∈ G(n, 1

2 ), the probabilities P [α(G) � k ]
and P [ω(G) � k ] are both less than 1

2 .
Since p = q = 1

2 , Lemma 11.1.2 and the analogous assertion for ω(G)
imply the following for all n � 2k/2 (use that k! > 2k for k � 4):
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P [α(G) � k ], P [ω(G) � k ] �
(

n

k

)(
1
2

)(k
2)

<
(
nk/2k

)
2−

1
2 k(k−1)

�
(
2k2/2/2k

)
2−

1
2 k(k−1)

= 2−k/2

< 1
2 .

�

In the context of random graphs, each of the familiar graph invari-
ants (like average degree, connectivity, girth, chromatic number, and so
on) may be interpreted as a non-negative random variable on G(n, p), random

variable
a function

X:G(n, p)→ [ 0,∞) .

The mean or expected value of X is the number mean

expectation

E(X) :=
∑

G∈G(n,p)

P ({G }) ·X(G) .
E(X)

Note that the operator E, the expectation, is linear: we have E(X +Y ) =
E(X)+E(Y ) and E(λX) = λE(X) for any two random variables X, Y
on G(n, p) and λ ∈ R.

Computing the mean of a random variable X can be a simple and
effective way to establish the existence of a graph G such that X(G) < a
for some fixed a > 0 and, moreover, G has some desired property P.
Indeed, if the expected value of X is small, then X(G) cannot be large for
more than a few graphs in G(n, p), because X(G) � 0 for all G ∈ G(n, p).
Hence X must be small for many graphs in G(n, p), and it is reasonable
to expect that among these we may find one with the desired property P.

This simple idea lies at the heart of countless non-constructive exist-
ence proofs using random graphs, including the proof of Erdős’s theorem
presented in the next section. Quantified, it takes the form of the fol-
lowing lemma, whose proof follows at once from the definition of the
expectation and the additivity of P :

Lemma 11.1.4. (Markov’s Inequality)
[ 11.2.2 ]
[ 11.4.1 ]
[ 11.4.3 ]Let X � 0 be a random variable on G(n, p) and a > 0. Then

P [X � a ] � E(X)/a .

Proof .

E(X) =
∑

G∈G(n,p)

P ({G }) ·X(G)
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�
∑

G∈G(n,p)
X(G)�a

P ({G }) ·X(G)

�
∑

G∈G(n,p)
X(G)�a

P ({G }) · a

= P [X � a ] · a .
�

Since our probability spaces are finite, the expectation can often
be computed by a simple application of double counting , a standard
combinatorial technique we met before in the proofs of Corollary 4.2.10
and Theorem 5.5.4. For example, if X is a random variable on G(n, p)
that counts the number of subgraphs of G in some fixed set H of graphs
on V , then E(X), by definition, counts the number of pairs (G, H) such
that H ∈ H and H ⊆ G, each weighted with the probability of {G }.
Algorithmically, we compute E(X) by going through the graphs G ∈
G(n, p) in an ‘outer loop’ and performing, for each G, an ‘inner loop’
that runs through the graphs H ∈ H and counts ‘P ({G })’ whenever
H ⊆ G. Alternatively, we may count the same set of weighted pairs
with H in the outer and G in the inner loop: this amounts to adding
up, over all H ∈ H, the probabilities P [ H ⊆ G ].

To illustrate this once in detail, let us compute the expected number
of cycles of some given length k � 3 in a random graph G ∈ G(n, p). So
let X:G(n, p)→N be the random variable that assigns to every randomX

graph G its number of k-cycles, the number of subgraphs isomorphic
to Ck. Let us write

(n)k := n (n− 1)(n− 2) · · · (n− k + 1)(n)k

for the number of sequences of k distinct elements of a given n-set.

Lemma 11.1.5. The expected number of k-cycles in G ∈ G(n, p) is
[ 11.2.2 ]
[ 11.4.3 ]

E(X) =
(n)k

2k
pk.

Proof . For every k-cycle C with vertices in V = { 0, . . . , n − 1 }, the
vertex set of the graphs in G(n, p), let XC :G(n, p)→{ 0, 1 } denote the
indicator random variable of C:

XC : G �→
{ 1 if C ⊆ G;

0 otherwise.
Since XC takes only 1 as a positive value, its expectation E(XC) equals
the measure P [XC = 1 ] of the set of all graphs in G(n, p) that contain C.
But this is just the probability that C ⊆ G:

E(XC) = P [C ⊆ G ] = pk. (1)
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How many such cycles C = v0 . . . vk−1v0 are there? There are (n)k

sequences v0 . . . vk−1 of distinct vertices in V , and each cycle is identified
by 2k of those sequences—so there are exactly (n)k/2k such cycles.

Our random variable X assigns to every graph G its number of k-
cycles. Clearly, this is the sum of all the values XC(G), where C varies
over the (n)k/2k cycles of length k with vertices in V :

X =
∑
C

XC .

Since the expectation is linear, (1) thus implies

E(X) = E
( ∑

C

XC

)
=

∑
C

E(XC) =
(n)k

2k
pk

as claimed. �

11.2 The probabilistic method

Very roughly, the probabilistic method in discrete mathematics has de-
veloped from the following idea. In order to prove the existence of an
object with some desired property, one defines a probability space on
some larger—and certainly non-empty—class of objects, and then shows
that an element of this space has the desired property with positive
probability. The ‘objects’ inhabiting this probability space may be of
any kind: partitions or orderings of the vertices of some fixed graph arise
as naturally as mappings, embeddings and, of course, graphs themselves.
In this section, we illustrate the probabilistic method by giving a detailed
account of one of its earliest results: of Erdős’s classic theorem on large
girth and chromatic number (Theorem 5.2.5).

Erdős’s theorem says that, given any positive integer k, there is a
graph G with girth g(G) > k and chromatic number χ(G) > k. Let us
call cycles of length at most k short , and sets of |G|/k or more vertices short

big . For a proof of Erdős’s theorem, it suffices to find a graph G without big/small

short cycles and without big independent sets of vertices: then the colour
classes in any vertex colouring of G are small (not big), so we need more
than k colours to colour G.

How can we find such a graph G? If we choose p small enough, then
a random graph in G(n, p) is unlikely to contain any (short) cycles. If
we choose p large enough, then G is unlikely to have big independent
vertex sets. So the question is: do these two ranges of p overlap, that
is, can we choose p so that, for some n, it is both small enough to give
P [ g � k ] < 1

2 and large enough for P [α � n/k ] < 1
2 ? If so, then
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G(n, p) will contain at least one graph without either short cycles or big
independent sets.

Unfortunately, such a choice of p is impossible: the two ranges of p
do not overlap! As we shall see in Section 11.4, we must keep p below
n−1 to make the occurrence of short cycles in G unlikely—but for any
such p there will most likely be no cycles in G at all (Exercise 1818), so G
will be bipartite and hence have at least n/2 independent vertices.

But all is not lost. In order to make big independent sets unlikely,
we shall fix p above n−1, at nε−1 for some ε > 0. Fortunately, though,
if ε is small enough then this will produce only few short cycles in G,
even compared with n (rather than, more typically, with nk). If we then
delete a vertex in each of those cycles, the graph H obtained will have
no short cycles, and its independence number α(H) will be at most that
of G. Since H is not much smaller than G, its chromatic number will
thus still be large, so we have found a graph with both large girth and
large chromatic number.

To prepare for the formal proof of Erdős’s theorem, we first show
that an edge probability of p = nε−1 is indeed always large enough to
ensure that G ∈ G(n, p) ‘almost surely’ has no big independent set of ver-
tices. More precisely, we prove the following slightly stronger assertion:

Lemma 11.2.1. Let k > 0 be an integer, and let p = p(n) be a function
of n such that p � (6k lnn)n−1 for n large. Then

lim
n→∞

P [α � 1
2n/k ] = 0 .

Proof . For all integers n, r with n � r � 2, and all G ∈ G(n, p), Lemma(11.1.2)

11.1.2 implies

P [α � r ] �
(

n

r

)
q(

r
2)

� nrq(
r
2)

=
(
nq(r−1)/2

)r

�
(
ne−p(r−1)/2

)r

;

here, the last inequality follows from the fact that 1− p � e−p for all p.
(Compare the functions x �→ ex and x �→ x + 1 for x = −p.) Now
if p � (6k lnn)n−1 and r � 1

2n/k, then the term under the exponent
satisfies

ne−p(r−1)/2 = ne−pr/2 + p/2

� ne−(3/2) ln n + p/2

� n n−3/2 e1/2

=
√

e /
√

n −→
n→∞

0 .
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Since p � (6k lnn)n−1 for n large, we thus obtain for r := � 1
2n/k�

lim
n→∞

P [α � 1
2n/k ] = lim

n→∞
P [α � r ] = 0 ,

as claimed. �

We are now ready to prove Theorem 5.2.5, which we restate:

Theorem 11.2.2. (Erdős 1959) [ 9.2.3 ]

For every integer k there exists a graph H with girth g(H) > k and
chromatic number χ(H) > k.

Proof . Assume that k � 3, fix ε with 0 < ε < 1/k, and let p := nε−1. Let
(11.1.4)
(11.1.5)

p, ε, XX(G) denote the number of short cycles in a random graph G ∈ G(n, p),
i.e. its number of cycles of length at most k.

By Lemma 11.1.5, we have

E(X) =
k∑

i=3

(n)i

2i
pi � 1

2

k∑
i=3

nipi � 1
2 (k− 2)nkpk ;

note that (np)i � (np)k, because np = nε � 1. By Lemma 11.1.4,

P [X � n/2 ] � E(X)
/
(n/2)

� (k− 2) nk−1pk

= (k− 2) nk−1n(ε−1)k

= (k− 2) nkε−1.

As kε− 1 < 0 by our choice of ε, this implies that

lim
n→∞

P [X � n/2 ] = 0 .

Let n be large enough that P [X � n/2 ] < 1
2 and P [α � 1

2n/k ] < 1
2 ; n

the latter is possible by our choice of p and Lemma 11.2.1. Then there
is a graph G ∈ G(n, p) with fewer than n/2 short cycles and α(G) <
1
2n/k. From each of those cycles delete a vertex, and let H be the graph
obtained. Then |H| � n/2 and H has no short cycles, so g(H) > k. By
definition of G,

χ(H) � |H|
α(H)

� n/2
α(G)

> k .

�

Corollary 11.2.3. There are graphs with arbitrarily large girth and
arbitrarily large values of the invariants κ, ε and δ.

Proof . Apply Corollary 5.2.3 and Theorem 1.4.3. � (1.4.3)
(5.2.3)
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11.3 Properties of almost all graphs

Recall that a graph property is a class of graphs that is closed under
isomorphism, one that contains with every graph G also the graphs iso-
morphic to G. If p = p(n) is a fixed function (possibly constant), and P is
a graph property, we may ask how the probability P [G ∈ P ] behaves for
G ∈ G(n, p) as n→∞. If this probability tends to 1, we say that G ∈ P
for almost all (or almost every) G ∈ G(n, p), or that G ∈ P almost surely ;almost all

etc.
if it tends to 0, we say that almost no G ∈ G(n, p) has the property P.
(For example, in Lemma 11.2.1 we proved that, for a certain p, almost
no G ∈ G(n, p) has a set of more than 1

2n/k independent vertices.)
To illustrate the new concept let us show that, for constant p, every

fixed abstract3 graph H is an induced subgraph of almost all graphs:

Proposition 11.3.1. For every constant p ∈ (0, 1) and every graph H,
almost every G ∈ G(n, p) contains an induced copy of H.

Proof . Let H be given, and k := |H|. If n � k and U ⊆ { 0, . . . , n− 1 }
is a fixed set of k vertices of G, then G [ U ] is isomorphic to H with
a certain probability r > 0. This probability r depends on p, but not
on n (why not?). Now G contains a collection of �n/k� disjoint such
sets U . The probability that none of the corresponding graphs G [U ] is
isomorphic to H is (1− r)
n/k�, since these events are independent by
the disjointness of the edges sets [U ]2. Thus

P [H �⊆ G induced ] � (1− r)
n/k� −→
n→∞

0 ,

which implies the assertion. �

The following lemma is a simple device enabling us to deduce that
quite a number of natural graph properties (including that of Proposi-
tion 11.3.1) are shared by almost all graphs. Given i, j ∈ N, let Pi,jPi,j

denote the property that the graph considered contains, for any disjoint
vertex sets U, W with |U | � i and |W | � j, a vertex v /∈ U ∪W that is
adjacent to all the vertices in U but to none in W .

Lemma 11.3.2. For every constant p ∈ (0, 1) and i, j ∈ N, almost every
graph G ∈ G(n, p) has the property Pi,j .

3 The word ‘abstract’ is used to indicate that only the isomorphism type of H is
known or relevant, not its actual vertex and edge sets. In our context, it indicates
that the word ‘subgraph’ is used in the usual sense of ‘isomorphic to a subgraph’.
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Proof . For fixed U, W and v ∈ G− (U ∪W ), the probability that v is
adjacent to all the vertices in U but to none in W , is

p|U |q|W | � piqj .

Hence, the probability that no suitable v exists for these U and W , is

(1− p|U |q|W |)n−|U |−|W | � (1− piqj)n−i−j

(for n � i + j), since the corresponding events are independent for
different v. As there are no more than ni+j pairs of such sets U, W
in V (G) (encode sets U of fewer than i points as non-injective maps
{ 0, . . . , i − 1 } → { 0, . . . , n − 1 }, etc.), the probability that some such
pair has no suitable v is at most

ni+j(1− piqj)n−i−j ,

which tends to zero as n→∞ since 1− piqj < 1. �

Corollary 11.3.3. For every constant p ∈ (0, 1) and k ∈ N, almost every
graph in G(n, p) is k-connected.

Proof . By Lemma 11.3.2, it is enough to show that every graph in P2,k−1

is k-connected. But this is easy: any graph in P2,k−1 has order at least
k + 2, and if W is a set of fewer than k vertices, then by definition of
P2,k−1 any other two vertices x, y have a common neighbour v /∈ W ; in
particular, W does not separate x from y. �

In the proof of Corollary 11.3.3, we showed substantially more than
was asked for: rather than finding, for any two vertices x, y /∈ W , some
x–y path avoiding W , we showed that x and y have a common neighbour
outside W ; thus, all the paths needed to establish the desired connec-
tivity could in fact be chosen of length 2. What seemed like a clever
trick in this particular proof is in fact indicative of a more fundamental
phenomenon for constant edge probabilities: by an easy result in logic,
any statement about graphs expressed by quantifying over vertices only
(rather than over sets or sequences of vertices)4 is either almost surely
true or almost surely false. All such statements, or their negations,
are in fact immediate consequences of an assertion that the graph has
property Pi,j , for some suitable i, j.

As a last example of an ‘almost all’ result we now show that almost
every graph has a surprisingly high chromatic number:

4 In the terminology of logic: any first order sentence in the language of graph
theory
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Proposition 11.3.4. For every constant p ∈ (0, 1) and every ε > 0,
almost every graph G ∈ G(n, p) has chromatic number

χ(G) >
log(1/q)

2 + ε
· n

log n
.

Proof . For any fixed n � k � 2, Lemma 11.1.2 implies(11.1.2)

P [α � k ] �
(

n

k

)
q(

k
2)

� nkq(
k
2)

= qk log n
log q + 1

2 k(k−1)

= q
k
2

(
− 2 log n

log(1/q)+k−1
)
.

For
k := (2 + ε)

log n

log(1/q)

the exponent of this expression tends to infinity with n, so the expression
itself tends to zero. Hence, almost every G ∈ G(n, p) is such that in any
vertex colouring of G no k vertices can have the same colour, so every
colouring uses more than

n

k
=

log(1/q)
2 + ε

· n

log n

colours. �

By a result of Bollobás (1988), Proposition 11.3.4 is sharp in the
following sense: if we replace ε by −ε, then the lower bound given for χ
turns into an upper bound.

Most of the results of this section have the interesting common fea-
ture that the values of p played no role whatsoever: if almost every
graph in G(n, 1

2 ) had the property considered, then the same was true
for almost every graph in G(n, 1/1000). How could this happen?

Such insensitivity of our random model to changes of p was certainly
not intended: after all, among all the graphs with a certain property P
it is often those having P ‘only just’ that are the most interesting—for
those graphs are most likely to have different properties too, properties
to which P might thus be set in relation. (The proof of Erdős’s theorem
is a good example.) For most properties, however—and this explains the
above phenomenon—the critical order of magnitude of p around which
the property will ‘just’ occur or not occur lies far below any constant
value of p: it is typically a function of n tending to zero as n→∞.
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Let us then see what happens if p is allowed to vary with n. Al-
most immediately, a fascinating picture unfolds. For edge probabilities
p whose order of magnitude lies below n−2, a random graph G ∈ G(n, p)
almost surely has no edges at all. As p grows, G acquires more and
more structure: from about p =

√
n n−2 onwards, it almost surely has

a component with more than two vertices, these components grow into
trees, and around p = n−1 the first cycles are born. Soon, some of these
will have several crossing chords, making the graph non-planar. At the
same time, one component outgrows the others, until it devours them
around p = (log n)n−1, making the graph connected. Hardly later, at
p = (1 + ε)(log n)n−1, our graph almost surely has a Hamilton cycle!

It has become customary to compare this development of random
graphs as p grows to the evolution of an organism: for each p = p(n),
one thinks of the properties shared by almost all graphs in G(n, p) as
properties of ‘the’ typical random graph G ∈ G(n, p), and studies how
G changes its features with the growth rate of p. As with other species,
the evolution of random graphs happens in relatively sudden jumps: the
critical edge probabilities mentioned above are thresholds below which
almost no graph and above which almost every graph has the property
considered. More precisely, we call a real function t = t(n) with t(n) �= 0
for all n a threshold function for a graph property P if the following threshold

function
holds for all p = p(n), and G ∈ G(n, p):

lim
n→∞

P [G ∈ P ] =
{

0 if p/t→ 0 as n→∞
1 if p/t→∞ as n→∞.

If P has a threshold function t, then clearly any positive multiple ct of t
is also a threshold function for P; thus, threshold functions in the above
sense are only ever unique up to a multiplicative constant.5

Which graph properties have threshold functions? Natural candi-
dates for such properties are increasing ones, properties closed under the
addition of edges. (Graph properties of the form {G | G ⊇ H }, with
H fixed, are common increasing properties; connectedness is another.)
And indeed, Bollobás & Thomason (1987) have shown that all increasing
properties, trivial exceptions aside, have threshold functions.

In the next section we shall study a general method to compute
threshold functions.

We finish this section with a little gem, the one and only theorem
about infinite random graphs. Let G(ℵ0, p) be defined exactly like G(n, p)
for n = ℵ0, as the (product) space of random graphs on N whose edges
are chosen independently with probability p.

5 Our notion of threshold reflects only the crudest interesting level of screening:
for some properties, such as connectedness, one can define sharper thresholds where
the constant factor is crucial. Note also the role of the constant factor in our com-
parison of connectedness with hamiltonicity in the previous paragraph.
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As we saw in Lemma 11.3.2, the properties Pi,j hold almost surely
for finite random graphs with constant edge probability. It will therefore
hardly come as a surprise that an infinite random graph almost surely
(which now has the usual meaning of ‘with probability 1’) has all these
properties at once. However, in Chapter 8.3 we saw that, up to isomor-
phism, there is exactly one countable graph, the Rado graph R, that
has property Pi,j for all i, j ∈ N simultaneously; this joint property was
denoted as (∗) there. Combining these facts, we get the following rather
bizarre result:

Theorem 11.3.5. (Erdős and Rényi 1963)
With probability 1, a random graph G ∈ G(ℵ0, p) with 0 < p < 1 is
isomorphic to the Rado graph R.

Proof . Given fixed disjoint finite sets U, W ⊆ N, the probability that a(8.3.1)

vertex v /∈ U ∪W is not joined to U ∪W as expressed in property (∗) of
Chapter 8.3 (i.e., is not joined to all of U or is joined to some vertex in W )
is some number r < 1 depending only on U and W . The probability
that none of k given vertices v is joined to U ∪W as in (∗) is rk, which
tends to 0 as k→∞. Hence the probability that all the (infinitely many)
vertices outside U ∪W fail to witness (∗) for these sets U and W is 0.

Now there are only countably many choices for U and W as above.
Since the union of countably many sets of measure 0 again has measure 0,
the probability that (∗) fails for any sets U and W is still 0. Therefore
G satisfies (∗) with probability 1. By Theorem 8.3.1 this means that,
almost surely, G 
 R. �

How can we make sense of the paradox that the result of infinitely
many independent choices can be so predictable? The answer, of course,
lies in the fact that the uniqueness of R holds only up to isomorphism.
Now, constructing an automorphism for an infinite graph with prop-
erty (∗) is a much easier task than finding one for a finite random graph,
so in this sense the uniqueness is no longer that surprising. Viewed in
this way, Theorem 11.3.5 expresses not a lack of variety in infinite ran-
dom graphs but rather the abundance of symmetry that glosses over this
variety when the graphs G ∈ G(ℵ0, p) are viewed only up to isomorphism.

11.4 Threshold functions and second moments
Consider a graph property of the form

P = {G | X(G) � 1 } ,

where X � 0 is a random variable on G(n, p). Many properties can beX � 0

expressed naturally in this way; if X denotes the number of spanning
trees, for example, then P corresponds to connectedness.
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How could we prove that P has a threshold function t? Any such
proof will consist of two parts: a proof that almost no G ∈ G(n, p) has
P when p is small compared with t, and one showing that almost every
G has P when p is large.

Since X � 0, we may use Markov’s inequality for the first part of the
proof and find an upper bound for E(X) instead of P [X � 1 ]: if E(X) is
much smaller than 1 then X(G) can be at least 1 only for few G ∈ G(n, p),
and for almost no G if E(X)→ 0 as n→∞. Besides, the expectation is
much easier to calculate than probabilities: without worrying about such
things as independence or incompatibility of events, we may compute
the expectation of a sum of random variables—for example, of indicator
random variables—simply by adding up their individual expected values.

For the second part of the proof, things are more complicated. In
order to show that P [X � 1 ] is large, it is not enough to bound E(X)
from below: since X is not bounded above, E(X) may be large simply
because X is very large on just a few graphs G—so X may still be zero
for most G ∈ G(n, p).6 In order to prove that P [X � 1 ]→ 1, we thus
have to show that this cannot happen, i.e. that X does not deviate a lot
from its mean too often.

The following elementary tool from probability theory achieves just
that. As is customary, we write

µ := E(X) µ

and define σ � 0 by setting

σ2 := E
(
(X −µ)2

)
. σ2

This quantity σ2 is called the variance or second moment of X; by
definition, it is a (quadratic) measure of how much X deviates from its
mean. Since E is linear, the defining term for σ2 expands to

σ2 = E(X2 − 2µX + µ2) = E(X2)−µ2.

Note that µ and σ2 always refer to a random variable on some fixed
probability space. In our setting, where we consider the spaces G(n, p),
both quantities are functions of n.

The following lemma says exactly what we need: that X cannot
deviate a lot from its mean too often.

6 For some p between n−1 and (log n)n−1, for example, almost every G ∈ G(n, p)
has an isolated vertex (and hence no spanning tree), but its expected number of
spanning trees tends to infinity with n. See the Exercise 1212 for details.
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Lemma 11.4.1. (Chebyshev’s Inequality)
For all real λ > 0,

P
[
|X −µ| � λ

]
� σ2/λ2.

Proof . By Lemma 11.1.4 and definition of σ2,(11.1.4)

P [ |X −µ| � λ ] = P [ (X −µ)2 � λ2 ] � σ2/λ2.
�

For a proof that X(G) � 1 for almost all G ∈ G(n, p), Chebyshev’s
inequality can be used as follows:

Lemma 11.4.2. If µ > 0 for n large, and σ2/µ2 → 0 as n→∞, then
X(G) > 0 for almost all G ∈ G(n, p).

Proof . Any graph G with X(G) = 0 satisfies |X(G)− µ| = µ. Hence
Lemma 11.4.1 implies with λ := µ that

P [X = 0 ] � P
[
|X −µ| � µ

]
� σ2/µ2 −→

n→∞
0 .

Since X � 0, this means that X > 0 almost surely, i.e. that X(G) > 0
for almost all G ∈ G(n, p). �

As the main result of this section, we now prove a theorem that will
at once give us threshold functions for a number of natural properties.
Given a graph H, we denote by PH the graph property of containing aPH

copy of H as a subgraph. We shall call H balanced if ε(H ′) � ε(H) forbalanced

all subgraphs H ′ of H.

Theorem 11.4.3. (Erdős & Rényi 1960)
If H is a balanced graph with k vertices and � � 1 edges, then t(n) :=k, �

n−k/� is a threshold function for PH .t

Proof . Let X(G) denote the number of subgraphs of G isomorphic to H.(11.1.4)
(11.1.5)

X
Given n ∈ N, let H denote the set of all graphs isomorphic to H whose
vertices lie in { 0, . . . , n− 1 }, the vertex set of the graphs G ∈ G(n, p):

H :=
{
H ′ | H ′ 
 H, V (H ′) ⊆ { 0, . . . , n− 1 }

}
.H

Given H ′ ∈ H and G ∈ G(n, p), we shall write H ′ ⊆ G to express that
H ′ itself—not just an isomorphic copy of H ′—is a subgraph of G.

By h we denote the number of isomorphic copies of H on a fixedh

k-set; clearly, h � k! . As there are
(
n
k

)
possible vertex sets for the graphs

in H, we thus have

|H| =
(

n

k

)
h �

(
n

k

)
k! � nk. (1)
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Given p = p(n), we set γ := p/t; then p, γ

p = γn−k/�. (2)

We have to show that almost no G ∈ G(n, p) lies in PH if γ→0 as n→∞,
and that almost all G ∈ G(n, p) lie in PH if γ →∞ as n→∞.

For the first part of the proof, we find an upper bound for E(X), the
expected number of subgraphs of G isomorphic to H. As in the proof of
Lemma 11.1.5, double counting gives

E(X) =
∑

H′∈H
P [H ′ ⊆ G ] . (3)

For every fixed H ′ ∈ H, we have

P [H ′ ⊆ G ] = p�, (4)

because ‖H‖ = �. Hence,

E(X) =
(3,4)

|H| p� �
(1,2)

nk(γn−k/�)� = γ�. (5)

Thus if γ → 0 as n→∞, then

P [G ∈ PH ] = P [X � 1 ] � E(X) � γ� −→
n→∞

0

by Markov’s inequality (11.1.4), so almost no G ∈ G(n, p) lies in PH .

We now come to the second part of the proof: we show that almost
all G ∈ G(n, p) lie in PH if γ →∞ as n→∞. Note first that, for n � k,

(
n

k

)
n−k =

1
k!

(
n

n
· · · n− k + 1

n

)

� 1
k!

(
n− k + 1

n

)k

� 1
k!

(
1− k− 1

k

)k

; (6)

thus, nk exceeds
(
n
k

)
by no more than a factor independent of n.

Our goal is to apply Lemma 11.4.2, and hence to bound σ2/µ2 =(
E(X2)−µ2

)
/µ2 from above. As in (3) we have

E(X2) =
∑

(H′,H′′)∈H2

P [H ′ ∪H ′′ ⊆ G ] . (7)
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Let us then calculate these probabilities P [H ′ ∪ H ′′ ⊆ G ]. Given
H ′, H ′′ ∈ H, we have

P [H ′ ∪H ′′ ⊆ G ] = p2�−‖H′∩H′′‖.

Since H is balanced, ε(H ′ ∩H ′′) � ε(H) = �/k. With |H ′ ∩H ′′| =: ii

this yields ‖H ′ ∩H ′′‖ � i�/k, so by 0 � p � 1,

P [H ′ ∪H ′′ ⊆ G ] � p2�−i�/k. (8)

We have now estimated the individual summands in (7); what does
this imply for the sum as a whole? Since (8) depends on the parameter
i = |H ′ ∩ H ′′|, we partition the range H2 of the sum in (7) into the
subsets

H2
i :=

{
(H ′, H ′′) ∈ H2 : |H ′ ∩H ′′| = i

}
, i = 0, . . . , k,H2

i

and calculate for each H2
i the corresponding sum

Ai :=
∑

i
P [H ′ ∪H ′′ ⊆ G ]Ai

by itself. (Here, as below, we use
∑

i to denote sums over all pairs
∑

i

(H ′, H ′′) ∈ H2
i .)

If i = 0 then H ′ and H ′′ are disjoint, so the events H ′ ⊆ G and
H ′′ ⊆ G are independent. Hence,

A0 =
∑

0
P [H ′ ∪H ′′ ⊆ G ]

=
∑

0
P [H ′ ⊆ G ] ·P [H ′′ ⊆ G ]

�
∑

(H′,H′′)∈H2

P [H ′ ⊆ G ] ·P [H ′′ ⊆ G ]

=
( ∑

H′∈H
P [H ′ ⊆ G ]

)
·
( ∑

H′′∈H
P [H ′′ ⊆ G ]

)

=
(3)

µ2. (9)

Let us now estimate Ai for i � 1. Writing
∑′ for

∑
H′∈H and

∑′′

for
∑

H′′∈H , we note that
∑

i can be written as
∑′ ∑′′

|H′∩H′′|=i . For∑′

fixed H ′ (corresponding to the first sum
∑′), the second sum ranges

over (
k

i

)(
n− k

k− i

)
h
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summands: the number of graphs H ′′ ∈ H with |H ′′ ∩H ′| = i. Hence,
for all i � 1 and suitable constants c1, c2 independent of n,

Ai =
∑

i
P [H ′ ∪H ′′ ⊆ G ]

�
(8)

∑′
(

k

i

)(
n− k

k− i

)
h p2�p−i�/k

=
(2)

|H|
(

k

i

)(
n− k

k− i

)
h p2�

(
γ n−k/�

)−i�/k

� |H| p�c1 nk−i h p�γ−i�/k ni

=
(5)

µ c1n
kh p�γ−i�/k

�
(6)

µ c2

(
n

k

)
h p�γ−i�/k

=
(1,5)

µ2c2γ
−i�/k

� µ2c2γ
−�/k

if γ � 1. By definition of the Ai, this implies with c3 := kc2 that

E(X2)/µ2 =
(7)

(
A0/µ2 +

k∑
i=1

Ai/µ2
)

�
(9)

1 + c3γ
−�/k

and hence
σ2

µ2
=

E(X2)−µ2

µ2
� c3γ

−�/k −→
γ→∞

0 .

By Lemma 11.4.2, therefore, X > 0 almost surely, i.e. almost all G ∈
G(n, p) have a subgraph isomorphic to H and hence lie in PH . �

Theorem 11.4.3 allows us to read off threshold functions for a num-
ber of natural graph properties.

Corollary 11.4.4. If k � 3, then t(n) = n−1 is a threshold function for
the property of containing a k-cycle. �

Interestingly, the threshold function in Corollary 11.4.4 is indepen-
dent of the cycle length k considered: in the evolution of random graphs,
cycles of all (constant) lengths appear at about the same time!

There is a similar phenomenon for trees. Here, the threshold func-
tion does depend on the order of the tree considered, but not on its
shape:
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Corollary 11.4.5. If T is a tree of order k � 2, then t(n) = n−k/(k−1)

is a threshold function for the property of containing a copy of T .

We finally have the following result for complete subgraphs:

Corollary 11.4.6. If k � 2, then t(n) = n−2/(k−1) is a threshold func-
tion for the property of containing a Kk.

Proof . Kk is balanced, because ε(Ki) = 1
2 (i−1) < 1

2 (k−1) = ε(Kk) for
i < k. With � := ‖Kk‖ = 1

2k(k−1), we obtain n−k/� = n−2/(k−1). �

It is not difficult to adapt the proof of Theorem 11.4.3 to the case
that H is unbalanced. The threshold then becomes t(n) = n−1/ε′(H),
where ε′(H) := max { ε(F ) | F ⊆ H }; see Exercise 2121.

