
Intel ® Math Kernel
Library
Reference Manual

Copyright © 1994-2002, Intel Corporation
All Rights Reserved
Issued in U.S.A.
Document Number 630813-6001

Intel® Math Kernel Library
Reference Manual
Document Number: 630813-6001

World Wide Web: http://developer.intel.com

Revision History

Revision Revision History Date

-001 Original Issue. 11/94

-002 Added functions crotg, zrotg. Documented versions of functions ?her2k,
?symm, ?syrk, and ?syr2k not previously described. Pagination revised.

5/95

-003 Changed the title; former title: “Intel BLAS Library for the Pentium® Processor
Reference Manual.” Added functions ?rotm,?rotmg and updated Appendix C.

1/96

-004 Documents Math Kernel library release 2.0 with the parallelism capability.
Information on parallelism has been added in Chapter 1 and in section “BLAS
Level 3 Routines” in Chapter 2.

11/96

-005 Two-dimensional FFTs have been added.
C interface has been added to both one- and two-dimensional FFTs.

8/97

-006 Documents Math Kernel Library release 2.1. Sparse BLAS section has been
added in Chapter 2.

1/98

-007 Documents Math Kernel Library release 3.0. Descriptions of LAPACK routines
(Chapters 4 and 5) and CBLAS interface (Appendix C) have been added.
Quick Reference has been excluded from the manual; MKL 3.0 Quick
Reference is now available in HTML format.

1/99

-008 Documents Math Kernel Library release 3.2. Description of FFT routines have
been revised. In Chapters 4 and 5 NAG names for LAPACK routines have been
excluded.

6/99

-009 New LAPACK routines for eigenvalue problems have been added inchapter 5. 11/99

-010 Documents Math Kernel Library release 4.0. Chapter 6 describing the VML
functions has been added.

06/00

-011 Documents Math Kernel Library release 5.1. LAPACK section has been
extended to include the full list of computational and driver routines .

04/01

-6001 Documents Math Kernel Library release 6.0 beta. New DFT interface
(chapter 8) and Vector Statistics Library functions (chapter 7) have been added.

07/02

http://developer.intel.com/software/products/perflib/index.htm

Legal Information

This manual as well as the software described in it is furnished under license and may only be used or
copied in accordance with the terms of the license. The information in this manual is furnished for
informational use only, is subject to change without notice, and should not be construed as a commitment
by Intel Corporation.

Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in
this document or any software that may be provided in association with this document. Except as
permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means without the express written consent of Intel Corporation.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROP-
ERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE
OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT
OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE
IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS. INTEL MAY MAKE CHANGES TO
SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME, WITHOUT NOTICE.

Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. Processors may contain
design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available upon request.

Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4,
IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium,
MMX, MMX logo, Pentium, Pentium II Xeon, Pentium III Xeon, and VTune are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 1994-2002, Intel Corporation. All Rights Reserved.

Chapters 4 and 5 include derivative work portions that have been copyrighted:
© 1991, 1992, and 1998 by The Numerical Algorithms Group, Ltd.

iv

Contents
Chapter 1 Overview

About This Software .. 1-1
BLAS Routines.. 1-2
Sparse BLAS Routines ... 1-2
Fast Fourier Transforms .. 1-2
LAPACK Routines ... 1-2
VML Functions .. 1-3
VSL Functions... 1-3
DFT Interface .. 1-3
Performance Enhancements .. 1-3
Parallelism... 1-4
Platforms Supported ... 1-4

About This Manual... 1-5
Audience for This Manual ... 1-5
Manual Organization... 1-5
Notational Conventions ... 1-6

Routine Name Shorthand .. 1-7
Font Conventions ... 1-7

Related Publications ... 1-8
Chapter 2 BLAS and Sparse BLAS Routines

Routine Naming Conventions ... 2-2
Matrix Storage Schemes ... 2-3
BLAS Level 1 Routines and Functions 2-4

?asum .. 2-5

v

Intel® Math Kernel Library Reference Manual

?axpy ... 2-6
?copy .. 2-7
?dot .. 2-8
?dotc .. 2-9
?dotu ... 2-10
?nrm2 ... 2-11
?rot .. 2-12
?rotg ... 2-14
?rotm ... 2-15
?rotmg ... 2-17
?scal .. 2-18
?swap ... 2-20
i?amax .. 2-21
i?amin .. 2-22

BLAS Level 2 Routines .. 2-23
?gbmv .. 2-24
?gemv .. 2-27
?ger ... 2-30
?gerc ... 2-31
?geru ... 2-33
?hbmv .. 2-35
?hemv .. 2-38
?her ... 2-40
?her2 ... 2-42
?hpmv .. 2-44
?hpr ... 2-47
?hpr2 ... 2-49
?sbmv ... 2-51
?spmv .. 2-54
?spr ... 2-56
?spr2 ... 2-58
?symv ... 2-60

Contents

vi

?syr ... 2-62
?syr2 ... 2-64
?tbmv ... 2-66
?tbsv ... 2-69
?tpmv .. 2-72
?tpsv ... 2-75
?trmv .. 2-77
?trsv .. 2-79

BLAS Level 3 Routines ... 2-82
Symmetric Multiprocessing Version of MKL 2-82

?gemm .. 2-83
?hemm ... 2-86
?herk ... 2-89
?her2k ... 2-92
?symm ... 2-96
?syrk ... 2-100
?syr2k ... 2-103
?trmm ... 2-107
?trsm ... 2-110

Sparse BLAS Routines and Functions 2-114
Vector Arguments in Sparse BLAS 2-114
Naming Conventions in Sparse BLAS 2-115
Routines and Data Types in Sparse BLAS 2-115
BLAS Routines That Can Work With Sparse Vectors . 2-116

?axpyi ... 2-116
?doti ... 2-118
?dotci ... 2-119
?dotui ... 2-120
?gthr .. 2-121
?gthrz .. 2-122
?roti ... 2-123
?sctr .. 2-124

vii

Intel® Math Kernel Library Reference Manual

Chapter 3 Fast Fourier Transforms
One-dimensional FFTs .. 3-1

Data Storage Types .. 3-2
Data Structure Requirements ... 3-2
Complex-to-Complex One-dimensional FFTs................... 3-3

cfft1d/zfft1d ... 3-4
cfft1dc/zfft1dc ... 3-5

Real-to-Complex One-dimensional FFTs.......................... 3-6
scfft1d/dzfft1d .. 3-8
scfft1dc/dzfft1dc .. 3-10

Complex-to-Real One-dimensional FFTs........................ 3-11
csfft1d/zdfft1d .. 3-13
csfft1dc/zdfft1dc .. 3-15

Two-dimensional FFTs... 3-17
Complex-to-Complex Two-dimensional FFTs 3-18

cfft2d/zfft2d ... 3-19
cfft2dc/zfft2dc ... 3-20

Real-to-Complex Two-dimensional FFTs 3-21
scfft2d/dzfft2d .. 3-22
scfft2dc/dzfft2dc .. 3-24

Complex-to-Real Two-dimensional FFTs 3-27
csfft2d/zdfft2d ... 3-28

csfft2dc/zdfft2dc .. 3-29
Chapter 4 LAPACK Routines:
Linear Equations

Routine Naming Conventions ... 4-2
Matrix Storage Schemes ... 4-3
Mathematical Notation ... 4-3
Error Analysis .. 4-4
Computational Routines .. 4-5

Routines for Matrix Factorization 4-7
?getrf ... 4-7

Contents

viii

?gbtrf ... 4-10
?gttrf .. 4-12
?potrf ... 4-14
?pptrf ... 4-16
?pbtrf ... 4-18
?pttrf .. 4-20
?sytrf ... 4-22
?hetrf ... 4-25
?sptrf ... 4-28
?hptrf ... 4-31

Routines for Solving Systems of Linear Equations 4-33
?getrs .. 4-34
?gbtrs .. 4-36
?gttrs ... 4-38
?potrs .. 4-41
?pptrs .. 4-43
?pbtrs .. 4-45
?pttrs ... 4-47
?sytrs .. 4-49
?hetrs .. 4-51
?sptrs .. 4-53
?hptrs .. 4-55
?trtrs .. 4-57
?tptrs ... 4-59
?tbtrs ... 4-61

Routines for Estimating the Condition Number 4-63
?gecon .. 4-63
?gbcon .. 4-65
?gtcon .. 4-67
?pocon .. 4-70
?ppcon .. 4-72
?pbcon .. 4-74

ix

Intel® Math Kernel Library Reference Manual

?ptcon ... 4-76
?sycon ... 4-78
?hecon .. 4-80
?spcon ... 4-82
?hpcon .. 4-84
?trcon .. 4-86
?tpcon ... 4-88
?tbcon ... 4-90

Refining the Solution and Estimating Its Error 4-92
?gerfs ... 4-92
?gbrfs ... 4-95
?gtrfs .. 4-98
?porfs .. 4-101
?pprfs .. 4-104
?pbrfs .. 4-107
?ptrfs ... 4-110
?syrfs .. 4-113
?herfs .. 4-116
?sprfs ... 4-119
?hprfs .. 4-122
?trrfs .. 4-124
?tprfs ... 4-127
?tbrfs ... 4-130

Routines for Matrix Inversion .. 4-133
?getri .. 4-133
?potri ... 4-135
?pptri ... 4-137
?sytri ... 4-139
?hetri .. 4-141
?sptri ... 4-143
?hptri .. 4-145
?trtri .. 4-147

Contents

x

?tptri ... 4-148
Routines for Matrix Equilibration 4-150

?geequ... 4-150
?gbequ... 4-153
?poequ... 4-155
?ppequ... 4-157
?pbequ... 4-159

Driver Routines ... 4-161
?gesv ... 4-162
?gesvx ... 4-163
?gbsv ... 4-170
?gbsvx ... 4-172
?gtsv .. 4-179
?gtsvx .. 4-181
?posv ... 4-186
?posvx ... 4-188
?ppsv ... 4-193
?ppsvx ... 4-195
?pbsv ... 4-200
?pbsvx ... 4-202
?ptsv .. 4-207
?ptsvx .. 4-209
?sysv.. 4-212
?sysvx.. 4-215
?hesvx ... 4-220
?hesv ... 4-224
?spsv ... 4-227
?spsvx.. 4-230
?hpsvx ... 4-235
?hpsv ... 4-239

xi

Intel® Math Kernel Library Reference Manual

Chapter 5 LAPACK Routines:
Least Squares and Eigenvalue Problems

Routine Naming Conventions ... 5-4
Matrix Storage Schemes ... 5-5
Mathematical Notation ... 5-5
Computational Routines .. 5-6

Orthogonal Factorizations .. 5-6
?geqrf .. 5-8
?geqpf ... 5-11
?geqp3 .. 5-14
?orgqr ... 5-17
?ormqr ... 5-19
?ungqr .. 5-21
?unmqr .. 5-23
?gelqf ... 5-25
?orglq .. 5-28
?ormlq ... 5-30
?unglq .. 5-32
?unmlq .. 5-34
?geqlf .. 5-36
?orgql .. 5-38
?ungql ... 5-40
?ormql ... 5-42
?unmql .. 5-45
?gerqf .. 5-48
?orgrq ... 5-50
?ungrq .. 5-52
?ormrq ... 5-54
?unmrq .. 5-57
?tzrzf ... 5-60
?ormrz ... 5-62
?unmrz .. 5-65

Contents

xii

?ggqrf .. 5-68
?ggrqf .. 5-71

Singular Value Decomposition 5-74
?gebrd ... 5-76
?gbbrd ... 5-79
?orgbr ... 5-82
?ormbr .. 5-85
?ungbr ... 5-88
?unmbr .. 5-91
?bdsqr ... 5-94
?bdsdc .. 5-98

Symmetric Eigenvalue Problems 5-101
?sytrd ... 5-105

?orgtr .. 5-107
?ormtr ... 5-109
?hetrd .. 5-111
?ungtr .. 5-113
?unmtr ... 5-115
?sptrd .. 5-117
?opgtr .. 5-119
?opmtr ... 5-120
?hptrd .. 5-122
?upgtr .. 5-124
?upmtr ... 5-125
?sbtrd .. 5-128
?hbtrd .. 5-130
?sterf ... 5-132
?steqr ... 5-134
?stedc .. 5-137
?stegr .. 5-141
?pteqr ... 5-146
?stebz ... 5-149
?stein .. 5-152

xiii

Intel® Math Kernel Library Reference Manual

?disna .. 5-154
Generalized Symmetric-Definite Eigenvalue Problems. 5-157

?sygst .. 5-158
?hegst .. 5-160
?spgst ... 5-162
?hpgst .. 5-164
?sbgst .. 5-166
?hbgst ... 5-169
?pbstf .. 5-172

Nonsymmetric Eigenvalue Problems 5-174
?gehrd ... 5-178
?orghr .. 5-180
?ormhr ... 5-182
?unghr ... 5-185
?unmhr ... 5-187
?gebal .. 5-190
?gebak .. 5-193
?hseqr ... 5-195
?hsein .. 5-199
?trevc ... 5-205
?trsna .. 5-210
?trexc ... 5-215
?trsen .. 5-217
?trsyl ... 5-222

Generalized Nonsymmetric Eigenvalue Problems 5-225
?gghrd ... 5-226
?ggbal ... 5-230
?ggbak .. 5-233
?hgeqz .. 5-235
?tgevc .. 5-242
?tgexc .. 5-247
?tgsen ... 5-250

Contents

xiv

?tgsyl .. 5-256
?tgsna ... 5-261

Generalized Singular Value Decomposition 5-266
?ggsvp .. 5-267
?tgsja .. 5-271

Driver Routines .. 5-278
Linear Least Squares (LLS) Problems 5-278

?gels ... 5-279
?gelsy ... 5-282
?gelss ... 5-286
?gelsd ... 5-289

Generalized LLS Problems... 5-293
?gglse ... 5-293
?ggglm .. 5-296

Symmetric Eigenproblems.. 5-298
?syev ... 5-299
?heev .. 5-301
?syevd ... 5-303
?heevd .. 5-306
?syevx ... 5-309
?heevx .. 5-313
?syevr ... 5-317
?heevr ... 5-322
?spev .. 5-327
?hpev .. 5-329
?spevd .. 5-331
?hpevd ... 5-334
?spevx .. 5-338
?hpevx .. 5-342
?sbev .. 5-346
?hbev .. 5-348
?sbevd .. 5-350

xv

Intel® Math Kernel Library Reference Manual

?hbevd ... 5-353
?sbevx ... 5-357
?hbevx ... 5-361
?stev .. 5-365
?stevd ... 5-367
?stevx .. 5-370
?stevr ... 5-374

Nonsymmetric Eigenproblems 5-379
?gees ... 5-379
?geesx ... 5-384
?geev ... 5-390
?geevx ... 5-394

Singular Value Decomposition 5-400
?gesvd ... 5-400
?gesdd .. 5-405
?ggsvd ... 5-409

Generalized Symmetric Definite Eigenproblems........... 5-415
?sygv ... 5-416
?hegv .. 5-419
?sygvd ... 5-422
?hegvd .. 5-425
?sygvx ... 5-429
?hegvx ... 5-434
?spgv ... 5-439
?hpgv .. 5-442
?spgvd ... 5-445
?hpgvd .. 5-448
?spgvx ... 5-452
?hpgvx ... 5-456
?sbgv ... 5-460
?hbgv .. 5-463
?sbgvd ... 5-466

Contents

xvi

?hbgvd .. 5-469
?sbgvx .. 5-473
?hbgvx .. 5-477

Generalized Nonsymmetric Eigenproblems 5-482
?gges .. 5-482
?ggesx .. 5-489
?ggev .. 5-497
?ggevx .. 5-502

References.. 5-509
Chapter 6 Vector Mathematical Functions

Data Types and Accuracy Modes ... 6-2
Function Naming Conventions ... 6-2

Functions Interface... 6-3
Vector Indexing Methods .. 6-6
Error Diagnostics .. 6-6
VML Mathematical Functions ... 6-8

Inv .. 6-10
Div .. 6-11
Sqrt .. 6-12
InvSqrt ... 6-13
Cbrt .. 6-15
InvCbrt ... 6-16
Pow .. 6-17
Exp ... 6-18
Ln ... 6-20
Log10 ... 6-21
Cos .. 6-22
Sin .. 6-23
SinCos ... 6-24
Tan ... 6-25
Acos ... 6-26
Asin .. 6-27

xvii

Intel® Math Kernel Library Reference Manual

Atan .. 6-28
Atan2 .. 6-29
Cosh ... 6-30
Sinh .. 6-31
Tanh .. 6-33
Acosh ... 6-34
Asinh .. 6-35
Atanh .. 6-36

VML Pack/Unpack Functions ... 6-37
Pack .. 6-37
Unpack ... 6-39

VML Service Functions .. 6-42
SetMode .. 6-42
GetMode ... 6-45
SetErrStatus .. 6-46
GetErrStatus ... 6-48
ClearErrStatus ... 6-48
SetErrorCallBack ... 6-49
GetErrorCallBack .. 6-51
ClearErrorCallBack .. 6-52

Chapter 7 Vector Generators of Statistical Distributions
Conventions... 7-2

Mathematical Notation .. 7-3
Naming Conventions... 7-4

Basic Pseudorandom Generators.. 7-6
Random Streams .. 7-6
Data Types .. 7-7

Service Subroutines .. 7-7
NewStream .. 7-9
NewStreamEx ... 7-10
DeleteStream .. 7-11
CopyStream .. 7-12
LeapfrogStream .. 7-13

Contents

xviii

SkipAheadStream ... 7-16
GetStreamStateBrng .. 7-19

Pseudorandom Generators ... 7-20
Continuous Distributions... 7-21

Uniform ... 7-21
Gaussian ... 7-23
Exponential ... 7-26
Laplace ... 7-28
Weibull .. 7-31
Cauchy .. 7-33
Rayleigh .. 7-36
Lognormal ... 7-38
Gumbel ... 7-41

Discrete Distributions.. 7-43
Uniform ... 7-44
UniformBits ... 7-46
Bernoulli .. 7-48
Geometric ... 7-50
Binomial .. 7-52
Hypergeometric .. 7-54
Poisson ... 7-56
NegBinomial ... 7-57

Advanced Service Subroutines ... 7-59
Data types.. 7-60
RegisterBrng ... 7-62
GetBrngProperties .. 7-63

Formats for User-Designed Generators.............................. 7-64
iBRng ... 7-67
sBRng.. 7-68
dBRng.. 7-69

References.. 7-70

xix

Intel® Math Kernel Library Reference Manual

Chapter 8 Advanced DFT Interface
Introduction .. 8-1
DFTI... 8-6
Descriptor Manipulation... 8-7

CreateDescriptor ... 8-7
CommitDescriptor ... 8-9
CopyDescriptor .. 8-11
FreeDescriptor ... 8-12

DFT Computation .. 8-13
ComputeForward ... 8-13
ComputeBackward .. 8-15

Descriptor configuration... 8-18
SetValue .. 8-23
GetValue .. 8-25

Configuration Settings... 8-27
Precision of transform .. 8-27
Forward domain of transform 8-27
Transform dimension and lengths 8-28
Number of transforms .. 8-29
Sign and scale.. 8-29
Placement of result .. 8-29
Storage schemes ... 8-30
Input and output distances ... 8-34
Strides .. 8-35
Initialization Effort... 8-37

Ordering .. 8-38
Workspace .. 8-40
Transposition... 8-40

Status Checking... 8-40
ErrorClass ... 8-41
ErrorMessage .. 8-42

References .. 8-43

Contents

xx

Appendi x A Routin e and Functio n Arguments
Vector Arguments in BLAS.. A-1
Vector Arguments in VML .. A-3
Matrix Arguments ... A-4

Appendi x B Code Examples
Appendi x C CBLA S Interfac e to the BLAS

CBLAS Arguments ... C - 1
Enumerated Types... C - 2

Level 1 CBLAS ... C - 3
Level 2 CBLAS ... C - 6
Level 3 CBLAS ... C - 14

Glossary
Index

1-1

Overview 1
The Intel® Math Kernel Library (MKL) provides Fortran routines and
functions that perform a wide variety of operations on vectors and matrices.
The library also includes fast Fourier transform functions and new discrete
Fourier transform interface, as well as vector mathematical and vector
statistical functions with Fortran and C interfaces. The MKL enhances the
performance of the programs that use it because the library has been
optimized for Intel® processors.

This chapter introduces the Math Kernel Library and provides information
about the organization of this manual.

About This Software
The Math Kernel Library includes the following groups of routines:

• Basic Linear Algebra Subprograms (BLAS):
− vector operations
− matrix-vector operations
− matrix-matrix operations

• Sparse BLAS (basic vector operations on sparse vectors)
• Fast Fourier transform routines (with Fortran and C interfaces)
• LAPACK routines for solving systems of linear equations
• LAPACK routines for solving least-squares problems, eigenvalue and

singular value problems, and Sylvester’s equations
• Vector Mathematical Library (VML) functions for computing core

mathematical functions on vector arguments (with Fortran and C
interfaces)

• Vector Statistics Library (VSL) functions for generating vectors of
pseudorandom numbers with different types of statistical distributions

• Advanced Discrete Fourier Transform Interface (DFTI).

For specific issues on using the library, please refer to theRelease Notes.

1-2

1 Intel® Math Kernel Library Reference Manual

BLAS Routines

BLAS routines and functions are divided into the following groups
according to the operations they perform:

• BLAS Level 1 Routines and Functionsperform operations of both
addition and reduction on vectors of data. Typical operations include
scaling and dot products.

• BLAS Level 2 Routinesperform matrix-vector operations, such as
matrix-vector multiplication, rank-1 and rank-2 matrix updates, and
solution of triangular systems.

• BLAS Level 3 Routinesperform matrix-matrix operations, such as
matrix-matrix multiplication, rank-k update, and solution of triangular
systems.

Sparse BLAS Routines

Sparse BLAS Routines and Functionsoperate on sparse vectors (that is,
vectors in which most of the elements are zeros). These routines perform
vector operations similar to BLAS Level 1 routines. Sparse BLAS routines
take advantage of vectors’ sparsity: they allow you to store only non-zero
elements of vectors.

Fast Fourier Transforms

Fast Fourier Transforms(FFTs) are used in digital signal processing and
image processing and in partial differential equation (PDE) solvers.
Combined with the BLAS routines, the FFTs contribute to the portability of
the programs and provide a simplified interface between your program and
the available library. To obtain more functionality and ease of use, consider
also using the new DFT interface described inChapter 8.

LAPACK Routines

The Math Kernel Library covers the full set of the LAPACK computational
and driver routines. These routines can be divided into the following groups
according to the operations they perform:

• Routines for solving systems of linear equations, factoring and
inverting matrices, and estimating condition numbers (seeChapter 4).

Overview1

1-3

• Routines for solving least-squares problems, eigenvalue and singular
value problems, and Sylvester’s equations (seeChapter 5).

VML Functions

VML functions (seeChapter 6) include a set of highly optimized
implementations of certain computationally expensive core mathematical
functions (power, trigonometric, exponential, hyperbolic etc.) that operate
on real vector arguments.

VSL Functions

Vector Statistics Library (VSL) functions (seeChapter 7) include a set of
pseudorandom number generator subroutines implementing basic
continuous and discrete distributions. To provide best performance, VSL
subroutines use calls to highly optimized Basic Random Number
Generators and the library of vector mathematical functions, VML.

DFT Interface

The newly developed Discrete Fourier Transform interface (seeChapter 8)
provides uniformity of DFT computation and combines functionality with
ease of use. Both Fortran and C interface specification are given. Users are
encouraged to migrate to the new interface in their application programs.

Performance Enhancements

The Math Kernel Library has been optimized by exploiting both processor
and system features and capabilities. Special care has been given to those
routines that most profit from cache-management techniques. These
especially include matrix-matrix operation routines such asdgemm() .

In addition, code optimization techniques have been applied to minimize
dependencies of scheduling integer and floating-point units on the results
within the processor.

The major optimization techniques used throughout the library include:

• Loop unrolling to minimize loop management costs.
• Blocking of data to improve data reuse opportunities.
• Copying to reduce chances of data eviction from cache.

1-4

1 Intel® Math Kernel Library Reference Manual

• Data prefetching to help hide memory latency.
• Multiple simultaneous operations (for example, dot products indgemm)

to eliminate stalls due to arithmetic unit pipelines.
• Use of hardware features such as the SIMD arithmetic units, where

appropriate.

These are techniques from which the arithmetic code benefits the most.

Parallelism

In addition to the performance enhancements discussed above, the MKL
offers performance gains through parallelism provided by the symmetric
multiprocessing performance (SMP) feature. You can obtain improvements
from SMP in the following ways:

• One way is based on user-managed threads in the program and further
distribution of the operations over the threads based on data
decomposition, domain decomposition, control decomposition, or
some other parallelizing technique. Each thread can use any of the
MKL functions because the library has been designed to be thread-safe.

• Another method is to use the FFT and BLAS level 3 routines. They
have been parallelized and require no alterations of your application to
gain the performance enhancements of multiprocessing. Performance
using multiple processors on the level 3 BLAS shows excellent scaling.
Since the threads are called and managed within the library, the
application does not need to be recompiled thread-safe (see alsoBLAS
Level 3 Routinesin Chapter 2).

• Yet another method is to usetuned LAPACK routines. Currently these
include the single- and double precision flavors of routines forQR
factorization of general matrices, triangular factorization of general and
symmetric positive-definite matrices, solving systems of equations
with such matrices, as well as solving symmetric eigenvalue problems.

For instructions on setting the number of available processors for the BLAS
level 3 and LAPACK routines, see theRelease Notes.

Overview1

1-5

Platforms Supported

The Math Kernel Library includes Fortran routines and functions optimized
for Intel® processor-based computers running operating systems that
support multiprocessing. In addition to the Fortran interface, the MKL
includes a C-language interface for the fast Fourier transform functions,
new discrete Fourier transform API, as well as for the Vector Mathematical
Library and Vector Statistics Library functions.

About This Manual
This manual describes the routines of the Math Kernel Library. Each
reference section describes a routine group consisting of routines used with
four basic data types: single-precision real, double-precision real,
single-precision complex, and double-precision complex.

Each routine group is introduced by its name, a short description of its
purpose, and the calling sequence for each type of data with which each
routine of the group is used. The following sections are also included:

Discussion Describes the operation performed by routines of
the group based on one or more equations. The
data types of the arguments are defined in general
terms for the group.

Input Parameters Defines the data type for each parameter on entry,
for example:

a REAL for saxpy

DOUBLE PRECISIONfor daxpy

Output Parameters Lists resultant parameters on exit.

Audience for This Manual

The manual addresses programmers proficient in computational linear
algebra and assumes a working knowledge of linear algebra and Fourier
transform principles and vocabulary.

1-6

1 Intel® Math Kernel Library Reference Manual

Manual Organization

The manual contains the following chapters and appendixes:

Chapter 1 Overview. Introduces the Math Kernel Library software,
provides information on manual organization, and
explains notational conventions.

Chapter 2 BLAS and Sparse BLAS Routines. Provides
descriptions of BLAS and Sparse BLAS functions and
routines.

Chapter 3 Fast Fourier Transforms. Provides descriptions of fast
Fourier transforms (FFT).

Chapter 4 LAPACK Routines: Linear Equations. Provides
descriptions of LAPACK routines for solving systems of
linear equations and performing a number of related
computational tasks: triangular factorization, matrix
inversion, estimating the condition number of matrices.

Chapter 5 LAPACK Routines: Least Squares and Eigenvalue
Problems. Provides descriptions of LAPACK routines
for solving least-squares problems, standard and
generalized eigenvalue problems, singular value
problems, and Sylvester’s equations.

Chapter 6 Vector Mathematical Functions. Provides descriptions
of VML functions for computing elementary
mathematical functions on vector arguments.

Chapter 7 Vector Generators of Statistical Distributions. Provides
descriptions of VSL functions for generating vectors of
pseudorandom numbers.

Chapter 8 Advanced DFT Interface. Describes new interface for
computing the Discrete Fourier Transform.

Appendix A Routine and Function Arguments. Describes the major
arguments of the BLAS routines and VML functions:
vector and matrix arguments.

Appendix B Code Examples. Provides code examples of calling
BLAS functions and routines.

Overview1

1-7

Appendix C CBLAS Interface to the BLAS. Provides the C interface
to the BLAS.

The manual also includes aGlossaryand anIndex.

Notational Conventions

This manual uses the following notational conventions:

• Routine name shorthand (?ungqr instead ofcungqr /zungqr).
• Font conventions used for distinction between the text and the code.

Routine Name Shorthand

For shorthand, character codes are represented by a question mark “?” in
names of routine groups. The question mark is used to indicate any or all
possible varieties of a function; for example:

?swap Refers to all four data types of the vector-vector
?swap routine:sswap, dswap, cswap, andzswap.

Font Conventions

The following font conventions are used:

UPPERCASE COURIER Data type used in the discussion of input
and output parameters for Fortran
interface. For example,CHARACTER*1.

lowercase courier Code examples:
a(k+i,j) = matrix(i,j)

and data types for C interface, for
example,const float*

lowercase courier mixed Function names for C interface,
with UpperCase courier for example,vmlSetMode

lowercase courier italic Variables in arguments and parameters
discussion. For example,incx .

* Used as a multiplication symbol in code
examples and equations and where
required by the Fortran syntax.

1-8

1 Intel® Math Kernel Library Reference Manual

Related Publications

For more information about the BLAS, Sparse BLAS, LAPACK and VML
routines, refer to the following publications:

• BLAS Level 1
C. Lawson, R. Hanson, D. Kincaid, and F. Krough.Basic Linear
Algebra Subprograms for Fortran Usage, ACM Transactions on
Mathematical Software, Vol.5, No.3 (September 1979) 308-325.

• BLAS Level 2
J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson.An Extended
Set of Fortran Basic Linear Algebra Subprograms, ACM Transactions
on Mathematical Software, Vol.14, No.1 (March 1988) 1-32.

• BLAS Level 3
J. Dongarra, J. DuCroz, I. Duff, and S. Hammarling.A Set of Level 3
Basic Linear Algebra Subprograms, ACM Transactions on
Mathematical Software (December 1989).

• Sparse BLAS
D. Dodson, R. Grimes, and J. Lewis.Sparse Extensions to the
FORTRAN Basic Linear Algebra Subprograms, ACM Transactions on
Mathematical Software, Vol.17, No.2 (June 1991).
D. Dodson, R. Grimes, and J. Lewis.Algorithm 692: Model
Implementation and Test Package for the Sparse Basic Linear Algebra
Subprograms, ACM Transactions on Mathematical Software, Vol.17,
No.2 (June 1991).

• LAPACK
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Donagarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen.LAPACK Users' Guide, Third Edition,
Society for Industrial and Applied Mathematics (SIAM), 1999.
G. Golub and C. Van Loan.Matrix Computations, Johns Hopkins
University Press, 1989.

• VML
J.M.Muller.Elementary functions: algorithms and implementation,
Birkhauser Boston, 1997.
IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std
754-1985.

For a reference implementation of BLAS, sparse BLAS, and LAPACK
packages (without platform-specific optimizations) visitwww.netlib.org.

http://www.netlib.org/

2-1

BLAS and Sparse BLAS
Routines 2

This chapter contains descriptions of the BLAS and Sparse BLAS routines
of the Intel® Math Kernel Library. The routine descriptions are arranged in
four sections according to the BLAS level of operation:

• BLAS Level 1 Routines and Functions(vector-vector operations)
• BLAS Level 2 Routines(matrix-vector operations)
• BLAS Level 3 Routines(matrix-matrix operations)
• Sparse BLAS Routines and Functions.

Each section presents the routine and function group descriptions in
alphabetical order by routine or function group name; for example, the
?asum group, the?axpy group. The question mark in the group name
corresponds to different character codes indicating the data type (s , d, c ,
andz or their combination); seeRoutine Naming Conventionson the next
page.

When BLAS routines encounter an error, they call the error reporting
routineXERBLA. To be able to view error reports, you must includeXERBLA

in your code. A copy of the source code forXERBLAis included in the
library.

In BLAS Level 1 groupsi?amax andi?amin , an “i” is placed before the
character code and corresponds to the index of an element in the vector.
These groups are placed in the end of the BLAS Level 1 section.

2-2

2 Intel® Math Kernel Library Reference Manual

Routine Naming Conventions
BLAS routine names have the following structure:

<character code> <name> <mod> ()

The<character code> is a character that indicates the data type:

s real, single precision c complex, single precision
d real, double precision z complex, double precision

Some routines and functions can have combined character codes, such as
sc or dz . For example, the functionscasum uses a complex input array and
returns a real value.

The<name> field, in BLAS level 1, indicates the operation type. For
example, the BLAS level 1 routines?dot , ?rot , ?swap compute a vector
dot product, vector rotation, and vector swap, respectively.

In BLAS level 2 and 3,<name> reflects the matrix argument type:

ge general matrix
gb general band matrix
sy symmetric matrix
sp symmetric matrix (packed storage)
sb symmetric band matrix
he Hermitian matrix
hp Hermitian matrix (packed storage)
hb Hermitian band matrix
tr triangular matrix
tp triangular matrix (packed storage)
tb triangular band matrix.

The<mod> field, if present, provides additional details of the operation.
BLAS level 1 names can have the following characters in the<mod> field:

c conjugated vector
u unconjugated vector
g Givens rotation.

BLAS level 2 names can have the following characters in the<mod> field:
mv matrix-vector product
sv solving a system of linear equations with matrix-vector operations
r rank-1 update of a matrix
r2 rank-2 update of a matrix.

BLAS and Sparse BLAS Routines2

2-3

BLAS level 3 names can have the following characters in the<mod> field:
mm matrix-matrix product
sm solving a system of linear equations with matrix-matrix operations
rk rank-k update of a matrix
r2k rank-2k update of a matrix.

The examples below illustrate how to interpret BLAS routine names:

<d> <dot > ddot : double-precision real vector-vector dot product

<c> <dot > <c> cdotc : complex vector-vector dot product, conjugated

<sc > <asum> scasum : sum of magnitudes of vector elements, single
precision real output and single precision complex input

<c> <dot > <u> cdotu : vector-vector dot product, unconjugated,
complex

<s> <ge> <mv> sgemv: matrix-vector product, general matrix, single
precision

<z> <tr > <mm> ztrmm : matrix-matrix product, triangular matrix,
double-precision complex.

Sparse BLAS naming conventions are similar to those of BLAS level 1.
For more information, seeNaming conventions in Sparse BLAS.

Matrix Storage Schemes
Matrix arguments of BLAS routines can use the following storage schemes:

• Full storage: a matrixA is stored in a two-dimensional arraya, with the
matrix elementaij stored in the array elementa(i , j) .

• Packed storagescheme allows you to store symmetric, Hermitian, or
triangular matrices more compactly: the upper or lower triangle of the
matrix is packed by columns in a one-dimensional array.

• Band storage: a band matrix is stored compactly in a two-dimensional
array: columns of the matrix are stored in the corresponding columns
of the array, anddiagonalsof the matrix are stored in rows of the array.

For more information on matrix storage schemes, seeMatrix Argumentsin
Appendix A.

2-4

2 Intel® Math Kernel Library Reference Manual

BLAS Level 1 Routines and Functions
BLAS Level 1 includes routines and functions, which perform vector-vector
operations. Table 2-1 lists the BLAS Level 1 routine and function groups
and the data types associated with them.

Table 2-1 BLAS Level 1 Routine Groups and Their Data Types

Routine or
Function
Group Data Types Description

?asum s, d, sc, dz Sum of vector magnitudes (functions)

?axpy s, d, c, z Scalar-vector product (routines)

?copy s, d, c, z Copy vector (routines)

?dot s, d Dot product (functions)

?dotc c, z Dot product conjugated (functions)

?dotu c, z Dot product unconjugated (functions)

?nrm2 s, d, sc, dz Vector 2-norm (Euclidean norm) a normal
or null vector (functions)

?rot s, d, cs, zd Plane rotation of points (routines)

?rotg s, d, c, z Givens rotation of points (routines)

?rotm s, d Modified plane rotation of points

?rotmg s, d Givens modified plane rotation of points

?scal s, d, c, z, cs, zd Vector scaling (routines)

?swap s, d, c, z Vector-vector swap (routines)

i?amax s, d, c, z Vector maximum value, absolute largest
element of a vector where i is an index to
this value in the vector array (functions)

i?amin s, d, c, z Vector minimum value, absolute smallest
element of a vector where i is an index to
this value in the vector array (functions)

BLAS and Sparse BLAS Routines2

2-5

?asum
Computes the sum of magnitudes of the
vector elements.

res = sasum (n, x, incx)

res = scasum (n, x, incx)

res = dasum (n, x, incx)

res = dzasum (n, x, incx)

Discussion

Given a vectorx , ?asum functions compute the sum of the magnitudes of its
elements or, for complex vectors, the sum of magnitudes of the elements’
real parts plus magnitudes of their imaginary parts:

res = |Rex(1) | + |Imx(1) | + |Rex(2) | + |Imx(2) |+ ... + |Rex(n) | + |Imx(n) |
wherex is a vector of ordern.

Input Parameters

n INTEGER. Specifies the order of vectorx .

x REALfor sasum

DOUBLE PRECISIONfor dasum

COMPLEXfor scasum

DOUBLE COMPLEXfor dzasum

Array, DIMENSIONat least(1 + (n-1)*abs(incx)) .

incx INTEGER. Specifies the increment for the elements ofx .

Output Parameters

res REALfor sasum

DOUBLE PRECISIONfor dasum

REALfor scasum

DOUBLE PRECISIONfor dzasum

Contains the sum of magnitudes of all elements’ real
parts plus magnitudes of their imaginary parts.

2-6

2 Intel® Math Kernel Library Reference Manual

?axpy
Computes a vector-scalar product and
adds the result to a vector.

call saxpy (n, a, x, incx , y, incy)

call daxpy (n, a, x, incx , y, incy)

call caxpy (n, a, x, incx , y, incy)

call zaxpy (n, a, x, incx , y, incy)

Discussion

The?axpy routines perform a vector-vector operation defined as

y := a* x + y

where:

a is a scalar

x andy are vectors of ordern.

Input Parameters

n INTEGER. Specifies the order of vectorsx andy.

a REALfor saxpy

DOUBLE PRECISIONfor daxpy

COMPLEXfor caxpy

DOUBLE COMPLEXfor zaxpy

Specifies the scalara.

x REALfor saxpy

DOUBLE PRECISIONfor daxpy

COMPLEXfor caxpy

DOUBLE COMPLEXfor zaxpy

Array, DIMENSIONat least(1 + (n-1)*abs(incx)) .

incx INTEGER. Specifies the increment for the elements ofx .

BLAS and Sparse BLAS Routines2

2-7

y REALfor saxpy

DOUBLE PRECISIONfor daxpy

COMPLEXfor caxpy

DOUBLE COMPLEXfor zaxpy

Array, DIMENSIONat least(1 + (n-1)*abs(incy)) .

incy INTEGER. Specifies the increment for the elements ofy.

Output Parameters

y Contains the updated vectory.

?copy
Copies vector to another vector.

call scopy (n, x, incx , y, incy)

call dcopy (n, x, incx , y, incy)

call ccopy (n, x, incx , y, incy)

call zcopy (n, x, incx , y, incy)

Discussion

The?copy routines perform a vector-vector operation defined as

y = x

wherex andy are vectors.

Input Parameters

n INTEGER. Specifies the order of vectorsx andy.

x REALfor scopy

DOUBLE PRECISIONfor dcopy

COMPLEXfor ccopy

DOUBLE COMPLEXfor zcopy

Array, DIMENSIONat least(1 + (n-1)*abs(incx)) .

incx INTEGER. Specifies the increment for the elements ofx .

2-8

2 Intel® Math Kernel Library Reference Manual

y REALfor scopy

DOUBLE PRECISIONfor dcopy

COMPLEXfor ccopy

DOUBLE COMPLEXfor zcopy

Array, DIMENSIONat least(1 + (n-1)*abs(incy)) .

incy INTEGER. Specifies the increment for the elements ofy.

Output Parameters

y Contains a copy of the vectorx if n is positive.
Otherwise, parameters are unaltered.

?dot
Computes a vector-vector dot product.

res = sdot (n, x , incx , y, incy)

res = ddot (n, x , incx , y, incy)

Discussion

The?dot functions perform a vector-vector reduction operation defined as

wherex andy are vectors.

Input Parameters

n INTEGER. Specifies the order of vectorsx andy.

x REALfor sdot

DOUBLE PRECISIONfor ddot

Array, DIMENSIONat least(1+(n-1)*abs(incx)) .

incx INTEGER. Specifies the increment for the elements ofx .

res x ∗y()∑=

BLAS and Sparse BLAS Routines2

2-9

y REALfor sdot

DOUBLE PRECISIONfor ddot

Array, DIMENSIONat least(1+(n-1)*abs(incy)) .

incy INTEGER. Specifies the increment for the elements ofy.

Output Parameters

res REALfor sdot

DOUBLE PRECISIONfor ddot

Contains the result of the dot product ofx andy, if n is
positive. Otherwise,res contains0.

?dotc
Computes a dot product of a conjugated
vector with another vector.

res = cdotc (n, x, incx , y, incy)

res = zdotc (n, x, incx , y, incy)

Discussion

The?dotc functions perform a vector-vector operation defined as

wherex andy aren-element vectors.

Input Parameters

n INTEGER. Specifies the order of vectorsx andy.

x COMPLEXfor cdotc

DOUBLE COMPLEXfor zdotc

Array, DIMENSIONat least(1 + (n-1)*abs(incx)) .

incx INTEGER. Specifies the increment for the elements ofx .

res conjg x ()∗y()∑=

2-10

2 Intel® Math Kernel Library Reference Manual

y COMPLEXfor cdotc

DOUBLE COMPLEXfor zdotc

Array, DIMENSIONat least(1 + (n-1)*abs(incy)) .

incy INTEGER. Specifies the increment for the elements ofy.

Output Parameters

res COMPLEXfor cdotc

DOUBLE COMPLEXfor zdotc

Contains the result of the dot product of the conjugated
x and unconjugatedy, if n is positive. Otherwise,res

contains0.

?dotu
Computes a vector-vector dot product.

res = cdotu (n, x, incx , y, incy)

res = zdotu (n, x, incx , y, incy)

Discussion

The?dotu functions perform a vector-vector reduction operation defined
as

wherex andy aren-element vectors.

Input Parameters

n INTEGER. Specifies the order of vectorsx andy.

x COMPLEXfor cdotu

DOUBLE COMPLEXfor zdotu

Array, DIMENSIONat least(1 + (n-1)*abs(incx)) .

incx INTEGER. Specifies the increment for the elements ofx .

res x ∗y()∑=

BLAS and Sparse BLAS Routines2

2-11

y COMPLEXfor cdotu

DOUBLE COMPLEXfor zdotu

Array, DIMENSIONat least(1 + (n-1)*abs(incy)) .

incy INTEGER. Specifies the increment for the elements ofy.