Exercises

1.− What is the probability that a random graph in G(n, p) has exactly m
edges, for 0 � m �

(
n
2

)
fixed?

2. What is the expected number of edges in G ∈ G(n, p)?

3. What is the expected number of Kr-subgraphs in G ∈ G(n, p)?

4. Characterize the graphs that occur as a subgraph in every graph of
sufficiently large average degree.

5. In the usual terminology of measure spaces (and in particular, of prob-
ability spaces), the phrase ‘almost all’ is used to refer to a set of points
whose complement has measure zero. Rather than considering a limit
of probabilities in G(n, p) as n→∞, would it not be more natural to
define a probability space on the set of all finite graphs (one copy of
each) and to investigate properties of ‘almost all’ graphs in this space,
in the sense above?

6. Show that if almost all G ∈ G(n, p) have a graph property P1 and almost
all G ∈ G(n, p) have a graph property P2, then almost all G ∈ G(n, p)
have both properties, i.e. have the property P1 ∩P2.

7.− Show that, for constant p ∈ (0, 1), almost every graph in G(n, p) has
diameter 2.

8. Show that, for constant p ∈ (0, 1), almost no graph in G(n, p) has a
separating complete subgraph.

9. Derive Proposition 11.3.1 from Lemma 11.3.2.

10. Let ε > 0 and p = p(n) > 0, and let r � (1+ ε)(2 ln n)/p be an integer-
valued function of n. Show that almost no graph in G(n, p) contains r
independent vertices.
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11. Show that for every graph H there exists a function p = p(n) such that
limn→∞ p(n) = 0 but almost every G ∈ G(n, p) contains an induced
copy of H.

12.+ (i) Show that, for every 0 < ε � 1 and p = (1 − ε)(ln n)n−1, almost
every G ∈ G(n, p) has an isolated vertex.

(ii) Find a probability p = p(n) such that almost every G ∈ G(n, p) is
disconnected but the expected number of spanning trees of G tends to
infinity as n→∞.

(Hint for (ii): A theorem of Cayley states that Kn has exactly nn−2

spanning trees.)

13.+ Given r ∈ N, find a c > 0 such that, for p = cn−1, almost every
G ∈ G(n, p) has a Kr minor. Can c be chosen independently of r?

14. Find an increasing graph property without a threshold function, and a
property that is not increasing but has a threshold function.

15.− Let H be a graph of order k, and let h denote the number of graphs
isomorphic to H on some fixed set of k elements. Show that h � k!.
For which graphs H does equality hold?

16.− For every k � 1, find a threshold function for {G | ∆(G) � k }.

17.− Given d ∈ N, is there a threshold function for the property of containing
a d-dimensional cube (see Ex. 22, Ch. 1)? If so, which; if not, why not?

18. Show that t(n) = n−1 is also a threshold function for the property of
containing any cycle.

19. Does the property of containing any tree of order k (for k � 2 fixed)
have a threshold function? If so, which?

20.+ Given a graph H, let P be the property of containing an induced copy
of H. If H is complete then, by Corollary 11.4.6, P has a threshold
function. Show that P has no threshold function if H is not complete.

21.+ Prove the following version of Theorem 11.4.3 for unbalanced sub-
graphs. Let H be any graph with at least one edge, and put ε′(H) :=
max { ε(F ) | ∅ 
= F ⊆ H }. Then the threshold function for PH is

t(n) = n−1/ε′(H).

Notes
There are a number of monographs and texts on the subject of random
graphs. The first comprehensive monograph was B.Bollobás, Random Graphs,
Academic Press 1985. Another advanced but very readable monograph is
S. Janson, T. �Luczak & A.Ruciński, Random Graphs, Wiley 2000; this concen-
trates on areas developed since Random Graphs was published. E.M.Palmer,
Graphical Evolution, Wiley 1985, covers material similar to parts of Random
Graphs but is written in a more elementary way. Compact introductions going
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beyond what is covered in this chapter are given by B.Bollobás, Graph The-
ory , Springer GTM63, 1979, and by M.Karoński, Handbook of Combinatorics
(R.L.Graham, M.Grötschel & L. Lovász, eds.), North-Holland 1995.

A stimulating advanced introduction to the use of random techniques in
discrete mathematics more generally is given by N.Alon & J.H. Spencer, The
Probabilistic Method, Wiley 1992. One of the attractions of this book lies in
the way it shows probabilistic methods to be relevant in proofs of entirely de-
terministic theorems, where nobody would suspect it. Other examples for this
phenomenon are Alon’s proof of Theorem 5.4.1, or the proof of Theorem 1.3.4;
see the notes for Chapters 5 and 1, respectively.

The probabilistic method had its first origins in the 1940s, one of its
earliest results being Erdős’s probabilistic lower bound for Ramsey numbers
(Theorem 11.1.3). Lemma 11.3.2 about the properties Pi,j is taken from Bol-
lobás’s Springer text cited above. A very readable rendering of the proof that,
for constant p, every first order sentence about graphs is either almost surely
true or almost surely false, is given by P.Winkler, Random structures and
zero-one laws, in (N.W. Sauer et al., eds.) Finite and Infinite Combinatorics
in Sets and Logic (NATO ASI Series C 411), Kluwer 1993.

Theorem 11.3.5 is due to P. Erdős and A.Rényi, Asymmetric graphs, Acta
Math. Acad. Sci. Hungar. 14 (1963), 295–315. For further references about
the infinite random graph R see the notes in Chapter 8.

The seminal paper on graph evolution is P. Erdős & A.Rényi, On the
evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960),
17–61. This paper also includes Theorem 11.4.3 and its proof. The generaliza-
tion of this theorem to unbalanced subgraphs was first proved by Bollobás in
1981, using advanced methods; a simple adaptation of the original Erdős-Renyi
proof was found by Ruciński & Vince (1986), and is presented in Karoński’s
Handbook chapter.

There is another way of defining a random graph G, which is just as
natural and common as the model we considered. Rather than choosing the
edges of G independently, we choose the entire graph G uniformly at random
from among all the graphs on { 0, . . . , n − 1 } that have exactly M = M(n)
edges: then each of these graphs occurs with the same probability of

(
N
M

)
,

where N :=
(

n
2

)
. Just as we studied the likely properties of the graphs in

G(n, p) for different functions p = p(n), we may investigate how the properties
of G in the other model depend on the function M(n). If M is close to pN , the
expected number of edges of a graph in G(n, p), then the two models behave
very similarly. It is then largely a matter of convenience which of them to
consider; see Bollobás for details.

In order to study threshold phenomena in more detail, one often considers
the following random graph process: starting with a Kn as stage zero, one
chooses additional edges one by one (uniformly at random) until the graph
is complete. This is a simple example of a Markov chain, whose Mth stage
corresponds to the ‘uniform’ random graph model described above. A survey
about threshold phenomena in this setting is given by T. �Luczak, The phase
transition in a random graph, in (D.Miklós, V.T. Sós & T. Szőnyi, eds.) Paul
Erdős is 80, Vol. 2, Proc. Colloq. Math. Soc. János Bolyai (1996).



12 Minors
Trees

and WQO

Our goal in this last chapter is a single theorem, one which dwarfs any
other result in graph theory and may doubtless be counted among the
deepest theorems that mathematics has to offer: in every infinite set of
graphs there are two such that one is a minor of the other. This graph
minor theorem (or minor theorem for short), inconspicuous though it
may look at first glance, has made a fundamental impact both outside
graph theory and within. Its proof, due to Neil Robertson and Paul
Seymour, takes well over 500 pages.

So we have to be modest: of the actual proof of the minor theorem,
this chapter will convey only a very rough impression. However, as with
most truly fundamental results, the proof has sparked off the develop-
ment of methods of quite independent interest and potential. This is true
particularly for the use of tree-decompositions, a technique we shall meet
in Section 12.3. Section 12.1 gives an introduction to well-quasi-ordering ,
a concept central to the minor theorem. In Section 12.2 we apply this
concept to prove the minor theorem for trees. In Section 12.4 we look at
forbidden-minor theorems: results in the spirit of Kuratowski’s theorem
(4.4.6) or Wagner’s theorem (7.3.4), which describe the structure of the
graphs not containing some specified graph or graphs as a minor. We
prove one such theorem in full (excluding a given planar graph) and state
another (excluding Kn); both are central results and tools in the theory
of graph minors. In Section 12.5 we give a direct proof of the ‘general-
ized Kuratowski’ theorem that embeddability in any fixed surface can be
characterized by forbidding finitely many minors. We conclude with an
overview of the proof and implications of the graph minor theorem itself.
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12.1 Well-quasi-ordering

A reflexive and transitive relation is called a quasi-ordering . A quasi-
ordering � on X is a well-quasi-ordering , and the elements of X arewell-quasi-

ordering
well-quasi-ordered by �, if for every infinite sequence x0, x1, . . . in X
there are indices i < j such that xi � xj . Then (xi, xj) is a good pairgood pair

of this sequence. A sequence containing a good pair is a good sequence;
thus, a quasi-ordering on X is a well-quasi-ordering if and only if everygood/bad

sequence
infinite sequence in X is good. An infinite sequence is bad if it is not
good.

Proposition 12.1.1. A quasi-ordering � on X is a well-quasi-ordering
if and only if X contains neither an infinite antichain nor an infinite
strictly decreasing sequence x0 > x1 > . . ..

Proof . The forward implication is trivial. Conversely, let x0, x1, . . .(9.1.2)

be any infinite sequence in X. Let K be the complete graph on N =
{ 0, 1, . . . }. Colour the edges ij (i < j) of K with three colours: green
if xi � xj , red if xi > xj , and amber if xi, xj are incomparable. By
Ramsey’s theorem (9.1.2), K has an infinite induced subgraph whose
edges all have the same colour. If there is neither an infinite antichain
nor an infinite strictly decreasing sequence in X, then this colour must
be green, i.e. x0, x1, . . . has an infinite subsequence in which every pair
is good. In particular, the sequence x0, x1, . . . is good. �

In the proof of Proposition 12.1.1, we showed more than was needed:
rather than finding a single good pair in x0, x1, . . ., we found an infinite
increasing subsequence. We have thus shown the following:

Corollary 12.1.2. If X is well-quasi-ordered, then every infinite se-
quence in X has an infinite increasing subsequence. �

The following lemma, and the idea of its proof, are fundamental to
the theory of well-quasi-ordering. Let � be a quasi-ordering on a set X.
For finite subsets A, B ⊆ X, write A � B if there is an injective mapping�
f :A→B such that a � f(a) for all a ∈ A. This naturally extends � to
a quasi-ordering on [X]<ω, the set of all finite subsets of X.[X]<ω

Lemma 12.1.3. If X is well-quasi-ordered by �, then so is [X]<ω.[ 12.2.1 ]
[ 12.5.1 ]

Proof . Suppose that � is a well-quasi-ordering on X but not on [X]<ω.
We start by constructing a bad sequence (An)n∈N in [X]<ω, as follows.
Given n ∈ N, assume inductively that Ai has been defined for every
i < n, and that there exists a bad sequence in [X]<ω starting with
A0, . . . , An−1. (This is clearly true for n = 0: by assumption, [X]<ω

contains a bad sequence, and this has the empty sequence as an initial
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segment.) Choose An ∈ [X]<ω so that some bad sequence in [X]<ω starts
with A0, . . . , An and |An| is as small as possible.

Clearly, (An)n∈N is a bad sequence in [X]<ω; in particular, An �= ∅
for all n. For each n pick an element an ∈ An and set Bn := An �{ an }.

By Corollary 12.1.2, the sequence (an)n∈N has an infinite increasing
subsequence (ani)i∈N. By the minimal choice of An0 , the sequence

A0, . . . , An0−1, Bn0 , Bn1 , Bn2 , . . .

is good; consider a good pair. Since (An)n∈N is bad, this pair cannot
have the form (Ai, Aj) or (Ai, Bj), as Bj � Aj . So it has the form
(Bi, Bj). Extending the injection Bi →Bj by ai �→ aj , we deduce again
that (Ai, Aj) is good, a contradiction. �

12.2 The graph minor theorem for trees

The minor theorem can be expressed by saying that the finite graphs
are well-quasi-ordered by the minor relation �. Indeed, by Proposi-
tion 12.1.1 and the obvious fact that no strictly descending sequence
of minors can be infinite, being well-quasi-ordered is equivalent to the
non-existence of an infinite antichain, the formulation used earlier.

In this section, we prove a strong version of the graph minor theorem
for trees:

Theorem 12.2.1. (Kruskal 1960) [ 12.5.1 ]

The finite trees are well-quasi-ordered by the topological minor relation.

We shall base the proof of Theorem 12.2.1 on the following notion
of an embedding between rooted trees, which strengthens the usual em-
bedding as a topological minor. Consider two trees T and T ′, with roots
r and r′ say. Let us write T � T ′ if there exists an isomorphism ϕ, from T � T ′

some subdivision of T to a subtree T ′′ of T ′, that preserves the tree-order
on V (T ) associated with T and r. (Thus if x < y in T then ϕ(x) < ϕ(y)
in T ′; see Fig. 12.2.1.) As one easily checks, this is a quasi-ordering on
the class of all rooted trees.

Proof of Theorem 12.2.1. We show that the rooted trees are well- (12.1.3)

quasi-ordered by the relation � defined above; this clearly implies the
theorem.

Suppose not. To derive a contradiction, we proceed as in the proof
of Lemma 12.1.3. Given n ∈ N, assume inductively that we have chosen
a sequence T0, . . . , Tn−1 of rooted trees such that some bad sequence of
rooted trees starts with this sequence. Choose as Tn a minimum-order Tn
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r

T

r′

ϕ
ϕ

(r)

T ′

Fig. 12.2.1. An embedding of T in T ′ showing that T � T ′

rooted tree such that some bad sequence starts with T0, . . . , Tn. For each
n ∈ N, denote the root of Tn by rn.rn

Clearly, (Tn)n∈N is a bad sequence. For each n, let An denote theAn

set of components of Tn − rn, made into rooted trees by choosing the
neighbours of rn as their roots. Note that the tree-order of these trees
is that induced by Tn. Let us prove that the set A :=

⋃
n∈N

An of allA

these trees is well-quasi-ordered.
Let (T k)k∈N be any sequence of trees in A. For every k ∈ N chooseT k

an n = n(k) such that T k ∈ An. Pick a k with smallest n(k). Thenn(k)

T0, . . . , Tn(k)−1, T
k, T k+1, . . .

is a good sequence, by the minimal choice of Tn(k) and T k � Tn(k). Let
(T, T ′) be a good pair of this sequence. Since (Tn)n∈N is bad, T cannot
be among the first n(k) members T0, . . . , Tn(k)−1 of our sequence: then
T ′ would be some T i with i � k, i.e.

T � T ′ = T i � Tn(i) ;

since n(k) � n(i) by the choice of k, this would make (T, Tn(i)) a good
pair in the bad sequence (Tn)n∈N. Hence (T, T ′) is a good pair also in
(T k)k∈N, completing the proof that A is well-quasi-ordered.

By Lemma 12.1.3,1 the sequence (An)n∈N in [A]<ω has a good pair
(Ai, Aj); let f :Ai →Aj be injective with T � f(T ) for all T ∈ Ai. Nowi, j

extend the union of the embeddings T → f(T ) to a map ϕ from V (Ti)
to V (Tj) by letting ϕ(ri) := rj . This map ϕ preserves the tree-order
of Ti, and it defines an embedding to show that Ti � Tj , since the edges
rir ∈ Ti map naturally to the paths rjTjϕ(r). Hence (Ti, Tj) is a good
pair in our original bad sequence of rooted trees, a contradiction. �

1 Any readers worried that we might need the lemma for sequences or multisets
rather than just sets here, note that isomorphic elements of An are not identified: we
always have |An| = d(rn).
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12.3 Tree-decompositions

Trees are graphs with some very distinctive and fundamental properties;
consider Theorem 1.5.1 and Corollary 1.5.2, or the more sophisticated
example of Kruskal’s theorem. It is therefore legitimate to ask to what
degree those properties can be transferred to more general graphs, graphs
that are not themselves trees but tree-like in some sense.2 In this section,
we study a concept of tree-likeness that permits generalizations of all
the tree properties referred to above (including Kruskal’s theorem), and
which plays a crucial role in the proof of the graph minor theorem.

Let G be a graph, T a tree, and let V = (Vt)t∈T be a family of vertex
sets Vt ⊆ V (G) indexed by the vertices t of T . The pair (T,V) is called
a tree-decomposition of G if it satisfies the following three conditions: tree-

decomposition

(T1) V (G) =
⋃

t∈T Vt;

(T2) for every edge e ∈ G there exists a t ∈ T such that both ends of e
lie in Vt;

(T3) Vt1 ∩Vt3 ⊆ Vt2 whenever t1, t2, t3 ∈ T satisfy t2 ∈ t1Tt3.

Conditions (T1) and (T2) together say that G is the union of the sub-
graphs G [Vt ]; we call these subgraphs and the sets Vt themselves the
parts of (T,V) and say that (T,V) is a tree-decomposition of G into these parts

parts. Condition (T3) implies that the parts of (T,V) are organized into

roughly like a tree (Fig. 12.3.1).

T G

t1

t2

t3
t?

?

e?
?

Vt3

Fig. 12.3.1. Edges and parts ruled out by (T2) and (T3)

Before we discuss the role that tree-decompositions play in the proof
of the minor theorem, let us note some of their basic properties. Consider
a fixed tree-decomposition (T,V) of G, with V = (Vt)t∈T as above. (T,V), Vt

Perhaps the most important feature of a tree-decomposition is that
it transfers the separation properties of its tree to the graph decomposed:

2 What exactly this ‘sense’ should be will depend both on the property considered
and on its intended application.
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Lemma 12.3.1. Let t1t2 be any edge of T and let T1, T2 be the com-
ponents of T − t1t2, with t1 ∈ T1 and t2 ∈ T2. Then Vt1 ∩ Vt2 separates
U1 :=

⋃
t∈T1

Vt from U2 :=
⋃

t∈T2
Vt in G (Fig. 12.3.2).

t1

t2
U1

U2

Vt1 ∩Vt2

T1

T2

Fig. 12.3.2. Vt1 ∩Vt2 separates U1 from U2 in G

Proof . Both t1 and t2 lie on every t–t′ path in T with t ∈ T1 and t′ ∈ T2.
Therefore U1 ∩U2 ⊆ Vt1 ∩Vt2 by (T3), so all we have to show is that G
has no edge u1u2 with u1 ∈ U1 � U2 and u2 ∈ U2 � U1. If u1u2 is such
an edge, then by (T2) there is a t ∈ T with u1, u2 ∈ Vt. By the choice of
u1 and u2 we have neither t ∈ T2 nor t ∈ T1, a contradiction. �

Note that tree-decompositions are passed on to subgraphs:

Lemma 12.3.2. For every H ⊆ G, the pair
(
T, (Vt ∩ V (H))t∈T

)
is a[ 12.4.2 ]

tree-decomposition of H. �

Similarly for contractions:

Lemma 12.3.3. Suppose that G is an MH with branch sets Uh,
h ∈ V (H). Let f :V (G) → V (H) be the map assigning to each ver-
tex of G the index of the branch set containing it. For all t ∈ T let
Wt := { f(v) | v ∈ Vt }, and put W := (Wt)t∈T . Then (T,W) is a tree-
decomposition of H.

Proof . The assertions (T1) and (T2) for (T,W) follow immediately
from the corresponding assertions for (T,V). Now let t1, t2, t3 ∈ T be
as in (T3), and consider a vertex h ∈ Wt1 ∩ Wt3 of H; we show that
h ∈ Wt2 . By definition of Wt1 and Wt3 , there are vertices v1 ∈ Vt1 ∩Uh

and v3 ∈ Vt3 ∩Uh. Since Uh is connected in G and Vt2 separates v1 from
v3 in G by Lemma 12.3.1, Vt2 has a vertex in Uh. By definition of Wt2 ,
this implies h ∈ Wt2 . �

Here is another useful consequence of Lemma 12.3.1:
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Lemma 12.3.4. Given a set W ⊆ V (G), there is either a t ∈ T such
that W ⊆ Vt, or there are vertices w1, w2 ∈ W and an edge t1t2 ∈ T such
that w1, w2 lie outside the set Vt1 ∩Vt2 and are separated by it in G.

Proof . Let us orient the edges of T as follows. For each edge t1t2 ∈ T ,
define U1, U2 as in Lemma 12.3.1; then Vt1 ∩ Vt2 separates U1 from U2.
If Vt1 ∩ Vt2 does not separate any two vertices of W that lie outside it,
we can find an i ∈ { 1, 2 } such that W ⊆ Ui, and orient t1t2 towards ti.

Let t be the last vertex of a maximal directed path in T ; we claim
that W ⊆ Vt. Given w ∈ W , let t′ ∈ T be such that w ∈ Vt′ . If t′ �= t,
then the edge e at t that separates t′ from t in T is directed towards t,
so w also lies in Vt′′ for some t′′ in the component of T − e containing t.
Therefore w ∈ Vt by (T3). �

The following special case of Lemma 12.3.4 is used particularly often:

Lemma 12.3.5. Any complete subgraph of G is contained in some part [ 12.4.2 ]

of (T,V). �

As indicated by Figure 12.3.1, the parts of (T,V) reflect the struc-
ture of the tree T , so in this sense the graph G decomposed resembles a
tree. However, this is valuable only inasmuch as the structure of G within
each part is negligible: the smaller the parts, the closer the resemblance.

This observation motivates the following definition. The width of width

(T,V) is the number

max
{
|Vt| − 1 : t ∈ T

}
,

and the tree-width tw(G) of G is the least width of any tree-decomposi- tree-width
tw(G)

tion of G. As one easily checks,3 trees themselves have tree-width 1.
By Lemmas 12.3.2 and 12.3.3, the tree-width of a graph will never

be increased by deletion or contraction:

Proposition 12.3.6. If H � G then tw(H) � tw(G). � [ 12.4.2 ]

Graphs of bounded tree-width are sufficiently similar to trees that it
becomes possible to adapt the proof of Kruskal’s theorem to the class of
these graphs; very roughly, one has to iterate the ‘minimal bad sequence’
argument from the proof of Lemma 12.1.3 tw(G) times. This takes us a
step further towards a proof of the graph minor theorem:

Theorem 12.3.7. (Robertson & Seymour 1990) [ 12.5.1 ]
[ 12.5.3 ]

For every integer k > 0, the graphs of tree-width < k are well-quasi-
ordered by the minor relation.

3 Indeed the ‘−1’ in the definition of width serves no other purpose than to make
this statement true.
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In order to make use of Theorem 12.3.7 for a proof of the general
minor theorem, we should be able to say something about the graphs it
does not cover, i.e. to deduce some information about a graph from the
assumption that its tree-width is large. Our next theorem achieves just
that: it identifies a canonical obstruction to small tree-width, a struc-
tural phenomenon that occurs in a graph if and only if its tree-width is
large.

Let us say that two subsets of V (G) touch if they have a vertex intouch

common or G contains an edge between them. A set of mutually touching
connected vertex sets in G is a bramble. Extending our terminology ofbramble

Chapter 2, we say that a subset of V (G) covers (or is a cover of) acover

bramble B if it meets every element of B. The least number of vertices
covering a bramble is the order of that bramble.order

The following simple observation will be useful:

Lemma 12.3.8. Any set of vertices separating two covers of a bramble
also covers that bramble.

Proof . Since each set in the bramble is connected and meets both of the
covers, it also meets any set separating these covers. �

A typical example of a bramble is the set of crosses in a grid. The
k× k grid is the graph on { 1, . . . , k }2 with the edge setgrid

{ (i, j)(i′, j′) : |i− i′|+ |j − j′| = 1 } .

The crosses of this grid are the k2 sets

Cij := { (i, �) | � = 1, . . . , k } ∪ { (�, j) | � = 1, . . . , k } .

Thus, the cross Cij is the union of the grid’s ith column and its jth row.
Clearly, the crosses of the k × k grid form a bramble of order k: they
are covered by any row or column, while any set of fewer than k vertices
misses both a row and a column, and hence a cross.

The following result is sometimes called the tree-width duality the-
orem:

Theorem 12.3.9. (Seymour & Thomas 1993)
Let k � 0 be an integer. A graph has tree-width � k if and only if it
contains a bramble of order > k.

Proof . For the backward implication, let B be any bramble in a graph G.(3.3.1)

We show that every tree-decomposition (T, (Vt)t∈T ) of G has a part that
covers B.

As in the proof of Lemma 12.3.4 we start by orienting the edges t1t2
of T . If X := Vt1 ∩Vt2 covers B, we are done. If not, then for each B ∈ B
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disjoint from X there is an i ∈ { 1, 2 } such that B ⊆ Ui � X (defined as
in Lemma 12.3.1); recall that B is connected. This i is the same for all
such B, because they touch. We now orient the edge t1t2 towards ti.

If every edge of T is oriented in this way and t is the last vertex of
a maximal directed path in T , then Vt covers B—just as in the proof of
Lemma 12.3.4.

To prove the forward direction, we now assume that G contains no
bramble of order > k. We show that for every bramble B in G there is
a B-admissible tree-decomposition of G, one in which any part of order B-

admissible
> k fails to cover B. For B = ∅ this implies that tw(G) < k, because
every set covers the empty bramble.

Let B be given, and assume inductively that for every bramble B′ B
containing more sets than B there is a B′-admissible tree-decomposition
of G. (The induction starts, since no bramble in G has more than 2|G|

sets.) Let X ⊆ V (G) be a cover of B with as few vertices as possible; X

then � := |X| � k is the order of B. Our aim is to show the following: �

For every component C of G−X there exists a B-admissible
tree-decomposition of G [X ∪V (C) ] with X as a part.

(∗)

Then these tree-decompositions can be combined to a B-admissible tree-
decomposition of G by identifying their nodes corresponding to X. (If
X = V (G), then the tree-decomposition with X as its only part is B-
admissible.)

So let C be a fixed component of G−X, write H := G [X ∪V (C) ], C, H

and put B′ := B ∪ {C }. If B′ is not a bramble then C fails to touch B′

some element of B, and hence Y := V (C) ∪ N(C) does not cover B.
Then the tree-decomposition of H consisting of the two parts X and Y
satisfies (∗).

So we may assume that B′ is a bramble. Since X covers B, we
have C /∈ B and hence |B′| > |B|. Our induction hypothesis therefore
ensures that G has a B′-admissible tree-decomposition (T, (Vt)t∈T ). If T, (Vt)t∈T

this decomposition is also B-admissible, there is nothing more to show.
If not, then one of its parts of order > k, Vs say, covers B. Since no set s

of fewer than � vertices covers B, Lemma 12.3.8 implies with Menger’s
theorem (3.3.1) that Vs and X are linked by � disjoint paths P1, . . . , P�. Pi

As Vs fails to cover B′ and hence lies in G − C, the paths Pi meet H
only in their ends xi ∈ X. xi

For each i = 1, . . . , � pick a ti ∈ T with xi ∈ Vti
, and let ti

Wt :=
(
Vt ∩V (H)

)
∪{xi | t ∈ sT ti }

for all t ∈ T (Fig. 12.3.3). Then (T, (Wt)t∈T ) is the tree-decomposition
which (T, (Vt)t∈T ) induces on H (cf. Lemma 12.3.2), except that a few
xi have been added to some of the parts. Despite these additions, we
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Vt2

Vt3

Vt1
x3

Vs

Vt

Vt′

x1 x2

Fig. 12.3.3. Wt contains x2 and x3 but not x1; Wt′ contains no xi

still have |Wt| � |Vt| for all t: for each xi ∈ Wt � Vt we have t ∈ sT ti,
so Vt contains some other vertex of Pi (Lemma 12.3.1); that vertex does
not lie in Wt, because Pi meets H only in xi. Moreover, (T, (Wt)t∈T )
clearly satisfies (T3), because each xi is added to every part along some
path in T containing ti, so it is again a tree-decomposition.

As Ws = X, all that is left to show for (∗) is that this decomposition
is B-admissible. Consider any Wt of order > k. Then Wt meets C,
because |X| = � � k. Since (T, (Vt)t∈T ) is B′-admissible and |Vt| �
|Wt| > k, we know that Vt fails to meet some B ∈ B; let us show that Wt

does not meet this B either. If it does, it must do so in some xi ∈ Wt �Vt.
Then B is a connected set meeting both Vs and Vti but not Vt. As t ∈ sT ti
by definition of Wt, this contradicts Lemma 12.3.1. �

Often, Theorem 12.3.9 is stated in terms of the bramble number of a
graph, the largest order of any bramble in it. The theorem then says that
the tree-width of a graph is exactly one less than its bramble number.

How useful even the easy backward direction of Theorem 12.3.9 can
be is exemplified once more by our example of the crosses bramble in the
k × k grid: this bramble has order k, so by the theorem the k × k grid
has tree-width at least k− 1. (Try to show this without the theorem!)

In fact, the k × k grid has tree-width k (Exercise 2121). But more
important than its precise value is the fact that the tree-width of grids
tends to infinity with their size. For as we shall see, large grid minors
pose another canonical obstruction to small tree-width: not only do
large grids (and hence all graphs containing large grids as minors; cf.
Proposition 12.3.6) have large tree-width, but conversely every graph of
large tree-width has a large grid minor (Theorem 12.4.4).

Yet another canonical obstruction to small tree-width is described
in Exercise 3535.



12.3 Tree-decompositions 325

Let us call our tree-decomposition (T,V) of G linked , or lean,4 if it linked/lean

satisfies the following condition:

(T4) Given t1, t2 ∈ T and vertex sets Z1 ⊆ Vt1 and Z2 ⊆ Vt2 such that
|Z1| = |Z2| =: k, either G contains k disjoint Z1–Z2 paths or there
exists an edge tt′ ∈ t1Tt2 with Vt ∩Vt′ < k.

The ‘branches’ in a lean tree-decomposition are thus stripped of any
bulk not necessary to maintain their connecting qualities: if a branch is
thick (i.e. the separators Vt ∩Vt′ along a path in T are large), then G is
highly connected along this branch. For t1 = t2, (T4) says that the parts
themselves are no larger than their ‘external connectivity’ in G requires;
cf. Lemma 12.4.5 and Exercise 3535.

In our quest for tree-decompositions into ‘small’ parts, we now have
two criteria to choose between: the global ‘worst case’ criterion of width,
which ensures that T is nontrivial (unless G is complete) but says nothing
about the tree-likeness of G among parts other than the largest, and
the more subtle local criterion of leanness, which ensures tree-likeness
everywhere along T but might be difficult to achieve except with trivial
or near-trivial T . Surprisingly, though, it is always possible to find a
tree-decomposition that is optimal with respect to both criteria at once:

Theorem 12.3.10. (Thomas 1990)
Every graph G has a lean tree-decomposition of width tw(G).

There is now a short proof of Theorem 12.3.10; see the notes. The
fact that this theorem gives us a useful property of minimum-width
tree-decompositions ‘for free’ has made it a valuable tool wherever tree-
decompositions are applied.

The tree-decomposition (T,V) of G is called simplicial if all the simplicial

separators Vt1 ∩ Vt2 induce complete subgraphs in G. This assumption
can enable us to lift assertions about the parts of the decomposition to
G itself. For example, if all the parts in a simplicial tree-decomposition
of G are k-colourable, then so is G (proof?). The same applies to the
property of not containing a Kr minor for some fixed r. Algorithmically,
it is easy to obtain a simplicial tree-decomposition of a given graph into
irreducible parts. Indeed, all we have to do is split the graph recursively
along complete separators; if these are always chosen minimal, then the
set of parts obtained will even be unique (Exercise 2727).

Conversely, if G can be constructed recursively from a set H of
graphs by pasting along complete subgraphs, then G has a simplicial
tree-decomposition into elements of H. For example, by Wagner’s The-
orem 7.3.4, any graph without a K5 minor has a supergraph with a
simplicial tree-decomposition into plane triangulations and copies of the

4 depending on which of the two dual aspects of (T4) we wish to emphasize
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Wagner graph W , and similarly for graphs without K4 minors (see Pro-
position 12.4.2).

Tree-decompositions may thus lead to intuitive structural charac-
terizations of graph properties. A particularly simple example is the
following characterization of chordal graphs:

Proposition 12.3.11. G is chordal if and only if G has a tree-decompo-[ 12.4.2 ]

sition into complete parts.

Proof . We apply induction on |G|. We first assume that G has a tree-(5.5.1)

decomposition (T,V) such that G [Vt ] is complete for every t ∈ T ; let
us choose (T,V) with |T | minimal. If |T | � 1, then G is complete and
hence chordal. So let t1t2 ∈ T be an edge, and for i = 1, 2 define Ti

and Gi := G [Ui ] as in Lemma 12.3.1. Then G = G1 ∪ G2 by (T1)
and (T2), and V (G1 ∩G2) = Vt1 ∩ Vt2 by the lemma; thus, G1 ∩G2 is
complete. Since (Ti, (Vt)t∈Ti

) is a tree-decomposition of Gi into complete
parts, both Gi are chordal by the induction hypothesis. (By the choice
of (T,V), neither Gi is a subgraph of G [ Vt1 ∩ Vt2 ] = G1 ∩G2, so both
Gi are indeed smaller than G.) Since G1 ∩G2 is complete, any induced
cycle in G lies in G1 or in G2 and hence has a chord, so G too is chordal.

Conversely, assume that G is chordal. If G is complete, there is
nothing to show. If not then, by Proposition 5.5.1, G is the union of
smaller chordal graphs G1, G2 with G1 ∩G2 complete. By the induction
hypothesis, G1 and G2 have tree-decompositions (T1,V1) and (T2,V2)
into complete parts. By Lemma 12.3.5, G1 ∩G2 lies inside one of those
parts in each case, say with indices t1 ∈ T1 and t2 ∈ T2. As one easily
checks, ((T1 ∪T2)+ t1t2,V1 ∪V2) is a tree-decomposition of G into com-
plete parts. �

Corollary 12.3.12. tw(G) = min
{
ω(H)− 1 | G ⊆ H; H chordal

}
.

Proof . By Lemma 12.3.5 and Proposition 12.3.11, each of the graphs H
considered for the minimum has a tree-decomposition of width ω(H)−1.
Every such tree-decomposition induced one of G by Lemma 12.3.2, so
tw(G) � ω(H)− 1 for every H.

Conversely, let us construct an H as above with ω(H)−1 � tw(G).
Let (T,V) be a tree-decomposition of G of width tw(G). For every t ∈ T
let Kt denote the complete graph on Vt, and put H :=

⋃
t∈T Kt. Clearly,

(T,V) is also a tree-decomposition of H. By Proposition 12.3.11, H is
chordal, and by Lemma 12.3.5, ω(H)− 1 is at most the width of (T,V),
i.e. at most tw(G). �



12.4 Tree-width and forbidden minors 327

12.4 Tree-width and forbidden minors

If H is any set or class of graphs, then the class

Forb�(H) := {G | G �� H for all H ∈ H} Forb�(H)

of all graphs without a minor in H is a graph property, i.e. is closed under
isomorphism.5 When it is written as above, we say that this property
is expressed by specifying the graphs H ∈ H as forbidden (or excluded) forbidden

minors
minors.

By Proposition 1.7.3, Forb�(H) is closed under taking minors, or (1.7.3)

minor-closed : if G′ � G ∈ Forb�(H) then G′ ∈ Forb�(H). Every minor-
closed property can in turn be expressed by forbidden minors:

Proposition 12.4.1. A graph property P can be expressed by forbidden
minors if and only if it is closed under taking minors.

Proof . For the ‘if’ part, note that P = Forb�(P), where P is the P
complement of P. �

In Section 12.5, we shall return to the general question of how a
given minor-closed property is best represented by forbidden minors.
In this section, we are interested in one particular example of such a
property: bounded tree-width.

Consider the property of having tree-width less than some given
integer k. By Propositions 12.3.6 and 12.4.1, this property can be ex-
pressed by forbidden minors. Choosing their set H as small as possible,
we find that H = {K3 } for k = 2: the graphs of tree-width < 2 are
precisely the forests. For k = 3, we have H = {K4 }:

Proposition 12.4.2. A graph has tree-width < 3 if and only if it has
no K4 minor.

Proof . By Lemma 12.3.5, we have tw(K4) � 3. By Proposition 12.3.6,

(7.3.1)
(12.3.2)
(12.3.5)
(12.3.6)

(12.3.11)
therefore, a graph of tree-width < 3 cannot contain K4 as a minor.

Conversely, let G be a graph without a K4 minor; we assume that
|G| � 3. Add edges to G until the graph G′ obtained is edge-maximal
without a K4 minor. By Proposition 7.3.1, G′ can be constructed re-
cursively from triangles by pasting along K2s. By induction on the
number of recursion steps and Lemma 12.3.5, every graph constructible
in this way has a tree-decomposition into triangles (as in the proof of
Proposition 12.3.11). Such a tree-decomposition of G′ has width 2, and
by Lemma 12.3.2 it is also a tree-decomposition of G. �

5 As usual, we abbreviate Forb�({H }) to Forb�(H).
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As k grows, the list of forbidden minors characterizing the graphs
of tree-width < k seems to grow fast. They are known explicitly only up
to k = 4; see the notes.

A question converse to the above is to ask for which H (other than
K3 and K4) the tree-width of the graphs in Forb�(H) is bounded. In-
terestingly, it is not difficult to show that any such H must be planar.
Indeed, as all grids and their minors are planar (why?), every class(4.4.6)

Forb�(H) with non-planar H contains all grids; yet as we saw after
Theorem 12.3.9, the grids have unbounded tree-width.

The following deep and surprising theorem says that, conversely, the
tree-width of the graphs in Forb�(H) is bounded for every planar H:

Theorem 12.4.3. (Robertson & Seymour 1986)
Given a graph H, the graphs without an H minor have bounded tree-
width if and only if H is planar.

The rest of this section is devoted to the proof of Theorem 12.4.3 and
an application.

To prove Theorem 12.4.3 we have to show that forbidding any planar
graph H as a minor bounds the tree-width of a graph. In fact, we only
have to show this for the special cases when H is a grid, because every
planar graph is a minor of some grid. (To see this, take a drawing of the
graph, fatten its vertices and edges, and superimpose a sufficiently fine
plane grid.) It thus suffices to show the following:

Theorem 12.4.4. (Robertson & Seymour 1986)[ 12.5.1 ]
[ 12.5.3 ]

For every integer r there is an integer k such that every graph of tree-
width at least k has an r× r grid minor.

Our proof of Theorem 12.4.4 proceeds as follows. Let r be given,
and let G be any graph of large enough tree-width (depending on r). We
first show that G contains a large family A = {A1, . . . , Am } of disjoint
connected vertex sets such that each pair Ai, Aj ∈ A can be linked in G
by a family Pij of many disjoint Ai–Aj paths avoiding all the other sets
in A. We then consider all the pairs (Pij ,Pi′j′) of these path families.
If we can find a pair among these such that many of the paths in Pij

meet many of the paths in Pi′j′ , we shall think of the paths in Pij as
horizontal and the paths in Pi′j′ as vertical and extract a subdivision
of an r × r grid from their union. (This will be the difficult part of the
proof, because these paths will in general meet in a less orderly way than
they do in a grid.) If not, then for every pair (Pij ,Pi′j′) many of the
paths in Pij avoid many of the paths in Pi′j′ . We can then select one
path Pij ∈ Pij from each family so that these selected paths are pairwise
disjoint. Contracting each of the connected sets A ∈ A will then give us
a Km minor in G, which contains the desired r× r grid if m � r2.
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To implement these ideas formally, we need a few definitions. Let
us call a set X ⊆ V (G) externally k-connected in G if |X| ≥ k and for externally

k-connected
all disjoint subsets Y, Z ⊆ X with |Y | = |Z| ≤ k there are |Y | disjoint
Y –Z paths in G that have no inner vertex or edge in G [X ]. Note that
the vertex set of a k-connected subgraph of G need not be externally
k-connected in G. On the other hand, any horizontal path in the r × r
grid is externally k-connected in that grid for every k � r. (How?)

One of the first things we shall prove below is that any graph of
large enough tree-width—not just grids—contains a large externally k-
connected set of vertices (Lemma 12.4.5). Conversely, it is easy to show
that large externally k-connected sets (with k large) can exist only in
graphs of large tree-width (Exercise 3535). So, like large grid minors, these
sets form a canonical obstruction to small tree-width: they can be found
in a graph if and only if its tree-width is large.

An ordered pair (A, B) of subgraphs of G will be called a premesh premesh

in G if G = A∪B and A contains a tree T such that

(i) T has maximum degree ≤ 3;
(ii) every vertex of A∩B lies in T and has degree ≤ 2 in T ;
(iii) T has a leaf in A∩B, or |T | = 1 and T ⊆ A∩B.

The order of such a premesh is the number |A∩B|, and if V (A∩B) is order

externally k-connected in B then this premesh is a k-mesh in G. k-mesh

Lemma 12.4.5. Let G be a graph and let h ≥ k ≥ 1 be integers. If G
contains no k-mesh of order h then G has tree-width < h + k− 1.

Proof . We may assume that G is connected. Let U ⊆ V (G) be max- (3.3.1)

imal such that G [U ] has a tree-decomposition D of width < h + k− 1 U

with the additional property that, for every component C of G−U , the D
neighbours of C in U lie in one part of D and (G−C, C̃) is a premesh
of order ≤ h, where C̃ := G [V (C)∪N(C) ]. Clearly, U �= ∅. C̃

We claim that U = V (G). Suppose not. Let C be a component of C

G−U , put X := N(C), and let T be a tree associated with the premesh X

(G−C, C̃). T

By assumption, |X| ≤ h; let us show that equality holds here. If
not, let u ∈ X be a leaf of T (respectively {u } := V (T )) as in (iii), and
let v ∈ C be a neighbour of u. Put U ′ := U ∪{ v } and X ′ := X ∪{ v },
let T ′ be the tree obtained from T by joining v to u, and let D′ be the
tree-decomposition of G [U ′ ] obtained from D by adding X ′ as a new
part (joined to a part of D containing X, which exists by our choice
of U ; see Fig. 12.4.1). Clearly D′ still has width < h + k − 1. Consider
a component C ′ of G−U ′. If C ′ ∩C = ∅ then C ′ is also a component of
G−U , so N(C ′) lies inside a part of D (and hence of D′), and (G−C ′, C̃ ′)
is a premesh of order ≤ h by assumption. If C ′ ∩C �= ∅, then C ′ ⊆ C
and N(C ′) ⊆ X ′. Moreover, v ∈ N(C ′): otherwise N(C ′) ⊆ X would
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separate C ′ from v, contradicting the fact that C ′ and v lie in the same
component C of G−X. Since v is a leaf of T ′, it is straightforward to
check that (G−C ′, C̃ ′) is again a premesh of order ≤ h, contrary to the
maximality of U .

T
X

U

u

v

C

C′

Fig. 12.4.1. Extending U and D when |X| < h

Thus |X| = h, so by assumption our premesh (G − C, C̃) cannot
be a k-mesh; let Y, Z ⊆ X be sets to witness this. Let P be a set ofY, Z

as many disjoint Y –Z paths in H := G [ V (C)∪Y ∪Z ]−E(G [Y ∪Z ])
as possible. Since all these paths are ‘external’ to X in C̃, we have
k′ := |P| < |Y | = |Z| � k by the choice of Y and Z. By Menger’sk′

theorem (3.3.1), Y and Z are separated in H by a set S of k′ vertices.S

Clearly, S has exactly one vertex on each path in P; we denote the path
containing the vertex s ∈ S by Ps (Fig. 12.4.2).Ps

Y

Z

H

X

S

U

T

sv

C

C′

Ps

T ′

Fig. 12.4.2. S separates Y from Z in H

Let X ′ := X ∪ S and U ′ := U ∪ S, and let D′ be the tree-
decomposition of G [U ′ ] obtained from D by adding X ′ as a new part.
Clearly, |X ′| ≤ |X|+ |S| ≤ h + k − 1. We show that U ′ contradicts the
maximality of U .

Since Y ∪Z ⊆ N(C) and |S| < |Y | = |Z| we have S ∩C �= ∅, so
U ′ is larger than U . Let C ′ be a component of G−U ′. If C ′ ∩C = ∅,
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we argue as earlier. So C ′ ⊆ C and N(C ′) ⊆ X ′. As before, C ′ has at
least one neighbour v in S ∩C, since X cannot separate C ′ ⊆ C from v

S ∩ C. By definition of S, C ′ cannot have neighbours in both Y \ S
and Z \ S; we assume it has none in Y \ S. Let T ′ be the union of T
and all the Y –S subpaths of paths Ps with s ∈ N(C ′)∩C; since these
subpaths start in Y \ S and have no inner vertices in X ′, they cannot
meet C ′. Therefore (G−C ′, C̃ ′) is a premesh with tree T ′ and leaf v;
the degree conditions on T ′ are easily checked. Its order is |N(C ′)| ≤
|X| − |Y | + |S| = h − |Y | + k′ < h, a contradiction to the maximality
of U . �

Lemma 12.4.6. Let k ≥ 2 be an integer. Let T be a tree of maximum
degree � 3 and X ⊆ V (T ). Then T has a set F of edges such that every
component of T −F has between k and 2k−1 vertices in X, except that
one such component may have fewer vertices in X.

Proof . We apply induction on |X|. If |X| ≤ 2k − 1 we put F = ∅. So
assume that |X| ≥ 2k. Let e be an edge of T such that some component
T ′ of T − e has at least k vertices in X and |T ′| is as small as possible.
As ∆(T ) ≤ 3, the end of e in T ′ has degree at most two in T ′, so
the minimality of T ′ implies that |X ∩ V (T ′)| ≤ 2k − 1. Applying the
induction hypothesis to T −T ′ we complete the proof. �

Lemma 12.4.7. Let G be a bipartite graph with bipartition {A, B },
|A| = a, |B| = b, and let c ≤ a and d ≤ b be positive integers. Assume
that G has at most (a− c)(b− d)/d edges. Then there exist C ⊆ A and
D ⊆ B such that |C| = c and |D| = d and C ∪D is independent in G.

Proof . As ||G|| ≤ (a− c)(b− d)/d, fewer than b− d vertices in B have
more than (a− c)/d neighbours in A. Choose D ⊆ B so that |D| = d and
each vertex in D has at most (a− c)/d neighbours in A. Then D sends
a total of at most a − c edges to A, so A has a subset C of c vertices
without a neighbour in D. �

Given a tree T , call an r-tuple (x1, . . . , xr) of distinct vertices of T
good if, for every j = 1, . . . , r− 1, the xj–xj+1 path in T contains none good

r-tuple
of the other vertices in this r-tuple.

Lemma 12.4.8. Every tree T of order at least r(r− 1) contains a good
r-tuple of vertices.

Proof . Pick a vertex x ∈ T . Then T is the union of its subpaths xTy,
where y ranges over its leaves. Hence unless one of these paths has at
least r vertices, T has at least |T |/(r− 1) � r leaves. Since any path of
r vertices and any set of r leaves gives rise to a good r-tuple in T , this
proves the assertion. �
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Our next lemma shows how to obtain a grid from two large systems
of paths that intersect in a particularly orderly way.

Lemma 12.4.9. Let d, r ≥ 2 be integers such that d ≥ r2r+2. Let
G be a graph containing a set H of r2 − 1 disjoint paths and a set
V = {V1, . . . , Vd } of d disjoint paths. Assume that every path in V meets
every path in H, and that each path H ∈ H consists of d consecutive
(vertex-disjoint) segments such that Vi meets H only in its ith segment,
for every i = 1, . . . , d (Fig. 12.4.3). Then G has an r× r grid minor.

H

︸
︷︷

︸. . .

. . .

. . .

. . .

. . .

. . .

H1

H2

Hr

H

V1 Vd

Fig. 12.4.3. Paths intersecting as in Lemma 12.4.9

Proof . For each i = 1, . . . , d, consider the graph with vertex set H in
which two paths are adjacent whenever Vi contains a subpath between
them that meets no other path in H. Since Vi meets every path in H, this
is a connected graph; let Ti be a spanning tree in it. Since |H| ≥ r(r−1),Ti

Lemma 12.4.8 implies that each of these d ≥ r2(r2)r trees Ti has a good
r-tuple of vertices. Since there are no more than (r2)r distinct r-tuples
on H, some r2 of the trees Ti have a common good r-tuple (H1, . . . , Hr).H1, . . . , Hr

Let I = { i1, . . . , ir2 } be the index set of these trees (with ij < ik forI, ik

j < k) and put H′ := {H1, . . . , Hr }.H′

Here is an informal description of how we construct our r× r grid.
Its ‘horizontal’ paths will be the paths H1, . . . , Hr. Its ‘vertical’ paths
will be pieced together edge by edge, as follows. The r− 1 edges of the
first vertical path will come from the first r− 1 trees Ti, trees with their
index i among the first r elements of I. More precisely, its ‘edge’ between
Hj and Hj+1 will be the sequence of subpaths of Vij (together with some
connecting horizontal bits taken from paths in H \H′) induced by the
edges of an Hj–Hj+1 path in Tij that has no inner vertices in H′; see
Fig. 12.4.4. (This is why we need (H1, . . . , Hr) to be a good r-tuple in
every tree Ti.) Similarly, the jth edge of the second vertical path will
come from an Hj–Hj+1 path in Tir+j , and so on. (Although we need
only r−1 edges for each vertical path, we reserve r rather than just r−1
of the paths Vi for each vertical path to make the indexing more lucid.
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The Hj–Hj+1 path P ′ in G

H

H ′

H ′′

Vij

Vij

Hj

Hj+1

P ′

P ′

P ′

H1

H2 H3

HH ′ H ′′

Hj
Hj+1

The Hj–Hj+1 path P in Tij

Vij

Hj

Hj+1

Vi1 Vir+1 Vi2r+1

P ′ viewed as a (subdivided) Hj–Hj+1 edge

︸ ︷︷ ︸
contract

︸ ︷︷ ︸
contract

︸ ︷︷ ︸
contract. . .

P

P ′

ijth segment

H1

Hr

Fig. 12.4.4. An Hj–Hj+1 path in Tij inducing segments of Vij

for the jth edge of the grid’s first vertical path
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The paths Vir
, Vi2r

, . . . are left unused.) To merge these individual edges
into r vertical paths, we then contract in each horizontal path the initial
segment that meets the first r paths Vi with i ∈ I, then contract the
segment that meets the following r paths Vi with i ∈ I, and so on.

Formally, we proceed as follows. Consider all j, k ∈ { 1, . . . , r }. (We
shall think of the index j as counting the horizontal paths, and of the
index k as counting the vertical paths of the grid to be constructed.) Let
Hj

k be the minimal subpath of Hj that contains the ith segment of Hj
Hj

k

for all i with i(k−1)r < i ≤ ikr (put i0 := 0). Let Ĥj be obtained fromĤj

Hj by first deleting any vertices following its ir2th segment and then
contracting every subpath Hj

k to one vertex vj
k. Thus, Ĥj = vj

1 . . . vj
r .vj

k

Given j ∈ { 1, . . . , r − 1 } and k ∈ { 1, . . . , r }, we have to define a
path V j

k that will form the subdivided ‘vertical edge’ vj
kvj+1

k . This path
will consist of segments of the path Vi together with some otherwise
unused segments of paths from H \H′, for i := i(k−1)r+j ; recall that,
by definition of Ĥj and Ĥj+1, this Vi does indeed meet Hj and Hj+1

precisely in vertices that were contracted into vj
k and vj+1

k , respectively.
To define V j

k , consider an Hj–Hj+1 path P = H1 . . . Ht in Ti that hasV j
k

no inner vertices in H′. (Thus, H1 = Hj and Ht = Hj+1.) Every
edge HsHs+1 of P corresponds to an Hs–Hs+1 subpath of Vi that has
no inner vertex on any path in H. Together with (parts of) the ith
segments of H2, . . . , Ht−1, these subpaths of Vi form an Hj–Hj+1 path
P ′ in G that has no inner vertices on any of the paths H1, . . . , Hr and
meets no path from H outside its ith segment. Replacing the ends of P ′

on Hj and Hj+1 with vj
k and vj+1

k , respectively, we obtain our desired
path V j

k forming the jth (subdivided) edge of the kth ‘vertical’ path of
our grid. Since the paths P ′ are disjoint for different i and different pairs
(j, k) give rise to different i, the paths V j

k are disjoint except for possible
common ends vj

k. Moreover, they have no inner vertices on any of the
paths H1, . . . , Hr, because none of these Hj is an inner vertex of any of
the paths P ⊆ Ti used in the construction of V j

k . �

Proof of Theorem 12.4.4. We are now ready to prove the following(3.3.1)

quantitative version of our theorem (which clearly implies it):

Let r, m > 0 be integers, and let G be a graph of tree-width
at least r4m2(r+2). Then G contains either the r × r grid
or Km as a minor.

Since Kr2
contains the r × r grid as a subgraph we may assume that

2 ≤ m ≤ r2. Put c := r4(r+2), and let k := c2(m
2 ). Then c � 216 andc, k

hence 2m + 3 ≤ cm, so G has tree-width at least

cm2
= cmk � (2m + 3)k � (m +1)(2k− 1) + k− 1 ,



12.4 Tree-width and forbidden minors 335

enough for Lemma 12.4.5 to ensure that G contains a k-mesh (A, B) (A, B)

of order (m + 1)(2k − 1). Let T ⊆ A be a tree associated with the T

premesh (A, B); then X := V (A∩B) ⊆ V (T ). By Lemma 12.4.6, T has X

|X|/(2k−1)−1 = m disjoint subtrees each containing at least k vertices
of X; let A1, . . . , Am be the vertex sets of these trees. By definition of a A1, . . . , Am

k-mesh, B contains for all 1 ≤ i < j ≤ m a set Pij of k disjoint Ai–Aj Pij

paths that have no inner vertices in A. These sets Pij will shrink a little
and be otherwise modified later in the proof, but they will always consist
of ‘many’ disjoint Ai–Aj paths.

One option in our proof will be to find single paths Pij ∈ Pij that
are disjoint for different pairs ij and thus link up the sets Ai to form a
Km minor of G. If this fails, we shall instead exhibit two specific sets Pij

and Ppq such that many paths of Pij meet many paths of Ppq, forming
an r× r grid between them by Lemma 12.4.9.

Let us impose a linear ordering on the index pairs ij by fixing an
arbitrary bijection σ : { ij | 1 ≤ i < j ≤ m } → { 0, 1, . . . ,

(
m
2

)
− 1 }. For σ

� = 0, 1, . . . in turn, we shall consider the pair pq with σ(pq) = � and
choose an Ap–Aq path Ppq that is disjoint from all previously selected
such paths, i.e. from the paths Pst with σ(st) < �. At the same time, we
shall replace all the ‘later’ sets Pij—or what has become of them—by
smaller sets containing only paths that are disjoint from Ppq. Thus for
each pair ij, we shall define a sequence Pij = P0

ij ,P1
ij , . . . of smaller and

smaller sets of paths, which eventually collapses to P�
ij = {Pij } when �

has risen to � = σ(ij).
More formally, let �∗ ≤

(
m
2

)
be the greatest integer such that, for �∗

all 0 ≤ � < �∗ and all 1 � i < j � m, there exist sets P�
ij satisfying the

following five conditions:

(i) P�
ij is a non-empty set of disjoint Ai–Aj paths in B that meet A

only in their endpoints.

Whenever a set P�
ij is defined, we shall write H�

ij :=
⋃
P�

ij for the union H�
ij

of its paths.

(ii) If σ(ij) < � then P�
ij has exactly one element Pij , and Pij does Pij

not meet any path belonging to a set P�
st with ij �= st.

(iii) If σ(ij) = �, then |P�
ij | = k/c2�.

(iv) If σ(ij) > �, then |P�
ij | = k/c2�+1.

(v) If � = σ(pq) < σ(ij), then for every e ∈ E(H�
ij)\E(H�

pq) there are
no k/c2�+1 disjoint Ai–Aj paths in the graph (H�

pq ∪H�
ij)− e.

Note that, by (iv), the paths considered in (v) do exist in H�
ij . The

purpose of (v) is to force those paths to reuse edges from H�
pq when-

ever possible, using new edges e /∈ H�
pq only if necessary. Note further

that since σ(ij) <
(
m
2

)
by definition of σ, conditions (iii) and (iv) give

|P�
ij | ≥ c2 whenever σ(ij) ≥ �.
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Clearly if �∗ =
(
m
2

)
then by (i) and (ii) we have a (subdivided) Km

minor with branch sets A1, . . . , Am in G. Suppose then that �∗ <
(
m
2

)
.

Let us show that �∗ > 0. Let pq := σ−1(0) and put P0
pq := Ppq. To

define P0
ij for σ(ij) > 0 put Hij :=

⋃
Pij , let F ⊆ E(Hij) \ E(H0

pq)
be maximal such that (H0

pq ∪Hij)−F still contains k/c disjoint Ai–Aj

paths, and let P0
ij be such a set of paths. Since the vertices from Ap ∪Aq

have degree 1 in H0
pq ∪Hij unless they also lie in Ai ∪Aj , these paths

have no inner vertices in A. Our choices of P0
ij therefore satisfy (i)–(v)

for � = 0.
Having shown that �∗ > 0, let us now consider � := �∗ − 1. Thus,�

conditions (i)–(v) are satisfied for � but cannot be satisfied for � + 1.
Let pq := σ−1(�). If P�

pq contains a path P that avoids a set Qij ofpq

some |P�
ij |/c of the paths in P�

ij for all ij with σ(ij) > �, then we can
define P�+1

ij for all ij as before (with a contradiction). Indeed, let st :=
σ−1(� + 1) and put P�+1

st := Qst. For σ(ij) > � + 1 write Hij :=
⋃
Qij ,

let F ⊆ E(Hij) \E(H�+1
st ) be maximal such that (H�+1

st ∪Hij)−F still
contains at least |P�

ij |/c2 disjoint Ai–Aj paths, and let P�+1
ij be such a set

of paths. Setting P�+1
pq := {P } and P�+1

ij := P�
ij = {P �

ij } for σ(ij) < �
then gives us a family of sets P�+1

ij that contradicts the maximality of �∗.
Thus for every path P ∈ P�

pq there exists a pair ij with σ(ij) > �
such that P avoids fewer than |P�

ij |/c of the paths in P�
ij . For some

�|P�
pq|/

(
m
2

)
� of these P that pair ij will be the same; let P denote the setP

of those P , and keep ij fixed from now on. Note that |P| ≥ |P�
pq|/

(
m
2

)
=ij

c |P�
ij |/

(
m
2

)
by (iii) and (iv).

Let us use Lemma 12.4.7 to find sets V ⊆ P ⊆ P�
pq and H ⊆ P�

ij

such that

|V| � 1
2 |P|

(
≥ c

m2
|P�

ij |
)

|H| = r2

and every path in V meets every path in H. We have to check that the
bipartite graph with vertex sets P and P�

ij in which P ∈ P is adjacent
to Q ∈ P�

ij whenever P ∩Q = ∅ does not have too many edges. Since
every P ∈ P has fewer than |P�

ij |/c neighbours (by definition of P), this
graph indeed has at most

|P||P�
ij |/c � |P||P�

ij |/6r2

� �|P|/2� |P�
ij |

/
2r2

� �|P|/2�
(
|P�

ij |/r2 − 1
)

=
(
|P|− �|P|/2�

)(
|P�

ij | − r2
)/

r2

edges, as required. Hence, V and H exist as claimed.V,H
Although all the (‘vertical’) paths in V meet all the (‘horizontal’)

paths in H, these paths do not necessarily intersect in such an orderly
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way as required for Lemma 12.4.9. In order to divide the paths from
H into segments, and to select paths from V meeting them only in the
appropriate segments, we shall first pick a path Q ∈ H to serve as a
yardstick: we shall divide Q into segments each meeting lots of paths
from V, select a ‘non-crossing’ subset V1, . . . , Vd of these vertical paths,
one from each segment (which is the most delicate task; we shall need
condition (v) from the definition of the sets P�

ij here), and finally divide
the other horizontal paths into the ‘induced’ segments, accommodating
one Vn each.

So let us pick a path Q ∈ H, and put Q

d := �
√

c/m� = �r2r+4/m� ≥ r2r+2. d

Note that |V| � (c/m2)|P�
ij | � d2|P�

ij |.
For n = 1, 2, . . . , d− 1 let en be the first edge of Q (on its way from en

Ai to Aj) such that the initial component Qn of Q− en meets at least Qn

nd |P�
ij | different paths from V, and such that en is not an edge of H�

pq.
As any two vertices of Q that lie on different paths from V are separated
in Q by an edge not in H�

pq, each of these Qn meets exactly nd |P�
ij |

paths from V. Put Q0 := ∅ and Qd := Q. Since |V| ≥ d2|P�
ij |, we have

thus divided Q into d consecutive disjoint segments Q′
n := Qn −Qn−1

(n = 1, . . . , d) each meeting at least d |P�
ij | paths from V. Q′

1, . . . , Q′
d

For each n = 1, . . . , d− 1, Menger’s theorem (3.3.1) and conditions
(iv) and (v) imply that H�

pq ∪H�
ij has a set Sn of |P�

ij | − 1 vertices such Sn

that (H�
pq ∪H�

ij)−en −Sn contains no path from Ai to Aj . Let S denote S

the union of all these sets Sn. Then |S| < d |P�
ij |, so each Q′

n meets at
least one path Vn ∈ V that avoids S (Fig. 12.4.5). Vn

H

Q′
1

Qe1 en−1 Q′
n en Q′

d

PP ′
n

Vn

Sn−1 Sn

ed−1

Ai Aj

r2 − 1

. . . . . .

︸
︷︷

︸

︸

︷︷

︸

Fig. 12.4.5. Vn meets every horizontal path but avoids S

Clearly, each Sn consists of a choice of exactly one vertex x from
every path P ∈ P�

ij \{Q }. Denote the initial component of P −x by Pn,
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put P0 := ∅ and Pd := P , and let P ′
n := Pn − Pn−1 for n = 1, . . . , d.P ′

1, . . . , P ′
d

The separation properties of the sets Sn now imply that Vn ∩P ⊆ P ′
n for

n = 1, . . . , d (and hence in particular that P ′
n �= ∅, i.e. that Pn−1 ⊂ Pn).

Indeed Vn cannot meet Pn−1, because Pn−1 ∪ Vn ∪ (Q − Qn−1) would
then contain an Ai–Aj path in (H�

pq ∪H�
ij)− en−1 −Sn−1, and likewise

(consider Sn) Vn cannot meet P − Pn. Thus for all n = 1, . . . , d, the
path Vn meets every path P ∈ H\{Q } precisely in its nth segment P ′

n.
Applying Lemma 12.4.9 to the path systems H\{Q } and {V1, . . . , Vd }
now yields the desired grid minor. �

Theorem 12.4.3 has an interesting application. Recall that a class
H of graphs has the Erdős-Pósa property if the number of vertices in a
graph needed to cover all its subgraphs in H is bounded by a function
of its maximum number of disjoint subgraphs in H. Now let H be a
fixed connected graph, and consider the class H = MH of graphs that
contract to a copy of H. (Thus, G has a subgraph in H if and only if
H � G.)

Corollary 12.4.10. If H is planar, then H = MH has the Erdős-Pósa
property.

Proof . We have to find a function f : N→N such that, given k ∈ N and
a graph G, either G has k disjoint subgraphs in MH or there is a set U
of at most f(k) vertices in G such that G−U has no subgraph in MH,
i.e. H �� G−U .