Output Parameters

res COMPLEXfor cdotu

DOUBLE COMPLEXfor zdotu

Contains the result of the dot product ofx andy, if n is
positive. Otherwise,res contains0.

?nrm2
Computes the Euclidean norm of a
vector.

res = snrm2 (n, x, incx)

res = dnrm2 (n, x, incx)

res = scnrm2 (n, x, incx)

res = dznrm2 (n, x, incx)

Discussion

The?nrm2 functions perform a vector reduction operation defined as

res = || x||

where:

x is a vector

res is a value containing the Euclidean norm of the elements ofx .

2-12

2 Intel® Math Kernel Library Reference Manual

Input Parameters

n INTEGER. Specifies the order of vectorx .

x REALfor snrm2

DOUBLE PRECISIONfor dnrm2

COMPLEXfor scnrm2

DOUBLE COMPLEXfor dznrm2

Array, DIMENSIONat least(1 + (n-1)*abs (incx)) .

incx INTEGER. Specifies the increment for the elements ofx .

Output Parameters

res REALfor snrm2

DOUBLE PRECISIONfor dnrm2

REALfor scnrm2

DOUBLE PRECISIONfor dznrm2

Contains the Euclidean norm of the vectorx .

?rot
Performs rotation of points in the plane.

call srot (n, x, incx , y, incy , c, s)

call drot (n, x, incx , y, incy , c, s)

call csrot (n, x , incx , y, incy , c, s)

call zdrot (n, x , incx , y, incy , c, s)

Discussion

Given two complex vectorsx andy, each vector element of these vectors is
replaced as follows:

x(i) = c* x(i) + s* y(i)

y(i) = c* y(i) - s* x(i)

BLAS and Sparse BLAS Routines2

2-13

Input Parameters

n INTEGER. Specifies the order of vectorsx andy.

x REALfor srot

DOUBLE PRECISIONfor drot

COMPLEXfor csrot

DOUBLE COMPLEXfor zdrot

Array, DIMENSIONat least(1 + (n-1)*abs(incx)) .

incx INTEGER. Specifies the increment for the elements ofx .

y REALfor srot

DOUBLE PRECISIONfor drot

COMPLEXfor csrot

DOUBLE COMPLEXfor zdrot

Array, DIMENSIONat least(1 + (n-1)*abs(incy)) .

incy INTEGER. Specifies the increment for the elements ofy.

c REALfor srot

DOUBLE PRECISIONfor drot

REALfor csrot

DOUBLE PRECISIONfor zdrot

A scalar.

s REALfor srot

DOUBLE PRECISIONfor drot

REALfor csrot

DOUBLE PRECISIONfor zdrot

A scalar.

Output Parameters

x Each element is replaced byc* x + s* y.

y Each element is replaced byc* y - s* x .

2-14

2 Intel® Math Kernel Library Reference Manual

?rotg
Computes the parameters for a Givens
rotation.

call srotg (a, b, c, s)

call drotg (a, b, c, s)

call crotg (a, b, c, s)

call zrotg (a, b, c, s)

Discussion

Given the cartesian coordinates(a, b) of a pointp, these routines return
the parametersa, b, c , ands associated with the Givens rotation that zeros
they-coordinate of the point.

Input Parameters

a REALfor srotg

DOUBLE PRECISIONfor drotg

COMPLEXfor crotg

DOUBLE COMPLEXfor zrotg

Provides thex-coordinate of the pointp.

b REALfor srotg

DOUBLE PRECISIONfor drotg

COMPLEXfor crotg

DOUBLE COMPLEXfor zrotg

Provides they-coordinate of the pointp.

Output Parameters

a Contains the parameterr associated with the Givens
rotation.

b Contains the parameterz associated with the Givens
rotation.

BLAS and Sparse BLAS Routines2

2-15

c REALfor srotg

DOUBLE PRECISIONfor drotg

REALfor crotg

DOUBLE PRECISIONfor zrotg

Contains the parameterc associated with the Givens
rotation.

s REALfor srotg

DOUBLE PRECISIONfor drotg

COMPLEXfor crotg

DOUBLE COMPLEXfor zrotg

Contains the parameters associated with the Givens
rotation.

?rotm
Performs rotation of points in the
modified plane.

call srotm (n, x, incx , y, incy , param)

call drotm (n, x, incx , y, incy , param)

Discussion

Given two complex vectorsx andy, each vector element of these vectors is
replaced as follows:

x(i) = H*x(i) + H*y(i)

y(i) = H*y(i) - H*x(i)

where:

H is a modified Givens transformation matrix whose values are stored in the
param(2) throughparam(5) array. See discussion on theparam

argument.

2-16

2 Intel® Math Kernel Library Reference Manual

Input Parameters

n INTEGER. Specifies the order of vectorsx andy.

x REALfor srotm

DOUBLE PRECISIONfor drotm

Array, DIMENSIONat least(1 + (n-1)*abs(incx)) .

incx INTEGER. Specifies the increment for the elements ofx .

y REALfor srotm

DOUBLE PRECISIONfor drotm

Array, DIMENSIONat least(1 + (n-1)*abs(incy)) .

incy INTEGER. Specifies the increment for the elements ofy.

param REALfor srotm

DOUBLE PRECISIONfor drotm

Array, DIMENSION5.

The elements of theparam array are:

param(1) contains a switch,flag .
param(2-5) containh11 , h21 , h12 , andh22 ,
respectively, the components of the arrayH.

Depending on the values offlag , the components ofH
are set as follows:

flag = -1. : H =

flag = 0. : H =

flag = 1. : H =

flag = -2. : H =

In the above cases, the matrix entries of 1.,- 1., and 0.
are assumed based on the last three values offlag and
are not actually loaded into theparam vector.

h11 h12

h21 h22

1. h12

h21 1.

h11 1.

1.– h22

1. 0.
0. 1.

BLAS and Sparse BLAS Routines2

2-17

Output Parameters

x Each element is replaced byh11*x + h12*y .

y Each element is replaced byh21*x + h22*y .

H Givens transformation matrix updated.

?rotmg
Computes the modified parameters for a
Givens rotation.

call srotmg (d1, d2, x1 , y1, param)

call drotmg (d1, d2, x1 , y1, param)

Discussion

Given cartesian coordinates (x1 , y1) of an input vector, these routines
compute the components of a modified Givens transformation matrixH that
zeros they-component of the resulting vector:

Input Parameters

d1 REALfor srotmg

DOUBLE PRECISIONfor drotmg

Provides the scaling factor for thex-coordinate of the
input vector (sqrt(d1)x1).

d2 REALfor srotmg

DOUBLE PRECISIONfor drotmg

Provides the scaling factor for they-coordinate of the
input vector (sqrt(d2)y1).

x1 REALfor srotmg

DOUBLE PRECISIONfor drotmg

Provides thex-coordinate of the input vector.

x
0

H x1

y1
=

2-18

2 Intel® Math Kernel Library Reference Manual

y1 REALfor srotmg

DOUBLE PRECISIONfor drotmg

Provides they-coordinate of the input vector.

Output Parameters

param REALfor srotmg

DOUBLE PRECISIONfor drotmg

Array, DIMENSION5.

The elementsof theparam array are:

param(1) contains a switch,flag .
param(2-5) containh11 , h21 , h12 , andh22 ,
respectively, the components of the arrayH.

Depending on the values offlag , the components ofH
are set as follows:

flag = -1. : H =

flag = 0. : H =

flag = 1. : H =

flag = -2. : H =

In the above cases, the matrix entries of 1., -1., and 0. are
assumed based on the last three values offlag and are
not actually loaded into theparam vector.

?scal
Computes a vector by a scalar product.

call sscal (n, a, x, incx)

h11 h12

h21 h22

1. h12

h21 1.

h11 1.

1.– h22

1. 0.
0. 1.

BLAS and Sparse BLAS Routines2

2-19

call dscal (n, a, x, incx)

call cscal (n, a, x, incx)

call zscal (n, a, x, incx)

call csscal (n, a, x, incx)

call zdscal (n, a, x, incx)

Discussion

The?scal routines perform a vector-vector operation defined as

x = a* x

where:

a is a scalar,x is ann-element vector.

Input Parameters

n INTEGER. Specifies the order of vectorx .

a REALfor sscal andcsscal

DOUBLE PRECISIONfor dscal andzdscal

REALfor cscal

DOUBLE PRECISIONfor zscal

Specifies the scalara.

x REALfor sscal

DOUBLE PRECISIONfor dscal

COMPLEXfor cscal andcsscal

DOUBLE COMPLEXfor zscal andcsscal

Array, DIMENSIONat least(1 + (n-1)*abs(incx)) .

incx INTEGER. Specifies the increment for the elements ofx .

Output Parameters

x Overwritten by the updated vectorx .

2-20

2 Intel® Math Kernel Library Reference Manual

?swap
Swaps a vector with another vector.

call sswap (n, x, incx, y, incy)

call dswap (n, x, incx, y, incy)

call cswap (n, x, incx, y, incy)

call zswap (n, x, incx, y, incy)

Discussion

Given the two complex vectorsx andy, the?swap routines return vectorsy
andx swapped, each replacing the other.

Input Parameters

n INTEGER. Specifies the order of vectorsx andy.

x REAL for sswap

DOUBLE PRECISIONfor dswap

COMPLEXfor cswap

DOUBLE COMPLEXfor zswap

Array, DIMENSIONat least(1 + (n-1)*abs(incx)) .

incx INTEGER. Specifies the increment for the elements ofx .

y REALfor sswap

DOUBLE PRECISIONfor dswap

COMPLEXfor cswap

DOUBLE COMPLEXfor zswap

Array, DIMENSIONat least(1 + (n-1)*abs(incy)) .

incy INTEGER. Specifies the increment for the elements ofy.

Output Parameters

x Contains the resultant vectorx .

y Contains the resultant vectory.

BLAS and Sparse BLAS Routines2

2-21

i?amax
Finds the element of a vector that has
the largest absolute value.

index = isamax (n, x, incx)

index = idamax (n, x, incx)

index = icamax (n, x, incx)

index = izamax (n, x, incx)

Discussion

Given a vectorx , the i?amax functions return the position of the vector
elementx(i) that has the largest absolute value or, for complex flavors, the
position of the element with the largest sum|Rex(i) | + |Im x(i) |.
If n is not positive,0 is returned.

If more than one vector element is found with the same largest absolute
value, the index of the first one encountered is returned.

Input Parameters

n INTEGER. Specifies the order of the vectorx .

x REALfor isamax

DOUBLE PRECISIONfor idamax

COMPLEXfor icamax

DOUBLE COMPLEXfor izamax

Array, DIMENSIONat least(1+(n-1)*abs(incx)) .

incx INTEGER. Specifies the increment for the elements ofx .

Output Parameters

index INTEGER. Contains the position of vector elementx

that has the largest absolute value.

2-22

2 Intel® Math Kernel Library Reference Manual

i?amin
Finds the element of a vector that has
the smallest absolute value.

index = isamin (n, x, incx)

index = idamin (n, x, incx)

index = icamin (n, x, incx)

index = izamin (n, x, incx)

Discussion

Given a vectorx , thei?amin functions return the position of the vector
elementx(i) that has the smallest absolute value or, for complex flavors,
the position of the element with the smallest sum|Rex(i) | + |Imx(i) |.
If n is not positive,0 is returned.

If more than one vector element is found with the same smallest absolute
value, the index of the first one encountered is returned.

Input Parameters

n INTEGER. On entry,n specifies the order of the vector
x .

x REALfor isamin

DOUBLE PRECISIONfor idamin

COMPLEXfor icamin

DOUBLE COMPLEXfor izamin

Array, DIMENSIONat least(1+(n-1)*abs(incx)) .

incx INTEGER. Specifies the increment for the elements ofx .

Output Parameters

index INTEGER. Contains the position of vector elementx

that has the smallest absolute value.

BLAS Routines2

2-23

BLAS Level 2 Routines
This section describes BLAS Level 2 routines, which perform matrix-vector
operations. Table 2-2 lists the BLAS Level 2 routine groups and the data
types associated with them.

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types

Routine
Groups

Data
Types Description

?gbmv s, d, c, z Matrix-vector product using a general band
matrix

?gemv s, d, c, z Matrix-vector product using a general matrix

?ger s, d Rank-1 update of a general matrix

?gerc c, z Rank-1 update of a conjugated general matrix

?geru c, z Rank-1 update of a general matrix,
unconjugated

?hbmv c, z Matrix-vector product using a Hermitian band
matrix

?hemv c, z Matrix-vector product using a Hermitian matrix

?her c, z Rank-1 update of a Hermitian matrix

?her2 c, z Rank-2 update of a Hermitian matrix

?hpmv c, z Matrix-vector product using a Hermitian packed
matrix

?hpr c, z Rank-1 update of a Hermitian packed matrix

?hpr2 c, z Rank-2 update of a Hermitian packed matrix

?sbmv s, d Matrix-vector product using symmetric band
matrix

?spmv s, d Matrix-vector product using a symmetric packed
matrix

?spr s, d Rank-1 update of a symmetric packed matrix

?spr2 s, d Rank-2 update of a symmetric packed matrix

?symv s, d Matrix-vector product using a symmetric matrix

?syr s, d Rank-1 update of a symmetric matrix

?syr2 s, d Rank-2 update of a symmetric matrix

continued *

2-24

2 Intel® Math Kernel Library Reference Manual

?gbmv
Computes a matrix-vector product using
a general band matrix

CALL sgbmv (trans, m, n, kl, ku, alpha, a, lda, x, inxc,
beta, y, incy)

call dgbmv (trans, m, n, kl, ku, alpha, a, lda, x, incx,
beta, y, incy)

call cgbmv (trans, m, n, kl, ku, alpha, a, lda, x, incx,
beta, y, incy)

call zgbmv (trans, m, n, kl, ku, alpha, a, lda, x, incx,
beta, y, incy)

Discussion

The?gbmv routines perform a matrix-vector operation defined as

y := alpha * a* x + beta * y

or

y := alpha * a'* x + beta * y,

or

y := alpha *conjg(a')* x + beta * y,

?tbmv s, d, c, z Matrix-vector product using a triangular band
matrix

?tbsv s, d, c, z Linear solution of a triangular band matrix

?tpmv s, d, c, z Matrix-vector product using a triangular packed
matrix

?tpsv s, d, c, z Linear solution of a triangular packed matrix

?trmv s, d, c, z Matrix-vector product using a triangular matrix

?trsv s, d, c, z Linear solution of a triangular matrix

Table 2-2 BLAS Level 2 Routine Groups and Their Data Types (continued)

Routine
Groups

Data
Types Description

BLAS Routines2

2-25

where:

alpha andbeta are scalars

x andy are vectors

a is anmby n band matrix, withkl sub-diagonals andku super-diagonals.

Input Parameters

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

m INTEGER. Specifies the number of rows of the matrixa.
The value ofmmust be at least zero.

n INTEGER. Specifies the number of columns of the
matrix a. The value ofn must be at least zero.

kl INTEGER. Specifies the number of sub-diagonals of the
matrix a. The value ofkl must satisfy0 ≤ kl .

ku INTEGER. Specifies the number of super-diagonals of
the matrixa. The value ofku must satisfy0 ≤ ku .

alpha REALfor sgbmv

DOUBLE PRECISIONfor dgbmv

COMPLEXfor cgbmv

DOUBLE COMPLEXfor zgbmv

Specifies the scalaralpha .

a REALfor sgbmv

DOUBLE PRECISIONfor dgbmv

COMPLEXfor cgbmv

DOUBLE COMPLEXfor zgbmv

trans value Operation to be Performed

N or n y:= alpha * a* x + beta * y

T or t y := alpha * a'* x + beta * y

C or c y:= alpha *conjg(a')* x +beta * y

2-26

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (lda, n) . Before entry, the leading
(kl + ku + 1) by n part of the arraya must contain the
matrix of coefficients. This matrix must be supplied
column-by-column, with the leading diagonal of the
matrix in row(ku + 1) of the array, the first
super-diagonal starting at position 2 in rowku , the first
sub-diagonal starting at position 1 in row(ku + 2) , and
so on. Elements in the arraya that do not correspond to
elements in the band matrix (such as the top leftku by
ku triangle) are not referenced.

The following program segment transfers a band matrix
from conventional full matrix storage to band storage:
do 20, j = 1, n

k = ku + 1 - j
do 10, i = max(1, j-ku), min(m, j+kl)
a(k+i, j) = matrix(i,j)

10 continue
20 continue

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
least(kl + ku + 1) .

x REALfor sgbmv

DOUBLE PRECISIONfor dgbmv

COMPLEXfor cgbmv

DOUBLE COMPLEXfor zgbmv

Array, DIMENSIONat least(1 + (n - 1)*abs(incx))

whentrans = 'N' or 'n' and at least
(1 + (m- 1)*abs(incx)) otherwise. Before entry, the
incremented arrayx must contain the vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
incx must not be zero.

beta REALfor sgbmv

DOUBLE PRECISIONfor dgbmv

COMPLEXfor cgbmv

DOUBLE COMPLEXfor zgbmv

BLAS Routines2

2-27

Specifies the scalar beta. Whenbeta is supplied as
zero, theny need not be set on input.

y REALfor sgbmv

DOUBLE PRECISIONfor dgbmv

COMPLEXfor cgbmv

DOUBLE COMPLEXfor zgbmv

Array, DIMENSIONat least(1 + (m- 1)*abs(incy))

whentrans = 'N' or 'n' and at least
(1 + (n - 1)*abs(incy)) otherwise. Before entry, the
incremented arrayy must contain the vectory.

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

Output Parameters

y Overwritten by the updated vectory.

?gemv
Computes a matrix-vector product using
a general matrix

call sgemv (trans, m, n, alpha, a, lda, x, incx,beta,
y, incy)

call dgemv (trans, m, n, alpha, a, lda, x, incx,beta,
y, incy)

call cgemv (trans, m, n, alpha, a, lda, x, incx,beta,
y, incy)

call zgemv (trans, m, n, alpha, a, lda, x, incx,beta,
y, incy)

Discussion

The?gemv routines perform a matrix-vector operation defined as

y := alpha * a* x + beta * y,

2-28

2 Intel® Math Kernel Library Reference Manual

or

y := alpha * a'* x + beta * y,

or

y := alpha *conjg(a')* x + beta * y,

where:

alpha andbeta are scalars

x andy are vectors

a is anmby n matrix.

Input Parameters

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

m INTEGER. Specifies the number of rows of the matrixa.
mmust be at least zero.

n INTEGER. Specifies the number of columns of the
matrix a. The value ofn must be at least zero.

alpha REALfor sgemv

DOUBLE PRECISIONfor dgemv

COMPLEXfor cgemv

DOUBLE COMPLEXfor zgemv

Specifies the scalaralpha .

a REALfor sgemv

DOUBLE PRECISIONfor dgemv

COMPLEXfor cgemv

DOUBLE COMPLEXfor zgemv

trans value Operation to be Performed

N or n y:= alpha * a* x + beta * y

T or t y:= alpha * a'* x + beta * y

C or c y:= alpha *conjg(a')* x +beta * y

BLAS Routines2

2-29

Array, DIMENSION (lda , n) . Before entry, the leading
mby n part of the arraya must contain the matrix of
coefficients.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
leastmax(1, m) .

x REALfor sgemv

DOUBLE PRECISIONfor dgemv

COMPLEXfor cgemv

DOUBLE COMPLEXfor zgemv

Array, DIMENSIONat least(1+(n-1)*abs(incx))

whentrans = 'N' or 'n' and at least
(1+(m- 1)*abs(incx)) otherwise. Before entry, the
incremented arrayx must contain the vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

beta REALfor sgemv

DOUBLE PRECISIONfor dgemv

COMPLEXfor cgemv

DOUBLE COMPLEXfor zgemv

Specifies the scalarbeta . Whenbeta is supplied as
zero, theny need not be set on input.

y REALfor sgemv

DOUBLE PRECISIONfor dgemv

COMPLEXfor cgemv

DOUBLE COMPLEXfor zgemv

Array, DIMENSIONat least(1 + (m- 1)*abs(incy))

whentrans = 'N' or 'n' and at least
(1 + (n - 1)*abs(incy)) otherwise. Before entry
with beta non-zero, the incremented arrayy must
contain the vectory.

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

2-30

2 Intel® Math Kernel Library Reference Manual

Output Parameters

y Overwritten by the updated vectory.

?ger
Performs a rank-1 update of a general
matrix.

call sger (m, n, alpha, x, incx, y, incy, a, lda)

call dger (m, n, alpha, x, incx, y, incy, a, lda)

Discussion

The?ger routines perform a matrix-vector operation defined as

a := alpha * x* y' + a,

where:

alpha is a scalar

x is anm-element vector

y is ann-element vector

a is anmby n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrixa.
The value ofmmust be at least zero.

n INTEGER. Specifies the number of columns of the
matrix a. The value ofn must be at least zero.

alpha REALfor sger

DOUBLE PRECISIONfor dger

Specifies the scalaralpha .

x REALfor sger

DOUBLE PRECISIONfor dger

BLAS Routines2

2-31

Array, DIMENSIONat least(1 + (m- 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
m-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

y REALfor sger

DOUBLE PRECISIONfor dger

Array, DIMENSIONat least(1 + (n - 1)*abs(incy)) .
Before entry, the incremented arrayy must contain the
n-element vectory.

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

a REALfor sger

DOUBLE PRECISIONfor dger

Array, DIMENSION (lda, n) . Before entry, the leading
mby n part of the arraya must contain the matrix of
coefficients.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
leastmax(1, m) .

Output Parameters

a Overwritten by the updated matrix.

?gerc
Performs a rank-1 update (conjugated)
of a general matrix.

call cgerc (m, n, alpha, x, incx, y, incy, a, lda)

call zgerc (m, n, alpha, x, incx, y, incy, a, lda)

2-32

2 Intel® Math Kernel Library Reference Manual

Discussion

The?gerc routines perform a matrix-vector operation defined as

a := alpha * x*conjg(y') + a,

where:

alpha is a scalar

x is anm-element vector

y is ann-element vector

a is anmby n matrix.

Input Parameters

m INTEGER. Specifies the number of rows of the matrixa.
The value ofmmust be at least zero.

n INTEGER. Specifies the number of columns of the
matrix a. The value ofn must be at least zero.

alpha SINGLE PRECISION COMPLEXfor cgerc

DOUBLE PRECISION COMPLEXfor zgerc

Specifies the scalaralpha .

x SINGLE PRECISION COMPLEXfor cgerc

DOUBLE PRECISION COMPLEXfor zgerc

Array, DIMENSIONat least(1 + (m- 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
m-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

y COMPLEXfor cgerc

DOUBLE COMPLEXfor zgerc

Array, DIMENSIONat least(1 + (n - 1)*abs(incy)) .
Before entry, the incremented arrayy must contain the
n-element vectory.

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

BLAS Routines2

2-33

a COMPLEXfor cgerc

DOUBLE COMPLEXfor zgerc

Array, DIMENSION (lda, n) . Before entry, the leading
mby n part of the arraya must contain the matrix of
coefficients.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
leastmax(1, m) .

Output Parameters

a Overwritten by the updated matrix.

?geru
Performs a rank-1 update
(unconjugated) of a general matrix.

call cgeru (m, n, alpha, x, incx, y, incy, a, lda)

call zgeru (m, n, alpha, x, incx, y, incy, a, lda)

Discussion

The?geru routines perform a matrix-vector operation defined as

a:= alpha * x* y ' + a,

where:

alpha is a scalar

x is anm-element vector

y is ann-element vector

a is anmby n matrix.

2-34

2 Intel® Math Kernel Library Reference Manual

Input Parameters

m INTEGER. Specifies the number of rows of the matrixa.
The value ofmmust be at least zero.

n INTEGER. Specifies the number of columns of the
matrix a. The value ofn must be at least zero.

alpha COMPLEXfor cgeru

DOUBLE COMPLEXfor zgeru

Specifies the scalaralpha .

x COMPLEXfor cgeru

DOUBLE COMPLEXfor zgeru

Array, DIMENSIONat least(1 + (m- 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
m-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

y COMPLEXfor cgeru

DOUBLE COMPLEXfor zgeru

Array, DIMENSIONat least(1 + (n - 1)*abs(incy)) .
Before entry, the incremented arrayy must contain the
n-element vectory.

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

a COMPLEXfor cgeru

DOUBLE COMPLEXfor zgeru

Array, DIMENSION (lda, n) . Before entry, the leading
mby n part of the arraya must contain the matrix of
coefficients.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
leastmax(1, m) .

Output Parameters

a Overwritten by the updated matrix.

BLAS Routines2

2-35

?hbmv
Computes a matrix-vector product using
a Hermitian band matrix.

call chbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y,
incy)

call zhbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y,
incy)

Discussion

The?hbmv routines perform a matrix-vector operation defined as

y := alpha * a* x + beta * y,

where:

alpha andbeta are scalars

x andy aren-element vectors

a is ann by n Hermitian band matrix, withk super-diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the band matrixa is being supplied, as
follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

k INTEGER. Specifies the number of super-diagonals of
the matrixa. The value ofk must satisfy0 ≤ k .

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is being
supplied.

L or l The lower triangular part of matrix a is being
supplied.

2-36

2 Intel® Math Kernel Library Reference Manual

alpha COMPLEXfor chbmv

DOUBLE COMPLEXfor zhbmv

Specifies the scalaralpha .

a COMPLEXfor chbmv

DOUBLE COMPLEXfor zhbmv

Array, DIMENSION (lda, n) . Before entry with
uplo = 'U' or 'u' , the leading(k + 1) by n part of the
arraya must contain the upper triangular band part of
the Hermitian matrix. The matrix must be supplied
column-by-column, with the leading diagonal of the
matrix in row(k + 1) of the array, the first
super-diagonal starting at position 2 in rowk , and so on.
The top leftk by k triangle of the arraya is not
referenced.

The following program segment transfers the upper
triangular part of a Hermitian band matrix from
conventional full matrix storage to band storage:
do 20, j = 1, n

m = k + 1 - j
do 10, i = max(1, j - k), j

a(m + i, j) = matrix(i, j)
10 continue

20 continue

Before entry withuplo = 'L' or 'l' , the leading
(k + 1) by n part of the arraya must contain the lower
triangular band part of the Hermitian matrix, supplied
column-by-column, with the leading diagonal of the
matrix in row 1 of the array, the first sub-diagonal
starting at position 1 in row 2, and so on. The bottom
right k by k triangle of the arraya is not referenced.

The following program segment transfers the lower
triangular part of a Hermitian band matrix from
conventional full matrix storage to band storage:
do 20, j = 1, n

m = 1 - j
do 10, i = j, min(n, j + k)

BLAS Routines2

2-37

a(m + i, j) = matrix(i, j)
10 continue

20 continue

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
least(k + 1) .

x COMPLEXfor chbmv

DOUBLE COMPLEXfor zhbmv

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

beta COMPLEXfor chbmv

DOUBLE COMPLEXfor zhbmv

Specifies the scalarbeta .

y COMPLEXfor chbmv

DOUBLE COMPLEXfor zhbmv

Array, DIMENSIONat least(1 + (n - 1)*abs(incy)) .
Before entry, the incremented arrayy must contain the
vectory.

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

Output Parameters

y Overwritten by the updated vectory.

2-38

2 Intel® Math Kernel Library Reference Manual

?hemv
Computes a matrix-vector product using
a Hermitian matrix.

call chemv (uplo, n, alpha, a, lda, x, incx, beta, y,
incy)

call zhemv (uplo, n, alpha, a, lda, x, incx, beta, y,
incy)

Discussion

The?hemv routines perform a matrix-vector operation defined as

y := alpha * a* x + beta * y,

where:

alpha andbeta are scalars

x andy aren-element vectors

a is ann by n Hermitian matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the arraya is to be referenced, as
follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

BLAS Routines2

2-39

alpha COMPLEXfor chemv

DOUBLE COMPLEXfor zhemv

Specifies the scalaralpha .

a COMPLEXfor chemv

DOUBLE COMPLEXfor zhemv

Array, DIMENSION (lda, n) . Before entry with
uplo = 'U' or 'u' , the leadingn by n upper triangular
part of the arraya must contain the upper triangular part
of the Hermitian matrix and the strictly lower triangular
part ofa is not referenced. Before entry with
uplo = 'L' or 'l' , the leadingn by n lower triangular
part of the arraya must contain the lower triangular part
of the Hermitian matrix and the strictly upper triangular
part ofa is not referenced.

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
leastmax(1, n) .

x COMPLEXfor chemv

DOUBLE COMPLEXfor zhemv

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

beta COMPLEXfor chemv

DOUBLE COMPLEXfor zhemv

Specifies the scalarbeta . Whenbeta is supplied as
zero theny need not be set on input.

2-40

2 Intel® Math Kernel Library Reference Manual

y COMPLEXfor chemv

DOUBLE COMPLEXfor zhemv

Array, DIMENSIONat least(1 + (n - 1)*abs(incy)) .
Before entry, the incremented arrayy must contain the
n-element vectory.

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

Output Parameters

y Overwritten by the updated vectory.

?her
Performs a rank-1 update of a
Hermitian matrix.

call cher (uplo, n, alpha, x, incx, a, lda)

call zher (uplo, n, alpha, x, incx, a, lda)

Discussion

The?her routines perform a matrix-vector operation defined as

a := alpha * x*conjg(x') + a,

where:

alpha is a real scalar

x is ann-element vector

a is ann by n Hermitian matrix.

BLAS Routines2

2-41

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the arraya is to be referenced, as
follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

alpha REALfor cher

DOUBLE PRECISIONfor zher

Specifies the scalaralpha .

x COMPLEXfor cher

DOUBLE COMPLEXfor zher

Array, dimension at least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

a COMPLEXfor cher

DOUBLE COMPLEXfor zher

Array, DIMENSION (lda, n) . Before entry with
uplo = 'U' or 'u' , the leadingn by n upper triangular
part of the arraya must contain the upper triangular part
of the Hermitian matrix and the strictly lower triangular
part ofa is not referenced.

Before entry withuplo = 'L' or 'l' , the leadingn by n

lower triangular part of the arraya must contain the
lower triangular part of the Hermitian matrix and the
strictly upper triangular part ofa is not referenced.

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

2-42

2 Intel® Math Kernel Library Reference Manual

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
leastmax(1, n) .

Output Parameters

a With uplo = 'U' or 'u' , the upper triangular part of the
arraya is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l' , the lower triangular part of the
arraya is overwritten by the lower triangular part of the
updated matrix.

The imaginary parts of the diagonal elements are set to
zero.

?her2
Performs a rank-2 update of a
Hermitian matrix.

call cher2 (uplo, n, alpha, x, incx, y, incy, a, lda)

call zher2 (uplo, n, alpha, x, incx, y, incy, a, lda)

Discussion

The?her2 routines perform a matrix-vector operation defined as

a := alpha *x*conjg(y') + conjg(alpha)* y*conjg(x') + a,

where:

alpha is a scalar

x andy aren-element vectors

a is ann by n Hermitian matrix.

BLAS Routines2

2-43

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the arraya is to be referenced, as
follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

alpha COMPLEXfor cher2

DOUBLE COMPLEXfor zher2

Specifies the scalaralpha .

x COMPLEXfor cher2

DOUBLE COMPLEXfor zher2

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

y COMPLEXfor cher2

DOUBLE COMPLEXfor zher2

Array, DIMENSIONat least(1 + (n - 1)*abs(incy)) .
Before entry, the incremented arrayy must contain the
n-element vectory.

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

a COMPLEXfor cher2

DOUBLE COMPLEXfor zher2

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

2-44

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSION (lda, n) . Before entry with
uplo = 'U' or 'u' , the leadingn by n upper triangular
part of the arraya must contain the upper triangular part
of the Hermitian matrix and the strictly lower triangular
part ofa is not referenced.

Before entry withuplo = 'L' or 'l' , the leadingn by n

lower triangular part of the arraya must contain the
lower triangular part of the Hermitian matrix and the
strictly upper triangular part ofa is not referenced.

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
leastmax(1, n) .

Output Parameters

a With uplo = 'U' or 'u' , the upper triangular part of the
arraya is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l' , the lower triangular part of the
arraya is overwritten by the lower triangular part of the
updated matrix.

The imaginary parts of the diagonal elements are set to
zero.

?hpmv
Computes a matrix-vector product using
a Hermitian packed matrix.

call chpmv (uplo, n, alpha, ap, x, incx, beta, y, incy)

call zhpmv (uplo, n, alpha, ap, x, incx, beta, y, incy)

BLAS Routines2

2-45

Discussion

The?hpmv routines perform a matrix-vector operation defined as

y := alpha * a* x + beta * y,

where:

alpha andbeta are scalars

x andy aren-element vectors

a is ann by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrixa is supplied in the packed
arrayap, as follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

alpha COMPLEXfor chpmv

DOUBLE COMPLEXfor zhpmv

Specifies the scalaralpha .

ap COMPLEXfor chpmv

DOUBLE COMPLEXfor zhpmv

Array, DIMENSIONat least((n*(n + 1))/2) . Before
entry withuplo = 'U' or 'u' , the arrayap must
contain the upper triangular part of the Hermitian matrix
packed sequentially, column-by-column, so thatap(1)

containsa(1, 1) , ap(2) andap(3) containa(1, 2)

anda(2, 2) respectively, and so on. Before entry with
uplo = 'L' or 'l' , the arrayap must contain the lower
triangular part of the Hermitian matrix packed

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

2-46

2 Intel® Math Kernel Library Reference Manual

sequentially, column-by-column, so thatap(1) contains
a(1, 1) , ap(2) andap(3) containa(2, 1) anda(3,

1) respectively, and so on.

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

x COMPLEXfor chpmv

DOUBLE PRECISION COMPLEXfor zhpmv

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

beta COMPLEXfor chpmv

DOUBLE COMPLEXfor zhpmv

Specifies the scalarbeta . Whenbeta is supplied as
zero theny need not be set on input.

y COMPLEXfor chpmv

DOUBLE COMPLEXfor zhpmv

Array, DIMENSIONat least(1 + (n - 1)*abs(incy)) .
Before entry, the incremented arrayy must contain the
n-element vectory.

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

Output Parameters

y Overwritten by the updated vectory

BLAS Routines2

2-47

?hpr
Performs a rank-1 update of a
Hermitian packed matrix.

call chpr (uplo, n, alpha, x, incx, ap)

call zhpr (uplo, n, alpha, x, incx, ap)

Discussion

The?hpr routines perform a matrix-vector operation defined as

a := alpha * x*conjg(x') + a,

where:

alpha is a real scalar

x is ann-element vector

a is ann by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrixa is supplied in the packed
arrayap, as follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

alpha REALfor chpr

DOUBLE PRECISIONfor zhpr

Specifies the scalaralpha .

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

2-48

2 Intel® Math Kernel Library Reference Manual

x COMPLEXfor chpr

DOUBLE COMPLEXfor zhpr

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
incx must not be zero.

ap COMPLEXfor chpr

DOUBLE COMPLEXfor zhpr

Array, DIMENSIONat least((n*(n + 1))/2) . Before
entry withuplo = 'U' or 'u' , the arrayap must
contain the upper triangular part of the Hermitian matrix
packed sequentially, column-by-column, so thatap(1)

containsa(1, 1) , ap(2) andap(3) containa(1, 2)

anda(2, 2) respectively, and so on.

Before entry withuplo = 'L' or 'l' , the arrayap must
contain the lower triangular part of the Hermitian matrix
packed sequentially, column-by-column, so thatap(1)

containsa(1, 1) , ap(2) andap(3) containa(2, 1)

anda(3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

Output Parameters

ap With uplo = 'U' or 'u' , overwritten by the upper
triangular part of the updated matrix.

With uplo = 'L' or 'l' , overwritten by the lower
triangular part of the updated matrix.

The imaginary parts of the diagonal elements are set to
zero.

BLAS Routines2

2-49

?hpr2
Performs a rank-2 update of a
Hermitian packed matrix.

call chpr2 (uplo, n, alpha, x, incx, y, incy, ap)

call zhpr2 (uplo, n, alpha, x, incx, y, incy, ap)

Discussion

The?hpr2 routines perform a matrix-vector operation defined as

a := alpha * x*conjg(y') + conjg(alpha)* y*conjg(x') + a,

where:

alpha is a scalar

x andy aren-element vectors

a is ann by n Hermitian matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrixa is supplied in the packed
arrayap, as follows

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

alpha COMPLEXfor chpr2

DOUBLE COMPLEXfor zhpr2

Specifies the scalaralpha .

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

2-50

2 Intel® Math Kernel Library Reference Manual

x COMPLEXfor chpr2

DOUBLE COMPLEXfor zhpr2

Array, dimension at least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

y COMPLEXfor chpr2

DOUBLE COMPLEXfor zhpr2

Array, DIMENSIONat least(1 + (n - 1)*abs(incy)) .
Before entry, the incremented arrayy must contain the
n-element vectory.

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

ap COMPLEXfor chpr2

DOUBLE COMPLEXfor zhpr2

Array, DIMENSIONat least((n*(n + 1))/2) . Before
entry withuplo = 'U' or 'u' , the arrayap must
contain the upper triangular part of the Hermitian matrix
packed sequentially, column-by-column, so thatap(1)

containsa(1, 1) , ap(2) andap(3) containa(1, 2)

anda(2, 2) respectively, and so on.

Before entry withuplo = 'L' or 'l' , the arrayap must
contain the lower triangular part of the Hermitian matrix
packed sequentially, column-by-column, so thatap(1)

containsa(1, 1) , ap(2) andap(3) containa(2, 1)

anda(3, 1) respectively, and so on.

The imaginary parts of the diagonal elements need not
be set and are assumed to be zero.

BLAS Routines2

2-51

Output Parameters

ap With uplo = 'U' or 'u' , overwritten by the upper
triangular part of the updated matrix.

With uplo = 'L' or 'l' , overwritten by the lower
triangular part of the updated matrix.

The imaginary parts of the diagonal elements need are
set to zero.

?sbmv
Computes a matrix-vector product using
a symmetric band matrix.

call ssbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y,
incy)

call dsbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y,
incy)

Discussion

The?sbmv routines perform a matrix-vector operation defined as

y := alpha * a* x + beta * y,

where:

alpha andbeta are scalars

x andy aren-element vectors

a is ann by n symmetric band matrix, withk super-diagonals.

2-52

2 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the band matrixa is being supplied, as
follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

k INTEGER. Specifies the number of super-diagonals of
the matrixa. The value ofk must satisfy0 ≤ k .

alpha REALfor ssbmv

DOUBLE PRECISIONfor dsbmv

Specifies the scalaralpha .

a REALfor ssbmv

DOUBLE PRECISIONfor dsbmv

Array, DIMENSION (lda, n) . Before entry with
uplo = 'U' or 'u' , the leading(k + 1) by n part of the
arraya must contain the upper triangular band part of
the symmetric matrix, supplied column-by-column, with
the leading diagonal of the matrix in row(k + 1) of the
array, the first super-diagonal starting at position 2 in
row k , and so on. The top leftk by k triangle of the array
a is not referenced.

The following program segment transfers the upper
triangular part of a symmetric band matrix from
conventional full matrix storage to band storage:
do 20, j = 1, n

m = k + 1 - j
do 10, i = max(1, j - k), j

a(m + i, j) = matrix(i, j)
10 continue

20 continue

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied.

L or l The lower triangular part of matrix a is supplied.

BLAS Routines2

2-53

Before entry withuplo = 'L' or 'l' , the leading
(k + 1) by n part of the arraya must contain the lower
triangular band part of the symmetric matrix, supplied
column-by-column, with the leading diagonal of the
matrix in row 1 of the array, the first sub-diagonal
starting at position 1 in row 2, and so on. The bottom
right k by k triangle of the arraya is not referenced.

The following program segment transfers the lower
triangular part of a symmetric band matrix from
conventional full matrix storage to band storage:
do 20, j = 1, n

m = 1 - j
do 10, i = j, min(n, j + k)

a(m + i, j) = matrix(i, j)
10 continue

20 continue

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
least(k + 1) .

x REALfor ssbmv

DOUBLE PRECISIONfor dsbmv

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value of incx must not be zero.

beta REALfor ssbmv

DOUBLE PRECISIONfor dsbmv

Specifies the scalarbeta .

y REALfor ssbmv

DOUBLE PRECISIONfor dsbmv

Array, DIMENSIONat least(1 + (n - 1)*abs(incy)) .
Before entry, the incremented arrayy must contain the
vectory.

2-54

2 Intel® Math Kernel Library Reference Manual

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

Output Parameters

y Overwritten by the updated vectory.

?spmv
Computes a matrix-vector product using
a symmetric packed matrix.

call sspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)

call dspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)

Discussion

The?spmv routines perform a matrix-vector operation defined as

y := alpha * a* x + beta * y,

where:

alpha andbeta are scalars

x andy aren-element vectors

a is ann by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrixa is supplied in the packed
arrayap, as follows:

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

BLAS Routines2

2-55

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

alpha REALfor sspmv

DOUBLE PRECISIONfor dspmv

Specifies the scalaralpha .

ap REALfor sspmv

DOUBLE PRECISIONfor dspmv

Array, DIMENSIONat least((n*(n + 1))/2) . Before
entry withuplo = 'U' or 'u' , the arrayap must
contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that
ap(1) containsa(1, 1) , ap(2) andap(3) contain
a(1, 2) anda(2, 2) respectively, and so on. Before
entry withuplo = 'L' or 'l' , the arrayap must
contain the lower triangular part of the symmetric matrix
packed sequentially, column-by-column, so thatap(1)

containsa(1, 1) , ap(2) andap(3) containa(2, 1)

anda(3, 1) respectively, and so on.

x REALfor sspmv

DOUBLE PRECISIONfor dspmv

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

beta REALfor sspmv

DOUBLE PRECISIONfor dspmv

Specifies the scalarbeta . Whenbeta is supplied as
zero, theny need not be set on input.

y REAL for sspmv

DOUBLE PRECISIONfor dspmv

Array, DIMENSIONat least(1 + (n - 1)*abs(incy)) .
Before entry, the incremented arrayy must contain the
n-element vectory.

2-56

2 Intel® Math Kernel Library Reference Manual

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

Output Parameters

y Overwritten by the updated vectory.