By Theorem 12.4.3, there exists for every k � 1 an integer wk such
that every graph of tree-width at least wk contains the disjoint union of
k copies of H (which is again planar) as a minor. Define

f(k) := 2f(k− 1) +wk

inductively, starting with f(0) = f(1) = 0.
To verify that f does what it should, we apply induction on k. For

k � 1 there is nothing to show. Now let k and G be given for the
induction step. If tw(G) � wk, we are home by definition of wk. So
assume that tw(G) < wk, and let (T, (Vt)t∈T ) be a tree-decomposition
of G of width < wk. Let us direct the edges t1t2 of the tree T as
follows. Let T1, T2 be the components of T − t1t2 containing t1 and t2,
respectively, and put

G1 := G [
⋃

t∈T1

(Vt � Vt2) ] and G2 := G [
⋃

t∈T2

(Vt � Vt1) ] .

We direct the edge t1t2 towards Gi if H � Gi, thereby giving t1t2 either
one or both or neither direction.
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If every edge of T receives at most one direction, we follow these to
a node t ∈ T such that no edge at t in T is directed away from t. As
H is connected, this implies by Lemma 12.3.1 that Vt meets every MH
in G. This completes the proof with U = Vt, since |Vt| � wk � f(k) by
the choice of our tree-decomposition.

Suppose now that T has an edge t1t2 that received both directions.
For each i = 1, 2 let us ask if we can cover all the MH subgraphs of Gi by
at most f(k − 1) vertices. If we can, for both i, then by Lemma 12.3.1
the two covers combine with Vt1 ∩ Vt2 to the desired cover U for G.
Suppose now that G1 has no such cover. Then, by the induction hypo-
thesis, G1 has k−1 disjoint MH subgraphs. Since t1t2 was also directed
towards t2, there is another such subgraph in G2. This gives the desired
total of k disjoint MH subgraphs in G. �

Note that Corollary 12.4.10 contains the Erdős-Pósa theorem 2.3.2
as the special case of H = K3. It is best possible in that if H is non-
planar, then MH does not have the Erdős-Pósa property (Exercise 3939).

We conclude this section with statements of the structure theorems
for the graphs not containing a given complete graph as a minor. These
are far more difficult to prove than any of the results we have seen so
far, and they are not even that easy to state. But it’s worth an effort:
the statement of the excluded-Kn theorem is interesting, it is central to
the proof of the graph minor theorem, and it can be applied elsewhere.

The torsos of a tree-decomposition (T, (Vt)t∈T ) of a graph G are torsos

the graphs Ht (t ∈ T ) obtained from G [ Vt ] by adding all the edges
xy such that x, y ∈ Vt ∩ Vt′ for some neighbour t′ of t in T . (Thus, if a
tree-decomposition happens to be simplicial, its torsos are just its parts.)

A linear decomposition of G is a family (Vi)i∈I of vertex sets indexed
linear

decom-
positionby some linear order I such that

⋃
i∈I Vi = V (G), every edge of G has

both its ends in some Vi, and Vi ∩ Vk ⊆ Vj whenever i < j < k. When
G is finite, this is just a tree-decomposition whose decomposition tree
is a path, and usually called a path-decomposition. If each Vi contains
at most k vertices and k is minimal with this property, then (Vi)i∈I has
width k− 1.

Let S′ be a subspace of a surface6 S obtained by removing the
interiors of finitely many disjoint closed discs, with boundary circles
C1, . . . , Ck say. This space is determined up to homeomorphism by S C1, . . . , Ck

and the number k, and we denote it by S −k. Each Ci is the image of a S − k

continuous map fi: [ 0, 1 ]→S′ that is injective except for fi(0) = fi(1).
We call C1, . . . , Ck the cuffs of S′ and the points f1(0), . . . , fk(0) their cuffs

roots. The other points of each Ci are linearly ordered by fi as images
of (0, 1); when we use cuffs as index sets for linear decompositions below,
we shall be referring to these linear orders.

6 A compact connected 2-manifold without boundary; see Appendix B.
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Let H be a graph, S a surface, and k ∈ N. We say that H is k-nearly
embeddable in S if H has a set X of at most k vertices such that H −X

k-near
embedding

can be written as H0 ∪H1 ∪ . . .∪Hk so that

(N1) there exists an embedding σ:H0 ↪→ S −k that maps only vertices
to cuffs and no vertex to the root of a cuff;

(N2) the graphs H1, . . . , Hk are pairwise disjoint (and may be empty),
and H0 ∩Hi = σ−1(Ci) for each i;

(N3) every Hi with i � 1 has a linear decomposition (V i
z )z∈Ci∩σ(H0)

of
width at most k such that z ∈ V i

z for all z.

Here, then, is the structure theorem for the graphs without a Kn minor:

Theorem 12.4.11. (Robertson & Seymour 2003)
For every n ∈ N there exists a k ∈ N such that every graph G not
containing Kn as a minor has a tree-decomposition whose torsos are
k-nearly embeddable in a surface in which Kn is not embeddable.

Note that there are only finitely many surfaces in which Kn is not
embeddable. The set of those surfaces in the statement of Theorem
12.4.11 could therefore be replaced by just two surfaces: the orientable
and the non-orientable surface of maximum genus in this set. Note also
that the separators Vt ∩ Vt′ in the tree-decomposition of G (for edges
tt′ of the decomposition tree) have bounded size, e.g. at most 2k + n,
because they induce complete subgraphs in the torsos and these are k-
nearly embeddable in one of those two surfaces.

We remark that Theorem 12.4.11 has only a qualitative converse:
graphs that admit a decomposition as described can clearly have a Kn

minor, but there exists an integer r depending only on n such that none
of them has a Kr minor.

Theorem 12.4.11, as stated above, is true also for infinite graphs
(Diestel & Thomas 1999). There are also structure theorems for exclud-
ing infinite minors, and we state two of these.

First, the structure theorem for excluding Kℵ0 . Call a graph H
nearly planar if H has a finite set X of vertices such that H − X cannearly

planar
be written as H0 ∪ H1 so that (N1–2) hold with S = S2 (the sphere)
and k = 1, while (N3) holds with k = |X|. (In other words, deleting
a bounded number of vertices makes H planar except for a subgraph
of bounded linear width sewn on to the unique cuff of S2 − 1.) A tree-
decomposition (T, (Vt)t∈T ) of a graph G has finite adhesion if for everyadhesion

edge tt′ ∈ T the set Vt ∩ Vt′ is finite and for every infinite path t1t2 . . .
in T the value of lim infi→∞ |Vti ∩Vti+1 | is finite.

Unlike its counterpart for Kn, the excluded-Kℵ0 structure theorem
has a direct converse. It thus characterizes the graphs without a Kℵ0

minor, as follows:
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Theorem 12.4.12. (Diestel, Robertson, Seymour & Thomas 1995–99)
A graph G has no Kℵ0 minor if and only if G has a tree-decomposition
of finite adhesion whose torsos are nearly planar.

Finally, a structure theorem for excluding Kℵ0 as a topological mi-
nor. Let us say that G has finite tree-width if G admits a tree-decomposi- finite

tree-width
tion (T, (Vt)t∈T ) into finite parts such that for every infinite path t1t2 . . .
in T the set

⋃
j�1

⋂
i�j Vti is finite.

Theorem 12.4.13. (Diestel, Robertson, Seymour & Thomas 1992–94)
The following assertions are equivalent for connected graphs G:

(i) G does not contain Kℵ0 as a topological minor;

(ii) G has finite tree-width;

(iii) G has a normal spanning tree T such that for every ray R in T
there are only finitely many vertices v that can be linked to R by
infinitely many paths meeting pairwise only in v.

12.5 The graph minor theorem

Graph properties that are closed under taking minors occur frequently
in graph theory. Among the most natural examples are the properties
of being embeddable in some fixed surface, such as planarity.

By Kuratowski’s theorem, planarity can be expressed by forbidding
the minors K5 and K3,3. This is a good characterization of planarity in
the following sense. Suppose we wish to persuade someone that a certain
graph is planar: this is easy (at least intuitively) if we can produce a
drawing of the graph. But how do we persuade someone that a graph
is non-planar? By Kuratowski’s theorem, there is also an easy way to
do that: we just have to exhibit an MK5 or MK3,3 in our graph, as
an easily checked ‘certificate’ for non-planarity. Our simple Proposition
12.4.2 is another example of a good characterization: if a graph has tree
width < 3, we can prove this by exhibiting a suitable tree-decomposition;
if not, we can produce an MK4 as evidence.

Theorems that characterize a property P by a set of forbidden mi-
nors are doubtless among the most attractive results in graph theory. As
we saw in Proposition 12.4.1, such a characterization exists whenever P (12.4.1)

is minor-closed: then P = Forb�(P), where P is the complement of P.
However, one naturally seeks to make the set of forbidden minors as
small as possible. And there is indeed a unique smallest such set: the
set

KP := {H | H is �-minimal in P } Kuratowski
set KP
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satisfies P = Forb�(KP) and is contained in every other set H such that
P = Forb�(H). We call KP the Kuratowski set for P.

Clearly, the elements of KP are incomparable under the minor re-
lation �. Now the graph minor theorem of Robertson & Seymour says
that any set of �-incomparable graphs must be finite:

Theorem 12.5.1. (Robertson & Seymour 1986–2004)
graph
minor
theorem The finite graphs are well-quasi-ordered by the minor relation �.

We shall give a sketch of the proof of the graph minor theorem at the
end of this section.

Corollary 12.5.2. The Kuratowski set for any minor-closed graph
property is finite. �

As a special case of Corollary 12.5.2 we have, at least in principle,
a Kuratowski-type theorem for every surface S: the property P(S) of
embeddability in S is characterized by the finite set KP(S) of forbidden
minors.

Corollary 12.5.3. For every surface S there exists a finite set of graphs
H1, . . . , Hn such that a graph is embeddable in S if and only if it contains
none of H1, . . . , Hn as a minor. �

The proof of Corollary 12.5.3 does not need the full strength of the
minor theorem. We shall give a direct proof, which runs as follows. The
main step is to prove that the graphs in KP(S) do not contain arbitrarily
large grids as minors (Lemma 12.5.4). Then their tree-width is bounded
(Theorem 12.4.4), so KP(S) is well-quasi-ordered (Theorem 12.3.7) and
therefore finite.

The proof of Lemma 12.5.4 gives a good impression of the inter-
play between graph minors and surface topology, which—by way of
Theorem 12.4.11, which we could not prove here—is also one of the
key ingredients of the proof of the graph minor theorem. Appendix B
summarizes the necessary background on surfaces, including a lemma.
For convenience (cf. Proposition 1.7.2 (ii)), we shall work with hexagonal
rather than square grids.

Denote by Hr the plane hexagonal grid whose dual has radius rHr

(Figure 12.5.1). The face corresponding to the central vertex of its dual
is its central face. (Generally, when we speak of the faces of Hr, wefaces

mean its hexagonal faces, not its outer face.) A subgrid Hk of Hr is
canonical if their central faces coincide. We write Sk for the perimetercanonical

cycle of the canonical subgrid Hk in Hr; for example, S1 is the hexagonS1, . . . , Sr

bounding the central face of Hr. The ring Rk is the subgraph of Hrring Rk

formed by Sk and Sk+1 and the edges between them.
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R2

R5

f

Fig. 12.5.1. The hexagonal grid H6 with central face f and
rings R2 and R5

Lemma 12.5.4. For every surface S there exists an integer r such that
no graph that is minimal with the property of not being embeddable
in S contains Hr as a topological minor.

Proof . Let G be a graph that cannot be embedded in S and is minimal
(4.1.2)
(4.2.2)
(4.3.2)

(App. B)with this property. Our proof will run roughly as follows. Since G
is minimally not embeddable in S, we can embed it in an only slightly
larger surface S′. If G contains a very large Hr grid, then by Lemma B.6
some large Hm subgrid will be flat in S′, that is, the union of its faces
in S′ will be a disc D′. We then pick an edge e from the middle of this
Hm grid and embed G− e in S. Again by Lemma B.6, one of the rings
of our Hm will be flat in S. In this ring we can embed the (planar)
subgraph of G which our first embedding had placed in D′; note that
this subgraph contains the edge e. The rest of G can then be embedded
in S outside this ring much as before, yielding an embedding of all of G
in S (a contradiction).

More formally, let ε := ε(S) denote the Euler genus of S. Let r
be large enough that Hr contains ε + 3 disjoint copies of Hm+1, where ε

m := 3ε + 4. We show that G has no THr subgraph. r, m

Let e′ = u′v′ be any edge of G, and choose an embedding σ′ of
G− e′ in S. Choose a face with u′ on its boundary, and another with v′

on its boundary. Cut a disc out of each face and add a handle between
the two holes, to obtain a surface S′ of Euler genus ε+2 (Lemma B.3).
Embedding e′ along this handle, extend σ′ to an embedding of G in S′. σ′: G ↪→ S′

Suppose G has a subgraph H = THr. Let f :Hr → H map the H

vertices of Hr to the corresponding branch vertices of H, and its edges f

to the corresponding paths in H between those vertices. Let us show
that Hr has a subgrid Hm (not necessarily canonical) whose hexagonal
face boundaries correspond (by σ′ ◦f) to circles in S′ that bound disjoint
open discs there.

By the choice of r, we can find ε+3 disjoint copies of Hm+1 in Hr.
The canonical subgrids Hm of these Hm+1 are not only disjoint, but
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sufficiently spaced out in Hr that their deletion leaves a tree T ⊆ Hr

that sends an edge to each of them (Figure 12.5.2). If each of these Hm

has a face whose boundary maps to a circle in S′ not bounding a disc
there, and C denotes the set of those ε + 3 circles, then S′ \

⋃
C has a

component D0 whose closure meets every circle in C: the component
containing (σ′ ◦ f)(T ). As ε(S′) = ε + 2, this contradicts Lemma B.6.

Hence for one of our copies of Hm in Hr, every hexagon of Hm

bounds an open disc in S′. If these discs are not disjoint, then one of
them, D say, meets the boundary of another such disc. But since the
frontier C of D separates D in S′ from the rest of S′, and σ′(H) � C
is connected, this means that the closure of D contains the entire
graph σ′(H). Contracting (σ′ ◦f)(Sr) in σ′(H) now yields a 3-connected
graph embedded in a disc. By Theorem 4.3.2, its faces correspond to
those of Hr/Sr in the plane, i.e. are disjoint discs. Thus, Hm exists as
claimed.

From now on, we shall work with this fixed Hm and will no longer
consider its supergraph Hr. We write H ′ := f(Hm) for the correspond-H′

ing THm in G and Ci := f(Si) for its concentric cycles, the images of
the cycles Si of this Hm (i = 1, . . . , m).Ci

Fig. 12.5.2. Disjoint copies of Hm (m = 3) linked up by a tree
in the rest of Hr

Pick an edge e = uv of C1, and choose an embedding σ of G − e
e
σ: G− e ↪→ S

in S. As before, Lemma B.6 implies that one of the ε + 1 disjoint rings
R3i+2 in Hm (i = 0, . . . , ε), Rk say, has the property that its hexagonsk

correspond (by σ ◦f) to circles in S that bound disjoint open discs there
(Figure 12.5.3). Let R ⊇ (σ ◦ f)(Rk) be the closure in S of the union ofR

those discs, which is a cylinder in S. One of its two boundary circles is
the image under σ of the cycle C := Ck+1 in H ′ to which f maps theC

perimeter cycle Sk+1 of our special ring Rk in Hm.
Let H ′′ := f(Hk+1) ⊆ G, where Hk+1 is canonical in Hm. RecallH′′

that σ′ ◦ f maps the hexagons of Hk+1 to circles in S′ bounding disjoint
open discs there. The closure in S′ of the union of these discs is a disc
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Fig. 12.5.3. A tree linking up hexagons selected from the rings
R2, R5, R8 . . .

D′ in S′, bounded by σ′(C). Deleting a small open disc inside D′ that D′

does not meet σ′(G), we obtain a cylinder R′ ⊆ S′ that contains σ′(H ′′). R′

We shall now combine the embeddings σ:G−e ↪→ S and σ′:G ↪→ S′

to an embedding σ′′:G ↪→ S, which will contradict the choice of G. σ′′

Let ϕ:σ′(C)→ σ(C) be a homeomorphism between the images of C in
S′ and in S that commutes with these embeddings, i.e., is such that
σ|C = (ϕ ◦ σ′)|C . Then extend this to a homeomorphism ϕ:R′ → R. ϕ

The idea now is to define σ′′ as ϕ ◦ σ′ on the part of G which σ′ maps
to D′ (which includes the edge e on which σ is undefined), and as σ on
the rest of G (Fig. 12.5.4).

S
S′

R

R′

D′

σ(u′) σ′(v′)

σ′(e′)

σ′(e)

σ′(C)

σ′(G)
ϕ

σ(u)

σ(v)

σ(G− e)

σ(C)

σ(Ck+2)

Fig. 12.5.4. Combining σ′: G ↪→ S′ and σ: G−e ↪→ S to σ′′: G ↪→ S

To make these two partial maps compatible, we start by defining
σ′′ on C as σ|C = (ϕ ◦ σ′)|C . Next, we define σ′′ separately on the
components of G−C. Since σ′(C) bounds the disc D′ in S′, we know
that σ′ maps each component J of G−C either entirely to D′ or entirely
to S′ \D′. On all the components J such that σ′(J) ⊆ D′, and on all
the edges they send to G, we define σ′′ as ϕ ◦ σ′. Thus, σ′′ embeds
these components in R. Since e ∈ f(Hk) = H ′′ −C, this includes the
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component of G−C that contains e.
It remains to define σ′′ on the components of G−C which σ′ maps

to S′ � D′. As σ′(Ck) ⊆ D′, these do not meet Ck. Since σ(C ∪Ck) is
the frontier of R in S, this means that σ(J) ⊆ S � R or σ(J) ⊆ R for
every such component J .

For the component J0 of G−C that contains Ck+2 we cannot haveJ0

σ(J0) ⊆ R: as Sk+2 ∩ Rk = ∅, this would mean that σ(Ck+2) lies in
a disc D ⊆ R corresponding to a face of Rk, which is impossible since
Sk+2 sends edges to vertices of Sk+1 outside the boundary of that face.
We thus have σ(J0) ⊆ S � R, and define σ′′ as σ on J0 and on all the
J0–C edges of G.

Next, consider any remaining component J of G−C that sends no
edge to C. If σ(J) ⊆ S � R, we define σ′′ on J as σ. If σ(J) ⊆ R, then
J is planar. Since J sends no edge to C, we can have σ′′ map J to any
open disc in R that has not so far been used by σ′′.

It remains to define σ′′ on the components J �= J0 of G−C which
σ′ maps to S′ \D′ and for which G contains a J–C edge. Let J be theJ
set of all those components J . We shall group them by the way they
attach to C, and define σ′′ for these groups in turn.

Since m � k + 2, the disc D′ lies inside a larger disc in S′, which
is the union of D′ and closed discs D′′ bounded by the images underD′′

σ′ ◦ f of the hexagons in Rk+1. By definition of J , the embedding σ′

maps every J ∈ J to such a disc D′′ (Fig. 12.5.5). On the path P
in C such that σ′(P ) = σ′(C)∩D′′ (which is the image under f of one
or two consecutive edges on Sk+1), let v1, . . . , vn be the vertices with
a neighbour in J0, in their natural order along P , and write Pi for thePi

segment of P from vi to vi+1. For any vi with 1 < i < n, pick a vi–J0 edge
and extend it through J0 to a path Q from vi to Ck+2 (which exists by
definition of J0); let w be its first vertex that σ′ maps to the boundary
circle of D′′. By Lemma 4.1.2 applied to σ′(viQw) and the two arcs
joining σ′(vi) to σ′(w) along the boundary circle of D′′, there is no arc
through D′′ that links σ′(Pi−1) to σ′(Pi) but avoids σ′(viQw). Hence,
every J ∈ J with σ′(J) ⊆ D′′ has all its neighbours on C in the same Pi,
and σ′ maps J to the face fi of the plane graph σ′(G [J0 ∪ C ]) ∩ D′′fi

whose boundary contains Pi. We shall define σ′′ jointly on all those
J ∈ J which σ′ maps to this fi, for i = 1, . . . , n− 1 in turn.

To do so, we choose an open disc Di in S \R that has a boundary
circle containing σ(Pi) and avoids the image of σ′′ as defined until now.
Such Di exists in a strip neighbourhood of σ(C) in S, because compo-
nents J ′ ∈ J attaching to a segment Pj �= Pi of C send no edge to P̊i.
Choose a homeomorphism ϕi from the boundary circle of fi to that of
Di so that σ|Pi

= (ϕi ◦ σ′)|Pi
, and extend this to a homeomorphism ϕi

from the closure of fi in S′ to the closure of Di in S. For every J ∈ J
with σ′(J) ⊆ fi, and for all J–C edges of G, define σ′′ as ϕi ◦σ′. �
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. . .

D′′

J0

J0

J0

fi

w

Q

Ck+2

C = Ck+1

vi+1

vn

R′

J′

J

Pi

D′
v1 vi. . .

Fig. 12.5.5. Define σ′′ jointly for the components J, J ′ ∈ J
that attach to the same Pi ⊆ C

Proof of Corollary 12.5.3. By their minimality, the graphs in
(1.7.2)

(12.3.7)
(12.4.4)KP(S) are incomparable under the minor-relation. If their tree-width is

bounded, then KP(S) is well-quasi-ordered by the minor relation (The-
orem 12.3.7), and hence must be finite. So assume their tree-width is
unbounded, and let r be as in Lemma 12.5.4. By Theorem 12.4.4, some
H ∈ KP(S) has a grid minor large enough to contain Hr. By Proposition
1.7.2, Hr is a topological minor of H, contrary to the choice of r. �

We finally come to the proof of the graph minor theorem itself. The
complete proof would still fill a book or two, but we are well equipped
now to get a good understanding of its main ideas and overall structure.
For background on surfaces, we once more refer to Appendix B.

Proof of the graph minor theorem (sketch). We have to show that
(12.1.3)
(12.2.1)
(12.3.7)
(12.4.4)every infinite sequence

G0, G1, G2, . . .

of finite graphs contains a good pair: two graphs Gi � Gj with i < j.
We may assume that G0 �� Gi for all i � 1, since G0 forms a good pair
with any graph Gi of which it is a minor. Thus all the graphs G1, G2, . . .
lie in Forb�(G0), and we may use the structure common to these graphs
in our search for a good pair.

We have already seen how this works when G0 is planar: then the
graphs in Forb�(G0) have bounded tree-width (Theorem 12.4.3) and are
therefore well-quasi-ordered by Theorem 12.3.7. In general, we need only
consider the cases of G0 = Kn: since G0 � Kn for n := |G0|, we may
assume that Kn �� Gi for all i � 1.
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The proof now follows the same lines as above: again the graphs
in Forb�(Kn) can be characterized by their tree-decompositions, and
again their tree structure helps, as in Kruskal’s theorem, with the proof
that they are well-quasi-ordered. The parts in these tree-decompositions
are no longer restricted in terms of order now, but they are constrained
in more subtle structural terms. Roughly speaking, for every n there
exists a finite set S of surfaces such that every graph without a Kn

minor has a tree-decomposition into parts each ‘nearly’ embeddable in
one of the surfaces S ∈ S; see Theorem 12.4.11. By a generalization
of Theorem 12.3.7—and hence of Kruskal’s theorem—it now suffices,
essentially, to prove that the set of all the parts in these tree-decomposi-
tions is well-quasi-ordered: then the graphs decomposing into these parts
are well-quasi-ordered, too. Since S is finite, every infinite sequence of
such parts has an infinite subsequence whose members are all (nearly)
embeddable in the same surface S ∈ S. Thus all we have to show is
that, given any surface S, all the graphs embeddable in S are well-quasi-
ordered by the minor relation.

This is shown by induction on the Euler genus of S, using the same
approach as before: if H0, H1, H2, . . . is an infinite sequence of graphs
embeddable in S, we may assume that none of the graphs H1, H2, . . .
contains H0 as a minor. If S = S2 we are back in the case that H0 is
planar, so the induction starts. For the induction step we now assume
that S �= S2. Again, the exclusion of H0 as a minor constrains the
structure of the graphs H1, H2, . . ., this time topologically: each Hi with
i � 1 has an embedding in S which meets some circle Ci ⊆ S that does
not bound a disc in S in no more than a bounded number of vertices
(and no edges), say in Xi ⊆ V (Hi). (The bound on |Xi| depends on H0,
but not on Hi.) Cutting along Ci and capping the hole(s), we obtain
one or two new surfaces of smaller Euler genus. If the cut produces
only one new surface Si, then our embedding of Hi − Xi still counts
as a near-embedding of Hi in Si (since Xi is small). If this happens
for infinitely many i, then infinitely many of the surfaces Si are also
the same, and the induction hypothesis gives us a good pair among the
corresponding graphs Hi. On the other hand, if we get two surfaces S′

i

and S′′
i for infinitely many i (without loss of generality the same two

surfaces), then Hi decomposes accordingly into subgraphs H ′
i and H ′′

i

embedded in these surfaces, with V (H ′
i ∩H ′′

i ) = Xi. The set of all these
subgraphs taken together is again well-quasi-ordered by the induction
hypothesis, and hence so are the pairs (H ′

i, H
′′
i ) by Lemma 12.1.3. Using

a sharpening of the lemma that takes into account not only the graphs
H ′

i and H ′′
i themselves but also how Xi lies inside them, we finally obtain

indices i, j not only with H ′
i � H ′

j and H ′′
i � H ′′

j , but also such that
these minor embeddings extend to the desired minor embedding of Hi

in Hj—completing the proof of the graph minor theorem.
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The graph minor theorem does not extend to graphs of arbitrary
cardinality, but it might extend to countable graphs. Whether or not it
does appears to be a difficult problem. It may be related to the following
intriguing conjecture, which easily implies the graph minor theorem for
finite graphs (Exercise 4444). Call a graph H a proper minor of G if G
contains an MH with at least one non-trivial branch set.

Self-minor conjecture. (Seymour 1980s)
Every countably infinite graph is a proper minor of itself.

In addition to its impact on ‘pure’ graph theory, the graph mi-
nor theorem has had far-reaching algorithmic consequences. Using
their structure theorem for the graphs in Forb�(Kn), Theorem 12.4.11,
Robertson and Seymour have shown that testing for any fixed minor
is ‘fast’: for every graph H there is a polynomial-time algorithm7 that
decides whether or not the input graph contains H as a minor. By
the minor theorem, then, every minor-closed graph property P can be
decided in polynomial (even cubic) time: if KP = {H1, . . . , Hk } is the
corresponding set of forbidden minors, then testing a graph G for mem-
bership in P reduces to testing the k assertions Hi � G.

The following example gives an indication of how deeply this algo-
rithmic corollary affects the complexity theory of graph algorithms. Let
us call a graph knotless if it can be embedded in R3 so that none of its
cycles forms a non-trivial knot. Before the graph minor theorem, it was
an open problem whether knotlessness is decidable, that is, whether any
algorithm exists (no matter how slow) that decides for any given graph
whether or not that graph is knotless. To this day, no such algorithm
is known. The property of knotlessness, however, is easily ‘seen’ to be
closed under taking minors: contracting an edge of a graph embedded
in 3-space will not create a knot where none had been before. Hence, by
the minor theorem, there exists an algorithm that decides knotlessness—
even in polynomial (cubic) time!

However spectacular such unexpected solutions to long-standing
problems may be, viewing the graph minor theorem merely in terms
of its corollaries will not do it justice. At least as important are the
techniques developed for its proof, the various ways in which minors are
handled or constructed. Most of these have not even been touched upon
here, yet they seem set to influence the development of graph theory for
many years to come.

7 indeed a cubic one—although with a typically enormous constant depending
on H
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Exercises
1.− Let � be a quasi-ordering on a set X. Call two elements x, y ∈ X

equivalent if both x � y and y � x. Show that this is indeed an
equivalence relation on X, and that � induces a partial ordering on the
set of equivalence classes.

2. Let (A, �) be a quasi-ordering. For subsets X ⊆ A write

Forb�(X) := { a ∈ A | a 
� x for all x ∈ X } .

Show that � is a well-quasi-ordering on A if and only if every subset
B ⊆ A that is closed under � (i.e. such that x � y ∈ B ⇒ x ∈ B) can
be written as B = Forb�(X) with finite X.

3. Prove Proposition 12.1.1 and Corollary 12.1.2 directly, without using
Ramsey’s theorem.

4. Given a quasi-ordering (X, �) and subsets A, B ⊆ X, write A �′ B if
there exists an order preserving injection f : A→B with a � f(a) for
all a ∈ A. Does Lemma 12.1.3 still hold if the quasi-ordering considered
for [X]<ω is �′?

5.− Show that the relation � between rooted trees defined in the text is
indeed a quasi-ordering.

6. Show that the finite trees are not well-quasi-ordered by the subgraph
relation.

7. The last step of the proof of Kruskal’s theorem considers a ‘topological’
embedding of Tm in Tn that maps the root of Tm to the root of Tn.
Suppose we assume inductively that the trees of Am are embedded in
the trees of An in the same way, with roots mapped to roots. We thus
seem to obtain a proof that the finite rooted trees are well-quasi-ordered
by the subgraph relation, even with roots mapped to roots. Where is
the error?

8. Are the connected finite graphs well-quasi-ordered by contraction alone
(i.e. by taking minors without deleting edges or vertices)?

9.+ Relax the minor relation by not insisting that branch sets be connected.
Show that the finite graphs are well-quasi-ordered by this relation.

10.+ Show that the finite graphs are not well-quasi-ordered by the topological
minor relation.

11.+ Given k ∈ N, is the class {G | G 
⊇ P k } well-quasi-ordered by the
subgraph relation?

12.− Let G be a graph, T a tree, and V = (Vt)t∈T a family of subsets of V (G).
Show that (T,V) is a tree-decomposition of G if and only if

(i) for every v ∈ V (G) the set Tv := { t | v ∈ Vt } induces a subtree
of T ;

(ii) Tu ∩Tv 
= ∅ for every edge uv of G.
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13.− Show that every graph G has a tree-decomposition of width tw(G) in
which no part contains another.

14. Show that a graph has tree-width at most 1 if and only if it is a forest.

15. Let G be a graph, T a set, and (Vt)t∈T a family of subsets of V (G) satis-
fying (T1) and (T2) from the definition of a tree-decomposition. Show
that there exists a tree on T that makes (T3) true if and only if there
exists an enumeration t1, . . . , tn of T such that for every k = 2, . . . , n
there is a j < k satisfying Vtk ∩

⋃
i<k

Vti ⊆ Vtj .

(The new condition tends to be more convenient to check than (T3).
It can help, for example, with the construction of a tree-decomposition
into a given set of parts.)

16. Prove the following converse of Lemma 12.3.1: if (T,V) satisfies con-
dition (T1) and the statement of the lemma, then (T,V) is a tree-
decomposition of G.

17. Can the tree-width of a subdivision of a graph G be smaller than tw(G)?
Can it be larger?

18.+ Show that if a graph has circumference k 
= 0, then its tree-width is at
most k− 1.

19. Call two separations {U1, U2 } and {W1, W2 } of G compatible if we can
choose i, j ∈ { 1, 2 } so that Ui ⊆ Wj and U3−i ⊇ W3−j .

(i) Show that the separations Se := {U1, U2 } in Lemma 12.3.1 are
compatible for different choices of the edge e = t1t2 ∈ T .

(ii)+ Conversely, show that given a set S of compatible separations
of G there is a tree-decomposition (V, T ) of G such that S =
{Se | e ∈ E(T ) }.