?spr
Performs a rank-1 update of a
symmetric packed matrix.

call sspr(uplo, n, alpha, x, incx, ap)

call dspr(uplo, n, alpha, x, incx, ap)

Discussion

The?spr routines perform a matrix-vector operation defined as

a:= alpha * x* x ' + a,

where:

alpha is a real scalar

x is ann-element vector

a is ann by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrixa is supplied in the packed
arrayap, as follows:

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

BLAS Routines2

2-57

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

alpha REALfor sspr

DOUBLE PRECISIONfor dspr

Specifies the scalaralpha .

x REALfor sspr

DOUBLE PRECISIONfor dspr

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

ap REALfor sspr

DOUBLE PRECISIONfor dspr

Array, DIMENSIONat least((n*(n + 1))/2) . Before
entry withuplo = 'U' or 'u' , the arrayap must
contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that
ap(1) containsa(1,1) , ap(2) andap(3) contain
a(1, 2) anda(2,2) respectively, and so on.

Before entry withuplo = 'L' or 'l' , the arrayap must
contain the lower triangular part of the symmetric matrix
packed sequentially, column-by-column, so thatap(1)

containsa(1,1) , ap(2) andap(3) containa(2,1) and
a(3,1) respectively, and so on.

Output Parameters

ap With uplo = 'U' or 'u' , overwritten by the upper
triangular part of the updated matrix.

With uplo = 'L' or 'l' , overwritten by the lower
triangular part of the updated matrix.

2-58

2 Intel® Math Kernel Library Reference Manual

?spr2
Performs a rank-2 update of a
symmetric packed matrix.

call sspr2(uplo, n, alpha, x, incx, y, incy, ap)

call dspr2(uplo, n, alpha, x, incx, y, incy, ap)

Discussion

The?spr2 routines perform a matrix-vector operation defined as

a:= alpha * x* y ' + alpha * y* x ' + a,

where:

alpha is a scalar

x andy aren-element vectors

a is ann by n symmetric matrix, supplied in packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the matrixa is supplied in the packed
arrayap, as follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

alpha REALfor sspr2

DOUBLE PRECISIONfor dspr2

Specifies the scalaralpha .

uplo value Part of Matrix a Supplied

U or u The upper triangular part of matrix a is supplied in
ap.

L or l The lower triangular part of matrix a is supplied in
ap.

BLAS Routines2

2-59

x REALfor sspr2

DOUBLE PRECISIONfor dspr2

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

y REALfor sspr2

DOUBLE PRECISIONfor dspr2

Array, DIMENSIONat least(1 + (n - 1)*abs(incy)) .
Before entry, the incremented arrayy must contain the
n-element vectory.

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

ap REALfor sspr2

DOUBLE PRECISIONfor dspr2

Array, DIMENSIONat least((n*(n + 1))/2) . Before
entry withuplo = 'U' or 'u' , the arrayap must
contain the upper triangular part of the symmetric
matrix packed sequentially, column-by-column, so that
ap(1) containsa(1,1) , ap(2) andap(3) contain
a(1,2) anda(2,2) respectively, and so on.

Before entry withuplo = 'L' or 'l' , the arrayap must
contain the lower triangular part of the symmetric matrix
packed sequentially, column-by-column, so thatap(1)

containsa(1,1) , ap(2) andap(3) contain a(2,1)

anda(3,1) respectively, and so on.

Output Parameters

ap With uplo = 'U' or 'u' , overwritten by the upper
triangular part of the updated matrix.

With uplo = 'L' or 'l' , overwritten by the lower
triangular part of the updated matrix.

2-60

2 Intel® Math Kernel Library Reference Manual

?symv
Computes a matrix-vector product for a
symmetric matrix.

call ssymv (uplo, n, alpha, a, lda, x, incx, beta, y,

incy)

call dsymv (uplo, n, alpha, a, lda, x, incx, beta, y,

incy)

Discussion

The?symv routines perform a matrix-vector operation defined as

y := alpha * a* x + beta * y,

where:

alpha andbeta are scalars

x and y aren-element vectors

a is ann by n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the arraya is to be referenced, as
follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

BLAS Routines2

2-61

alpha REALfor ssymv

DOUBLE PRECISIONfor dsymv

Specifies the scalaralpha .

a REALfor ssymv

DOUBLE PRECISIONfor dsymv

Array, DIMENSION (lda, n) . Before entry with
uplo = 'U' or 'u' , the leadingn by n upper triangular
part of the arraya must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part ofa is not referenced. Before entry with
uplo = 'L' or 'l' , the leadingn by n lower triangular
part of the arraya must contain the lower triangular part
of the symmetric matrix and the strictly upper triangular
part ofa is not referenced.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
leastmax(1, n) .

x REALfor ssymv

DOUBLE PRECISIONfor dsymv

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

beta REALfor ssymv

DOUBLE PRECISIONfor dsymv

Specifies the scalarbeta . Whenbeta is supplied as
zero, theny need not be set on input.

y REALfor ssymv

DOUBLE PRECISIONfor dsymv

Array, DIMENSIONat least(1 + (n - 1)*abs(incy)) .
Before entry, the incremented arrayy must contain the
n-element vectory.

2-62

2 Intel® Math Kernel Library Reference Manual

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

Output Parameters

y Overwritten by the updated vectory.

?syr
Performs a rank-1 update of a
symmetric matrix.

call ssyr(uplo, n, alpha, x, incx, a, lda)

call dsyr(uplo, n, alpha, x, incx, a, lda)

Discussion

The?syr routines perform a matrix-vector operation defined as

a := alpha * x* x' + a,

where:

alpha is a real scalar

x is ann-element vector

a is ann by n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the arraya is to be referenced, as
follows:

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

BLAS Routines2

2-63

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

alpha REALfor ssyr

DOUBLE PRECISIONfor dsyr

Specifies the scalaralpha .

x REALfor ssyr

DOUBLE PRECISIONfor dsyr

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

a REALfor ssyr

DOUBLE PRECISIONfor dsyr

Array, DIMENSION (lda, n) . Before entry with
uplo = 'U' or 'u' , the leadingn by n upper triangular
part of the arraya must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part ofa is not referenced.

Before entry withuplo = 'L' or 'l' , the leadingn by n

lower triangular part of the arraya must contain the
lower triangular part of the symmetric matrix and the
strictly upper triangular part ofa is not referenced.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
leastmax(1, n) .

Output Parameters

a With uplo = 'U' or 'u' , the upper triangular part of the
arraya is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l' , the lower triangular part of the
arraya is overwritten by the lower triangular part of the
updated matrix.

2-64

2 Intel® Math Kernel Library Reference Manual

?syr2
Performs a rank-2 update of symmetric
matrix.

call ssyr2(uplo, n, alpha, x, incx, y, incy, a, lda)

call dsyr2(uplo, n, alpha, x, incx, y, incy, a, lda)

Discussion

The?syr2 routines perform a matrix-vector operation defined as

a := alpha * x* y' + alpha * y* x' + a,

where:

alpha is a scalar

x andy aren-element vectors

a is ann by n symmetric matrix.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the arraya is to be referenced, as
follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

alpha REALfor ssyr2

DOUBLE PRECISIONfor dsyr2

Specifies the scalaralpha .

uplo value Part of Array a To Be Referenced

U or u The upper triangular part of array a is to be
referenced.

L or l The lower triangular part of array a is to be
referenced.

BLAS Routines2

2-65

x REALfor ssyr2

DOUBLE PRECISIONfor dsyr2

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

y REALfor ssyr2

DOUBLE PRECISIONfor dsyr2

Array, DIMENSIONat least(1 + (n - 1)*abs(incy)) .
Before entry, the incremented arrayy must contain the
n-element vectory.

incy INTEGER. Specifies the increment for the elements ofy.
The value ofincy must not be zero.

a REALfor ssyr2

DOUBLE PRECISIONfor dsyr2

Array, DIMENSION (lda, n) . Before entry with
uplo = 'U' or 'u' , the leadingn by n upper triangular
part of the arraya must contain the upper triangular
part of the symmetric matrix and the strictly lower
triangular part ofa is not referenced.

Before entry withuplo = 'L' or 'l' , the leadingn by n

lower triangular part of the arraya must contain the
lower triangular part of the symmetric matrix and the
strictly upper triangular part ofa is not referenced.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
leastmax(1, n) .

2-66

2 Intel® Math Kernel Library Reference Manual

Output Parameters

a With uplo = 'U' or 'u' , the upper triangular part of the
arraya is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l' , the lower triangular part of the
arraya is overwritten by the lower triangular part of the
updated matrix.

?tbmv
Computes a matrix-vector product using
a triangular band matrix.

call stbmv (uplo, trans, diag, n, k, a, lda, x, incx)

call dtbmv (uplo, trans, diag, n, k, a, lda, x, incx)

call ctbmv (uplo, trans, diag, n, k, a, lda, x, incx)

call ztbmv (uplo, trans, diag, n, k, a, lda, x, incx)

Discussion

The?tbmv routines perform one of the matrix-vector operations defined as

x := a* x , or x := a'* x , or x := conjg(a')* x ,

where:

x is ann-element vector

a is ann by n unit, or non-unit, upper or lower triangular band matrix, with
(k + 1) diagonals.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper
or lower triangular matrix, as follows:

BLAS Routines2

2-67

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

diag CHARACTER*1. Specifies whether or nota is unit
triangular, as follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

k INTEGER. On entry withuplo = 'U' or 'u' , k specifies
the number of super-diagonals of the matrixa. On entry
with uplo = 'L' or 'l' , k specifies the number of
sub-diagonals of the matrixa. The value ofk must
satisfy0 ≤ k .

a REAL for stbmv

DOUBLE PRECISIONfor dtbmv

COMPLEXfor ctbmv

DOUBLE COMPLEXfor ztbmv

Array, DIMENSION (lda, n) . Before entry with
uplo = 'U' or 'u' , the leading(k + 1) by n part of the
arraya must contain the upper triangular band part of
the matrix of coefficients, supplied column-by-column,
with the leading diagonal of the matrix in row(k + 1)

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation to be Performed

N or n x := a* x

T or t x := a'* x

C or c x := conjg(a')* x

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

2-68

2 Intel® Math Kernel Library Reference Manual

of the array, the first super-diagonal starting at position 2
in row k , and so on. The top leftk by k triangle of the
arraya is not referenced. The following program
segment transfers an upper triangular band matrix from
conventional full matrix storage to band storage:
do 20, j = 1, n

m = k + 1 - j
do 10, i = max(1, j - k), j

a(m + i, j) = matrix(i, j)
10 continue

20 continue

Before entry withuplo = 'L' or 'l' , the leading
(k + 1) by n part of the arraya must contain the lower
triangular band part of the matrix of coefficients,
supplied column-by-column, with the leading diagonal
of the matrix in row1 of the array, the first sub-diagonal
starting at position 1 in row 2, and so on. The bottom
right k by k triangle of the arraya is not referenced. The
following program segment transfers a lower triangular
band matrix from conventional full matrix storage to
band storage:

do 20, j = 1, n

m = 1 - j

do 10, i = j, min(n, j + k)

a(m + i, j) = matrix (i, j)

10 continue

20 continue

Note that whendiag = 'U' or 'u' , the elements of the
arraya corresponding to the diagonal elements of the
matrix are not referenced, but are assumed to be unity.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
least(k + 1) .

BLAS Routines2

2-69

x REALfor stbmv

DOUBLE PRECISIONfor dtbmv

COMPLEXfor ctbmv

DOUBLE COMPLEXfor ztbmv

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

Output Parameters

x Overwritten with the transformed vectorx .

?tbsv
Solves a system of linear equations
whose coefficients are in a triangular
band matrix.

call stbsv (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)

call dtbsv (uplo, trans, diag, n, k, a, lda, x, incx)

call ctbsv (uplo, trans, diag, n, k, a, lda, x, incx)

call ztbsv (uplo, trans, diag, n, k, a, lda, x, incx)

Discussion

The?tbsv routines solve one of the following systems of equations:

a* x = b, or a'* x = b, or conjg(a')* x = b,

where:

b andx aren-element vectors

a is ann by n unit, or non-unit, upper or lower triangular band matrix, with
(k + 1) diagonals.

2-70

2 Intel® Math Kernel Library Reference Manual

The routine does not test for singularity or near-singularity. Such tests must
be performed before calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper
or lower triangular matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

diag CHARACTER*1. Specifies whether or nota is unit
triangular, as follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

k INTEGER. On entry withuplo = 'U' or 'u' , k

specifies the number of super-diagonals of the matrixa.
On entry withuplo = 'L' or 'l' , k specifies the
number of sub-diagonals of the matrixa. The value ofk
must satisfy0 ≤ k .

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation to be Performed

N or n a* x = b

T or t a'* x = b

C or c conjg(a')* x = b

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS Routines2

2-71

a REALfor stbsv

DOUBLE PRECISIONfor dtbsv

COMPLEXfor ctbsv

DOUBLE COMPLEXfor ztbsv

Array, DIMENSION (lda, n) . Before entry with
uplo = 'U' or 'u' , the leading(k + 1) by n part of the
arraya must contain the upper triangular band part of
the matrix of coefficients, supplied column-by-column,
with the leading diagonal of the matrix in row(k + 1)

of the array, the first super-diagonal starting at position 2
in row k , and so on. The top leftk by k triangle of the
arraya is not referenced.

The following program segment transfers an upper
triangular band matrix from conventional full matrix
storage to band storage:
do 20, j = 1, n

m = k + 1 - j
do 10, i = max(1, j - k), j

a(m + i, j) = matrix (i, j)
10 continue

20 continue

Before entry withuplo = 'L' or 'l' , the leading
(k + 1) by n part of the arraya must contain the lower
triangular band part of the matrix of coefficients,
supplied column-by-column, with the leading diagonal
of the matrix in row 1 of the array, the first sub-diagonal
starting at position 1 in row 2, and so on. The bottom
right k by k triangle of the arraya is not referenced.

The following program segment transfers a lower
triangular band matrix from conventional full matrix
storage to band storage:
do 20, j = 1, n

m = 1 - j
do 10, i = j, min(n, j + k)

a(m + i, j) = matrix (i, j)
10 continue

20 continue

2-72

2 Intel® Math Kernel Library Reference Manual

Whendiag = 'U' or 'u' , the elements of the arraya
corresponding to the diagonal elements of the matrix are
not referenced, but are assumed to be unity.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
least(k + 1) .

x REALfor stbsv

DOUBLE PRECISIONfor dtbsv

COMPLEXfor ctbsv

DOUBLE COMPLEXfor ztbsv

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element right-hand side vectorb.

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

Output Parameters

x Overwritten with the solution vectorx .

?tpmv
Computes a matrix-vector product using
a triangular packed matrix.

call stpmv (uplo, trans, diag, n, ap, x, incx)

call dtpmv (uplo, trans, diag, n, ap, x, incx)

call ctpmv (uplo, trans, diag, n, ap, x, incx)

call ztpmv (uplo, trans, diag, n, ap, x, incx)

Discussion

The?tpmv routines perform one of the matrix-vector operations defined as

x := a* x , or x := a'* x , or x := conjg(a')* x ,

BLAS Routines2

2-73

where:

x is ann-element vector

a is ann by n unit, or non-unit, upper or lower triangular matrix, supplied in
packed form.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrixa is an
upper or lower triangular matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

diag CHARACTER*1. Specifies whether or nota is unit
triangular, as follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

ap REALfor stpmv

DOUBLE PRECISIONfor dtpmv

COMPLEXfor ctpmv

DOUBLE COMPLEXfor ztpmv

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation To Be Performed

N or n x := a* x

T or t x := a'* x

C or c x := conjg(a')* x

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

2-74

2 Intel® Math Kernel Library Reference Manual

Array, DIMENSIONat least((n*(n + 1))/2) . Before
entry withuplo = 'U' or 'u' , the arrayap must
contain the upper triangular matrix packed sequentially,
column-by-column, so thatap(1) containsa(1,1) ,
ap(2) andap(3) containa(1,2) anda(2,2)

respectively, and so on. Before entry withuplo = 'L' or
'l' , the arrayap must contain the lower triangular
matrix packed sequentially, column-by-column, so that
ap(1) containsa(1,1) , ap(2) andap(3) contain
a(2,1) anda(3,1) respectively, and so on. When
diag = 'U' or 'u' , the diagonal elements ofa are not
referenced, but are assumed to be unity.

x REALfor stpmv

DOUBLE PRECISIONfor dtpmv

COMPLEXfor ctpmv

DOUBLE COMPLEXfor ztpmv

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

Output Parameters

x Overwritten with the transformed vectorx.

BLAS Routines2

2-75

?tpsv
Solves a system of linear equations
whose coefficients are in a triangular
packed matrix.

call stpsv (uplo, trans, diag, n, ap, x, incx)

call dtpsv (uplo, trans, diag, n, ap, x, incx)

call ctpsv (uplo, trans, diag, n, ap, x, incx)

call ztpsv (uplo, trans, diag, n, ap, x, incx)

Discussion

The?tpsv routines solve one of the following systems of equations

a* x = b, or a'* x = b, or conjg(a')* x = b,

where:

b andx aren-element vectors

a is ann by n unit, or non-unit, upper or lower triangular matrix, supplied in
packed form.

This routine does not test for singularity or near-singularity. Such tests must
be performed before calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrixa is an
upper or lower triangular matrix, as follows:

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

2-76

2 Intel® Math Kernel Library Reference Manual

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

diag CHARACTER*1. Specifies whether or nota is unit
triangular, as follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

ap REALfor stpsv

DOUBLE PRECISIONfor dtpsv

COMPLEXfor ctpsv

DOUBLE COMPLEXfor ztpsv

Array, DIMENSIONat least((n*(n + 1))/2) . Before
entry withuplo = 'U' or 'u' , the arrayap must
contain the upper triangular matrix packed sequentially,
column-by-column, so thatap(1) containsa(1, 1) ,
ap(2) andap(3) containa(1, 2) anda(2, 2)

respectively, and so on. Before entry withuplo = 'L' or
'l' , the arrayap must contain the lower triangular
matrix packed sequentially, column-by-column, so that
ap(1) containsa(1, 1) , ap(2) andap(3) contain
a(2, 1) anda(3, 1) respectively, and so on. When
diag = 'U' or 'u' , the diagonal elements ofa are not
referenced, but are assumed to be unity.

trans value Operation To Be Performed

N or n a* x = b

T or t a'* x = b

C or c conjg(a')* x = b

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS Routines2

2-77

x REALfor stpsv

DOUBLE PRECISIONfor dtpsv

COMPLEXfor ctpsv

DOUBLE COMPLEXfor ztpsv

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element right-hand side vectorb.

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

Output Parameters

x Overwritten with the solution vectorx .

?trmv
Computes a matrix-vector product using
a triangular matrix.

call strmv (uplo, trans, diag, n, a, lda, x, incx)

call dtrmv (uplo, trans, diag, n, a, lda, x, incx)

call ctrmv (uplo, trans, diag, n, a, lda, x, incx)

call ztrmv (uplo, trans, diag, n, a, lda, x, incx)

Discussion

The?trmv routines perform one of the following matrix-vector operations
defined as

x := a* x or x := a'* x or x := conjg(a')* x ,

where:

x is ann-element vector

a is ann by n unit, or non-unit, upper or lower triangular matrix.

2-78

2 Intel® Math Kernel Library Reference Manual

Input Parameters

uplo CHARACTER*1. Specifies whether the matrixa is an
upper or lower triangular matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

diag CHARACTER*1. Specifies whether or nota is unit
triangular, as follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

a REALfor strmv

DOUBLE PRECISIONfor dtrmv

COMPLEXfor ctrmv

DOUBLE COMPLEXfor ztrmv

Array, DIMENSION (lda,n) . Before entry with
uplo = 'U' or 'u' , the leadingn by n upper triangular
part of the arraya must contain the upper triangular
matrix and the strictly lower triangular part ofa is not
referenced. Before entry withuplo = 'L' or 'l' , the
leadingn by n lower triangular part of the arraya must

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation To Be Performed

N or n x := a* x

T or t x := a'* x

C or c x := conjg(a')* x

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS Routines2

2-79

contain the lower triangular matrix and the strictly upper
triangular part ofa is not referenced. When
diag = 'U' or 'u' , the diagonal elements ofa are not
referenced either, but are assumed to be unity.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
leastmax(1, n) .

x REALfor strmv

DOUBLE PRECISIONfor dtrmv

COMPLEXfor ctrmv

DOUBLE COMPLEXfor ztrmv

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element vectorx .

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

Output Parameters

x Overwritten with the transformed vectorx .

?trsv
Solves a system of linear equations
whose coefficients are in a triangular
matrix.

call strsv (uplo, trans, diag, n, a, lda, x, incx)

call dtrsv (uplo, trans, diag, n, a, lda, x, incx)

call ctrsv (uplo, trans, diag, n, a, lda, x, incx)

call ztrsv (uplo, trans, diag, n, a, lda, x, incx)

2-80

2 Intel® Math Kernel Library Reference Manual

Discussion

The?trsv routines solve one of the systems of equations:

a* x = b or a'* x = b, or conjg(a')* x = b,

where:

b andx aren-element vectors

a is ann by n unit, or non-unit, upper or lower triangular matrix.

The routine does not test for singularity or near-singularity. Such tests must
be performed before calling this routine.

Input Parameters

uplo CHARACTER*1. Specifies whether the matrix is an upper
or lower triangular matrix, as follows:

trans CHARACTER*1. Specifies the operation to be performed,
as follows:

diag CHARACTER*1. Specifies whether or nota is unit
triangular, as follows:

n INTEGER. Specifies the order of the matrixa. The value
of n must be at least zero.

uplo value Matrix a

U or u An upper triangular matrix.