20.+ Show that every 2-connected graph has a tree-decomposition (T,(Vt)t∈T )
such that |Vt ∩Vt′ | = 2 for every edge tt′ ∈ T and all torsos are either
3-connected or a cycle. Conversely, show that every graph with such a
tree-decomposition is 2-connected.

(Hint. Try a tree-decomposition defined, as in Exercise 1919 (ii), by the
set of all 2-separations (separations {U1, U2 } such that |U1 ∩U2| = 2)
that are compatible with all other 2-separations.)

21. Apply Theorem 12.3.9 to show that the k × k grid has tree-width at
least k, and find a tree-decomposition of width exactly k.

22. Let B be a maximum-order bramble in a graph G. Show that every
minimum-width tree-decomposition of G has a unique part covering B.

23.+ In the second half of the proof of Theorem 12.3.9, let H ′ be the union
of H and the paths P1, . . . , P�, let H ′′ be the graph obtained from H ′

by contracting each Pi, and let (T, (W ′′
t )t∈T ) be the tree-decomposi-

tion induced on H ′′ (as in Lemma 12.3.3) by the decomposition that
(T, (Vt)t∈T ) induces on H ′. Is this, after the obvious identification of
H ′′ with H, the same decomposition as the one used in the proof, i.e.
is W ′′

t = Wt for all t ∈ T?
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24.− Show that any graph with a simplicial tree-decomposition into k-
colourable parts is itself k-colourable.

25. Let H be a set of graphs, and let G be constructed recursively from
elements of H by pasting along complete subgraphs. Show that G has
a simplicial tree-decomposition into elements of H.

26. Use the previous exercise to show that G has no K5 minor if and only
if G has a tree-decomposition in which every torso is either planar or a
copy of the Wagner graph W (Figure 7.3.1).

27.+ Call a graph irreducible if it is not separated by any complete subgraph.
Every finite graph G can be decomposed into irreducible induced sub-
graphs, as follows. If G has a separating complete subgraph S, then de-
compose G into proper induced subgraphs G′ and G′′ with G = G′∪G′′

and G′ ∩G′′ = S. Then decompose G′ and G′′ in the same way, and so
on, until all the graphs obtained are irreducible. By Exercise 2525, G has
a simplicial tree-decomposition into these irreducible subgraphs. Show
that they are uniquely determined if the complete separators were all
chosen minimal.

28. If F is a family of sets, then the graph G on F with XY ∈ E(G) ⇔
X ∩ Y 
= ∅ is called the intersection graph of F . Show that a graph
is chordal if and only if it is isomorphic to the intersection graph of a
family of (vertex sets of) subtrees of a tree.

29. Show that a graph has a path-decomposition into complete graphs if
and only if it is isomorphic to an interval graph. (Interval graphs are
defined in Ex. 3939, Ch. 5.)

30. (continued)

The path-width pw(G) of a graph G is the least width of a path-decom-
position of G. Prove the following analogue of Corollary 12.3.12 for
path-width: every graph G satisfies pw(G) = min ω(H)− 1, where the
minimum is taken over all interval graphs H containing G.

31.+ Do trees have unbounded path-width?

32.− Let P be a minor-closed graph property. Show that strengthening the
notion of a minor (for example, to that of topological minor) increases
the set of forbidden minors required to characterize P.

33. Deduce from the minor theorem that every minor-closed property can
be expressed by forbidding finitely many topological minors. Is the
same true for every property that is closed under taking topological
minors?

34.− Show that every horizontal path in the k × k grid is externally k-
connected in that grid.

35.+ Show that the tree-width of a graph is large if and only if it contains
a large externally k-connected set of vertices, with k large. For exam-
ple, show that graphs of tree-width < k contain no externally (k + 1)-
connected set of 3k vertices, and that graphs containing no externally
(k + 1)-connected set of 3k vertices have tree-width < 4k.
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36.+ (continued)

Find an N → N2 function k �→ (h, �) such that every graph with an
externally �-connected set of h vertices contains a bramble of order at
least k. Deduce the weakening of Theorem 12.3.9 that, given k, every
graph of large enough tree-width contains a bramble of order at least k.

A tangle of order k ∈ N in a graph G = (V, E) is a set T of ordered pairs
(A, B) of subsets of V satisfying the following conditions.

(T 1) For every (A, B) ∈ T , the 2-set {A, B } is a separation in G or order < k.

(T 2) For every separation {A, B } of order < k in G, at least one of (A, B),
(B, A) is an element of T .

(T 3) If (A1, B1), (A2, B2), (A3, B3) ∈ T then A1 ∪A2 ∪A3 
= V .

(T 4) No (A, B) ∈ T is such that A = V .

37. Deduce from Exercise 3535 that every graph of tree-width at least 4k has
a tangle of order k.

38. Extend Corollary 12.4.10 as follows. Let H be a connected planar
graph, let X be any set of connected graphs including H, and let H :=
{MX | X ∈ X }. Show that H has the Erdős-Pósa property, witnessed
by the same function f as defined in the proof of Corollary 12.4.10.
Explain how it is possible that f depends on H but not on any of the
other graphs in X .

39.+ Show that, for every non-planar graph H, the class MH fails to have
the Erdős-Pósa property.

(Hint. Embed H in a surface S, and consider only graphs embedded
in S.)

40.+ Extend Corollary 12.4.10 to disconnected graphs H, or find a counter-
example.

41.+ Show that the four ingredients to the structure of the graphs in
Forb�(Kn) as described in Theorem 12.4.11—tree-decomposition, an
apex set X, genus, and vortices H1, . . . , Hk—are all needed to capture
all the graphs in Forb�(Kn). More precisely, find examples of graphs in
Forb�(Kn) showing that Theorem 12.4.11 becomes false if we require
in addition that the tree-decomposition has only one part, or that X
is always empty, or that S is always the sphere, or that H1, . . . , Hk are
always empty. No exact proofs are required.

42. Without using the minor theorem, show that the chromatic number of
the graphs in any �-antichain is bounded.

43. Let Sg denote the surface obtained from the sphere by adding g handles.
Find a lower bound for |KP(S)| in terms of g.

(Hint. The smallest g such that a given graph can be embedded in Sg

is its orientable genus. Use the theorem that the orientable genus of a
graph is equal to the sum of the genera of its blocks.)

44. Deduce the graph minor theorem from the self-minor conjecture.



354 12. Minors, Trees, and WQO

45. Prove Theorem 12.4.13, assuming that G has a normal spanning tree.

46. Let G be a locally finite graph obtained from the Z × Z grid H by
adding an infinite set of edges xy with dH(x, y) unbounded. Show that
G � Kℵ0 . Can you do the same if the distances dH(x, y) are bounded
(but at least 3)?

47. Is the infinite Z × Z grid a minor of the Z × N grid? Is the latter a
minor of the N×N grid?

48.+ Extend Proposition 12.3.11 to infinite graphs not containing an infinite
complete subgraph.

49. Using the previous exercise, prove that if every finite subgraph of G
has tree-width less than k ∈ N then so does G:

(i) for countable G, using the infinity lemma;

(ii)+ for arbitrary G, using Zorn’s lemma.

50. Show that no assumption of large finite connectivity can ensure that
a countable graph has a Kr minor when r � 5. However, using the
previous exercise show that sufficiently large finite connectivity forces
any given planar minor.

Notes
Kruskal’s theorem on the well-quasi-ordering of finite trees was first published
in J.A.Kruskal, Well-quasi ordering, the tree theorem, and Vászonyi’s conjec-
ture, Trans. Amer. Math. Soc. 95 (1960), 210–225. Our proof is due to Nash-
Williams, who introduced the versatile proof technique of choosing a ‘minimal
bad sequence’. This technique was also used in our proof of Higman’s Lemma
12.1.3.

Nash-Williams generalized Kruskal’s theorem to infinite graphs. This ex-
tension is much more difficult than the finite case. Its proof introduces as a tool
the notion of better-quasi-ordering , a concept that has profoundly influenced
well-quasi-ordering theory. The graph minor theorem is false for uncount-
able graphs; this was shown by R.Thomas, A counterexample to ‘Wagner’s
conjecture’ for infinite graphs, Math. Proc. Camb. Phil. Soc. 103 (1988), 55–
57. Whether or not the countable graphs are well-quasi-ordered as minors,
and whether the finite (or the countable) graphs are better-quasi-ordered as
minors, are related questions that remain wide open. Both are related also
to the self-minor conjecture. This, too, was originally intended to include
graphs of arbitrary cardinality, but was disproved for uncountable graphs by
B.Oporowski, A counterexample to Seymour’s self-minor conjecture, J. Graph
Theory 14 (1990), 521–524.

The notions of tree-decomposition and tree-width were first introduced
(under different names) by R.Halin, S-functions for graphs, J.Geometry 8
(1976), 171–186. Among other things, Halin showed that grids can have ar-
bitrarily large tree-width. Robertson & Seymour reintroduced the two con-
cepts, apparently unaware of Halin’s paper, with direct reference to K.Wagner,
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Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937), 570–
590. (This is the seminal paper that introduced simplicial tree-decomposi-
tions to prove Theorem 7.3.4; cf. Exercise 2626.) Simplicial tree-decompositions
are treated in depth in R.Diestel, Graph Decompositions, Oxford University
Press 1990.

Robertson & Seymour usually refer to the graph minor theorem as Wag-
ner’s conjecture. Wagner did indeed discuss this problem in the 1960s with his
then students, Halin and Mader, and it is not unthinkable that one of them
conjectured a positive solution. Wagner himself always insisted that he did
not—even after the graph minor theorem had been proved.

Robertson & Seymour’s proof of the graph minor theorem is given in the
numbers IV–VII, IX–XII and XIV–XX of their series of over 20 papers under
the common title of Graph Minors, most of which appeared in the Journal of
Combinatorial Theory, Series B, between 1983 and 2004. Of their theorems
cited in this chapter, Theorem 12.3.7 is from Graph Minors IV, Theorems
12.4.3 and 12.4.4 are from Graph Minors V, and Theorem 12.4.11 is from
Graph Minors XVI. Our short proof of Theorems 12.4.3 and 12.4.4 is from
R.Diestel, K.Yu.Gorbunov, T.R. Jensen & C.Thomassen, Highly connected
sets and the excluded grid theorem, J. Combin. Theory B 75 (1999), 61–73.

Theorem 12.3.9 is due to P.D. Seymour & R.Thomas, Graph searching
and a min-max theorem for tree-width, J. Combin. Theory B 58 (1993),
22–33. Our proof is a simplification of the original proof. B.A.Reed gives
an instructive introductory survey on tree-width and graph minors, includ-
ing some algorithmic aspects, in (R.A.Bailey, ed) Surveys in Combinatorics
1997 , Cambridge University Press 1997, 87–162. Reed also introduced the
term ‘bramble’; in Seymour & Thomas’s paper, brambles are called ‘screens’.

The obstructions to small tree-width actually used in the proof of the
graph minor theorem are not brambles of large order but tangles; see Exer-
cise 3737. Tangles are more powerful than brambles and well worth studying.
See Graph Minors X or Reed’s survey for an introduction to tangles and their
relation to brambles and tree-decompositions.

Theorem 12.3.10 is due to R.Thomas, A Menger-like property of tree-
width; the finite case, J. Combin. Theory B 48 (1990), 67–76. For a short proof
see P.Bellenbaum & R.Diestel, Two short proofs concerning tree-decomposi-
tions, Combinatorics, Probability and Computing 11 (2002), 541–547.

The Kuratowski set for the graphs of tree-width < 4 have been deter-
mined by S.Arnborg, D.G.Corneil and A.Proskurowski, Forbidden minors
characterization of partial 3-trees, Discrete Math. 80 (1990), 1–19. They are:
K5, the octahedron K2,2,2, the 5-prism C5 ×K2, and the Wagner graph W .

As a forerunner to Theorem 12.4.3, Robertson & Seymour proved its
following analogue for path-width (Graph Minors I): excluding a graph H as
a minor bounds the path-width of a graph if and only if H is a forest. A short
proof of this result, with optimal bounds, can be found in the first edition of
this book, or in R.Diestel, Graph Minors I: a short proof of the path width
theorem, Combinatorics, Probability and Computing 4 (1995), 27–30.

The Kuratowski set KP(S) for a given surface S has been determined
explicitly for only one surface other than the sphere, the projective plane. It
consists of 35 forbidden minors; see D.Archdeacon, A Kuratowski theorem for
the projective plane, J. Graph Theory 5 (1981), 243–246. It is not difficult to
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show that |KP(S)| grows rapidly with the genus of S (Exercise 4343). An upper
bound is given in P.D. Seymour, A bound on the excluded minors for a surface,
J. Combin. Theory B (to appear).

A survey of finite forbidden minor theorems is given in Chapter 6.1 of
R.Diestel, Graph Decompositions, Oxford University Press 1990. More recent
developments are surveyed in R.Thomas, Recent excluded minor theorems, in
(J.D. Lamb & D.A.Preece, eds) Surveys in Combinatorics 1999 , Cambridge
University Press 1999, 201–222. A survey of infinite forbidden minor theorems
was given by N.Robertson, P.D. Seymour & R.Thomas, Excluding infinite
minors, Discrete Math. 95 (1991), 303–319.

The existence of normal spanning trees for graphs with no topological
Kℵ0 minor was proved by R.Halin, Simplicial decompositions of infinite
graphs, in: (B.Bollobás, ed.) Advances in Graph Theory, Annals of Dis-
crete Mathematics 3, North-Holland 1978. Its strengthening, part (iii) of
Theorem 12.4.13, was observed in R.Diestel, The depth-first search tree
structure of TKℵ0 -free graphs, J. Combin. Theory B 61 (1994), 260–262.
Part (iii) easily implies part (ii), which had been proved independently by
N.Robertson, P.D. Seymour & R.Thomas, Excluding infinite clique subdivi-
sions, Trans. Amer. Math. Soc. 332 (1992), 211–223. Theorem 12.4.12 was
proved in R.Diestel & R.Thomas, Excluding a countable clique, J. Com-
bin. Theory B 76 (1999), 41–67; the proof builds on the main result of
N.Robertson, P.D. Seymour & R.Thomas, Excluding infinite clique minors,
Mem. Amer. Math. Soc. 118 (1995).

Our proof of the ‘generalized Kuratowski theorem’, Corollary 12.5.3, was
inspired by J.Geelen, B.Richter & G. Salazar, Embedding grids in surfaces,
Europ. J. Combinatorics 25 (2004), 785–792. An alternative proof, which
bypasses Theorem 12.3.7 by proving directly that the graphs in KP(S) have
bounded order, is given by B.Mohar & C.Thomassen, Graphs on Surfaces,
Johns Hopkins University Press 2001. Mohar (see there) also developed a set
of algorithms, one for each surface, that decide embeddability in that surface
in linear time. As a corollary, he obtains an independent and constructive
proof of Corollary 12.5.3.

For every graph X, Graph Minors XIII gives an explicit algorithm that
decides in cubic time for every input graph G whether X � G. The constants
in the cubic polynomials bounding the running time of these algorithms de-
pend on X but are constructively bounded from above. For an overview of
the algorithmic implications of the Graph Minors series, see Johnson’s NP-
completeness column in J.Algorithms 8 (1987), 285–303.

The concept of a ‘good characterization’ of a graph property was first
suggested by J. Edmonds, Minimum partition of a matroid into independent
subsets, J.Research of the National Bureau of Standards (B) 69 (1965) 67–72.
In the language of complexity theory, a characterization is good if it specifies
two assertions about a graph such that, given any graph G, the first assertion
holds for G if and only if the second fails, and such that each assertion, if true
for G, provides a certificate for its truth. Thus every good characterization
has the corollary that the decision problem corresponding to the property it
characterizes lies in NP∩ co-NP.
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This appendix gives a minimum-fuss summary of the set-theoretic no-
tions and facts, such as Zorn’s lemma and transfinite induction, that are
used in Chapter 8.

Let A, B be sets. If there exists a bijective map between A and B,
we write |A| = |B| and say that A and B have the same cardinality .
This is clearly an equivalence relation between sets, and we may think of
the cardinality |A| of A as the equivalence class containing A. We write cardinality

|A| � |B| if there exists an injective map A→B. This is clearly well-
defined, and it is a partial ordering: if there are injective maps A→B
and B →A, there is also a bijection A→B.1 For every set there exists
another that is bigger; for example, |A| < |B| when B is the power set
of A, the set of all its subsets.

The natural numbers are defined inductively as n := { 0, . . . , n−1 }, N

starting with 0 := ∅. The usual expression of |A| = n can then be read
more formally as an abbreviation for |A| = |n|.

A set A is finite if there is a natural number n such that |A| = n;
otherwise it is infinite. A is countable if |A| � |N|, and countably infinite
if |A| = |N|. A bijection N→A is an enumeration of A. If A is infinite
then |N| � |A|. Thus, |N| is the smallest infinite cardinality; it is denoted
by ℵ0. There is also a smallest uncountable cardinality, denoted by ℵ1.
If |A| = |R| then A is uncountable, and we say that A has continuum
many elements. For example, there are continuum many infinite 0–1
sequences. (Whether |R| is equal to ℵ1 or greater depends on the axioms
of set theory assumed; in our context, this question does not arise.) We
remark that if A is infinite and its elements are countable sets, then the
union of all these sets is no bigger than A itself: |

⋃
A| = |A|.

1 This is the Cantor-Bernstein theorem; a simple graph-theoretic proof is given
in Proposition 8.4.6.
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An element x of a partially ordered set X is minimal in X if there
is no y ∈ X with y < x, and maximal if there is no z ∈ X with x < z.
A partially ordered set may have one or many elements that are maximal
or minimal, or none at all. An upper bound in X of a subset Y ⊆ X is
any x ∈ X such that y � x for all y ∈ Y .

A chain is a partially ordered set in which every two elements are
comparable. If (C,�) is a chain, and if x, y ∈ C satisfy x < y but no
element z of C is such that x < z < y, then x is called the predecessor
of y in C, and y the successor of x. A set of the form {x ∈ C | x < z },successor

for a given z ∈ C, is a proper initial segment of C.
A partially ordered set (X, �) is well-founded if every non-empty

subset of X has a minimal element, and a well-founded chain is said
to be well-ordered . For example, N, Z and R are all chains (with theirwell-

ordering
usual orderings), but only N is well-ordered. Note that every element x
of a well-ordered set X has a successor (unless x is maximal in X): the
unique minimal element of { y ∈ X | x < y } ⊂ X. However, an element of
a well-ordered set need not have a predecessor, even if it is not minimal.
An element that has no predecessor is called a limit; for example, thelimit

number 1 is a limit in the well-ordered set

A = { 1− 1
n+1 | n ∈ N } ∪ { 2− 1

n+1 | n ∈ N }

of rationals.
One of the many statements equivalent to the axiom of choice (which

we assume throughout) is that for every set X there exists a relation by
which X is well-ordered:

Well-ordering theorem. Every set can be well-ordered.

Two well-ordered sets are said to have the same order type if there is
a bijection between them which preserves their orders. Thus N and the
set of even natural numbers have the same order type, but this differs
from the order type of the set A defined above. Having the same order
type is clearly an equivalence relation, which justifies the term if we
think of those order types themselves as equivalence classes.

When one considers properties shared by all well-ordered sets of
the same order type, it is convenient to represent each order type by a
specially chosen set of that type, its ordinal . The ordinal representingordinals

the order type of N, for instance, is by custom denoted as ω; our example
above thus says that the set of even natural numbers has (the) order type
(of) ω. Finite chains of the same cardinality always have the same order
type; we choose n as the ordinal representing the chains of order n.

If an ordinal β has the same order type as a proper initial segment of
another ordinal α, we write β < α. For example, we have 0 � n < ω for
every natural number n. It can be shown that < defines an ordering, even
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a well-ordering, on every set of ordinals. On N, this ordering coincides
with the usual one, so our notation is unambiguous.

Since a set S of ordinals is itself well-ordered, it has an order type—
just like any other well-ordered set. If the ordinal α is a strict upper
bound for S, then the order type of S is at most α ; it is equal to α if
S consists of all the ordinals up to (but excluding) α. In fact, just like
the natural numbers, infinite ordinals are usually defined in such a way
that α and {β | β < α } are actually identical; then our ordering < for
ordinals coincides with the relation ∈.

This makes it natural to write a well-ordered set S, of order type α
say, as a family S = { sβ | β < α } with sγ < sβ for all γ < β < α. This
is common practice when one proves statements about the elements of
S by transfinite induction, which works as follows. transfinite

induction
Suppose we want to show that every s ∈ S satisfies some proposi-

tion P ; let us write P (s) to express that it does. Just as in ordinary
induction we prove, for every β < α, that if P holds for every sγ with
γ < β then P also holds for sβ . In practice, we usually have to distinguish
the two cases of β being a limit ordinal or a successor. Checking P (s0)
from first principles, as in ordinary induction, is part of the first case,
because 0 counts as a limit and the premise of Pγ for all γ < 0 is void.
The conclusion then is that P (sβ) for every β < α, that is, every s ∈ S
satisfies P .

This is certainly simple—but is it correct? Well, any proper justifi-
cation of transfinite induction requires a formal treatment of set theory,
but so does ordinary induction. Informally, what we have shown is that
the set

{β < α | P (sβ) fails }

has no least element. Since it is well-ordered, it must therefore be empty,
so P (sβ) holds for all β < α.

Similarly, we may define things inductively. Such a recursive defi-
nition specifies for each ordinal α some object xα, in a way that may recursive

definition
refer to the objects xβ with β < α (which we think of as ‘having been
defined earlier’). Our definition of the natural numbers at the start of
this appendix is a simple example. In practice, the definition of xα often
makes sense only for ordinals α less than some fixed ordinal α∗, although
the smallest such α∗ may not be known in advance. For example, if the
xα are to be distinct vertices picked recursively from a graph G according
to some given rules, it is clear that we shall not be able to find such xα

for all α < α∗ when |α∗| > |G|, because α �→ xα would be an injective
map from α∗ to V (G) showing that |α∗| � |G|. Since there exist ordi-
nals larger than |G|, such as any ordinal equivalent to a well-ordering
of the power set of V (G), this means that our recursion cannot go on
indefinitely, i.e. we shall not be able to define xα for all ordinals α. We
may not know which is the smallest ordinal α at which the recursion gets
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stuck, i.e. for which xα cannot be found in compliance with our rules.
But this does not matter: we simply define α∗ as the first ordinal α for
which xα cannot be found, content ourselves with having defined xα for
all α < α∗, and say that our recursion terminates at step α∗. (In fact,
we usually want a recursive definition to terminate. In our example, we
might wish to consider the set of all vertices x ∈ G that got picked by
our definition, and this will be the set {xα | α < α∗ }.)

Finally, our recursive definition for xα may involve choices. In our
example, xα might be required to be a neighbour of some xβ with β < α,
but there may be several such xβ , each with several neighbours that have
not yet been picked. This does not cause our recursion to get stuck at
step α: we just pick one eligible vertex as xα, and proceed. In other
words, we accept {xα | α < α∗ } as a properly defined set even though
we may not ‘know’ its elements xα constructively.

Finally, here is a formal statement of Zorn’s lemma:

Zorn’s Lemma. Let (X, �) be a partially ordered set such that every
chain in X has an upper bound in X. Then X contains at least one
maximal element.

Note that, in applications of Zorn’s lemma, the relation � need not
correspond to an intuitive notion of ‘smaller than’. Applied to sets or to
graphs, for example, it can stand for ‘⊇’ just as much as for ‘⊆’. Then
the ‘upper bound’ of a chain C is typically its overall intersection

⋂
C.



B Surfaces

This appendix offers a summary of background information about sur-
faces, as needed for an understanding of their role in the proof of the
graph minor theorem or the proof of the ‘general Kuratowski theorem’
for arbitrary surfaces given in Chapter 12.5. In order to be read at a
rigorous level it requires familiarity with some basic definitions of general
topology (such as of the product and the identification topology), but
no more.

A surface, for the purpose of this book, is a compact connected1 surface

Hausdorff topological space S in which every point has a neighbourhood
homeomorphic to the Euclidean plane R2. An arc, a circle, and a disc arc

in S are subsets that are homeomorphic in the subspace topology to the circle S1

real interval [ 0, 1 ], to the unit circle S1 = {x ∈ R2 : ‖x‖ = 1 }, and to disc

the unit disc {x ∈ R2 : ‖x‖ � 1 } or {x ∈ R2 : ‖x‖ < 1 }, respectively.
The components of a subset X of S are the equivalence classes of component

points in X where two points are equivalent if they can be joined by an
arc in X. The surface S itself, being connected, has only one component.

The frontier of X is the set of all points y in S such that every frontier

neighbourhood of y meets both X and S \ X. The frontier F of X
separates S �X from X: since X ∪F is closed, every arc from S �X to
X has a first point in X ∪F , which must lie in F . A component of the
frontier of X that is a circle in S is a boundary circle of X. A boundary boundary

circle
circle of a disc in S is said to bound that disc.

There is a fundamental theorem about surfaces, their classification.
This says that, up to homeomorphism, every surface can be obtained
from the sphere S2 = {x ∈ R3 : ‖x‖ = 1 } by ‘adding finitely many sphere S2

handles or finitely many crosscaps’, and that surfaces obtained by adding
different numbers of handles or crosscaps are distinct. We shall not need

1 Throughout this appendix, ‘connected’ means ‘arc-connected’.
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the classification theorem, but to form a picture2 let us see what the
above operations mean. To add a handle to a surface S, we remove twohandle

open discs whose closures in S are disjoint, and identify3 their boundary
circles with the circles S1 ×{ 0 } and S1 ×{ 1 } of a copy of S1 × [ 0, 1 ]
disjoint from S. To add a crosscap, we remove one open disc, and thencrosscap

identify opposite points on its boundary circle in pairs.
In order to see that these operations do indeed give new surfaces,

we have to check that every identification point ends up with a neigh-
bourhood homeomorphic to R2. To do this rigorously, let us first look
at circles more generally.

A cylinder is the product space S1 × [ 0, 1 ], or any space homeo-cylinder

morphic to it. Its middle circle is the circle S1 ×{ 1
2 }. A Möbius strip

is any space homeomorphic to the product space [ 0, 1 ] × [ 0, 1 ] afterMöbius
strip

identification of (1, y) with (0, 1− y) for all y ∈ [ 0, 1 ]. Its middle circle
is the set { (x, 1

2 ) | 0 < x < 1 }∪{ p }, where p is the point resulting from
the identification of (1, 1

2 ) with (0, 1
2 ). It can be shown4 that every circle

C in a surface S is the middle circle of a suitable cylinder or Möbius stripstrip neigh-
bourhood

N in S, which can be chosen small enough to avoid any given compact
subset of S �C. If this strip neighbourhood is a cylinder, then N \C has
two components and we call C two-sided ; if it is a Möbius strip, thentwo-sided

N \C has only one component and we call C one-sided .one-sided

Using small neighbourhoods inside a strip neighbourhood of the
(two-sided) boundary circle of the disc or discs we removed from S in
order to attach a crosscap or handle, one can show easily that both
operations do produce new surfaces.

Since S is connected, S \ C cannot have more components than
N \C. If S \C has two components, we call C a separating circle in S;separating

circle
if it has only one, then C is non-separating . While one-sided circles are
obviously non-separating, two-sided circles can be either separating or
non-separating. For example, the middle circle of a cylinder added to
S as a ‘handle’ is a two-sided non-separating circle in the new surface
obtained. When S′ is obtained from S by adding a crosscap in place of
a disc D, then every arc in S that runs half-way round the boundary
circle of D becomes a one-sided circle in S′.

The classification theorem thus has the following corollary:

Lemma B.1. Every surface other than the sphere contains a non-
separating circle.

2 Compare also Figure B.1.
3 This is made precise by the identification topology, whose formal definition can

be found in any topology book.
4 In principle, the strip neighbourhood N is constructed as in the proof of

Lemma 4.2.2, using the compactness of C. However since we are not in a piecewise
linear setting now, the construction is considerably more complicated.
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We shall see below that, in a sense, our two examples of non-separating
circles are all there are: cutting a surface along any non-separating circle
(and patching up the holes) will always produce a surface with fewer
handles or crosscaps.

An embedding G ↪→ S of a graph G in S is a map σ that maps the embedding

vertices of G to distinct points in S and its edges xy to σ(x)–σ(y) arcs σ: G ↪→ S

in S, so that no inner point of such an arc is the image of a vertex or
lies on another arc. We then write σ(G) for the union of all those points
and arcs in S. A face of G in S is a component of S \ σ(G), and the face

subgraph of G that σ maps to the frontier of this face is its boundary . boundary

Note that while faces in the sphere are always discs (if G is connected),
in general they need not be.

One can prove that in every surface one can embed a suitable graph
so that every face becomes a disc. The following general version of
Euler’s theorem 4.2.9 therefore applies to all surfaces:

Theorem B.2. For every surface S there exists an integer χ(S) such
that whenever a graph G with n vertices and m edges is embedded in S
so that there are � faces and every face is a disc, we have

n−m + � = χ(S) .

This invariant χ of S is its Euler characteristic. For computational
simplicity we usually work instead with the derived invariant

ε(S) := 2−χ(S) , ε(S)

the Euler genus of S, because χ is negative for most surfaces but ε takes Euler genus

its values in N (see below).
Perhaps the most striking feature of Euler’s theorem is that it works

with almost any graph embedded in S. This makes it easy to see how
the Euler genus is affected by the addition of a handle or crosscap.

Indeed, let D and D′ be two open discs in S that we wish to remove
in order to attach a handle there. Let G be any graph embedded in S so
that every face is a disc. If necessary, shift G on S so that D and D′ each
lie inside a face, f and f ′, say. Add cycles C and C ′ on the boundary
circles of D and D′, and join them by an edge to the old boundaries of
f and f ′, respectively. Then every face of the resulting graph is again a
disc, and D and D′ are among these. Now remove D and D′, and add a
handle with an additional C–C ′ edge running along it. This operation
makes the new handle into one new face, which is a disc. It thus reduces
the total number of faces by 1 (since we lost D and D′ but gained the
new face on the handle) and increases the number of edges by 1, but
leaves the number of vertices unchanged. As a result, ε grows by 2.
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Similarly, replacing a disc D bounded by a cycle C ⊆ G with a
crosscap decreases the number of faces by 1 (since we lose D), but leaves
n−m unchanged if we arrange the cycle C in such a way that vertices
get identified with vertices when we identify opposite points.

We have thus shown the following:

Lemma B.3.

(i) Adding a handle to a surface raises its Euler genus by 2.

(ii) Adding a crosscap to a surface raises its Euler genus by 1. �

Since the sphere has Euler genus 0 (Theorem 4.2.9), the classifica-
tion theorem and Lemma B.3 tell us that ε has all its values in N. We
may thus try to prove theorems about surfaces by induction on ε. For
the induction step, we could simply undo the addition of a handle or
crosscap described earlier, cutting along the new non-separating circle
it produced (which runs around the new handle or ‘half-way’ around
the crosscap) and restoring the old surface by putting back the disc or
discs we removed. A problem with this is that we do not normally know
where on our surface this circle lies, say with respect to a given graph
embedded in it.

However, the genus-reducing cut-and-paste operation can be carried
out with any non-separating circle: we do not have to use one that we
know came from a new handle or crosscap. This is an example of a more
general technique known as surgery , and works as follows.

Let C be a non-separating circle in a surface S �= S2. To cut S
along C, we form a new space S′ from S by replacing every point x ∈ Ccutting

with two points x′, x′′ and defining the topology on the modified set as
follows.5 Let N be any strip neighbourhood of C in S, and put X ′ :=
{x′ | x ∈ C } and X ′′ := {x′′ | x ∈ C }. If N is a cylinder, then N \C has
two components N ′ and N ′′, and we choose the neighbourhoods of the
new points x′ and x′′ in S′ so that X ′ and X ′′ become boundary circles of
N ′ and N ′′ in S′, respectively, and N ′∪X ′ and N ′′∪X ′′ become disjoint
cylinders in S′. If N is a Möbius strip, we choose these neighbourhoods
so that X ′ and X ′′ each form an arc in S′ and X ′ ∪X ′′ is a boundary
circle of N \C in S′, with (N \C)∪X ′ ∪X ′′ forming one cylinder in S′.
Finally, we turn S′ into a surface by capping its holes: for each of thecapping

(two or one) boundary circles X ′ and X ′′ or X ′ ∪X ′′ of S \C in S′ we
take a disc disjoint from S′ and identify its boundary circle with X ′, X ′′

or X ′ ∪X ′′, respectively, so that the space obtained is again a surface.