L or l A lower triangular matrix.

trans value Operation To Be Performed

N or n a* x = b

T or t a'* x = b

C or c conjg(a')* x = b

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS Routines2

2-81

a REALfor strsv

DOUBLE PRECISIONfor dtrsv

COMPLEXfor ctrsv

DOUBLE COMPLEXfor ztrsv

Array, DIMENSION (lda,n) . Before entry with
uplo = 'U' or 'u' , the leadingn by n upper triangular
part of the arraya must contain the upper triangular
matrix and the strictly lower triangular part ofa is not
referenced. Before entry withuplo = 'L' or 'l' , the
leadingn by n lower triangular part of the arraya must
contain the lower triangular matrix and the strictly upper
triangular part ofa is not referenced. Whendiag = 'U'

or 'u' , the diagonal elements ofa are not referenced
either, but are assumed to be unity.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. The value oflda must be at
leastmax(1, n) .

x REALfor strsv

DOUBLE PRECISIONfor dtrsv

COMPLEXfor ctrsv

DOUBLE COMPLEXfor ztrsv

Array, DIMENSIONat least(1 + (n - 1)*abs(incx)) .
Before entry, the incremented arrayx must contain the
n-element right-hand side vectorb.

incx INTEGER. Specifies the increment for the elements ofx .
The value ofincx must not be zero.

Output Parameters

x Overwritten with the solution vectorx .

2-82

2 Intel® Math Kernel Library Reference Manual

BLAS Level 3 Routines
BLAS Level 3 routines perform matrix-matrix operations. Table 2-3 lists
the BLAS Level 3 routine groups and the data types associated with them.

Symmetric Multiprocessing Version of MKL

Many applications spend considerable time for executing BLAS level 3
routines. This time can be scaled by the number of processors available on
the system through using the symmetric multiprocessing (SMP) feature
built into the MKL Library. The performance enhancements based on the
parallel use of the processors are available without any programming effort
on your part.

To enhance performance, the library uses the following methods:

• The operation of BLAS level 3 matrix-matrix functions permits to
restructure the code in a way which increases the localization of data
reference, enhances cache memory use, and reduces the dependency on
the memory bus.

Table 2-3 BLAS Level 3 Routine Groups and Their Data Types

Routine
Group

Data
Types Description

?gemm s, d, c, z Matrix-matrix product of general matrices

?hemm c, z Matrix-matrix product of Hermitian matrices

?herk c, z Rank-k update of Hermitian matrices

?her2k c, z Rank-2k update of Hermitian matrices

?symm s, d, c, z Matrix-matrix product of symmetric matrices

?syrk s, d, c, z Rank-k update of symmetric matrices

?syr2k s, d, c, z Rank-2k update of symmetric matrices

?trmm s, d, c, z Matrix-matrix product of triangular matrices

?trsm s, d, c, z Linear matrix-matrix solution for triangular
matrices

BLAS Routines2

2-83

• Once the code has been effectively blocked as described above, one of
the matrices is distributed across the processors to be multiplied by the
second matrix. Such distribution ensures effective cache management
which reduces the dependency on the memory bus performance and
brings good scaling results.

?gemm
Computes a scalar-matrix-matrix
product and adds the result to a
scalar-matrix product.

call sgemm (transa, transb, m, n, k, alpha, a, lda,
b, ldb, beta, c, ldc)

call dgemm (transa, transb, m, n, k, alpha, a, lda,
b, ldb, beta, c, ldc)

call cgemm (transa, transb, m, n, k, alpha, a, lda,
b, ldb, beta, c, ldc)

call zgemm (transa, transb, m, n, k, alpha, a, lda,
b, ldb, beta, c, ldc)

Discussion

The?gemmroutines perform a matrix-matrix operation with general
matrices. The operation is defined as

c := alpha *op(a)*op(b) + beta * c,

where:

op(x) is one ofop(x) = x or op(x) = x ' or op(x) = conjg(x ') ,

alpha andbeta are scalars

a, b andc are matrices:

op(a) is anmby k matrix

op(b) is ak by n matrix

c is anmby n matrix.

2-84

2 Intel® Math Kernel Library Reference Manual

Input Parameters

transa CHARACTER*1. Specifies the form ofop(a) to be used
in the matrix multiplication as follows:

transb CHARACTER*1. Specifies the form ofop(b) to be used
in the matrix multiplication as follows:

m INTEGER. Specifies the number of rows of the matrix
op(a) and of the matrixc . The value ofmmust be at
least zero.

n INTEGER. Specifies the number of columns of the
matrix op(b) and the number of columns of the matrix
c . The value ofn must be at least zero.

k INTEGER. Specifies the number of columns of the
matrix op(a) and the number of rows of the matrix
op(b) . The value ofk must be at least zero.

alpha REALfor sgemm

DOUBLE PRECISIONfor dgemm

COMPLEXfor cgemm

DOUBLE COMPLEXfor zgemm

Specifies the scalaralpha .

transa value Form of op(a)

N or n op(a) = a

T or t op(a) = a'

C or c op(a) = conjg(a')

transb value Form of op(b)

N or n op(b) = b

T or t op(b) = b'

C or c op(b) = conjg(b')

BLAS Routines2

2-85

a REALfor sgemm

DOUBLE PRECISIONfor dgemm

COMPLEXfor cgemm

DOUBLE COMPLEXfor zgemm

Array, DIMENSION (lda, ka) , whereka is k when
transa = 'N' or 'n' , and ismotherwise. Before entry
with transa = 'N' or 'n' , the leadingmby k part of
the arraya must contain the matrixa, otherwise the
leadingk by mpart of the arraya must contain the
matrix a.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. Whentransa = 'N' or
'n' , thenlda must be at leastmax(1, m) , otherwise
lda must be at leastmax(1, k) .

b REALfor sgemm

DOUBLE PRECISIONfor dgemm

COMPLEXfor cgemm

DOUBLE COMPLEXfor zgemm

Array, DIMENSION (ldb, kb) , wherekb is n when
transb = 'N' or 'n' , and isk otherwise. Before entry
with transb = 'N' or 'n' , the leadingk by n part of
the arrayb must contain the matrixb, otherwise the
leadingn by k part of the arrayb must contain the
matrix b.

ldb INTEGER. Specifies the first dimension ofb as declared
in the calling (sub)program. Whentransb = 'N' or
'n' , thenldb must be at leastmax(1, k) , otherwise
ldb must be at leastmax(1, n) .

beta REALfor sgemm

DOUBLE PRECISIONfor dgemm

COMPLEXfor cgemm

DOUBLE COMPLEXfor zgemm

Specifies the scalarbeta . Whenbeta is supplied as
zero, thenc need not be set on input.

2-86

2 Intel® Math Kernel Library Reference Manual

c REALfor sgemm

DOUBLE PRECISIONfor dgemm

COMPLEXfor cgemm

DOUBLE COMPLEXfor zgemm

Array, DIMENSION (ldc, n) . Before entry, the leading
mby n part of the arrayc must contain the matrixc ,
except whenbeta is zero, in which casec need not be
set on entry.

ldc INTEGER. Specifies the first dimension ofc as declared
in the calling (sub)program. The value ofldc must be at
leastmax(1, m) .

Output Parameters

c Overwritten by themby n matrix
(alpha *op(a)*op(b) + beta * c) .

?hemm
Computes a scalar-matrix-matrix
product (either one of the matrices is
Hermitian) and adds the result to
scalar-matrix product.

call chemm (side, uplo, m, n, alpha, a, lda, b,
ldb, beta, c, ldc)

call zhemm (side, uplo, m, n, alpha, a, lda, b,
ldb, beta, c, ldc)

Discussion

The?hemmroutines perform a matrix-matrix operation using Hermitian
matrices. The operation is defined as

c := alpha * a* b + beta * c

or

BLAS Routines2

2-87

c := alpha * b* a + beta * c,

where:

alpha andbeta are scalars

a is an Hermitian matrix

b andc aremby n matrices.

Input Parameters

side CHARACTER*1. Specifies whether the Hermitian matrix
a appears on the left or right in the operation as follows:

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the Hermitian matrixa is to be
referenced as follows:

m INTEGER. Specifies the number of rows of the matrixc .
The value ofmmust be at least zero.

n INTEGER. Specifies the number of columns of the
matrix c . The value ofn must be at least zero.

alpha COMPLEXfor chemm

DOUBLE COMPLEXfor zhemm

Specifies the scalaralpha .

side value Operation To Be Performed

L or l c := alpha * a* b + beta * c

R or r c := alpha * b* a + beta * c

uplo value Part of Matrix a To Be Referenced

U or u Only the upper triangular part of the Hermitian
matrix is to be referenced.

L or l Only the lower triangular part of the Hermitian
matrix is to be referenced.

2-88

2 Intel® Math Kernel Library Reference Manual

a COMPLEXfor chemm

DOUBLE COMPLEXfor zhemm

Array, DIMENSION (lda,ka) , whereka is mwhen
side = 'L' or 'l' and isn otherwise. Before entry
with side = 'L' or 'l' , themby mpart of the arraya
must contain the Hermitian matrix, such that when
uplo = 'U' or 'u' , the leadingmby mupper triangular
part of the arraya must contain the upper triangular part
of the Hermitian matrix and the strictly lower triangular
part ofa is not referenced, and whenuplo = 'L' or
'l' , the leadingmby mlower triangular part of the array
a must contain the lower triangular part of the Hermitian
matrix, and the strictly upper triangular part ofa is not
referenced. Before entry withside = 'R' or 'r' , then

by n part of the arraya must contain the Hermitian
matrix, such that whenuplo = 'U' or 'u' , the leading
n by n upper triangular part of the arraya must contain
the upper triangular part of the Hermitian matrix and the
strictly lower triangular part ofa is not referenced, and
whenuplo = 'L' or 'l' , the leadingn by n lower
triangular part of the arraya must contain the lower
triangular part of the Hermitian matrix, and the strictly
upper triangular part ofa is not referenced. The
imaginary parts of the diagonal elements need not be set,
they are assumed to be zero.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub) program. Whenside = 'L' or 'l'

thenlda must be at leastmax(1, m) , otherwiselda

must be at leastmax(1, n) .

b COMPLEXfor chemm

DOUBLE COMPLEXfor zhemm

Array, DIMENSION (ldb,n) . Before entry, the leading
mby n part of the arrayb must contain the matrixb.

ldb INTEGER. Specifies the first dimension ofb as declared
in the calling (sub)program. The value ofldb must be at
leastmax(1, m) .

BLAS Routines2

2-89

beta COMPLEXfor chemm

DOUBLE COMPLEXfor zhemm

Specifies the scalarbeta . Whenbeta is supplied as
zero, thenc need not be set on input.

c COMPLEXfor chemm

DOUBLE COMPLEXfor zhemm

Array, DIMENSION (c, n) . Before entry, the leadingm
by n part of the arrayc must contain the matrixc ,
except whenbeta is zero, in which casec need not be
set on entry.

ldc INTEGER. Specifies the first dimension ofc as declared
in the calling (sub)program. The value ofldc must be at
leastmax(1, m) .

Output Parameters

c Overwritten by themby n updated matrix.

?herk
Performs a rank-n update of a
Hermitian matrix.

call cherk (uplo, trans, n, k, alpha, a, lda, beta, c,
ldc)

call zherk (uplo, trans, n, k, alpha, a, lda, beta, c,
ldc)

Discussion

The?herk routines perform a matrix-matrix operation using Hermitian
matrices. The operation is defined as

c := alpha * a*conjg(a') + beta * c,

or
c := alpha *conjg(a')* a + beta * c,

2-90

2 Intel® Math Kernel Library Reference Manual

where:

alpha andbeta are real scalars

c is ann by n Hermitian matrix

a is ann by k matrix in the first case and ak by n matrix in the second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the arrayc is to be referenced as
follows:

trans CHARACTER*1. Specifies the operation to be performed
as follows:

n INTEGER. Specifies the order of the matrixc . The value
of n must be at least zero.

k INTEGER. With trans = 'N' or 'n' , k specifies the
number of columns of the matrixa, and with
trans = 'C' or 'c' , k specifies the number of rows of
the matrixa. The value ofk must be at least zero.

alpha REALfor cherk

DOUBLE PRECISIONfor zherk

Specifies the scalaralpha .

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of C is to be
referenced.

L or l Only the lower triangular part of C is to be
referenced.

trans value Operation to be Performed

N or n c:= alpha * a*conjg(a')+ beta * c

C or c c:= alpha *conjg(a')* a+beta * c

BLAS Routines2

2-91

a COMPLEXfor cherk

DOUBLE COMPLEXfor zherk

Array, DIMENSION (lda, ka) , whereka is k when
trans = 'N' or 'n' , and isn otherwise. Before entry
with trans = 'N' or 'n' , the leadingn by k part of the
arraya must contain the matrixa, otherwise the leading
k by n part of the arraya must contain the matrixa.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. Whentrans = 'N' or 'n' ,
thenlda must be at leastmax(1, n) , otherwiselda

must be at leastmax(1, k) .

beta REALfor cherk

DOUBLE PRECISIONfor zherk

Specifies the scalarbeta .

c COMPLEXfor cherk

DOUBLE COMPLEXfor zherk

Array, DIMENSION (ldc,n) . Before entry with
uplo = 'U' or 'u' , the leadingn by n upper triangular
part of the arrayc must contain the upper triangular part
of the Hermitian matrix and the strictly lower triangular
part ofc is not referenced.

Before entry withuplo = 'L' or 'l' , the leadingn by n

lower triangular part of the arrayc must contain the
lower triangular part of the Hermitian matrix and the
strictly upper triangular part ofc is not referenced.

The imaginary parts of the diagonal elements need not
be set, they are assumed to be zero.

ldc INTEGER. Specifies the first dimension ofc as declared
in the calling (sub)program. The value ofldc must be at
leastmax(1, n) .

2-92

2 Intel® Math Kernel Library Reference Manual

Output Parameters

c With uplo = 'U' or 'u' , the upper triangular part of the
arrayc is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l' , the lower triangular part of the
arrayc is overwritten by the lower triangular part of the
updated matrix.

The imaginary parts of the diagonal elements are set to
zero.

?her2k
Performs a rank-2k update of a
Hermitian matrix.

call cher2k (uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc)

call zher2k (uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc)

Discussion

The?her2k routines perform a rank-2k matrix-matrix operation using
Hermitian matrices. The operation is defined as

c := alpha * a*conjg(b') + conjg(alpha)* b*conjg(a') + beta * c,

or
c := alpha *conjg(b')* a + conjg(alpha)*conjg(a')* b + beta * c,

where:

alpha is a scalar andbeta is a real scalar

c is ann by n Hermitian matrix

a andb aren by k matrices in the first case andk by n matrices in the
second case.

BLAS Routines2

2-93

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the arrayc is to be referenced as
follows:

trans CHARACTER*1. Specifies the operation to be performed
as follows:

n INTEGER. Specifies the order of the matrixc . The value
of n must be at least zero.

k INTEGER. With trans = 'N' or 'n' , k specifies the
number of columns of the matrixa, and with
trans = 'C' or 'c' , k specifies the number of rows of
the matrixa. The value ofk must be at least zero.

alpha COMPLEXfor cher2k

DOUBLE COMPLEXfor zher2k

Specifies the scalaralpha .

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of C is to be
referenced.

L or l Only the lower triangular part of C is to be
referenced.

trans value Operation to be Performed

N or n c:= alpha * a*conjg(b')
+alpha * b*conjg(a') + beta * c

C or c c:= alpha *conjg(a')* b
+alpha *conjg(b')* a+beta * c

2-94

2 Intel® Math Kernel Library Reference Manual

a COMPLEXfor cher2k

DOUBLE COMPLEXfor zher2k

Array, DIMENSION (lda, ka) , whereka is k when
trans = 'N' or 'n' , and isn otherwise. Before entry
with trans = 'N' or 'n' , the leadingn by k part of the
arraya must contain the matrixa, otherwise the leading
k by n part of the arraya must contain the matrixa.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. Whentrans = 'N' or 'n' ,
thenlda must be at leastmax(1, n) , otherwiselda

must be at leastmax(1, k) .

beta REALfor cher2k

DOUBLE PRECISIONfor zher2k

Specifies the scalarbeta .

b COMPLEXfor cher2k

DOUBLE COMPLEXfor zher2k

Array, DIMENSION (ldb, kb) , wherekb is k when
trans = 'N' or 'n' , and isn otherwise. Before entry
with trans = 'N' or 'n' , the leadingn by k part of the
arrayb must contain the matrixb, otherwise the leading
k by n part of the arrayb must contain the matrixb.

ldb INTEGER. Specifies the first dimension ofb as declared
in the calling (sub)program. Whentrans = 'N' or 'n' ,
thenldb must be at leastmax(1, n) , otherwiseldb

must be at leastmax(1, k) .

c COMPLEXfor cher2k

DOUBLE COMPLEXfor zher2k

Array, DIMENSION (ldc,n) . Before entry with
uplo = 'U' or 'u' , the leadingn by n upper triangular
part of the arrayc must contain the upper triangular part
of the Hermitian matrix and the strictly lower triangular
part ofc is not referenced.

BLAS Routines2

2-95

Before entry withuplo = 'L' or 'l' , the leadingn by n

lower triangular part of the arrayc must contain the
lower triangular part of the Hermitian matrix and the
strictly upper triangular part ofc is not referenced.

The imaginary parts of the diagonal elements need not
be set, they are assumed to be zero.

ldc INTEGER. Specifies the first dimension ofc as declared
in the calling (sub)program. The value ofldc must be at
leastmax(1, n) .

Output Parameters

c With uplo = 'U' or 'u' , the upper triangular part of the
arrayc is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l' , the lower triangular part of the
arrayc is overwritten by the lower triangular part of the
updated matrix.

The imaginary parts of the diagonal elements are set to
zero.

2-96

2 Intel® Math Kernel Library Reference Manual

?symm
Performs a scalar-matrix-matrix
product (one matrix operand is
symmetric) and adds the result to a
scalar-matrix product.

call ssymm (side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, ldc)

call dsymm (side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, ldc)

call csymm (side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, ldc)

call zsymm (side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, ldc)

Discussion

The?symmroutines perform a matrix-matrix operation using symmetric
matrices. The operation is defined as

c := alpha * a* b + beta * c,

or

c := alpha * b* a + beta * c,

where:

alpha andbeta are scalars

a is a symmetric matrix

b andc aremby n matrices.

BLAS Routines2

2-97

Input Parameters

side CHARACTER*1. Specifies whether the symmetric matrix
a appears on the left or right in the operation as follows:

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the symmetric matrixa is to be
referenced as follows:

m INTEGER. Specifies the number of rows of the matrixc .
The value ofmmust be at least zero.

n INTEGER. Specifies the number of columns of the
matrix c . The value ofn must be at least zero.

alpha REALfor ssymm

DOUBLE PRECISIONfor dsymm

COMPLEXfor csymm

DOUBLE COMPLEXfor zsymm

Specifies the scalaralpha .

a REALfor ssymm

DOUBLE PRECISIONfor dsymm

COMPLEXfor csymm

DOUBLE COMPLEXfor zsymm

Array, DIMENSION (lda, ka) , whereka is mwhen
side = 'L' or 'l' and isn otherwise. Before entry
with side = 'L' or 'l' , themby mpart of the arraya
must contain the symmetric matrix, such that when

side value Operation to be Performed

L or l c := alpha * a* b + beta * c

R or r c := alpha * b* a + beta * c

uplo value Part of Array a To Be Referenced

U or u Only the upper triangular part of the symmetric
matrix is to be referenced.

L or l Only the lower triangular part of the symmetric
matrix is to be referenced.

2-98

2 Intel® Math Kernel Library Reference Manual

uplo = 'U' or 'u' , the leadingmby mupper triangular
part of the arraya must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part ofa is not referenced, and whenuplo = 'L' or
'l' , the leadingmby mlower triangular part of the array
a must contain the lower triangular part of the
symmetric matrix and the strictly upper triangular part
of a is not referenced.

Before entry withside = 'R' or 'r' , then by n part of
the arraya must contain the symmetric matrix, such that
whenuplo = 'U' or 'u' , the leadingn by n upper
triangular part of the arraya must contain the upper
triangular part of the symmetric matrix and the strictly
lower triangular part ofa is not referenced, and when
uplo = 'L' or 'l' , the leadingn by n lower triangular
part of the arraya must contain the lower triangular part
of the symmetric matrix and the strictly upper triangular
part ofa is not referenced.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. Whenside = 'L' or 'l'

thenlda must be at leastmax(1, m) , otherwiselda

must be at leastmax(1, n) .

b REALfor ssymm

DOUBLE PRECISIONfor dsymm

COMPLEXfor csymm

DOUBLE COMPLEXfor zsymm

Array, DIMENSION (ldb,n) . Before entry, the leading
mby n part of the arrayb must contain the matrixb.

ldb INTEGER. Specifies the first dimension ofb as declared
in the calling (sub)program. The value ofldb must be at
leastmax(1, m) .

BLAS Routines2

2-99

beta REALfor ssymm

DOUBLE PRECISIONfor dsymm

COMPLEXfor csymm

DOUBLE COMPLEXfor zsymm

Specifies the scalarbeta . Whenbeta is supplied as
zero, thenc need not be set on input.

c REALfor ssymm

DOUBLE PRECISIONfor dsymm

COMPLEXfor csymm

DOUBLE COMPLEXfor zsymm

Array, DIMENSION (ldc,n) . Before entry, the leading
mby n part of the arrayc must contain the matrixc ,
except when beta is zero, in which casec need not be set
on entry.

ldc INTEGER. Specifies the first dimension ofc as declared
in the calling (sub)program. The value ofldc must be at
leastmax(1, m) .

Output Parameters

c Overwritten by themby n updated matrix.