5 The description that follows may sound complicated, but it is not: working in
our concrete models of the cylinder and the Möbius strip it is easy to write down an
explicit neighbourhood basis that defines a topology with the properties stated. As all
we want is to obtain some surface of smaller genus, we do not care about uniqueness
(which will follow anyhow from Lemma B.4 and the classification theorem).
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Computing how these operations affect the Euler genus of S is again
easy, assuming we can embed a graph in S so that every face is a disc and
C is the image of a cycle. (This can always be done, but it is not easy
to prove.6) Indeed, by doubling C we left n−m unchanged, because a
cycle has the same number of vertices as edges. So all we changed was �,
which increased by 2 in the first case and by 1 in the second.

Lemma B.4. Let C be any non-separating circle in a surface S, and let
S′ be obtained from S by cutting along C and capping the hole or holes.

(i) If C is one-sided in S, then ε(S′) = ε(S)− 1.

(ii) If C is two-sided in S, then ε(S′) = ε(S)− 2. �

Lemma B.4 gives us a large supply of circles to cut along in an
induction on the Euler genus. Still, it is sometimes more convenient to
cut along a separating circle, and many of these can be used too:

Lemma B.5. Let C be a separating circle in a surface S, and let S′ and
S′′ be the two surfaces obtained from S by cutting along C and capping
the holes. Then

ε(S) = ε(S′) + ε(S′′) .

In particular, if C does not bound a disc in S, both S′ and S′′ have
smaller Euler genus than S.

Proof . As before, embed a graph G in S so that every face is a disc and
C is the image of a cycle in G, and let G′ ↪→ S′ and G′′ ↪→ S′′ be the
two graphs obtained in the surgery. Thus, G′ and G′′ both contain a
copy of the cycle on C, which we assume to have k vertices and edges.
Then, with the obvious notation, we have

ε(S′) + ε(S′′) = (2−n′ +m′ − �′) + (2−n′′ +m′′ − �′′)
= 4− (n + k) + (m + k)− (�+ 2)
= 2−n + m− �

= ε(S) .

Now if S′ (say) is a sphere, then S′ ∩S was a disc in S bounded by C.
Hence, if C does not bound a disc in S then ε(S′) and ε(S′′) are both
non-zero, giving the second statement of the lemma. �

We now apply these techniques to prove a lemma for our direct
proof in Chapter 12 of the ‘Kuratowski theorem for arbitrary surfaces’,
Corollary 12.5.3.

6 Perhaps the simplest proof was given by C. Thomassen, The Jordan-Schoenflies
theorem and the classification of surfaces, Amer. Math. Monthly 99 (1992), 116–130.
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Lemma B.6. Let S be a surface, and let C be a finite set of disjoint[ 12.5.4 ]

circles in S. Assume that none of these circles bounds a disc in S, and
that S \

⋃
C has a component D0 whose closure in S meets every circle

in C. Then ε(S) � |C|.

Proof . We begin with the observation that the closure of D0 not only
meets but even contains every circle C ∈ C. This is because C has
a strip neighbourhood N disjoint from all the other circles in C (since
their union is compact), and each of the (one or two) components of
N � C has all of C in its closure. Since D0 meets, and hence contains,
at least one component of N � C, its closure contains C.

Let us partition C as C = C1 ∪ C1
2 ∪ C2

2 , where the circles in C1 areC1, C1
2 , C2

2

one-sided, those in C1
2 are two-sided but non-separating, and those in

C2
2 are separating. We shall, in turn, cut along all the circles in C1,

some |C2
2 | circles not in C, and at least half the circles in C1

2 . This will
give us a sequence S0, . . . , Sn of surfaces, where S0 = S, and Si+1 isS0, . . . , Sn

obtained from Si by cutting along a circle Ci and capping the hole(s).Ci

Our task will be to ensure that Ci is non-separating in Si for every
i = 0, . . . , n− 1. Then Lemma B.4 will imply that ε(Si+1) � ε(Si)− 1
for all i and ε(Si+1) � ε(Si)− 2 whenever Ci ∈ C1

2 , giving

ε(S) � ε(Sn) + |C1|+ |C2
2 |+ 2 |C1

2 |/2 � |C|

as desired.

C′
9

C1

C2

D0

C3

C4

C5

C6

C7

C8

C9

Fig. B.1. Cutting the 1-sided circle C1 and the 2-sided circles
C2, C3 and C5, C7, C8 and C′

9 does not separate S

Cutting along the circles in C1 (and capping the holes) is straightfor-
ward: since these circles are one-sided, they are always non-separating.

Next, we consider the circles in C2
2 , such as C9 in Figure B.1. For

every C ∈ C2
2 , denote by D(C) the component of S \ C that does not

contain D0. Since every circle in C lies in the closure of D0 but no
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point of D(C) does, these D(C) are also components of S \
⋃
C. In

particular, they are disjoint for different C. Thus, each D(C) will also be
a component of Si \C, where Si is the current surface after any surgery
performed on the circles in C1 and inside D(C ′) for some C ′ �= C. Given
a fixed circle C ∈ C2

2 , let S′ be the surface obtained from D(C) by capping
its hole. Since C does not bound a disc in S, we know that S′ is not a
sphere and hence contains a non-separating circle C ′ (Lemma B.1). We
choose C ′ so that it avoids the cap we added to form S′, i.e. so that
C ′ ⊆ S \ C. Then C ′ is also non-separating in the current surface Si

(since every point of Si \ C ′ can be joined by an arc in Si \ C ′ to C,
which is connected), and we may select C ′ as a circle Ci to cut along.

It remains to select at least half of the circles in C1
2 as circles Ci to cut

along. We begin by selecting all those whose entire strip neighbourhoods
(i.e., both their ‘sides’) lie in D0. (In Figure B.1, these are the circles C2

and C3.) These circles C are non-separating also in the surface Si current
before they are cut, because D0 will lie inside a component of Si \ C.
Every other C ∈ C1

2 lies in the closure also of a component D(C) �= D0

of S \
⋃
C. (In Figure B.1, these are the circles C4, . . . , C8.) For every

component D of S \
⋃
C we select all but one of the circles C ∈ C1

2

with D(C) = D as a cutting circle Ci. Clearly, each of these Ci will be
non-separating also in its current surface Si, and their total number at
least |C1

2 |/2. �





Hints for all the
Exercises

Caveat. These hints are intended to set on the right track anyone who
has already spent some time over an exercise but somehow failed to make
much progress. They are not designed to be particularly intelligible
without such an initial attempt, and they will rarely spoil the fun by
giving away the key idea. They may, however, narrow one’s mind by
focusing on what is just one of several possible ways to think about a
problem. . .

Hints for Chapter 1

1.− How many edges are there at each vertex?

2. Average degree and edges: consider the vertex degrees. Diameter: how
do you determine the distance between two vertices from the corre-
sponding 0–1 sequences? Girth: does the graph have a cycle of length 3?
Circumference: partition the d-dimensional cube into cubes of lower
dimension and use induction.

3. Consider how the path intersects C. Where can you see cycles, and can
they all be short?

4.− Can you find graphs for which Proposition 1.3.2 holds with equality?

5. Estimate the distances within G as seen from a central vertex.

6. Count vertices as in the proof of Proposition 1.3.3. For the even case,
start with two adjacent vertices.

7.+ Consider a longest path P in G. Where do its endvertices have their
neighbours? Can G [ P ] contain a cycle on V (P )?

8.+ Pick two vertices x, y of maximum distance, and show that many of the
distance classes Di from x have to be large.

9.− Assume the contrary, and derive a contradiction.
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10.− Find two vertices that are linked by two independent paths.

11. For each type of graph, the solution requires separate proofs of (coin-
ciding) upper and a lower bounds. For the cube, use induction on n.

12.− Try to find counterexamples for k = 1.

13.+ Rephrase (i) and (ii) as statements about the existence of two N → N
functions. To show the equivalence, express each of these functions in
terms of the other. Show that (iii) may hold even if (i) and (ii) do not,
and strengthen (iii) to remedy this.

14.+ Try to imitate the proof assuming ε(G) � ck instead of condition (ii).
Why does this fail, and why does condition (ii) remedy the problem?

15. Show (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i) from the definitions of the
relevant concepts.

16.− How can we turn distinct neighbours into distinct leaves?

17. Average degree.

18. Theorem 1.5.1.

19.+ Induction.

20. The easiest solution is to apply induction on |T |. What kind of vertex
of T will be best to delete in the induction step?

21. Induction on |T | is a possibility, but not the only one.

22.− Count the edges.

23. Show that if a graph contains any odd cycle at all it also contains an
induced one.

24.+ Given a graph G, how would you split its vertex set into two parts A
and B so that the bipartite graph H defined by the A–B edges of G
has minimum degree as large as possible? To find f , apply this method
to a suitable subgraph G of a given graph G′, and determine how large
d(G′) must be to ensure that δ(H) � k.

25. Try to carry the proof for finite graphs over to the infinite case. Where
does it fail?

26. Try to imitate the proof of Theorem 1.8.1.

27. Why do all the cuts E(v) generate the cut space? Will they still do so
if we omit one of them? Or even two?

28. Be clear about what exactly the word ‘minimal’ refers to in its various
contexts.

29. Start with the case that the graph considered is a cycle.

30.+ Consider a set F ⊆ E that meets every cycle in an even number of edges.
Contract all edges not in F . What can you say about the structure of
the arising multigraph?

31. Given a cycle C to be generated, for which edges e should Ce be among
the generators of C?

32. Given a cut D to be generated, for which edges e should De be among
the generators of D?

33. Apply Theorem 1.9.6.
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34. Induction on k.

35.+ Apply induction on |G|. Delete a vertex v of odd degree, and apply the
induction hypothesis to a suitable modification of G− v.

Hints for Chapter 2
1. Recall how an augmenting path turns a given matching into a larger

one. Can you reverse this process to obtain an augmenting path from
the two matchings?

2. Augmenting paths.

3. Turn the functions into a graph, and consider its components.

4. If there is no matching of A, then by König’s theorem few vertices cover
all the edges. How can this assumption help you to find a large subset
of A with few neighbours?

5. Show that the marriage condition fails in H for A1 ∪A2. The proof is
almost a mirror image of the third proof, with unions and intersections
interchanged.

6.+ If you have S � S′ ⊆ A with |S| = |N(S)| in the finite case, the
marriage condition ensures that N(S) � N(S′): increasing S makes
more neighbours available. Use the fact that this fails when S is infinite.

7. Apply the marriage theorem.

8. Construct a bipartite graph in which A is one side, and the other side
consists of a suitable number of copies of the sets Ai. Define the edge
set of the graph so that the desired result can be derived from the
marriage theorem.

9.+ Construct chains in the power set lattice of X as follows. For each
k < n/2, use the marriage theorem to find a 1–1 map ϕ from the set A
of k-subsets to the set B of (k + 1)-subsets of X such that Y ⊆ ϕ(Y )
for all Y ∈ A.

10.− Try C6.

11.− Change occurs most likely if unhappy vertices can bring it about with-
out having to ask the happy ones. (If philosophy does not help, try K3.)

12. Alternating paths.

13. Decide where the leaves should go: in factor-critical components or
in S?

14. By transitivity, every vertex lies in a set S as in Theorem 2.2.3.

15. For the ‘if’ direction apply Tutte’s 1-factor theorem to the graph
G ∗ K|G|−2k, or use the remarks on maximum-cardinality matchings
following Theorem 2.2.3.

16.− Corollary 2.2.2.

17. Let G be a bipartite graph that satisfies the marriage condition, with
bipartition {A, B } say. Reduce the problem to the case of |A| = |B|.
To verify the premise of Tutte’s theorem for a given set S ⊆ V (G),
bound |S| from below in terms of the number of components of G−S
that contain more vertices from A than from B and vice versa.
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18.− For the first task, consider a typical non-bipartite graph. For the sec-
ond, start with any maximal set of independent edges.

19. Where in the proof of Lemma 2.3.1 do we use that ∆(G) � 3?

20. Find a subgraph H isomorphic to a cycle or K2 or K1 that contains
a vertex not adjacent to any vertex in G − H. Then apply induction
on α.

21. If you cannot spot the error just by reading the proof very carefully
(which you should be able to do, really—but this case it is tricky), it
is a good idea to test the assertion for extreme cases or small graphs.
When you have found a counterexample, go through the proof with this
graph in mind and see where exactly it fails.

22.− Consider any smallest path cover.

23. Direct all the edges from A to B.

24.− Dilworth.

25. Start with the set of minimal elements in P .

26. Think of the elements of A as being smaller than their neighbours in B.

27. Construct a poset from arbitrarily large finite antichains.

Hints for Chapter 3
1.− Recall the definitions of ‘separate’ and ‘component’.

2. Describe in words what the picture suggests.

3. Use Exercise 11 to answer the first question. The second requires an
elementary calculation, which the figure may already suggest.

4. Only the first part needs arguing; the second then follows by symmetry.
Suppose a component of G−X is not met by X ′. Where does X ′ lie
in this picture? Remember Exercise 11.

5.− How can a block fail to be a maximal 2-connected subgraph? And what
else follows then?

6. Deduce the connectedness of the block graph from that of the graph
itself, and its acyclicity from the maximality of each block.

7. Prove the statement inductively using Proposition 3.1.3. Alternatively,
choose a cycle through one of the two vertices and with minimum dis-
tance from the other vertex. Show that this distance cannot be positive.

8. Belonging to the same block is an equivalence relation on the edge set;
see Exercise 55.

9. Induction along Proposition 3.1.3.

10. Assuming that G/xy is not 3-connected, distinguish the cases when vxy

lies inside or outside a separator of at most 2 vertices.

11. (i)− Consider the edges incident with a smaller separator.

(ii) Induction shows that all the graphs obtained by the construction are
cubic and 3-connected. For the converse, consider a maximal subgraph
TH ⊆ G such that H is constructible as stated; then show that H = G.

12.+ If such a finite set exists, then every other 3-connected graph can be
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made into a smaller 3-connected graph by deleting one vertex and sup-
pressing any arising vertices of degree 2. (Why?) For which graphs is
this possible?

13. Check the induction.

14. How big is S? To recognize the easy remaining case, it helps to have
solved the previous exercise first.

15. Choose the disjoint A–B paths in L(G) minimal.

16. Consider a longest cycle C. How are the other vertices joined to C?

17. Consider a cycle through as many of the k given vertices as possible.
If one them is missed, can you re-route the cycle through it?

18. Consider the graph of the hint. Show that any subset of its vertices
that meets all H-paths (but not H) corresponds to a similar subset
of E(G) � E(H). What does a pair of independent H-paths in the
auxiliary graph correspond to in G?

19.− How many paths can a single K2m+1 accomodate?

20. Choose suitable degrees for the vertices in B.

21.+ Let H be the (edgeless) graph on the new vertices. Consider the sets
X and F that Mader’s theorem provides if G′ does not contain |G|/2
independent H-paths. If G has no 1-factor, use these to find a suitable
set that can play the role of S in Tutte’s theorem.

22.− If two vertices s, t are separated by fewer than 2k − 1 vertices, extend
{ s } and { t } to k-sets S and T showing that G is not k-linked.

23. To construct a highly connected graph that is not k-linked, start by
writing down the vertices s1, . . . , sk, t1, . . . , tk. By specifying suitable
non-edges, make the paths in the required linkage need more vertices
in total than there are vertices left in the graph. To make the graph
highly connected, add all edges other than the specified non-edges.

24. Use induction on 2k − |S ∪ T |, where S := { s1, . . . , sk } and T :=
{ t1, . . . , tk }. For the induction step recall that δ(G) � 2k − 1, by
Exercise 2222.

25. To construct the TKr, start by picking the branch vertices and their
neighbours.

Hints for Chapter 4
1. Embed the vertices inductively. Where should you not put the new

vertex?

2.− Figure 1.6.2.

3.− Make the given graph connected.

4. This is a generalization of Corollary 4.2.10.

5. Theorem 2.4.4.

6. Imitate the proof of Corollary 4.2.10.

7. Proposition 4.2.7.
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8.− Express the difference between the two drawings as a formal statement
about vertices, faces, and the incidences between them.

9. Combinatorially: use the definition. Topologically: express the relative
position of the short (respectively, the long) branches of G′ formally
as a property of G′ which any topological isomorphism would preserve
but G lacks.

10.− Reflexivity, symmetry, transitivity.

11. Look for a graph whose drawings all look the same, but which admits
an automorphism that does not extend to a homeomorphism of the
plane. Interpret this automorphism as σ2 ◦σ−1

1 .

12.+ Star-shape: every inner face contains a point that sees the entire face
boundary.

13. Work with plane rather than planar graphs.

14. (i) The set X may be infinite.

(ii) If Y is a TX, then every TY is also a TX.

15.− By the next exercise, any counterexample can be disconnected by at
most two vertices.

16. Incorporate the extra condition into the induction hypothesis of the
proof. It may help to disallow polygons with 180 degree angles.

17. Number of edges.

18. Use that maximal planar graphs are 3-connected, and that the neigh-
bours of each vertex induce a cycle.

19. If G = G1 ∪G2 with G1 ∩G2 = K2, we have a problem. This will go
away if we embed a little more than necessary.

20. Use a suitable modification of the given graph G to simulate outerpla-
narity.

21. Use the fact that C(G) is the direct sum of C(G1) and C(G2).

22.+ Euler.

23. The face boundaries generate C(G).

24.+ Solve the previous exercise first.

25.− How many vertices does it have?

26.− Join two given vertices of the dual by a straight line, and use this to
find a path between them in the dual graph.

27.+ Define the required bijections F →V ∗, E→E∗, V →F ∗ successively in
this order, while at the same time constructing G∗.

28. Solve the previous exercise first.

29. Use the bijections that come with the two duals to define the desired
isomorphism and to prove that it is combinatorial.

30. Apply Menger’s theorem and Proposition 4.6.1. For (iii), consider a
4-connected graph with six vertices.

31. Apply induction on n, starting with part (i) of the previous exercise.

32. Theorem 1.9.5.

33. This can be proved directly, i.e. without planarity.
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Hints for Chapter 5

1.− Duality.

2.− Whenever more than three countries have some point in common, apply
a small local change to the map where this happens.

3. Where does the five colour proof use the fact that v has no more neigh-
bours than there are colours?

4. How can the colourings of different blocks interfere with each other?

5.− Use a colouring of G to derive a suitable ordering.

6. Consider how the removal of certain edges may lead the greedy algo-
rithm to use more colours.

7. Describe more precisely how to implement this alternative algorithm.
Then, where is the difference to the traditional greedy algorithm?

8. Compare the number of edges in a subgraph H as in Proposition 5.2.2
with the number m of edges in G.

9. Go via minimum degrees.

10.− Remove vertices successively until the graph becomes critically k-
chromatic. What can you say about the degree of any vertex that
remains?

11. Proposition 1.6.1.

12.+ Modify colourings of the two sides of a hypothetical cut of fewer than
k − 1 edges so that they combine to a (k − 1)-colouring of the entire
graph (with a contradiction).

13. Proposition 1.3.1.

14.− For which graphs with large maximum degree does Proposition 5.2.2
give a particularly small upper bound?

15.+ (i) How will v1 and v2 be coloured, and how vn?

(ii) Consider the subgraph induced by the neighbours of vn.

16.+ For the implication (ii)→(i), consider a maximal spanning directed
subgraph D of the given orientation of G that contains no directed
cycle. Use the fact that all directed paths in D are short to k-colour
its underlying undirected graph, and show that this colouring is even a
k-colouring of G.

17. In the induction step, compare the values of PG(k), PG−e(k) and PG/e(k).

18.+ Multiplicities of zeros.

19. Imitate the proof of Theorem 5.2.6.

20.− Kn,n.

21. How are edge colourings related to matchings?

22. Construct a bipartite ∆(G)-regular graph that contains G as subgraph.
It may be necessary to add some vertices.

23.+ Induction on k. In the induction step k→ k +1, consider using several
copies of the graph you found for k.

24.− Vertex degrees.
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25. Kn,n. To choose n so that Kn,n is not even k-choosable, consider lists
of k-subsets of a k2-set.

26.− Vizing’s theorem.

27. All you need are the definitions, Proposition 5.2.2, and a standard
argument from Chapter 1.2.

28.+ Try induction on r. In the induction step, you would like to to delete
one pair of vertices and only one colour from the other vertices’ lists.
What can you say about the lists if this is impossible? This information
alone will enable you to find a colouring directly, without even looking
at the graph again.

29. Show that χ′′(G) � ch′(G) + 2, and use this to deduce χ′′(G) �
∆(G)+ 3 from the list colouring conjecture.

30.− For the first question, try to construct an oriented graph without a
kernel edge by edge. For the second and third question, recall the
motivational remarks in the text concerning the notion of a kernel.

31.+ Call a set S of vertices in a directed graph D a core if D contains a
directed v–S path for every vertex v ∈ D − S. If, in addition, D con-
tains no directed path between any two vertices of S, call S a strong
core. Show first that every core contains a strong core. Next, define
inductively a partition of V (D) into ‘levels’ L0, . . . , Ln such that, for
even i, Li is a suitable strong core in Di := D− (L0 ∪ . . .∪Li−1), while
for odd i, Li consists of the vertices of Di that send an edge to Li−1.
Show that, if D has no directed odd cycle, the even levels together form
a kernel of D.

32. Construct the orientation needed for Lemma 5.4.3 in steps: if, in the
current orientation, there are still vertices v with d+(v) � 3, reverse the
directions of an edge at v and take care of the knock-on effect of this
change. If you need to bound the average degree of a bipartite planar
graph, remember Euler’s formula.

33.− Start with a non-perfect graph.

34.− Do odd cycles or their complements satisfy (∗)?
35. Apply the property of H1 to the graphs in H2, and vice versa.

36. König’s theorem asserts the existence of a set of vertices meeting every
edge. Rephrase perfection as asserting the existence of a set of vertices
meeting all colour classes.

37. Look at the complement.

38. Define the colour classes of a given induced subgraph H ⊆ G induc-
tively, starting with the class of all minimal elements.

39. (i) Can the vertices on an induced cycle contain each other as intervals?

(ii) Use the natural ordering of the reals.

40. Compare ω(H) with ∆(G) (where H = L(G)).

41.+ Which graphs are such that their line graphs contain no induced cycles
of odd length � 5? To prove that the edges of such a graph G can be
coloured with ω(L(G)) colours, imitate the proof of Vizing’s theorem.
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42. Use A as a colour class.

43.+ (i) Induction.

(ii) Assume that G contains no induced P 3. Suppose some H has a
maximal complete subgraph K and a maximal set A of independent
vertices disjoint from K. For each vertex v ∈ K, consider the set of
neighbours of v in A. How do these sets intersect? Is there a smallest
one?

44.+ Start with a candidate for the set O, i.e. a set of maximal complete
subgraphs covering the vertex set of G. If all the elements of O hap-
pen to have order ω(G), how does the existence of A follow from the
perfection of G? If not, can you expand G (maintaining perfection) so
that they do and adapt the A for the expanded graph to G?

45.+ Reduce the general case to the case when all but one of the Gx are
trivial; then imitate the proof of Lemma 5.5.5.

Hints for Chapter 6
1.− Move the vertices, one by one, from S to S. How does the value of

f(S, S) change each time?

2. (i) Trick the algorithm into repeatedly using the middle edge in alter-
nating directions.

(ii) At any given time during the algorithm, consider for each vertex
v the shortest s–v walk that qualifies as an initial segment of an aug-
menting path. Show for each v that the length of this s–v walk never
decreases during the algorithm. Now consider an edge which is used
twice for an augmenting path, in the same direction. Show that the
second of these paths must have been longer than the first. Now derive
the desired bound.

3.+ For the edge version, define the capacity function so that a flow of max-
imum value gives rise to sufficiently many edge-disjoint paths. For the
vertex version, split every vertex x into two adjacent vertices x−, x+.
Define the edges of the new graph and their capacities in such a way
that positive flow through an edge x−x+ corresponds to the use of x
by a path in G.

4.− H-flows are nowhere zero, by definition.

5.− Use the definition and Proposition 6.1.1.

6.− Do subgraphs also count as minors?

7.− Try k = 2, 3, . . . in turn. In searching for a k-flow, tentatively fix the
flow value through an edge and investigate which consequences this has
for the adjacent edges.

8. To establish uniqueness, consider cuts of a special type.

9. Express G as the union of cycles.

10. Combine Z2 -flows on suitable subgraphs to a flow on G.

11. Begin by sending a small amount of flow through every edge outside T .
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12. View G as the union of suitably chosen cycles.

13. Corollary 6.3.2 and Proposition 6.4.1.

14.− Duality.

15. Take as H your favourite graph of large flow number. Can you decrease
its flow number by adding edges?

16. Euler.

17. Instead of proving (F2) for g, show more generally that g(X, X) = 0

for every cut
→

E∗(X, X) of G∗.

18.+ Theorem 6.5.3.

19. Theorem 6.5.3.

20. (i) Theorem 6.5.3.

(ii) Yes it can. Show, by considering a smallest counterexample, that
if every 3-connected cubic planar multigraph is 3-edge-colourable (and
hence has a 4-flow), then so is every bridgeless cubic planar multigraph.

21.+ For the ‘only if’ implication apply Proposition 6.1.1. Conversely, con-
sider a circulation f on G, with values in { 0,±1, . . . ,±(k − 1) }, that
respects the given orientation (i.e. is positive or zero on the edge di-
rections assigned by D) and is zero on as few edges as possible. Then
show that f is nowhere zero, as follows. If f is zero on e = st ∈ E and
D directs e from t to s, define a network N = (G, s, t, c) such that any
flow in N of positive total value contradicts the choice of f , but any
cut in N of zero capacity contradicts the property assumed for D.

22.− Convert the given multigraph into a graph with the same flow proper-
ties.

Hints for Chapter 7

1.− Straightforward from the definition.

2.− When constructing the graphs, start by fixing the colour classes.

3. It is not difficult to determine an upper bound for ex(n, K1,r). What
remains to be proved is that this bound can be achieved for all r and n.

4. Proposition 1.7.2 (ii).

5.+ What is the maximum number of edges in a graph of the structure given
by Theorem 2.2.3 if it has no matching of size k? What is the optimal
distribution of vertices between S and the components of G − S? Is
there always a graph whose number of edges attains the corresponding
upper bound?

6. Consider a vertex x ∈ G of maximum degree, and count the edges
in G−x.

7. Choose k and i so that n = (r− 1)k + i with 0 � i < r− 1. Treat the
case of i = 0 first, and then show for the general case that tr−1(n) =
1
2

r−2
r−1

(n2 − i2)+
(

i
2

)
.
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8. The bounds given in the hint are the sizes of two particularly simple
Turán graphs—which ones?

9. Choose among the m vertices a set of s vertices that are still incident
with as many edges as possible.

10. For the first inequality, double the vertex set of an extremal graph for
Ks,t to obtain a bipartite graph with twice as many edges but still not
containing a Ks,t.

11.+ For the displayed inequality, count the pairs (x, Y ) such that x ∈ A and
Y ⊆ B, with |Y | = r and x adjacent to all of Y . For the bound on
ex(n, Kr,r), use the estimate (s/t)t ≤

(
s
t

)
≤ st and the fact that the

function z �→ zr is convex.

12. Assume that the upper density is larger than 1− 1
r−1

. What does this
mean precisely, and what does the Erdős-Stone theorem then imply?

13. Proposition 1.2.2 and Corollary 1.5.4.

14. Complete graphs.

15.− A vertex of high degree is nearly a star.

16. Do more than 1
2
(k − 1)n edges force a subgraph of suitable minimum

degree?

17.+ Consider your favourite graphs with high average degree and low chro-
matic number. Which trees do they contain induced? Is there some
reason to expect that exactly these trees may always be found induced
in graphs of large average degree and small chromatic number?

18. All the implications sought are either very easy to prove or follow from
material stated in the text (not necessarily in this chapter).

19.+ Contract a set of the form { v | d(v0, v) � i }.
20. Induction on r.

21.− Does a large chromatic number force up the average degree? If in doubt,
consult Chapter 5.

22.+ Let G′ � G be a minimal minor with ε(G′) � k. Show that, for every
vertex v ∈ G′, the subgraph H of G′ induced by the neighbours of v
has minimum degree at least k. Can you choose v so that |H| � 2k?

23.+ First show that we need only consider graphs G of minimum degree
at least 3. Then Corollary 1.3.5 gives us a cycle C of length at most
about 2 log n. Assuming without loss of generality that G has exactly
n + �2k (log k + log log k + c)� � 3n/2 edges, bound ‖C‖ from above in
terms of k, and show that, for a suitable choice of c, deleting only this
many edges makes the induction step work.

24.− Imitate the proof of Theorem 7.2.1, replacing r2 by
(

r
2

)
.

25.+ How can we best make a TK2r fit into a Ks,s when we want to keep s
small?

26. Which of the graphs constructed as in the hint have the largest average
degree?

27.− What does planarity have to do with minors?

28.− Consider a suitable supergraph.
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29.− Apply a theorem from this chapter.

30. Induction on the number of construction steps.

31. Induction on |G|.
32. Note the previous exercise.

33. Start with a suitable subgraph of large minimum degree. Which result
or technique from Section 7.2 can be used to boost its minimum degree
further to make suitable input for Theorem 7.2.2?

34.+ Show by induction on |G| that any 3-colouring of an induced cycle in
G 
� K4 extends to all of G.

35.+ Reduce the statement to critical k-chromatic graphs and apply Vizing’s
theorem.

36. Which of the graphs constructed as in Theorem 7.3.4 have the largest
average degree?

37.− Why would it be impractical to include, say, 1-element sets X, Y in the
comparison?

38.− Apply the definition of an ε-regular pair.

39. For the meaning of the word ‘about’, assume that |V | is large compared
with k. For the second task, do not refer to the details of the proof of
Theorem 7.1.2, but to the informal explanations follows it.

40. For (i) just make M large enough. For (ii) use the analogue of (i) for
the graphs considered, putting k := m when the graph is large.

Hints for Chapter 8

1.− Count the vertices, ‘moving out’ from a fixed vertex.

2.− Make σ beat σi from si onwards.

3. Let A be a set of subsets of a countable set A such that |A′ ∩A′′| � k
for all distinct A′, A′′ ∈ A and some fixed k ∈ N. Consider a fixed k-set
S. How many sets in A can contain S?

4.− Consider a ray v0v1 . . . . Can it be decreasing, ie such that v0 > v1 >
. . . ? If not, can it go down again once it has gone up, ie, can it contain
vertices xi−1 < xi > xi+1?

5.− Construct the paths inductively. Alternatively, use Zorn’s lemma to
find a maximal set of disjoint A–B paths. Can it be finite?

6.− If you cannot make this approach work, describe how it fails.

7.− Construct such a graph inductively. Can you do it in one infinite se-
quence of steps?

8. Construct the graph inductively, starting from a vertex or a cycle. To
ensure that the final graph has high connectivity, join each new vertex
by many edges to the infinite set of vertices yet to be defined.

9.− Use the previous exercise.
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10. Starting from the definition of the topology on X, describe what it
means for a sequence of points in X to converge. What must a se-
quence look like whose convergent subsequences all determine proper
colourings of G? Can you deduce from the assumptions that such a
sequence exists? It may help to look at the infinity lemma for ideas.

11.+ Apply induction on k.

12.− This is a standard compactness proof: use the infinity lemma for count-
able graphs, and Tychonov’s theorem for arbitrary graphs.

13. Apply the infinity lemma. Find a statement about a vertex partition of
Gn = G [ v1, . . . , vn ] that implies the corresponding statement for the
induced partition of Gn−1, and whose truth for the partitions of the
Gn induced by a given partition of G implies that this partition of G
is as desired.

14. Apply the infinity lemma to a suitably weakened statement about finite
subgraphs.

15. For the positive result use the infinity lemma, considering the finite
subgraphs spanned by a given finite subset of A and all its neighbours
in B. For the counterexample, note that if S � S′ ⊆ A with |S| = |N(S)|
in the finite case, the marriage condition ensures that N(S) � N(S′):
increasing S makes more neighbours available. Use the fact that this
can fail when S is infinite.

16.+ Note that, in order to apply the infinity lemma, it is enough to find
in every finite induced subgraph Gn of G a set of independent edges
covering those vertices that have no neighbour in G−Gn. To find such a
set of edges, apply the finite 1-factor theorem to the graph Hn obtained
from Gn by adding a large complete graph K joined completely to all
those vertices of Gn that have a neighbour in G−Gn. If you get stuck,
change the parity of |K|.

17.+ Use the material from Chapter 4.3 to make drawings susceptible to an
application of the infinity lemma. To construct the final drawing from
a ray in the infinity lemma graph, make sure that the partial drawings
constructed inductively are really definite drawings in the plane, not
merely abstract equivalence types of drawings.

18.− Adapt the hint for Exercise 55 to prove the appropriate fan version of
Menger’s theorem.

19. Construct the TKℵ0 inductively.

20. Start with the binary tree T2, and make its ends thick while keeping
the graph countable.

21. You can prove the forward implication either ‘from above’ by recursively
pruning away parts of the tree that are certain not to lie in a subdi-
vided T2, or ‘from below’ by constructing a subdivided T2 inductively
inside the given tree.

22. For (i), note that a ray has countably many subrays. For the forward
implication in (iii), prune the given tree recursively by chopping off lo-
cally finite subtrees and bounding these; then combine all the bounding
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functions obtained into one. It will help in the proof if you make this
final function increasing.

23.+ Does Tℵ1 have such a labelling? If T 
⊇ TTℵ1 , construct a labelling of
T inductively. Supposing a labelling exists: where in T will the vertices
labelled zero lie? Where the vertices labelled 1?

24. Suppose a locally finite connected graph G has three distinct ends.
Let S be a finite set of vertices separating these pairwise. Take an
automorphism that maps S ‘far away’ into a component of G−S. Can
you show that the image of S separates this component in such a way
that G must have more than three ends?

25.+ Pick a vertex v. Is its orbit U = { v, σ(v), σ(σ(v)), . . . } finite or infi-
nite? To determine the position of U within G, let P be a path from
v to σ(v) and consider the infinite union P ∪ σ(P ) ∪ σ(σ(P )) ∪ . . . .
Does this, somehow, define an end? And what about the sequence
v, σ−1(v), σ−2(v), . . .?

26.− Lemma 8.2.2.

27. Lemma 8.2.3.

28. Prove the implication (i)→(iv) first.

29. Show that deleting a finite set of vertices never leaves infinitely many
components.

30. To construct the normal spanning tree in (i), imitate the proof for
countable G. Well-order each of the dispersed sets, concatenate these
well-orderings into one well-ordering of V (G), and construct the tree
recursively.

31.− Normal spanning trees.

32.+ For simplicity, replace the graph with a spanning tree in it, T say.
Which vertices have to appear earlier in the enumeration than others?

33. Imitate the proof of Theorem 8.2.5, choosing all the rays used from the
given end. Do the rays constructed also belong to that end? If not,
how can this be achieved?

34.+ Imitate the proof of Theorem 8.2.5. Work with rays rather than double
rays whenever possible.

35. The task is to find in any graph G that contains arbitrarily many dis-
joint MH a locally finite subgraph with the same property. In a first
step, find a countable such subgraph G′, and enumerate its vertices.
Then use the enumeration to find a locally finite such subgraph G′′ ⊆ G′

by ensuring that each vertex of G′ is used by only finitely many MH.

36. To construct a graph that contains arbitrarily but not infinitely many
copies of the modified comb T , start with infinitely many disjoint copies
of T . Group these into disjoint sets S1, S2, . . . so that Sn is a disjoint
union of n copies of T . Then identify vertices from different sets Sn, so
as to spoil infinite ‘diagonal’ sets of disjoint copies of T .

37. Fundamental cycles.
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38. Unlike in the proof of Theorem 8.2.6, you can use suitable tails of all the
rays in the (large but finite) set R0 as rays Qn. The part of the proof
that start with assumption (∗) can thus be replaced by a much simpler
algorithm that finds Qn and an infinite set of disjoint Qn–Qp(n) paths.
To determine how many rays are needed, start with a suitable finite
analogue to the infinity lemma: any large enough rooted tree either
has a vertex with at least k successors or contains a path of length k.

39. Suppose there is a universal graph G. Construct a locally finite con-
nected graph H whose vertex degrees ‘grow too fast’ for any embedding
of H in G.

40. Modify Kℵ0 or the Rado graph. Or try a direct construction.

41.− Property (∗).
42.− Back-and-forth.

43. Back-and-forth.

44. Find the partition inductively, deleting the edge set of one graph at
a time and showing that what remains is still isomorphic to R. How
can you ensure that, once all the required edge sets have been deleted,
there is no edge left?

45.− This is a theorem of Cantor. To prove it, use density like property (∗).
46. R.

47. For the vertex v in property (∗), try putting v := U first. How can this
fail? And how can you amend it if it fails? You may wish to use the
Axiom of Foundation, by which there is no sequence x1 ∈ . . . ∈ xn of
sets with n � 2 and x1 = xn.

48. Look at Exercise 4949 and its hint. For locally finite G the sets S′
i are

very easy to find, and no normal spanning tree is needed.

49.+ Use a normal spanning tree to find provisional sets S′
1, S

′
2, . . . of arbi-

trary finite cardinality that have the separation properties required of
the Si. Then use these to find the Si.

50. Pick a ∈ A, and construct a sequence of waves W1,W2, . . . that each
contain the trivial path { a }. Define the edges at a so that a is in the
boundary of every Wn, but not in the boundary of the limit wave.

51.+ The general problem reduces to Lemma 8.4.3, just as in the countable
case. Prove the lemma for forests.

52.+ Starting with P, recursively define path systems Pα that link A to
more and more of B. In the recursion step, pick an uncovered vertex
b ∈ B and follow the path Q ∈ Q containing it back until it hits Pα,
say in P = a . . . b′. You could then re-route P to follow Q to b from
there, but this would leave b′ uncovered. Still, could it be that these
changes produce an increase of the covered part of B at limit steps?
To prove that it does, can you define an ‘index’ parameter that grows
(or decreases) with every step but cannot do so indefinitely?
Alternatively, prove and apply a suitable infinite version of the stable
marriage theorem (2.1.4).
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53. (i) is just compactness. A neat 1-line proof uses Theorem 8.1.3. For (ii),
construct a poset from arbitrarily large finite antichains. For (iii), define
a bipartite graph as follows. For every point x ∈ P take two vertices
x′ and x′′. Then add all edges x′y′′ such that x < y. Now consider a
matching M and a vertex cover U in this graph as provided by Theo-
rem 8.4.8. How does M define a partition of P into chains? For how
many points x of such a chain can x′ or x′′ lie in U?

54. Do the assumptions imply that there exists a 1-factor? If so, can you
use it?

55. To ensure that every partial matching can be augmented, give your
graph lots of edges. How can you nevertheless prevent a 1-factor?

56. Try to prove, e.g. by compactness, that an infinite factor-critical graph
must have a 1-factor. If your proof fails, does it lead you to a construc-
tion?

57.− Consider first the case that the complete subgraphs of H have finitely
bounded order. You may use a result from Section 8.1.

58.+ For the perfection of G in (ii), show that every subset of T2 with arbi-
trarily large finite antichains also has an infinite antichain.

59. For the backwards implication, note that no finite set of vertices sepa-
rates R from X. Use this to construct the R–X paths inductively, or
apply a trivial version of Menger’s theorem.

60. A sequentially compact space (one where every infinite sequence of
points has a convergent subsequence) is compact if it has a countable
basis. If the infinity lemma does not seem to help, look at Lemma 8.2.2.

61.+ For the compactness proof, use a normal spanning tree and imitate the
proof of Proposition 8.5.1.

62. Your answer may depend on whether H is known to be locally finite.
Remember that a continuous bijection from a compact space to Haus-
dorff space is a homeomorphism. For (iii), you may use a theorem from
the text.

63.+ For the first task, scale the lengths of the edges of the tree down to
ensure that the total length of a ray starting at the root becomes finite.
Then adjust the lengths of the other edges of G, and extend the metric
obtained to the ends of G. For the second, notice that for any metric
inducing the given topology on V ∪Ω the sets Vn of vertices at distance
at least 1/n from every end are closed, and show that these sets cover V
as n ranges over the positive integers.

64.+ To define the topology on X̂, imitate the definition of the usual one-
point compactification.

65. You may use that deleting an open interval from the unit circle leaves
a connected rest, but that deleting two disjoint open intervals does not.
Remember that closed connected subsets of |G| are path-connected.

66. Construct two rays that belong to the same end and start at the same
vertex but are otherwise disjoint. This can be done by considering a
normal ray and using the fact that none of its vertices is a cutvertex.
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67. Recall that, in S1, every point has a neighbourhood basis consisting of
arcs in R2. Can you show that every arc in C that links two ends must
meet an edge? If not, can you show that it meets a vertex? If not,
remember the proof of Lemma 8.5.5.

68. Exercise 2626.

69. Enumerate the double rays D and D� in one infinite sequence, and in-
ductively define partial homeomorphisms between these D� and suitable
segments of S1. When this is done, extend the partial homeomorphism
on the union of all the double rays to the ends of G so as to make the
final map continuous.

70. The main assertion to be proved is that every subspace C satisfying
the conditions is a circle. Let A ⊆ C be an arc linking two vertices
x0 and y0. If v is any vertex in C � A, the arc-connectedness of C
yields a v–A arc in C, which has a first point on A. By the degree
condition assumed, this must be x0 or y0. Starting from an enumera-
tion v0, v1, . . . of the vertices in C, construct a 2-way infinite sequence
. . . x−2, x−1, x0, y0, y1, y2 . . . of vertices such that C contains arcs Ai

linking x−i−1 to x−i and Bi linking yi to yi+1 for all i ∈ N, so that
the union U of A and all these arcs is a homeomorphic copy of (0, 1)
in C. Use the connectedness of its ‘tails’ to show that these converge
to unique ends in C. Deduce from the degree assumptions that these
two ends coincide, and that U = C is a circle.

71. Use Lemma 8.5.4. You may also use that every circle contains an edge.

72.− Show that if a topological spanning tree is homeomorphic to a space
|T | with T a tree, but does not itself have this form, it contains an end
which this homeomorphism maps to a point in T (i.e., not to an end).
Can you find a topological spanning tree for which this is impossible?

73. Start with a maximal set of disjoint rays.

74.+ Given a point ω ∈ A � A, pick a sequence v1, v2, . . . of vertices in A
that converges to ω, and arcs An ⊆ A from vn to vn+1. Then use the
infinity lemma to concatenate suitable portions of the An to form a
continuous function α: [ 0, 1 ]→|G| that maps [ 0, 1) to A and 1 to ω.
You may use the fact that the image of such a function α contains an
arc from α(0) ∈ A to α(1) = ω.

75. Recall that non-separating induced cycles of a plane graph are face
boundaries.

76.− How can T fail to be a topological spanning tree?

77. Find the circuits greedily, making sure all edges are captured.

78. Check thinness. For an alternative proof, use Theorem 8.5.8 (i) instead
of (ii).

79.+ For the ‘only if’ part, use a theorem from the text. The task in the
‘if’ part is to combine the edge-disjoint circles from Theorem 8.5.8 (ii)
into a single continuous image of S1. Start with one of those circles,
and incorporate the others step by step. Check that the ‘limit map’
σ: S1 →|G| is continuous (and defined) on all of S1.
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80.+ The conditions are easily seen to be necessary. To prove sufficiency,
construct an Euler tour inductively, incorporating at once any finite
components arising in the remaining graph. To ensure that all edges
get included, enumerate them, and always target the next edge for
inclusion. There are two cases. If G has an odd cut, cover those edges
first, join up their endvertices in pairs as far as possible, and proceed
separately in the two infinite components of the rest. If G has no odd
cut, cover its edges inductively by a sequence of finite closed walks, so
that each of these meets the next in a vertex. Then find an Euler tour
in the union of these cycles.

Hints for Chapter 9
1.− Can you colour the edges of K5 red and green without creating a red

or a green triangle? Can you do the same for a K6?

2.− Induction on c. In the induction step, unite two of the colour classes.

3. If the chromatic number of a graph is small, does this imply the exist-
ence of a large induced Kr? If so, how large?

4.+ Choose a well-ordering of R, and compare it with the natural ordering.
Use the fact that countable unions of countable sets are countable.

5.+ Suppose there are many chords xy, with x <T y say, whose paths
xTy meet pairwise in at least one edge. Find either a large set of such
vertices x whose partner vertices y coincide, or a vertex in T with many
incomparable vertices y above it, or a long ascending path in T whose
maximal vertices ty on xTy are distinct for many y. Then find a long
sequence x1 � . . . � xn of vertices x corresponding to these y, and
show that the union of the paths xiTyi together with the chords xiyi

contains many edge-disjoint cycles.

6.+ The first and second question are easy. To prove the theorem of Erdős
and Szekeres, use induction on k for fixed �, and consider in the in-
duction step the last elements of increasing subsequences of length k.
Alternatively, apply Dilworth’s Theorem.

7. Use the fact that n � 4 points span a convex polygon if and only if
every four of them do.

8. Translate the given k-partition of { 1, 2, . . . , n } into a k-colouring of the
edges of Kn.

9. (i) is easy. For (ii) use the existence of R(2, k, 3).

10. Begin by finding infinitely many sets whose pairwise intersections all
have the same size.

11. The exercise offers more information than you need. Consult Chap-
ter 7.2 to see what is relevant.

12. Imitate the proof of Proposition 9.2.1.

13. The lower bound is easy. Given a colouring for the upper bound, con-
sider a vertex and the neighbours joined to it by suitably coloured
edges.
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14.− Given H1 and H2, construct a graph H for which the G of Theorem
9.3.1 satisfies (∗).

15. G [ U →H ].

16. Show inductively for k = 0, . . . , m that ω(Gk) = ω(H).

17.− How exactly does Proposition 9.4.1 fail if we delete Kr from the state-
ment?

18. As an example, prove that Theorem 9.4.5 (ii) is equivalent to Proposi-
tion 9.4.2. The other three equivalences are very similar.

Hints for Chapter 10

1. Induction.

2. Consider the union of two colour classes.

3. Induction on k with n fixed; for the induction step consider G.

4.− What do k-connected graphs look like that satisfy χ(G) � |G|/k but
not α(G) � k?

5. Note that subdividing the edges at a vertex of odd degree is a useful
trick to produce non-hamiltonian graphs. To find an example for (ii),
apply this trick to a small but highly connected graph.

6. How high can the connectivity of a planar graph be?

7.− Recall the definition of a hamiltonian sequence.

8.− On which kind of vertices does the Chvátal condition come to bear?
To check the validity of the condition for G, first find such a vertex.

9. Consider a k-separator in G2. Where do its vertices send their G-edges?

10. Theorem 10.2.1.

11. How does an arbitrary connected graph differ from the kind of graph
whose square contains a Hamilton cycle by Fleischner’s theorem? How
could this difference obstruct the existence of a Hamilton cycle?

12.+ In the induction step consider a minimal cut.

13.+ How can a Hamilton path P ∈ H be modified into another? In how
many ways? What has this got to do with the degree in G of the last
vertex of P?

Hints for Chapter 11

1.− Consider a fixed choice of m edges on { 0, 1, . . . , n }. What is the prob-
ability that G ∈ G(n, p) has precisely this edge set?

2. Consider the appropriate indicator random variables, as in the proof of
Lemma 11.1.5.

3. Consider the appropriate indicator random variables.

4. Erdős.
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5. What would be the measure of the set {G } for a fixed G?

6. Consider the complementary properties.

7.− P2,1.

8. Apply Lemma 11.3.2.

9. Induction on |H| with the aid of Exercise 66.

10. Imitate the proof of Lemma 11.2.1.

11. Imitate the proof of Proposition 11.3.1. To bound the probabilities
involved, use the inequality 1 − x � e−x as in the proof of Lemma
11.2.1.

12.+ (i) Calculate the expected number of isolated vertices, and apply
Lemma 11.4.2 as in the proof of Theorem 11.4.3.

(ii) Linearity.

13.+ Chapter 7.2, the proof of Erdős’s theorem, and a bit of Chebyshev.

14. For the first problem modify an increasing property slightly, so that it
ceases to be increasing but keeps its threshold function. For the second,
look for an increasing property whose probability does not really depend
on p.

15.− Permutations of V (H).

16.− This is a result from the text in disguise.

17.− Balance.

18. For p/t→ 0 apply Lemmas 11.1.4 and 11.1.5. For p/t→∞ apply Co-
rollary 11.4.4.

19. There are only finitely many trees of order k.

20.+ Show first that no such threshold function t = t(n) can tend to zero as
n→∞. Then use Exercise 1111.

21.+ Examine the various steps in the proof of Theorem 11.4.3, identify the
two points where it now fails, and repair them. While the first part
requires a slightly different tack as a consequence, the second adapts
more mechanically.

Hints for Chapter 12

1.− Antisymmetry.

2. For the backward implication, assume first that A has an infinite an-
tichain; this case is easier. The proof for other case is not quite as
obvious but similar; note that A = Z is not a counterexample.

3. To prove Proposition 12.1.1, consider an infinite sequence in which
every strictly decreasing subsequence is finite. How does the last ele-
ment of a maximal decreasing subsequence compare with the elements
that come after it? For Corollary 12.1.2, start by proving that at least
one element forms a good pair with infinitely many later elements.
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4. An obvious approach is to try to imitate the proof of Lemma 12.1.3
for �′; if it fails, what is the reason? Alternatively, you might try to
modify the injective map produced by Lemma 12.1.3 into an order-
preserving one, without losing the property of a � f(a) for all a.

5.− This is an exercise in precision: ‘easy to see’ is not a proof. . .

6. The trees in any bad sequence must get arbitrarily large. We are thus
looking for trees T, T ′ such that |T | < |T ′| but T 
� T ′. Consider some
simple examples, and iterate one to a bad sequence.

7. Does the original proof ever map the root of a tree to an ordinary vertex
of another tree?

8. Can you extend a given graph G to another graph from which G can
be obtained by deletion but not by contraction? Can you iterate this
to build an infinite antichain?

9.+ Can the graphs G in a bad sequence have arbitrarily many independent
edges? If not, they have bounded-size subsets of vertices that cover all
their edges. (Why?) Consider a subsequence where these vertex sets
all induce the same graph, and find a good subsequence therein.

10.+ When we try to embed a graph TG in another graph H, the branch
vertices of the TG can be mapped only to vertices of at least the same
degree. Extend a suitable graph G to a similar graph H that does
not contain G as a topological minor because these vertices are incon-
veniently positioned. Then iterate this example to obtain an infinite
antichain.

11.+ It is. One possible proof uses normal spanning trees with labels, and
imitates the proof of Kruskal’s theorem.

12.− The point about the ‘subtrees’ is that they are connected. Recall our
convention that connected graphs are non-empty.

13.− Start with any tree-decomposition of least width and modify it in steps.

14. Why are there no cycles of tree-width 1?

15. For the forward implication, apply Corollary 1.5.2. For the converse,
use induction on n.

16. To prove (T2), consider the edge e of Figure 12.3.1. Checking (T3) is
easy.

17. For the first question, recall Proposition 12.3.6. For the second, try to
modify a tree-decomposition of G into one of the TG without increasing
its width.

18.+ Use a normal spanning tree T as the decomposition tree, and let
t1, . . . , tn be an enumeration of V (T ) such that t1 is the root and all the
sets { t1, . . . , ti } are connected in T . Define the parts Vt inductively for
t = t1, . . . , tn so as to satisfy the condition in Exercise 1515.

19. For (i), translate the compatibility condition to a similar condition on
the components of T − e for the two choices of e. For (ii), either find
an ingenious way to define the Vt directly, or apply induction on |S|
and delete from S a separation {A, B } with A minimal. In the tree-
decomposition corresponding to S \ { {A, B } }, find the part to which
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the new part should be joined by orienting the tree edges as in the proof
of Lemma 12.3.4.

20.+ For the first statement, let H = Ht be a torso that is not 3-connected.
Show that there exists a cycle C = v1 . . . vkv1 with V (C) ⊆ V (H) (but
not necessarily C ⊆ H) such that, for all u, v, x, y ∈ V (C), the vertices
u and v separate x from y in C if and only if they do so in H. Choose
C maximal with respect to subdivision, and show that H = C. For
the second statement, build the graph up inductively from the torsos
of its tree-decomposition, chosen in an order that keeps the partial
decomposition tree connected.

21. Modify the proof given in the text that the k × k grid has tree-width
at least k− 1.

22. Existence was shown in Theorem 12.3.9; the task is to show uniqueness.

23.+ Work out an explicit description of the sets W ′
t similar to the definition

of the Wt, and compare the two.

24.− Induction.

25. Induction.

26. Use a result from Chapter 7.3. And don’t despair at a subgraph of W !

27.+ Show that the parts are precisely the maximal irreducible induced sub-
graphs of G.

28. Exercise 1212.

29. For the forward implication, interpret the subpaths of the decomposi-
tion path as intervals. Which subpath corresponds naturally to a given
vertex of G?

30. Follow the proof of Corollary 12.3.12.

31.+ They do. To prove it, show first that every connected graph G contains
a path whose deletion decreases the path-width of G. Then apply
induction on a suitable set of trees, deleting a suitable path in the
induction step.

32.− Compare KP with its analogue for the stronger notion.

33. To answer the first part, construct for each forbidden minor X a finite
set of graphs whose exclusion as topological minors is equivalent to
forbidding X as a minor. For the second part you may use Exercise 1010.

34.− Find the required paths one by one.

35.+ One direction is just a weakening of Lemma 12.4.5. For the other,
imitate the proof of Lemma 12.3.4.

36.+ Let X be an externally �-connected set of h vertices in a graph G, where
h and � are large. Consider a small separator S in G: clearly, most of
X will lie in the same component of G− S. Try to make these ‘large’
components, perhaps together with their separators S, into the desired
connected vertex sets.

37. A tangle of order k is a way of ‘directing’ the separations of order < k.
Direct them towards the set that Exercise 3535 provides as a ‘certificate’
for large tree-width.
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38. How much harder does it get to cover all the MX in G when X and the
graphs X ∈ X get larger? How does the problem change if we replace
X by the set of its minor-minimal elements?

39.+ Let S be a surface in which H can be embedded. You may use the fact
that the number of copies of H that can be disjointly embedded in S is
bounded by some number n ∈ N. To show that f cannot be defined for
k > n, consider a candidate � ∈ N for f(k) and extend a fixed drawing
of H on S to a graph H ′ on S that, after deleting any � vertices, still
has an H minor.

40.+ Find a counterexample.

41.+ For an example showing that non-trivial tree-decompositions are nec-
essary, use Exercise 3131 and the fact that no surface can accommodate
unboundedly many disjoint copies of K5. For the remaining exam-
ples, work with modifications of large grids or grid-like graphs on other
surfaces than the sphere.

42. Consult Chapter 7.2 for substructures to be found in graphs of large
chromatic number.

43. K5.

44. Derive the minor theorem first for connected graphs.

45. Use the separation properties of normal spanning trees proved in Chap-
ter 1.5. If desired, you may use any exercise from Chapter 8.

46. Choose suitable rays in H as branch sets and new edges to join them.

47. For the first question, consider in the Z×Z grid concentric cycles and
paths between them, and use the fact that the Z×N grid is planar.

48.+ The proof of the forward implication differs from the finite case in that
we now have to construct the decomposition tree together with the
parts. Try to do this inductively, starting with a maximal complete
subgraph H as the first part. To extend the decomposition into a
component C of G−H, consider a vertex in C with as many neighbours
in H as possible, and show that these include all the neighbours of C
in H.

49. For (i), assume that every finite subgraph of G has a chordal supergraph
of clique number at most k, and show that so does G. For (ii), add edges
to make G edge-maximal with the property that every finite subgraph
has tree-width at most k. Show that this supergraph of G must be
chordal.

50. Planarity. You may use any exercise in Chapter 8.
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d-dimensional, 30, 313

of a graph, G3, 290

cubic graph, 5

connectivity of, 79

1-factor in, 41, 52

flow number of, 150, 151, 157, 161,
162

multigraph, 44, 52, 157, 282

cuff, 339

Curran, S., 54

cut, 24

capacity of, 142, 143

-cycle duality, 104–106, 152–154

-edge, see bridge

even/odd, 233, 243, 244, 249

flow across, 141

fundamental, 26, 32, 231, 243

minimal, 25, 31, 56, 104

in network, 142

space, 25–28, 31, 32, 101, 105, 249

cutvertex, 11, 55–56

cycle, 7–8

-bond duality, 104–106, 152–154
directed, 134, 135
disjoint cycles, 44–45
double cover conjecture, 157, 160
edge-disjoint cycles, 190, 240, 271
expected number, 298
facial, 101
fundamental, 26, 32, 382
Hamilton, 160, 275–291

infinite, 278, 289
induced, 8, 23, 59, 89, 102, 127, 128,

243, 376, 380, 385
infinite, 106, 230–231, 249, 278
length, 8
long, 8, 30, 79, 134
in multigraphs, 29
non-separating, 59, 89, 102, 243, 385
odd, 17, 115, 128, 370, 376
with orientation, 152–154
short, 10, 117, 171–172, 299–301
space, 23–28, 31, 32, 59–62, 101–102,

105, 107, 109, 232–235, 243, 244,
248, 249, 374

topological, 232–235, 248, 249
threshold function, 311, 313

cyclomatic number, 23
cylinder, 362
Czipszer, J., 249

Dean, N., 291
de Bruijn, N.G., 201, 245
degeneracy, see colouring number
degree, 5

of an end, 204, 229, 231, 248
at a loop, 29
sequence, 278

deletion, 4
∆-system, 271
dense

graphs, 164, 167
linear order, 241

density
edge density, 164
of pair of vertex sets, 176
upper density, 189

depth-first search tree, 16, 31
Deuber, W., 258, 273
diameter, 8–9, 312

and girth, 8
and radius, 9

Diestel, R., 110, 193, 216, 228, 233,
235, 244–250, 291, 340, 341, 355,
356

difference of graphs, 4, 86
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digon, see double edge
digraph, see directed graph
Dilworth, R.P., 51, 53, 241, 372, 386
Dirac, G.A., 194, 276
directed

cycle, 134, 135
edge, 28
graph, 28, 49–50, 124, 135, 246, 376
path, 49, 134, 375, 376

direction, 140
disc, 361
disconnected, 10
disjoint graphs, 3
dispersed, 239
distance, 8
dominated, 238, 249
double

counting, 91, 109, 130–131, 298, 309
edge, 29, 103
ray, 196, 240, 250, 291
wheel, 269–270

down (-closure), 15
drawing, 2, 83, 92–96, 381

convex, 99, 109
straight-line, 99, 107

dual
abstract, 105–106, 108
and connectivity, 108
plane, 103–105, 108

duality
cycles and bonds, 26–28, 104–106,

152
flows and colourings, 152–155, 378
for infinite graphs, 106, 109, 110
of plane multigraphs, 103–106
tree-decompositions and brambles,

322
duplicating a vertex, 129, 166

edge, 2
crossing a partition, 24
directed, 28
double, 29
of a multigraph, 28
plane, 86
space, 23
topological, 226
X–Y edge, 2

edge-chromatic number, see chromatic
index

edge colouring, 112, 119–121, 253, 259
and flow number, 151
and matchings, 135

�-edge-connected, 12

edge-connectivity, 12, 46, 67, 79, 134,
150, 197

edge contraction, 18

and 3-connectedness, 58

vs. minors, 19

in multigraph, 29

edge cover, 136

edge density, 5, 6, 164

and average degree, 5

forcing minors, 170

forcing path linkages, 71–77

forcing subgraphs, 164–169

forcing topological minors, 70, 169

and regularity lemma, 176, 191

edge-disjoint spanning trees, 46–49, 52,
197

edge-maximal, 4

vs. extremal, 165, 173

without MK5, 174

without TK3,3, 191

without TK4, 173

without TK5, TK3,3, 100

edge space, 23, 31, 101, 232

Edmonds, J., 53, 225, 356

embedding

of bipartite graphs, 263–265

of graphs, 21

k-near embedding, 340

in the plane, 92, 95–110

in S2, 85–86, 93

self-embedding, 349

in surface, 91, 109, 341–349, 353, 356,
363

empty graph, 2, 11

end

degree, 204, 229, 231, 248

in subspaces, 229, 231, 248–249

of edge, 2, 28

-faithful spanning tree, 242

of graph, 49, 106, 195, 202–203, 204–
212, 226–244, 248–249

of path, 6

space, 226–237, 242

thick/thin, 208–212, 238

of topological space, 242

endpoints of arc, 84, 229

endvertex, 2, 28

terminal vertex, 28

enumeration, 357

equivalence

in definition of an end, 202, 242

of graph invariants, 190

of graph properties, 270
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of planar embeddings, 92–96, 106,
107

of points in topological space, 84, 361
in quasi-order, 350

Erdős, P., 45, 53, 117, 137, 167, 169,
185, 192, 193, 194, 201, 213, 216,
217, 244, 245, 246–247, 249, 250,
258, 271, 272, 273, 277, 291, 293–
294, 296, 299–301, 306, 308, 314,
387

Erdős-Menger conjecture, 217, 247
Erdős-Pósa property, 44, 52, 338–339,

353
Erdős-Pósa theorem, 45, 53

edge version, 190, 271
generalization, 338–339

Erdős-Sós conjecture, 169, 189–190, 193
Erdős-Stone theorem, 164, 167–168,

186–187, 193
Euler, L., 22, 32, 91

characteristic, 363
formula, 91–92, 106, 363, 376
genus, 343, 363–366
tour, 22, 244, 378, 385

Eulerian graph, 22
infinite, 233, 244, 248, 249–250

even
degree, 22, 39
graph, 150, 151, 161, 248

event, 295
evolution of random graphs, 305, 313,

314
exceptional set, 176
excluded minors, see forbidden minors
existence proof, probabilistic, 137, 293,