2-100

2 Intel® Math Kernel Library Reference Manual

?syrk
Performs a rank-n update of a
symmetric matrix.

call ssyrk (uplo, trans, n, k, alpha, a, lda, beta, c,
ldc)

call dsyrk (uplo, trans, n, k, alpha, a, lda, beta, c,
ldc)

call csyrk (uplo, trans, n, k, alpha, a, lda, beta, c,
ldc)

call zsyrk (uplo, trans, n, k, alpha, a, lda, beta, c,
ldc)

Discussion

The?syrk routines perform a matrix-matrix operation using symmetric
matrices. The operation is defined as

c := alpha * a* a' + beta * c,

or

c := alpha * a'* a + beta * c,

where:

alpha andbeta are scalars

c is ann by n symmetric matrix

a is ann by k matrix in the first case and ak by n matrix in the second case.

BLAS Routines2

2-101

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the arrayc is to be referenced as
follows:

trans CHARACTER*1. Specifies the operation to be performed
as follows:

n INTEGER. Specifies the order of the matrixc . The value
of n must be at least zero.

k INTEGER. On entry withtrans = 'N' or 'n' , k

specifies the number of columns of the matrixa, and on
entry with trans = 'T' or 't' or 'C' or 'c' , k

specifies the number of rows of the matrixa. The value
of k must be at least zero.

alpha REALfor ssyrk

DOUBLE PRECISIONfor dsyrk

COMPLEXfor csyrk

DOUBLE COMPLEXfor zsyrk

Specifies the scalaralpha .

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of c is to be
referenced.

L or l Only the lower triangular part of c is to be
referenced.

trans value Operation to be Performed

N or n c:= alpha * a* a' + beta * c

T or t c := alpha * a'* a + beta * c

C or c c:= alpha * a'* a + beta * c

2-102

2 Intel® Math Kernel Library Reference Manual

a REALfor ssyrk

DOUBLE PRECISIONfor dsyrk

COMPLEXfor csyrk

DOUBLE COMPLEXfor zsyrk

Array, DIMENSION (lda,ka) , whereka is k when
trans = 'N' or 'n' , and isn otherwise. Before entry
with trans = 'N' or 'n' , the leadingn by k part of the
arraya must contain the matrixa, otherwise the leading
k by n part of the arraya must contain the matrixa.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. Whentrans = 'N' or 'n' ,
thenlda must be at leastmax(1, n) , otherwiselda

must be at leastmax(1, k) .

beta REALfor ssyrk

DOUBLE PRECISIONfor dsyrk

COMPLEXfor csyrk

DOUBLE COMPLEXfor zsyrk

Specifies the scalarbeta .

c REALfor ssyrk

DOUBLE PRECISIONfor dsyrk

COMPLEXfor csyrk

DOUBLE COMPLEXfor zsyrk

Array, DIMENSION (ldc,n) . Before entry with
uplo = 'U' or 'u' , the leadingn by n upper triangular
part of the arrayc must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part ofc is not referenced.

Before entry withuplo = 'L' or 'l' , the leadingn by n

lower triangular part of the arrayc must contain the
lower triangular part of the symmetric matrix and the
strictly upper triangular part ofc is not referenced.

ldc INTEGER. Specifies the first dimension ofc as declared
in the calling (sub)program. The value ofldc must be at
leastmax(1, n) .

BLAS Routines2

2-103

Output Parameters

c With uplo = 'U' or 'u' , the upper triangular part of the
arrayc is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l' , the lower triangular part of the
arrayc is overwritten by the lower triangular part of the
updated matrix.

?syr2k
Performs a rank-2k update of a
symmetric matrix.

call ssyr2k (uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc)

call dsyr2k (uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc)

call csyr2k (uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc)

call zsyr2k (uplo, trans, n, k, alpha, a, lda, b, ldb,
beta, c, ldc)

Discussion

The?syr2k routines perform a rank-2k matrix-matrix operation using
symmetric matrices. The operation is defined as

c := alpha * a* b' + alpha*b*a' + beta * c,

or

c := alpha * a'* b + alpha * b'* a + beta * c,

where:

alpha andbeta are scalars

c is ann by n symmetric matrix

2-104

2 Intel® Math Kernel Library Reference Manual

a andb aren by k matrices in the first case andk by n matrices in the
second case.

Input Parameters

uplo CHARACTER*1. Specifies whether the upper or lower
triangular part of the arrayc is to be referenced as
follows:

trans CHARACTER*1. Specifies the operation to be performed
as follows:

n INTEGER. Specifies the order of the matrixc . The value
of n must be at least zero.

k INTEGER. On entry withtrans = 'N' or 'n' , k

specifies the number of columns of the matricesa andb,
and on entry withtrans = 'T' or 't' or 'C' or 'c' , k

specifies the number of rows of the matricesa andb.
The value ofk must be at least zero.

alpha REALfor ssyr2k

DOUBLE PRECISIONfor dsyr2k

COMPLEXfor csyr2k

DOUBLE COMPLEXfor zsyr2k

Specifies the scalaralpha .

uplo value Part of Array c To Be Referenced

U or u Only the upper triangular part of c is to be
referenced.

L or l Only the lower triangular part of c is to be
referenced.

trans value Operation to be Performed

N or n c:= alpha * a* b'+ alpha * b* a'+ beta * c

T or t c:= alpha * a'* a+alpha * b* a'+ beta * c

BLAS Routines2

2-105

a REALfor ssyr2k

DOUBLE PRECISIONfor dsyr2k

COMPLEXfor csyr2k

DOUBLE COMPLEXfor zsyr2k

Array, DIMENSION (lda,ka) , whereka is k when
trans = 'N' or 'n' , and isn otherwise. Before entry
with trans = 'N' or 'n' , the leadingn by k part of the
arraya must contain the matrixa, otherwise the leading
k by n part of the arraya must contain the matrixa.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. Whentrans = 'N' or 'n' ,
thenlda must be at leastmax(1, n) , otherwiselda

must be at leastmax(1, k) .

b REALfor ssyr2k

DOUBLE PRECISIONfor dsyr2k

COMPLEXfor csyr2k

DOUBLE COMPLEXfor zsyr2k

Array, DIMENSION(ldb, kb) wherekb is k when
trans = 'N' or 'n' and is'n' otherwise. Before entry
with trans = 'N' or 'n' , the leadingn by k part of the
arrayb must contain the matrixb, otherwise the leading
k by n part of the arrayb must contain the matrixb.

ldb INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. Whentrans = 'N' or 'n' ,
thenldb must be at leastmax(1, n) , otherwiseldb

must be at leastmax(1, k) .

beta REALfor ssyr2k

DOUBLE PRECISIONfor dsyr2k

COMPLEXfor csyr2k

DOUBLE COMPLEXfor zsyr2k

Specifies the scalarbeta .

2-106

2 Intel® Math Kernel Library Reference Manual

c REALfor ssyr2k

DOUBLE PRECISIONfor dsyr2k

COMPLEXfor csyr2k

DOUBLE COMPLEXfor zsyr2k

Array, DIMENSION (ldc,n) . Before entry with
uplo = 'U' or 'u' , the leadingn by n upper triangular
part of the arrayc must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part ofc is not referenced.

Before entry withuplo = 'L' or 'l' , the leadingn by n

lower triangular part of the arrayc must contain the
lower triangular part of the symmetric matrix and the
strictly upper triangular part ofc is not referenced.

ldc INTEGER. Specifies the first dimension ofc as declared
in the calling (sub)program. The value ofldc must be at
leastmax(1, n) .

Output Parameters

c With uplo = 'U' or 'u' , the upper triangular part of the
arrayc is overwritten by the upper triangular part of the
updated matrix.

With uplo = 'L' or 'l' , the lower triangular part of the
arrayc is overwritten by the lower triangular part of the
updated matrix.

BLAS Routines2

2-107

?trmm
Computes a scalar-matrix-matrix
product (one matrix operand is
triangular).

call strmm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

call dtrmm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

call ctrmm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

call ztrmm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

Discussion

The?trmm routines perform a matrix-matrix operation using triangular
matrices. The operation is defined as

b := alpha *op(a)* b

or

b := alpha * b*op(a)

where:

alpha is a scalar

b is anmby n matrix

a is a unit, or non-unit, upper or lower triangular matrix

op(a) is one ofop(a) = a or op(a) = a' or op(a) = conjg(a') .

2-108

2 Intel® Math Kernel Library Reference Manual

Input Parameters

side CHARACTER*1. Specifies whetherop(a) multipliesb

from the left or right in the operation as follows:

uplo CHARACTER*1. Specifies whether the matrixa is an
upper or lower triangular matrix as follows:

transa CHARACTER*1. Specifies the form ofop(a) to be used
in the matrix multiplication as follows:

diag CHARACTER*1. Specifies whether or nota is unit
triangular as follows:

m INTEGER. Specifies the number of rows ofb. The value
of mmust be at least zero.

n INTEGER. Specifies the number of columns ofb. The
value ofn must be at least zero.

side value Operation To Be Performed

L or l b := alpha *op(a)* b

R or r b := alpha * b*op(a)

uplo value Matrix a

U or u Matrix a is an upper triangular matrix.

L or l Matrix a is a lower triangular matrix.

transa value Form of op(a)

N or n op(a) = a

T or t op(a) = a'

C or c op(a) = conjg(a')

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

BLAS Routines2

2-109

alpha REALfor strmm

DOUBLE PRECISIONfor dtrmm

COMPLEXfor ctrmm

DOUBLE COMPLEXfor ztrmm

Specifies the scalaralpha . Whenalpha is zero, thena
is not referenced andb need not be set before entry.

a REALfor strmm

DOUBLE PRECISIONfor dtrmm

COMPLEXfor ctrmm

DOUBLE COMPLEXfor ztrmm

Array, DIMENSION (lda,k) , wherek is mwhen
side = 'L' or 'l' and isn whenside = 'R' or 'r' .
Before entry withuplo = 'U' or 'u' , the leading
k by k upper triangular part of the arraya must contain
the upper triangular matrix and the strictly lower
triangular part ofa is not referenced.

Before entry withuplo = 'L' or 'l' , the leadingk by k

lower triangular part of the arraya must contain the
lower triangular matrix and the strictly upper triangular
part ofa is not referenced. Whendiag = 'U' or 'u' ,
the diagonal elements ofa are not referenced either, but
are assumed to be unity.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. Whenside = 'L' or 'l' ,
thenlda must be at leastmax(1, m) , whenside = 'R'

or 'r' , thenlda must be at leastmax(1, n) .

b REALfor strmm

DOUBLE PRECISIONfor dtrmm

COMPLEXfor ctrmm

DOUBLE COMPLEXfor ztrmm

Array, DIMENSION (ldb,n) . Before entry, the leading
mby n part of the arrayb must contain the matrixb.

ldb INTEGER. Specifies the first dimension ofb as declared
in the calling (sub)program. The value ofldb must be at
leastmax(1, m) .

2-110

2 Intel® Math Kernel Library Reference Manual

Output Parameters

b Overwritten by the transformed matrix.

?trsm
Solves a matrix equation (one matrix
operand is triangular).

call strsm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

call dtrsm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

call ctrsm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

call ztrsm (side, uplo, transa, diag, m, n, alpha, a,
lda, b, ldb)

Discussion

The?trsm routines solve one of the following matrix equations:

op(a)* x = alpha * b,

or

x*op(a) = alpha * b,

where:

alpha is a scalar

x andb aremby n matrices

a is a unit, or non-unit, upper or lower triangular matrix

op(a) is one ofop(a) = a or op(a) = a' or
op(a) = conjg(a') .

The matrixx is overwritten onb.

BLAS Routines2

2-111

Input Parameters

side CHARACTER*1. Specifies whetherop(a) appears on the
left or right of x for the operation to be performed as
follows:

uplo CHARACTER*1. Specifies whether the matrixa is an
upper or lower triangular matrix as follows:

transa CHARACTER*1. Specifies the form ofop(a) to be used
in the matrix multiplication as follows:

diag CHARACTER*1. Specifies whether or nota is unit
triangular as follows:

m INTEGER. Specifies the number of rows ofb. The value
of mmust be at least zero.

n INTEGER. Specifies the number of columns ofb. The
value ofn must be at least zero.

side value Operation To Be Performed

L or l op(a)* x = alpha * b

R or r x*op(a) = alpha * b

uplo value Matrix a

U or u Matrix a is an upper triangular matrix.

L or l Matrix a is a lower triangular matrix.

transa value Form of op(a)

N or n op(a) = a

T or t op(a) = a'

C or c op(a) = conjg(a')

diag value Matrix a

U or u Matrix a is assumed to be unit triangular.

N or n Matrix a is not assumed to be unit triangular.

2-112

2 Intel® Math Kernel Library Reference Manual

alpha REALfor strsm

DOUBLE PRECISIONfor dtrsm

COMPLEXfor ctrsm

DOUBLE COMPLEXfor ztrsm

Specifies the scalaralpha . Whenalpha is zero, thena
is not referenced andb need not be set before entry.

a REALfor strsm

DOUBLE PRECISIONfor dtrsm

COMPLEXfor ctrsm

DOUBLE COMPLEXfor ztrsm

Array, DIMENSION (lda, k) , wherek is mwhen
side = 'L' or 'l' and isn whenside = 'R' or 'r' .
Before entry withuplo = 'U' or 'u' , the leadingk by k

upper triangular part of the arraya must contain the
upper triangular matrix and the strictly lower triangular
part ofa is not referenced.

Before entry withuplo = 'L' or 'l' , the leadingk by k

lower triangular part of the arraya must contain the
lower triangular matrix and the strictly upper triangular
part ofa is not referenced. Whendiag = 'U' or 'u' ,
the diagonal elements ofa are not referenced either, but
are assumed to be unity.

lda INTEGER. Specifies the first dimension ofa as declared
in the calling (sub)program. Whenside = 'L' or 'l' ,
thenlda must be at leastmax(1, m) , whenside = 'R'

or 'r' , thenlda must be at leastmax(1, n) .

b REALfor strsm

DOUBLE PRECISIONfor dtrsm

COMPLEXfor ctrsm

DOUBLE COMPLEXfor ztrsm

Array, DIMENSION (ldb,n) . Before entry, the leading
mby n part of the arrayb must contain the right-hand
side matrixb.

BLAS Routines2

2-113

ldb INTEGER. Specifies the first dimension ofb as declared
in the calling (sub)program. The value ofldb must be at
leastmax(1, m) .

Output Parameters

b Overwritten by the solution matrixx .

2-114

2 Intel® Math Kernel Library Reference Manual

Sparse BLAS Routines and Functions
This section describes Sparse BLAS, an extension of BLAS Level 1
included in Intel® Math Kernel Library beginning with MKL release 2.1.
Sparse BLAS is a group of routines and functions that perform a number of
common vector operations on sparse vectors stored in compressed form.

Sparse vectorsare those in which the majority of elements are zeros. Sparse
BLAS routines and functions are specially implemented to take advantage
of vector sparsity. This allows you to achieve large savings in computer time
and memory. Ifnz is the number of non-zero vector elements, the computer
time taken by Sparse BLAS operations will beO(nz).

Vector Arguments in Sparse BLAS

Compressed sparse vectors. Let a be a vector stored in an array, and
assume that the only non-zero elements ofa are the following:

a(k1) , a(k2) , a(k3) . . . a(knz) ,

wherenz is the total number of non-zero elements ina.

In Sparse BLAS, this vector can be represented in compressed form by two
FORTRAN arrays,x (values) andindx (indices). Each array hasnz

elements:

x(1)= a(k1) , x(2)= a(k2) , . . . x(nz)= a(knz) ,

indx (1)= k1, indx (2)= k2, . . . indx (nz)= knz .

Thus, a sparse vector is fully determined by the triple (nz , x , indx). If you
pass a negative or zero value ofnz to Sparse BLAS, the subroutines do not
modify any arrays or variables.

Full-storage vectors. Sparse BLAS routines can also use a vector
argument fully stored in a single FORTRAN array (a full-storage vector). If
y is a full-storage vector, its elements must be stored contiguously: the first
element iny(1) , the second iny(2) , and so on. This corresponds to an
incrementincy = 1 in BLAS Level 1. No increment value for full-storage
vectors is passed as an argument to Sparse BLAS routines or functions.

BLAS Routines2

2-115

Naming Conventions in Sparse BLAS

Similar to BLAS, the names of Sparse BLAS subprograms have prefixes
that determine the data type involved:s andd for single- and double-
precision real;c andz for single- and double-precision complex.

If a Sparse BLAS routine is an extension of a “dense” one, the subprogram
name is formed by appending the suffixi (standing forindexed) to the
name of the corresponding “dense” subprogram. For example, the Sparse
BLAS routinesaxpyi corresponds to the BLAS routinesaxpy , and the
Sparse BLAS functioncdotci corresponds to the BLAS functioncdotc .

Routines and Data Types in Sparse BLAS

Routines and data types supported in the MKL implementation of Sparse
BLAS are listed in Table 2-4.

Table 2-4 Sparse BLAS Routines and Their Data Types

Routine/
Function

Data
Types Description

?axpyi s, d, c, z Scalar-vector product plus vector (routines)

?doti s, d Dot product (functions)

?dotci c, z Complex dot product conjugated (functions)

?dotui c, z Complex dot product unconjugated (functions)

?gthr s, d, c, z Gathering a full-storage sparse vector into
compressed form: nz , x , indx (routines)

?gthrz s, d, c, z Gathering a full-storage sparse vector into
compressed form and assigning zeros to
gathered elements in the full-storage vector
(routines)

?roti s, d Givens rotation (routines)

?sctr s, d, c, z Scattering a vector from compressed form to
full-storage form (routines)

2-116

2 Intel® Math Kernel Library Reference Manual

BLAS Routines That Can Work With Sparse Vectors

The following BLAS Level 1 routines will give correct results when you
pass to them a compressed-form arrayx (with the incrementincx = 1):

?asum sum of absolute values of vector elements
?copy copying a vector
?nrm2 Euclidean norm of a vector
?scal scaling a vector
i?amax index of the element with the largest absolute value or,

for complex flavors, the largest sum|Rex(i) | + |Imx(i) |.
i?amin index of the element with the smallest absolute value or,

for complex flavors, the smallest sum|Rex(i) | + |Imx(i) |.
The resulti returned byi?amax andi?amin should be interpreted as index
in the compressed-form array, so that the largest (smallest) value isx(i) ;
the corresponding index in full-storage array isindx (i) .

You can also call?rotg to compute the parameters of Givens rotation and
then pass these parameters to the Sparse BLAS routines?roti .

?axpyi
Adds a scalar multiple of compressed
sparse vector to a full-storage vector.

call saxpyi (nz, a, x, indx, y)

call daxpyi (nz, a, x, indx, y)

call caxpyi (nz, a, x, indx, y)

call zaxpyi (nz, a, x, indx, y)

Discussion

The?axpyi routines perform a vector-vector operation defined as

y := a* x + y

where:

a is a scalar

BLAS Routines2

2-117

(nz , x , indx) is a sparse vector stored in compressed form

y is a vector in full storage form.

The?axpyi routines reference or modify only the elements ofy whose
indices are listed in the arrayindx . The values inindx must be distinct.

Input Parameters

nz INTEGER. The number of elements inx andindx .

a REALfor saxpyi

DOUBLE PRECISIONfor daxpyi

COMPLEXfor caxpyi

DOUBLE COMPLEXfor zaxpyi

Specifies the scalara.

x REALfor saxpyi

DOUBLE PRECISIONfor daxpyi

COMPLEXfor caxpyi

DOUBLE COMPLEXfor zaxpyi

Array, DIMENSIONat leastnz .

indx INTEGER. Specifies the indices for the elements ofx .

Array, DIMENSIONat leastnz .

y REALfor saxpyi

DOUBLE PRECISIONfor daxpyi

COMPLEXfor caxpyi

DOUBLE COMPLEXfor zaxpyi

Array, DIMENSIONat least maxi (indx (i)).

Output Parameters

y Contains the updated vectory.

2-118

2 Intel® Math Kernel Library Reference Manual

?doti
Computes the dot product of a
compressed sparse real vector by a
full-storage real vector.

res = sdoti (nz, x, indx, y)
res = ddoti (nz, x, indx, y)

Discussion

The?doti functions return the dot product ofx andy defined as

x(1)* y(indx (1)) + x(2)* y(indx (2)) +...+ x(nz)* y(indx (nz))

where the triple (nz , x , indx) defines a sparse real vector stored in
compressed form, andy is a real vector in full storage form. The functions
reference only the elements ofy whose indices are listed in the arrayindx .
The values inindx must be distinct.

Input Parameters

nz INTEGER. The number of elements inx andindx .

x REALfor sdoti

DOUBLE PRECISIONfor ddoti

Array, DIMENSIONat leastnz .

indx INTEGER. Specifies the indices for the elements ofx .
Array, DIMENSIONat leastnz .

y REALfor sdoti

DOUBLE PRECISIONfor ddoti

Array, DIMENSIONat least maxi (indx (i)).

Output Parameters

res REALfor sdoti

DOUBLE PRECISIONfor ddoti

Contains the dot product ofx andy, if nz is positive.
Otherwise,res contains0.

BLAS Routines2

2-119

?dotci
Computes the conjugated dot product of
a compressed sparse complex vector
with a full-storage complex vector.

res = cdotci (nz , x, indx , y)

res = zdotci (nz, x, indx , y)

Discussion

The?dotci functions return the dot product ofx andy defined as

conjg(x(1))* y(indx (1)) + ... + conjg(x(nz))* y(indx (nz))

where the triple (nz , x , indx) defines a sparse complex vector stored in
compressed form, andy is a real vector in full storage form. The functions
reference only the elements ofy whose indices are listed in the arrayindx .
The values inindx must be distinct.