297, 299–301
expanding a vertex, 129
expectation, 297–298, 307
exterior face, see outer face
external connectivity, 329, 352, 353
extremal

bipartite graph, 189
vs. edge-maximal, 164–165, 173
graph theory, 163–194, 248–249
graph, 164–166
without MK5, 174
without TK3,3, 191
without TK4, 173

face, 86, 363
central face, 342
of hexagonal grid, 342

facial cycle, 101
factor, 33

1-factor, 33–43, 52, 216–226, 238, 241

1-factor theorem, 39, 41, 52, 53, 80,
81, 225, 247

2-factor, 39

k-factor, 33

factor-critical, 41, 225, 242, 371, 384

Fajtlowicz, S., 193

fan, 66, 238

-version of Menger’s theorem, 66, 238

finite

adhesion, 340, 341

graph, 2

set, 357

tree-width, 341

finite intersection property, 201

first order sentence, 303, 314

first point on frontier, 84

five colour theorem, 112, 137, 157

list version, 122, 138

five-flow conjecture, 156, 157, 162

Fleischner, H., 281, 289, 291, 387

flow, 139–162, 141–142

2-flow, 149

3-flow, 150, 157, 161

4-flow, 150–151, 156–157, 160, 161,
162

6-flow theorem, 157–159, 161, 162

k-flow, 147–151, 156–159, 160, 161,
162

H-flow, 144–149, 160

-colouring duality, 152–155, 378

conjectures, 156–157, 161, 162

group-valued, 144–149, 160, 161–162

integral, 142, 144

network flow, 141–144, 160, 161, 378

number, 147–151, 156, 160, 161

in plane graphs, 152–155

polynomial, 146, 149, 162

total value of, 142

forbidden minors

and chromatic number, 172–175

expressed by, 327, 340–349

in infinite graphs, 216, 244, 245, 340–
341

minimal set of, 341, 352, 355

planar, 328

and tree-width, 327–341

forcibly hamiltonian, see hamiltonian
sequence

forcing

MKr, 169–175, 192–194, 340, 353

MKℵ0 , 341, 354

TK5, 174, 193

TKr, 70, 169–170, 172, 175, 193–194
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edge-disjoint spanning trees, 46
Hamilton cycles, 276–278, 281, 289
high connectivity, 12
induced trees, 169
large chromatic number, 117–118
linkability, 70–72, 81
long cycles, 8, 30, 79, 134, 275–291
long paths, 8, 30
minor with large minimum degree,

171, 193
short cycles, 10, 171–172, 175, 301
subgraph, 15, 163–169, 175–194
tree, 15, 169
triangle, 135, 271

Ford, L.R. Jr., 143, 161
forest, 13, 173, 327

minor, 355
partitions, 48–49, 53, 250
plane, 88, 106
topological, 250
tree-width of, 327, 351

four colour problem, 137, 193
four colour theorem, 112, 157, 161, 172,

174, 191, 278, 290
history, 137

four-flow conjecture, 156–157
Fräıssé, R., 246
Frank, A., 80, 161
Freudenthal, H., 248

compactification, 227, 248
ends, 242

Frobenius, F.G, 53
from . . . to, 6
frontier, 84, 361
Fulkerson, D.R., 122, 143, 161
fundamental

circuit, 231, 233, 243
cocycle, 26, 32
cut, 26, 32, 231, 243
cycle, 26, 32

Gale, D., 38
Gallai, T., 32, 43, 50, 52, 53, 54, 81,

192, 238, 249
Gallai-Edmonds matching theorem, 41–

43, 53, 225, 247
Galvin, F., 125, 138
Gasparian, G.S., 129, 138
Geelen, J., 356
generated, 233
genus

and colouring, 137
Euler genus, 343, 363–366
of a graph, 106, 353

orientable, 353

of a surface, 348

geometric dual, see plane dual

Georgakopoulos, A., 248

Gibbons, A., 161

Gilmore, P.C., 136

girth, 8

and average degree, 9–10, 301

and chromatic number, 117, 137,
299–301

and connectivity, 81, 237, 301

and diameter, 8

and minimum degree, 8, 10, 30, 171,
301

and minors, 170–172, 191, 193

and planarity, 106, 237

and topological minors, 172, 175

Godsil, C., 32

Golumbic, M.C., 138

good

characterization, 341, 356

pair, 316, 347

sequence, 316

Gorbunov, K.Yu., 355

Göring, F., 81

Graham, R.L., 272

graph, 2–4, 28, 30

homogeneous, 215, 240, 246

invariant, 3, 30, 190, 297

minor theorem, 315, 341–348, 342,
349, 354, 355

for trees, 317–318

partition, 48

plane, 86–92, 103–106, 112–113, 122–
124, 152–155

process, 314

property, 3, 212, 270, 302, 312, 327,
342, 356

simple, 30

universal, 212–216, 213, 240, 246

graphic sequence, see degree sequence

graph-theoretical isomorphism, 93–94

greedy algorithm, 114, 124, 133

grid, 107, 208, 322

canonical subgrid, 342

hexagonal grid, 208, 209, 342–346

minor, 240, 324, 328–338, 354

theorem, 328

tree-width of, 324, 351, 354

Grötzsch, H., 113, 137, 157, 161

group-valued flow, 144–149, 160, 161–
162

Grünwald, T., see Gallai

Gusfield, D., 53
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Guthrie, F., 137

Gyárfás, A., 169, 190, 194

Hadwiger, H., 172, 193

conjecture, 172–175, 191, 193

Hajnal, A., 244, 245, 249, 250, 258,
272, 273

Hajós, G., 118, 137, 175

conjecture, 175, 193

construction, 117–118

Haken, W., 137

Halin, R., 80, 206, 208, 244, 245–246,
354–355, 356

Hall, P., 36, 51, 53, 224

Hamilton, W.R., 290

Hamilton circle, 278, 289, 291

Hamilton cycle, 275–291

in G2, 281–289

in G3, 290

in almost all graphs, 305

and degree sequence, 278–281, 289

and the four colour theorem, 278

and 4-flows, 160, 278

in infinite graph, see Hamilton circle

and minimum degree, 276

in planar graphs, 278

power of, 289

sufficient conditions, 275–281

Hamilton path, 275, 280–281, 289, 290

hamiltonian

graph, 275

sequence, 279

handle, 362, 364

Harant, J., 81

head, see terminal vertex

Heawood, P.J., 137, 161

Heesch, H., 137

height, 15

hexagonal grid, 208, 209, 342–346

Higman, D.G., 316, 354

Hoffman, A.J., 136

hole, 138

Holz, M., 247

homogeneous graphs, 215, 240, 246

Hoory, S., 10, 32

Huck, A., 244

hypergraph, 28

incidence, 2

encoding of planar embedding, see
combinatorial isomorphism

map, 29

matrix, 27

incident, 2, 88

incomparability graph, 242

increasing property, 305, 313

independence number, 126–133

and connectivity, 276–277

and covers, 50, 52

and Hamilton cycles, 276–277

and long cycles, 134

and perfection, 132

of random graph, 296, 312

independent

edges, 3, 33–43, 52

events, 295

paths, 7, 66–67, 677–69, 370

vertices, 3, 50, 124, 296

indicator random variable, 298, 387

induced subgraph, 3–4, 68, 126, 128,
132, 376

of almost all graphs, 302, 313

cycle, 8, 23, 31, 59, 89, 102, 127, 128,
249, 376, 380, 385

of all imperfect graphs, 129, 135

of all large connected graphs, 268

in Ramsey theory, 252, 258–268, 271

in random graph, 296, 313

tree, 169, 190

induction

transfinite, 198–199, 359

Zorn’s Lemma, 198, 237, 360

inductive ordering, 199

infinite

graphs, 2, 19, 31, 51, 110, 189, 195–
250, 253, 278, 289, 291, 305–306,
340–341, 349, 354, 356

sequence of steps, 197, 206

set, 357

basic properties, 197–198

infinitely connected, 197, 237, 244

infinity lemma, 200, 245, 383

initial

segment, 358

vertex, 28

inner

face, 86

point, 226

vertex, 6

integral

flow, 142, 144

function, 142

interior

of an arc, 84

of a path, P̊ , 6–7

internally disjoint, see independent

intersection, 3
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graph, 352

interval graph, 127, 136, 352

into, 319

invariant, 3

irreducible graph, 352

Irving, R.W., 53

isolated vertex, 5, 313

isomorphic, 3

isomorphism, 3

of plane graphs, 92–96

isthmus, see bridge

Itai, A., 54

Jaeger, F., 162

Janson, S., 313

Jensen, T.R., 136, 162, 355

Johnson, D., 356

join, 2

Jónsson, B., 246

Jordan, C., 84, 86

Jordan Curve Theorem, 84, 109

Jung, H.A., 70, 194, 205, 239, 245

Kahn, J., 138

Karoński, M., 314

Kawarabayashi, K., 193

Kelmans, A.K., 102, 109–110

Kempe, A.B., 137, 290

kernel

of directed graph, 124, 135

of incidence matrix, 27

Kirchhoff’s law, 139, 140

Klein four-group, 151

Kleitman, D.J., 137

knotless graph, 349

knot theory, 162

Kochol, M., 149, 162

Kohayakawa, Y., 194

Kollár, J., 192

Komlós, J., 192, 194, 272, 289, 291

König, D., 35, 53, 119, 200, 245

duality theorem, 35, 49, 51, 52, 63,
127, 136, 223

infinity lemma, 200, 245

Königsberg bridges, 21

Korman, V., 226

Kostochka, A.V., 170, 192, 273

Kriesell, 53

Kruskal, J.A., 317, 354, 389

Kühn, D., 81, 172, 175, 193, 194, 216,
233, 246–250

Kuratowski, C., 96–101, 109, 238, 249,
356

-theorem for higher surfaces, 342
-type characterization, 107, 270, 341–

342, 355–356
Kuratowski set

of graphs, 341–342, 355
of graph properties, 270

Lachlan, A.H., 215, 246
large wave, 218
Larman, D.G., 70
Latin square, 135
Laviolette, F., 250
Leader, I.B., 245, 246
leaf, 13, 15, 31, 204
lean tree-decomposition, 325
Lee, O., 54
length

of a cycle, 8
of a path, 6, 8
of a walk, 10

level, 15
limit, 199–200, 358

wave, 218
line (edge), 2

graph, 4, 112, 136, 191
segment, 84

linear
algebra, 23–28, 59–61, 101–102, 132
decomposition, 339–340
programming, 161

Linial, N., 10, 32
linkable, 219
linked

by an arc, 84
by a path, 6
k-linked, 69–77, 80, 81, 170

vs. k-connected, 69–71, 80, 81
tree-decomposition, 325
vertices, 6, 84

list
-chromatic index, 121, 124–126, 135,

138
-chromatic number, see choice num-

ber
colouring, 121–126, 137–138

bipartite graphs, 124–126, 135
Brooks’s theorem, 137
conjecture, 124, 135, 138

k-list-colourable, see k-choosable
Liu, X., 138
Lloyd, E.K., 32
locally finite, 196, 248, 249
logarithms, 1
loop, 28
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Lovász, L., 53, 129, 132, 137, 138, 192
�Luczak, T., 313, 314

MacLane, S., 101, 109–110
Mader, W., 12, 32, 67–69, 80, 81, 170,

190, 192, 193, 355
Magnanti, T.L., 161
Maharry, J., 193
Mani, P., 70
map colouring, 111–113, 133, 136, 152
Markov chain, 314
Markov’s inequality, 297, 301, 307, 309
marriage theorem, 35–36, 39, 51, 53,

223–224, 238, 371
stable, 38, 53, 126, 383

matchable, 41, 223
matching, 33–54

in bipartite graphs, 34–39, 127
and edge colouring, 135
in general graphs, 39–43
in infinite graphs, 222–226, 241–242,

247–248
partial, 224, 241

stable, 38, 51, 52, 126
of vertex set, 33

Máté, A., 250, 272
matroid theory, 54, 110, 356
max-flow min-cut theorem, 141, 143,

160, 161
maximal, 4

acyclic graph, 14
element, 358, 360
planar graph, 96, 101, 107, 109, 174,

191, 374
plane graph, 90, 96
wave, 218

maximum degree, 5
bounded, 184, 256
and chromatic number, 115
and chromatic index, 119–121
and list-chromatic index, 126, 138
and radius, 9
and Ramsey numbers, 256–257
and total chromatic number, 135

Menger, K., 53, 62–67, 79, 81, 160,
206, 216–226, 241, 246–247

theorem of, 62–67, 79, 81, 160, 206–
207, 216, 217, 238, 246–247

k-mesh, 329
metrizable, 228, 242
Milgram, A.N., 50, 52, 53, 54
Milner, E.C., 245
minimal, 4

connected graph, 14

k-connected graph, 80

cut, 25, 31, 56, 104, 152

element, 358

non-planar graph, 107

separator, 78

set of forbidden minors, 341, 353,
355–356

minimum degree, 5

and average degree, 5

and choice number, 121–122

and chromatic number, 115, 116–117

and circumference, 8

and connectivity, 12, 80, 249

and edge-connectivity, 12

forcing Hamilton cycle, 276, 289

forcing long cycles, 8

forcing long paths, 8, 30

forcing short cycles, 10, 171–172, 175,
301

forcing trees, 15

and girth, 8, 9, 10, 170–172, 193, 301

and linkability, 71

minor, 18–21, 20, 169–172

K3,3, 109, 191

K4, 173, 327

K5, 174, 193, 352

K5 and K3,3, 96–101

K6, 175

Kr, 170, 171, 172, 190, 191, 193–194,
313, 340, 353, 354

Kℵ0 , 341, 354

of all large 3- or 4-connected graphs,
269–270

-closed graph property, 327, 341–349,
352

excluded, see forbidden

forbidden, 172–175, 216, 244, 327–
349, 352, 354–356

forced, 171, 172, 169–175

incomplete, 192

infinite, 197, 207–208, 216, 240, 244,
245, 246, 248–249, 354, 356

of multigraph, 29

Petersen graph, 156

and planarity, 96–101, 107

proper, 349

relation, 20, 31, 207, 216, 240, 246,
270, 321, 342

theorem, 315, 341–349, 342, 354–355

proof, 342–348

for trees, 317–318

vs. topological minor, 20–21, 97

and WQO, 315–356

(see also topological minor)
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Möbius

crown, 269–270

ladder, 174

strip, 362

Mohar, B., 109, 137, 193, 356

moment

first, see Markov’s inequality

second, 306–312

monochromatic (in Ramsey theory)

induced subgraph, 257–268

(vertex) set, 253–255

subgraph, 253, 255–257

Moore bound, 10, 32

multigraph, 28–30

cubic, 44, 52, 157, 282

list chromatic index of, 138

plane, 103

multiple edge, 28

multiplicity, 248

Murty, U.S.R., 291

Myers, J.S., 192

Nash-Williams, C.St.J.A., 46, 49, 53,
235, 244, 246, 247, 249–250, 291,
354

k-near embedding, 340

nearly planar, 340, 341

Negropontis, S., 250

neighbour

of a set of vertices, 5

of a vertex, 3

Nešetřil, J., 272, 273

network, 141–144

theory, 161

Niedermeyer, F., 244, 248

node (vertex), 2

normal

tree, 15–16, 31, 155, 160, 271, 389

in infinite graphs, 205, 228, 232,
239, 242, 245, 341, 356

ray, 205, 239, 384

nowhere

dense, 49

zero, 144, 162

null, see empty

obstruction

to small tree-width, 322–324, 328–
329, 354, 355

octahedron, 12, 17, 355

odd

component, 39, 238

cycle, 17, 115, 128, 135, 138, 370, 376

degree, 5, 290, 387

on, 2

one-factor theorem, 39, 53, 81, 225

open Euler tour, 244

Oporowski, B., 269, 270, 273, 354

order

of a bramble, 322

of a graph, 2

of a mesh or premesh, 329

partial, 15, 20, 31, 50–51, 53, 136,
350, 357, 358, 360

quasi-, 316

of a separation, 11

tree-, 15, 31

type, 358

well-quasi-, 315–317, 342, 350, 354

ordinal, 358–359

orientable surface, 353

plane as, 153

orientation, 28, 124, 134, 161, 190, 376

cycle with, 152–153

oriented graph, 28, 289

Orlin, J.B., 161

Osthus, D., 81, 172, 175, 193, 194

outer face, 86, 93–94, 107

outerplanar, 107

Oxley, J.G., 93, 110, 250, 269, 270, 273

Oxtoby, J.C., 250

packing, 33, 44–49, 52, 235, 250

Palmer, E.M., 313

parallel edges, 29

parity, 5, 39, 42, 290

part of tree-decomposition, 319

partially ordered set, 50–51, 53, 241,
358, 360

r-partite, 17

partition, 1, 48, 253

pasting, 127, 173, 174, 191, 325, 352

path, 6–10, 196

a–b-path, 7, 66

A–B-path, 7, 62–67, 79, 216–223, 237

H-path, 7, 57, 67–69, 79, 80, 81

alternating, 34–35, 37, 63

between given pairs of vertices, 69–77

-connected, 248, 384

cover, 49–51, 50, 223, 372

-decomposition, 339, 352

directed, 49

disjoint paths, 50, 62–67, 69–77, 217–
222

edge-disjoint, 46, 66–67, 68–69

-hamiltonian sequence, 280–281
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independent paths, 7, 66–67, 67–69,
79, 80, 370

induced, 270

length, 6

linkage, 69–77, 81, 373

long, 8

-width, 352, 355

perfect, 126–133, 135–136, 137–138,
226

graph conjectures, 128

graph theorems, 128, 129, 135, 138

matching, see 1-factor

strongly, 226, 242

weakly, 226, 242

Petersen, J., 39, 41

Petersen graph, 156–157

piecewise linear, 83

planar, 96–110, 112–113, 122, 216, 328,
338, 341

embedding, 92, 96–110

nearly planar, 340, 341

planarity criteria

Kelmans, 102

Kuratowski, 101

MacLane, 101

Tutte, 109

Whitney, 105

plane

dual, 103

duality, 103–106, 108, 152–155

graph, 86–92

multigraph, 103–106, 108, 152–155

triangulation, 90, 91, 161, 325

Plummer, M.D., 53

Podewski, K.P., 247, 248

point (vertex), 2

pointwise greater, 279

Polat, N., 248

polygon, 84

polygonal arc, 84, 85

Pósa, L., 45, 53, 258, 273

power

of a graph, 281

set, 357

predecessor, 358

preferences, 38, 51, 126

premesh, 329

Prikry, K., 245

probabilistic method, 293, 299–302, 314

projective plane, 355

proper

minor, 349

separation, 11

subgraph, 3

wave, 218

property, 3, 270, 302

of almost all graphs, 302–306, 311–
312

increasing, 305

minor-closed, 327, 352

Proskurowski, A., 355

pseudo-random graph, 272

Pym, J.S., 223, 247

quasi-ordering, 315–317, 342, 350, 354

radius, 9

and diameter, 9, 30

and maximum degree, 9

Rado, R., 245, 246, 250, 272

graph, 214–215, 240, 241, 246, 306

Rado’s selection lemma, 245

Ramsey, F.P., 252–255

Ramsey

graph, 258

-minimal, 257–258

numbers, 253, 255, 271, 272–273,
296, 314

Ramsey theory, 251–273

and connectivity, 268–270

induced, 258–268

infinite, 253–254, 271, 272

random graph, 170, 175, 255, 293–314,
295

evolution, 305, 311, 314

infinite, 305–306

process, 314

uniform model, 314

random variable, 297

indicator r.v., 298, 387

ray, 196, 200, 204, 206, 239, 240, 242,
341

double, 196, 240, 250, 291

normal, 205, 239, 384

spanning, 291

recursive definition, 359–360

reducible configuration, 137

Reed, B.A., 53, 355

refining a partition, 1, 178–182

region, 84–86

on S2, 86

regular, 5, 37, 39, 135, 289

ε-regular

pair, 176, 191

partition, 176

regularity

graph, 184
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inflated, Rs, 256
lemma, 164, 175–188, 176, 191, 193–

194, 272
Rényi, A., 213, 246, 306, 308, 314
Richardson, M., 135
Richter, B., 356
rigid-circuit, see chordal
Ř́ıha, S., 291
ring, 342–343
Robertson, N., 53, 128, 137, 138, 162,

175, 193, 321, 328, 340, 341, 342,
354–355, 356

Rödl, V., 194, 256, 258, 272–273
Rónyai, L., 192
root, 15
rooted tree, 15, 317, 350
Rothschild, B.L., 272
Royle, G.F., 32
Ruciński, A., 313, 314

Salazar, G., 356
Sanders, D.P., 137
Sárközy, G.N., 289, 291
saturated, see edge-maximal
Sauer, N., 246
Schelp, R.H., 210
Schoenflies, A.M., 86
Schrijver, A., 53, 80, 81, 138, 161
Schur, I., 271
Scott, A.D., 194, 246
second moment, 306–312, 307
self-minor conjecture, 349, 353, 354
semiconnected, 235–236
separate

a graph, 11, 62, 66, 67
the plane, 84

separating circle, 362, 365
separation, 11

compatible, 351
order of, 11
and tree-decompositions, 320, 351,

353
separator, 11
sequential colouring, see greedy algo-

rithm
series-parallel, 191
set

k-set, 1
countable, 357
countably infinite, 357
finite, 357
infinite, 357
power set, 357
system, see hypergraph

well-founded, 358

Seymour, P.D., 53, 128, 137, 138, 157,
162, 175, 193, 289, 291, 321, 322,
328, 340, 341, 342, 349, 354, 355,
356

Shapley, L.S., 38

Shelah, S., 244, 245, 246, 247

Shi, N., 246

shift-graph, 271

Simonovits, M., 53, 192, 194, 272

simple

basis, 101, 109

graph, 30

simplicial tree-decomposition, 244, 325,
352, 355

six-flow theorem, 157, 162

small wave, 218

snark, 157

planar, 157, 161, 278

Sós, V., 169, 189, 190, 192

spanned subgraph, 4

spanning

ray, 291

subgraph, 4

trees, 14, 16

edge-disjoint, 46–49

end-faithful, 242

normal, 15–16, 31, 205, 228, 232,
239, 242, 245, 341, 356

number of, 313

topological, 49, 231–237, 242, 243,
250, 385

sparse graphs, 163, 169–172, 191, 194,
255–256, 273

Spencer, J.H., 272, 314

Sperner’s lemma, 51

sphere S2, 86, 93–95, 361

spine, 196

Sprüssel, Ph., 32

square

of a graph, 281–289, 290, 291

Latin, 135

stability number, see independence
number

stable

marriage, 38, 53, 126, 383

matching, 38, 51, 52, 126

set, 3

standard

basis, 23

subspace, 227, 231, 236, 243

star, 17, 190, 258, 270

centre of, 17

induced, 268
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infinite, 204
-shape, 374

star-comb lemma, 204, 205
Steffens, K., 224, 247
Stein, M., 247, 248, 250
Steinitz, E., 109
stereographic projection, 85
Stillwell, J., 109
Stone, A.H., 167, 183
straight line segment, 84
strip neighbourhood, 88, 362
strong core, 376
strongly perfect, 226, 242
subcontraction, see minor
subdividing vertex, 20
subdivision, 20
subgraph, 3

of all large k-connected graphs, 268–
270

forced by edge density, 164–169, 175–
188, 189, 190, 191

of high connectivity, 12
induced, 3
of large minimum degree, 6, 115, 134
spanning, 4

successor, 358
Sudakov, B., 273
sum

of edge sets, 23
of flows, 149
of thin families, 232

supergraph, 3
suppressing a vertex, 29
surface, 339, 342, 343, 361–367

surgery on, 364
surgery on surfaces, 364

capping, 364
cutting, 364

symmetric difference, 23, 34, 64
system of distinct representatives, 51
Szabó, T., 192
Szekeres, G., 271
Szemerédi, E., 176, 192, 194, 256, 272,

289, 291
see also regularity lemma

tail
of an edge, see initial vertex
of a ray, 196, 237

Tait, P.G., 137, 290–291
tangle, 353, 355
Tarsi, M., 137
teeth, 196
terminal vertex, 28

thick/thin end, 208–212, 238

thin

end, 208–212, 238

family, 232

sum, 232

Thomas, R., 53, 71, 81, 128, 137, 138,
162, 175, 193, 269, 270, 273, 291,
322, 325, 340, 341, 354, 355, 356

Thomason, A.G., 170, 192, 305

Thomassé, S., 246

Thomassen, C., 80, 109, 122, 137, 138,
171, 193, 244, 247, 291, 355, 356,
365

three colour theorem, 113

three-flow conjecture, 157

threshold function, 305–312, 313, 314

Toft, B., 136, 162

topological

connectedness, 229, 236

cycle space, 232–235, 248, 249

edge, 226

end degree, 229

end space, 226–237, 242

Euler tour, 244

forest, 250

isomorphism, 93, 94, 104

spanning tree, 49, 231–237, 242, 243,
250, 385

topological minor, 20

K3,3, 92, 97, 100, 101, 109, 191

K4, 59, 173–174, 191, 327

K5, 92, 97, 100, 101, 109, 174, 193,
352

K5 and K3,3, 92, 97, 100, 101, 107,
109

Kr, 70, 165, 169–172, 175, 190, 191,
193–194, 252, 268, 340

Kℵ0 , 197, 205, 238, 241, 341, 354

of all large 2-connected graphs, 269

forced by average degree, 70, 169–172

forced by chromatic number, 175

forced by girth, 172, 175

induced, 170

as order relation, 20

vs. ordinary minor, 20, 97

and planarity, 92, 96–101

tree (induced), 169

and WQO of general graphs, 350

and WQO of trees, 317

torso, 339–341

total chromatic number, 135

total colouring, 135

conjecture, 135, 138

total value of a flow, 142
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touching sets, 322

t-tough, 277–278, 290

toughness conjecture, 278, 289, 290, 291

tournament, 289

transfinite induction, 198–199, 359

transitive graph, 52

travelling salesman problem, 290

tree, 13–16

binary, 203, 238

cover, 46–49

as forced substructure, 15, 169, 190

level of, 15

normal, 15–16, 31, 155, 160, 389

infinite, 205, 228, 232, 239, 242,
245, 341, 356

-order, 15

-packing, 46–48, 52, 53, 235, 249, 250

path-width of, 352

spanning, 14, 16, 198, 205

topological, 49, 231–237, 242, 243,
250, 385

threshold function for, 312

well-quasi-ordering of trees, 317–318

tree-decomposition, 193, 319–326, 340,
341, 351, 354–355

induced on minors, 320

induced on subgraphs, 320

lean, 325

obstructions, 322–324, 328–329, 354,
355

part of, 319

simplicial, 325, 339, 352, 355

width of, 321

tree-packing theorem, 46, 235

tree-width, 321–341

and brambles, 322–324, 353, 355

compactness theorem, 354

duality theorem, 322–324

finite, 341

and forbidden minors, 327–341

of grid, 324, 351, 354

of a minor, 321

obstructions to small, 322–324, 328–
329, 354, 355

of a subdivision, 351

triangle, 3

triangulated, see chordal

triangulation, see plane triangulation

trivial graph, 2

Trotter, W.T., 256, 272

Turán, P., 165

theorem, 165, 192, 256

graph, 165–169, 192, 379

Tutte, W.T., 39, 46, 53, 57, 58, 59, 80,
102, 109, 144, 147, 155, 161–162,
225, 235, 250, 278, 291

condition, 39–40

cycle basis theorem, 59, 249

decomposition of 2-connected graphs
into 3-connected pieces, 57

1-factor theorem, 39, 53, 225

flow conjectures, 156–157, 162

planarity criterion, 102, 109

polynomial, 162

tree-packing theorem, 46, 53–54, 235,
250

wheel theorem, 58–59, 80

Tychonoff’s theorem, 201, 245, 381

ubiquitous, 207, 240, 246

conjecture, 207, 240, 246

unbalanced subgraph, 312, 313, 314

unfriendly partition conjecture, 202,
245

uniformity lemma, see regularity lemma

union, 3

unit circle S1, 84, 361

universal graphs, 212–216, 213, 240,
246

unmatched, 33

up (-closure), 15

upper

bound, 358

density, 189

Urquhart, A., 137

valency (degree), 5

value of a flow, 142

variance, 307

Veldman, H.J., 291

Vella, A., 249

vertex, 2

-chromatic number, 111

colouring, 111, 114–118

-connectivity, 11

cover, 34, 49–51

cut, see separator

duplication, 166

expansion, 129

of a plane graph, 86

space, 23

-transitive, 52, 215, 239

Vince, A., 314

Vizing, V.G., 119, 137, 138, 376, 377,
380

Voigt, M., 137–138
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vortex, 340, 353

Vušković, K., 138

Wagner, K., 101, 109, 174, 190, 191,
193, 354–355

‘Wagner’s Conjecture’, see graph minor
theorem

Wagner graph, 174, 325–326, 352

walk, 10

alternating, 64

closed, 10

length, 10

wave, 217, 241

large, 218

limit, 218

maximal, 218

proper, 218

small, 218

weakly perfect, 226, 242

well-founded set, 358
well-ordering, 358, 386

theorem, 358
well-quasi-ordering, 316–356
Welsh, D.J.A., 162
wheel, 59, 270

theorem, 58–59, 80
Whitney, H., 81, 96, 105
width of tree-decomposition, 321
Wilson, R.J., 32
Winkler, P., 314
Wollan, P., 71, 81
Woodrow, R.E., 215, 246

Yu, X., 54, 291

Zehavi, A., 54
Zorn’s lemma, 198, 237, 360
Zykov, A.A., 192
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The entries in this index are divided into two groups. Entries involving
only mathematical symbols (i.e. no letters except variables) are listed on
the first page, grouped loosely by logical function. The entry ‘[ ]’, for
example, refers to the definition of induced subgraphs H [U ] on page 4
as well as to the definition of face boundaries G [ f ] on page 88.

Entries involving fixed letters as constituent parts are listed on the
second page, in typographical groups ordered alphabetically by those
letters. Letters standing as variables are ignored in the ordering.

∅ 2
= 3

 3
⊆ 3
� 317, 357
� 20

+ 4, 23, 144
− 4, 86, 144
∈ 2
� 86⋃

1
∪,∩ 3
∗ 4

� � 1, 15
� � 1, 15
| | 2, 142, 226
‖ ‖ 2, 176
[ ] 4, 88, 226
[ ]k, [ ]<ω 1, 316

〈 , 〉 23
/ 18, 19, 29
C⊥, F⊥, . . . 23
0, 1, 2, . . . 1
(n)k, . . . 298
E(v), E′(w), . . . 2
E(X, Y ), E′(U, W ), . . . 2
(e, x, y), (u, v), . . . 140, 226
→
E,

→
F ,

→
C , . . . 140, 152, 154

←e,
←
E,

←
F , . . . 140

f(X, Y ), g(U, W ), . . . 140
G∗, F ∗, →e ∗, . . . 103, 152
G2, H3, . . . 281
G, X, P, . . . 4, 140, 227, 327
(S, S), . . . 142
xy, x1 . . . xk, . . . 2, 7
xP, Px, xPy, xPyQz, . . . 7
P̊ , x̊Q, F̊ , . . . 7, 84, 226
xTy, . . . 14
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F2 23
N 1, 357
Zn 1

CG 39
C(G) 23, 232
C∗(G) 25, 249
E(G) 23
G(n, p) 294
KP , KP(S) 341, 342
PH 308
Pi,j 302
V(G) 23

Ck, C(S, ω), Ĉε(S, ω) 8, 227
E(G) 2
E(X) 297
F (G) 86
Forb� 327
G(H1, H2) 259
Kn 3, 197
Kn1,...,nr 17
Kr

s 17
L(G) 4
MX 19
N(v), N(U) 5
N+(v) 124
P 295
P k 6
PG 134
R(H) 255
R(H1, H2) 255
R(k, c, r) 255
R(r) 253
Rs 184
Sn 85, 361
T2 203
TX 20
T r−1(n) 165
V (G) 2

ch(G) 121
ch′(G) 121

col(G) 114
d(G) 5
d(v) 5
d+(v) 124
d(x, y) 8
d(X, Y ) 176
diamG 8
ex(n, H) 165
f∗(v) 103
g(G) 8
i 1
init(e) 28
log, ln 1
pw(G) 352
q(G) 39
radG 9
tr−1(n) 165
ter(e) 28
tw(G) 321
ve, vxy, vU 18, 19
v∗(f) 103

∆(G) 5

α(G) 126
δ(G) 5
ε(G), ε(S) 5, 363
κ(G) 11
κG(H) 68
λ(G) 12
λG(H) 68
µ 307
π : S2 � { (0, 0, 1) }→R2 85
σk : Z→Zk 147
σ2 307
ϕ(G) 147
χ 111, 363
χ′(G) 112
χ′′(G) 135
ω(G), ω 126, 358
Ω(G) 203

ℵ0, ℵ1 357
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