Input Parameters

nz INTEGER. The number of elements inx andindx .

x COMPLEXfor cdotci

DOUBLE COMPLEXfor zdotci

Array, DIMENSIONat leastnz .

indx INTEGER. Specifies the indices for the elements ofx .
Array, DIMENSIONat leastnz .

y COMPLEXfor cdotci

DOUBLE COMPLEXfor zdotci

Array, DIMENSIONat least maxi (indx (i)).

Output Parameters

res COMPLEXfor cdotci

DOUBLE COMPLEXfor zdotci

Contains the conjugated dot product ofx andy,
if nz is positive. Otherwise,res contains0.

2-120

2 Intel® Math Kernel Library Reference Manual

?dotui
Computes the dot product of a
compressed sparse complex vector by a
full-storage complex vector.

res = cdotui (nz, x, indx, y)

res = zdotui (nz, x, indx , y)

Discussion

The?dotui functions return the dot product ofx andy defined as

x(1)* y(indx (1)) + x(2)* y(indx (2)) +...+ x(nz)* y(indx (nz))

where the triple (nz , x , indx) defines a sparse complex vector stored in
compressed form, andy is a real vector in full storage form. The functions
reference only the elements ofy whose indices are listed in the arrayindx .
The values inindx must be distinct.

Input Parameters

nz INTEGER. The number of elements inx andindx .

x COMPLEXfor cdotui

DOUBLE COMPLEXfor zdotui

Array, DIMENSIONat leastnz .

indx INTEGER. Specifies the indices for the elements ofx .
Array, DIMENSIONat leastnz .

y COMPLEXfor cdotui

DOUBLE COMPLEXfor zdotui

Array, DIMENSIONat least maxi (indx (i)).

Output Parameters

res COMPLEXfor cdotui

DOUBLE COMPLEXfor zdotui

Contains the dot product ofx andy, if nz is positive.
Otherwise,res contains0.

BLAS Routines2

2-121

?gthr
Gathers a full-storage sparse vector’s
elements into compressed form.

call sgthr (nz, y, x, indx)

call dgthr (nz, y, x, indx)

call cgthr (nz, y, x, indx)

call zgthr (nz, y, x, indx)

Discussion

The?gthr routines gather the specified elements of a full-storage sparse
vectory into compressed form (nz , x , indx). The routines reference only
the elements ofy whose indices are listed in the arrayindx :

x(i) = y(indx (i)) , for i =1,2,... nz .

Input Parameters

nz INTEGER. The number of elements ofy to be gathered.

indx INTEGER. Specifies indices of elements to be gathered.
Array, DIMENSIONat leastnz .

y REALfor sgthr

DOUBLE PRECISIONfor dgthr

COMPLEXfor cgthr

DOUBLE COMPLEXfor zgthr

Array, DIMENSIONat least maxi (indx (i)).

Output Parameters

x REALfor sgthr

DOUBLE PRECISIONfor dgthr

COMPLEXfor cgthr

DOUBLE COMPLEXfor zgthr

Array, DIMENSIONat leastnz .

Contains the vector converted to the compressed form.

2-122

2 Intel® Math Kernel Library Reference Manual

?gthrz
Gathers a sparse vector’s elements into
compressed form, replacing them by zeros.

call sgthrz (nz, y, x, indx)
call dgthrz (nz, y, x, indx)
call cgthrz (nz, y, x, indx)
call zgthrz (nz, y, x, indx)

Discussion

The?gthrz routines gather the elements with indices specified by the
arrayindx from a full-storage vectory into compressed form
(nz , x , indx) and overwrite the gathered elements ofy by zeros.
Other elements ofy are not referenced or modified (see also?gthr).

Input Parameters

nz INTEGER. The number of elements ofy to be gathered.

indx INTEGER. Specifies indices of elements to be gathered.
Array, DIMENSIONat leastnz .

y REALfor sgthrz

DOUBLE PRECISIONfor dgthrz

COMPLEXfor cgthrz

DOUBLE COMPLEXfor zgthrz

Array, DIMENSIONat least maxi (indx (i)).

Output Parameters

x REALfor sgthrz

DOUBLE PRECISIONfor dgthrz

COMPLEXfor cgthrz

DOUBLE COMPLEXfor zgthrz

Array, DIMENSIONat leastnz .
Contains the vector converted to the compressed form.

y The updated vectory.

BLAS Routines2

2-123

?roti
Applies Givens rotation to sparse vectors
one of which is in compressed form.

call sroti (nz , x, indx , y, c , s)
call droti (nz , x, indx , y, c , s)

Discussion

The?roti routines apply the Givens rotation to elements of two real
vectors,x (in compressed formnz , x , indx) andy (in full storage form):

x(i) = c*x (i) + s*y (indx (i))
y(indx (i)) = c*y (indx (i)) - s*x (i)

The routines reference only the elements ofy whose indices are listed in
the arrayindx . The values inindx must be distinct.

Input Parameters

nz INTEGER. The number of elements inx andindx .

x REALfor sroti

DOUBLE PRECISIONfor droti

Array, DIMENSIONat leastnz .

indx INTEGER. Specifies the indices for the elements ofx .
Array, DIMENSIONat leastnz .

y REALfor sroti

DOUBLE PRECISIONfor droti

Array, DIMENSIONat least maxi (indx (i)).

c A scalar: REALfor sroti

DOUBLE PRECISIONfor droti .

s A scalar: REALfor sroti

DOUBLE PRECISIONfor droti .

Output Parameters

x andy The updated arrays.

2-124

2 Intel® Math Kernel Library Reference Manual

?sctr
Converts compressed sparse vectors into
full storage form.

call ssctr (nz, x, indx, y)

call dsctr (nz, x, indx, y)

call csctr (nz, x, indx, y)

call zsctr (nz, x, indx, y)

Discussion

The?sctr routines scatter the elements of the compressed sparse vector
(nz , x , indx) to a full-storage vectory. The routines modify only the
elements ofy whose indices are listed in the arrayindx :
y(indx (i)) = x(i) , for i =1,2,... nz .

Input Parameters

nz INTEGER. The number of elements ofx to be scattered.

indx INTEGER. Specifies indices of elements to be scattered.
Array, DIMENSIONat leastnz .

x REALfor ssctr

DOUBLE PRECISIONfor dsctr

COMPLEXfor csctr

DOUBLE COMPLEXfor zsctr

Array, DIMENSIONat leastnz .
Contains the vector to be converted to full-storage form.

Output Parameters

y REALfor ssctr

DOUBLE PRECISIONfor dsctr

COMPLEXfor csctr

DOUBLE COMPLEXfor zsctr

Array, DIMENSIONat least maxi (indx (i)).
Contains the vectory with updated elements.

3-1

Fast Fourier Transforms 3
This chapter describes the fast Fourier transform (FFT) routines. The FFT
routines included consist of two classes: one-dimensional and
two-dimensional. Both one-dimensional and two-dimensional routines have
been optimized to effectively use cache memory.

The chapter contains these major sections:

• One-dimensional FFTs
• Two-dimensional FFTs

Each of the major sections contains the description of three groups of the
FFTs.

One-dimensional FFTs
The one-dimensional FFTs include the following groups:

• Complex-to-Complex Transforms
• Real-to-Complex Transforms
• Complex-to-Real Transforms.

All one-dimensional FFTs are in-place. The transform length must be a
power of 2. The complex-to-complex transform routines perform both
forward and inverse transforms of a complex vector. The real-to-complex
transform routines perform forward transforms of a real vector. The
complex-to-real transform routines perform inverse transforms of a
complex conjugate-symmetric vector, which is packed in a real array.

3-2

3 Intel® Math Kernel Library Reference Manual

Data Storage Types

Each FFT group contains two sets of FFTs having the similar functionality:
one set is used for the Fortran-interface and the other for the C-interface.
The former set stores the complex data as a Fortran complex data type,
while the latter stores the complex data as float arrays of real and imaginary
parts separately. These sets are distinguished by naming the FFTs within
each set. The names of the FFTs used for the C-interface have the letter “c”
added to the end of the FFTs’ Fortran names. For example, the names of the
cfft1d/zfft1d FFTs for the corresponding C-interface routines are
cfft1dc/zfft1dc . All names of the C-type data items are lower case.

Table 3-1lists the one-dimensional FFT routine groups and the data types
associated with them.

Data Structure Requirements

For C-interface, storage of the complex-to-complex transform routines data
requires separate float arrays for the real and imaginary parts. The
real-to-complex and complex-to-real pairs require a single float
input/output array.

The C-interface requires scalar values to be passed by value.

All transforms require additional memory to store the transform
coefficients. When performing multiple FFTs of the same dimension, the

Table 3-1 One-dimensional FFTs: Names and Data Types

Group

Stored as
Fortran
Complex
Data

Stored as C
Real Data

Data
Types Description

Complex-
to-
Complex

cfft1d/
zfft1d

cfftldc/
zfftldc

c, z Transform complex data to complex
data.

Real-to-
Complex

scfft1d/
dzfft1d

scfft1dc/
dzfft1dc

sc, dz Transform forward real-to-complex data.
Complement csfft1d/zdfft1d and
csfft1dc/zdfft1dc FFTs.

Complex-
to-Real

csfft1d/
zdfft1d

csfft1dc/
zdfft1dc

cs, zd Transform inverse complex-to-real data.
Complement scfft1d/dzfft1d and
scfft1dc/dzfft1dc FFTs.

Fast Fourier Transforms3

3-3

table of coefficients should be created only once and then used on all the
FFTs afterwards. Using the same table rather than creating it repeatedly for
each FFT produces an obvious performance gain.

Complex-to-Complex One-dimensional FFTs

Each of the complex-to-complex routines computes a forward or inverse
FFT of a complex vector.
The forward FFT is computed according to the mathematical equation

The inverse FFT is computed according to the mathematical equation

where , i being the imaginary unit.

The operation performed by the complex-to-complex routines is determined
by the value of theisign parameter used by each of these routines.
If isign = -1 , perform the forward FFT where input and output are in
normal order.
If isign = +1, perform the inverse FFT where input and output are in
normal order.
If isign = -2 , perform the forward FFT where input is in normal order and
output is in bit-reversed order.
If isign = +2, perform the inverse FFT where input is in bit-reversed order
and output is in normal order.
If isign = 0, initialize FFT coefficients for both the forward and inverse
FFTs.

The above equations apply to all FFTs with all data types indicated
in Table 3-1.

To compute a forward or inverse FFT of a given length, first initialize the
coefficients by calling the function withisign = 0. Thereafter, any number
of transforms of the same length can be computed by calling the function
with isign = +1, -1 , +2, -2 .

z j r k * w
j * k–

0 j n 1–≤ ≤,
k 0=

n 1–
∑=

r j
1
n
- z k * w

j * k
0 j n 1–≤ ≤,

k 0=

n 1–
∑=

w
2πi
n

-----exp=

3-4

3 Intel® Math Kernel Library Reference Manual

cfft1d/zfft1d
Fortran-interface routines. Compute the forward
or inverse FFT of a complex vector (in-place)

call cfft1d (r, n, isign, wsave)
call zfft1d (r, n, isign, wsave)

Discussion

The operation performed by thecfft1d/zfft1d routines is determined by
the value ofisign . See the equations of the operations for
the “Complex-to-Complex One-dimensional FFTs”above.

Input Parameters

r COMPLEXfor cfft1d

DOUBLE COMPLEXfor zfft1d

Array, DIMENSIONat least(n) . Contains the complex
vector on which the transform is to be performed. Not
referenced ifisign = 0.

n INTEGER. Transform length;n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be
performed:
if isign = 0, initialize the coefficientswsave ;
if isign = -1 , perform the forward FFT where input
and output are in normal order;
if isign = +1, perform the inverse FFT where input and
output are in normal order;
if isign = -2 , perform the forward FFT where input is
in normal order and output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is
in bit-reversed order and output is in normal order.

wsave COMPLEXfor cfft1d

DOUBLE COMPLEXfor zfft1d

Array, DIMENSIONat least((3* n)/2) . If isign = 0,

Fast Fourier Transforms3

3-5

thenwsave is an output parameter. Otherwise,wsave

contains the FFT coefficients initialized on a previous
call with isign = 0.

Output Parameters

r Contains the complex result of the transform depending
on isign . Does not change ifisign = 0.

wsave If isign = 0, wsave contains the initialized FFT
coefficients. Otherwise,wsave does not change.

cfft1dc/zfft1dc
C-interface routines. Compute the forward or
inverse FFT of a complex vector (in-place).

void cfft1dc (float* r, float* i, int n, int isign, float* wsave)
void zfft1dc (double* r, double* i, int n, int isign, double* wsave)

Discussion

The operation performed by thecfft1dc/zfft1dc routines is determined
by the value ofisign . See the equations of the operations for
the “Complex-to-Complex One-dimensional FFTs”.

Input Parameters

r float* for cfft1dc

double* for zfft1dc

Pointer to an array of size at least(n) . Contains the real
parts of complex vector to be transformed. Not
referenced ifisign = 0.

i float* for cfft1dc

double* for zfft1dc

Pointer to an array of size at least(n) . Contains the
imaginary parts of complex vector to be transformed.

3-6

3 Intel® Math Kernel Library Reference Manual

Not referenced ifisign = 0.

n int . Transform length;n must be a power of 2.

isign int . Flag indicating the type of operation to be
performed:
if isign = 0, initialize the coefficientswsave ;
if isign = -1 , perform the forward FFT where input
and output are in normal order;
if isign = +1, perform the inverse FFT where input and
output are in normal order;
if isign = -2 , perform the forward FFT where input is
in normal order and output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is
in bit-reversed order and output is in normal order.

wsave float* for cfft1dc

double* for zfft1dc

Pointer to an array of size at least(3* n) . If isign = 0,
thenwsave is an output parameter. Otherwise,wsave

contains the FFT coefficients initialized on a previous
call with isign = 0.

Output Parameters

r Contains the real part of the transform depending on
isign . Does not change ifisign = 0.

i Contains the imaginary part of the transform depending
on isign .. Does not change ifisign = 0.

wsave If isign = 0, wsave contains the initialized FFT
coefficients. Otherwise,wsave does not change.

Real-to-Complex One-dimensional FFTs

Each of the real-to-complex routines computes forward FFT of a real input
vector according to the mathematical equation

z j t k * w
j * k–

0 j n 1–≤ ≤,
k 0=

n 1–
∑=

Fast Fourier Transforms3

3-7

for t k = cmplx(r k,0) , wherer k is the real input vector, .
The mathematical resultzj , , is the complex conjugate-symmetric
vector, wherez(n/2+i) = conjg(z(n/2-i)) , , and
moreoverz(0) andz(n/2) are real values.

This complex conjugate-symmetric (CCS) vector can be stored in the complex
array of size(n/2+1) or in the real array of size(n+2) . The data storage of
the CCS format is defined later for Fortran-interface and C-interface routines
separately.

Table 3-2shows a comparison of the effects of performing thecfft1d/

zfft1d complex-to-complex FFT on a vector of lengthn=8 in which all the
imaginary elements are zeros, with the real-to-complexscfft1d/zdfft1d

FFT applied to the same vector. The advantage of the latter approach is that
only half of the input data storage is required and there is no need to zero the
imaginary part. The last two columns are stored in the real array of size(n+2)

containing the complex conjugate-symmetric vector in CCS format.

To compute a forward FFT of a given length, first initialize the coefficients by
calling the routine you are going to use withisign = 0. Thereafter, any
number of real-to-complex and complex-to-real transforms of the same length
can be computed by calling that routine with theisign value other than0.

Table 3-2 Comparison of the Storage Effects of Complex-to-Complex and
Real-to-Complex FFTs

Input Vectors Output Vectors

cfft1d scfft1d cfft1d scfft1d

Complex Data Real Data Complex Data Real Data

Real Imaginary Real Imaginary (Real) (Imaginary)

0.841471 0.000000 0.841471 1.543091 0.000000 1.543091 0.000000

0.909297 0.000000 0.909297 3.875664 0.910042 3.875664 0.910042

0.141120 0.000000 0.141120 -0.915560 -0.397326 -0.915560 -0.397326

-0.756802 0.000000 -0.756802 -0.274874 -0.121691 -0.274874 -0.121691

-0.958924 0.000000 -0.958924 -0.181784 0.000000 -0.181784 0.000000

-0.279415 0.000000 -0.279415 -0.274874 0.121691

0.656987 0.000000 0.656987 -0.915560 0.397326

0.989358 0.000000 0.989358 3.875664 -0.910042

0 k n 1–≤ ≤

0 j n 1–≤ ≤
1 i n 2⁄ 1–≤ ≤

3-8

3 Intel® Math Kernel Library Reference Manual

scfft1d/dzfft1d
Fortran-interface routines. Compute
forward FFT of a real vector and represent
the complex conjugate-symmetric result in
CCS format (in-place).

call scfft1d (r, n, isign, wsave)

call dzfft1d (r, n, isign, wsave)

Discussion

The operation performed by thescfft1d/dzfft1d routines is determined by
the value ofisign . See the equations of the operations for
“Real-to-Complex One-dimensional FFTs”above. These routines are

complementary to the complex-to-real transform routinescsfft1d/zdfft1d .

Input Parameters

r REALfor scfft1d

DOUBLE PRECISIONfor dzfft1d

Array, DIMENSIONat least(n+2) . Firstn elements contain
the input vector to be transformed. The elementsr (n+1)

andr (n+2) are used on output. The arrayr is not
referenced ifisign = 0.

n INTEGER. Transform length;n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be
performed:
if isign is 0, initialize the coefficientswsave ;
if isign is not0, perform the forward FFT.

wsave REALfor scfft1d

DOUBLE PRECISIONfor dzfft1d

Fast Fourier Transforms3

3-9

Array, DIMENSIONat least(2* n+4) . If isign = 0,
thenwsave contains output data. Otherwise,wsave

contains coefficients required to perform the FFT that
has been initialized on a previous call to this routine or
the complementary complex-to-real FFT routine.

Output Parameters

r If isign = 0, r does not change. Ifisign is not0, the
output real-valued arrayr (1: n+2) contains the
complex conjugate-symmetric vectorz(1: n) packed in
CCS format for Fortran interface.
The table below shows the relationship between them.

The full complex vectorz(1: n) is defined by
z(i) = cmplx(r (2*i-1), r (2*i)) ,
1 ≤ i ≤ n/2+1 ,

z(n/2+i) = conjg(z(n/2+2-i)) ,
2 ≤ i ≤ n/2 .

Then,z(1: n) is the forward FFT of a real input vector
r (1: n) .

wsave If isign = 0, wsave contains the coefficients required
by the called routine. Otherwisewsave does not change.

r (1) r (2) r (3) r (4) ... r (n-1) r (n) r (n+1) r (n+2)

z (1) 0 REz (2) IMz (2) ... REz (n/2) IMz(n/2) z (n/2+1) 0

3-10

3 Intel® Math Kernel Library Reference Manual

scfft1dc/dzfft1dc
C-interface routines. Compute forward
FFT of a real vector and represent the
complex conjugate-
symmetric result in CCS format
(in-place).

void scfft1dc (float* r, int n, int isign, float* wsave);

void dzfft1dc (double* r, int n, int isign, double* wsave);

Discussion

The operation performed by thescfft1dc/dzfft1dc routines is
determined by the value ofisign . See the equations of the operations for
the “Real-to-Complex One-dimensional FFTs”above.
These routines are complementary to the complex-to-real transform
routinescsfft1dc/zdfft1dc .

Input Parameters

r float* for scfft1dc

double* for dzfft1dc

Pointer to an array of size at least(n+2) . Firstn

elements contain the input vector to be transformed. The
arrayr is not referenced ifisign = 0.

n int . Transform length;n must be a power of 2.

isign int . Flag indicating the type of operation to be
performed:

if isign is 0, initialize the coefficientswsave ;

if isign is not0, perform the forward FFT.

wsave float* for scfft1dc

double* for dzfft1dc

Fast Fourier Transforms3

3-11

Pointer to an array of size at least(2* n+4) .
If isign = 0, thenwsave contains output data.
Otherwise,wsave contains coefficients required to
perform the FFT that has been initialized on a previous
call to this routine or the complementary
complex-to-real FFT routine.

Output Parameters

r If isign = 0, r does not change. Ifisign is not0, the
output real-valued arrayr (0: n+1) contains the
complex conjugate-symmetric vectorz(0: n-1)

packed in CCS format for C-interface.
The table below shows the relationship between them.

The full complex vectorz(0: n-1) is defined by

z(i) = cmplx(r (i), r (n/2+1+i)) , 0 ≤ i ≤ n/2 ,

z(n/2+i) = conjg(z(n/2-i)) , 1 ≤ i ≤ n/2-1 .
Then,z(0: n-1) is the forward FFT of the real input
vector of length n.

wsave If isign = 0, wsave contains the coefficients required
by the called routine. Otherwisewsave does not change.

Complex-to-Real One-dimensional FFTs

Each of the complex-to-real routines computes a one-dimensional inverse
FFT according to the mathematical equation

The mathematical input is the complex conjugate-symmetric vectorzj ,
, , wherez(n/2+i) = conjg(z(n/2-i)) , ,

and moreoverz(0) andz(n/2) are real values.

r (0) r (1) r (2) ... r (n/2) r (n/2+1) r (n/2+2) ... r (n) r (n+1)

z (0) REz (1) REz (2) ... z (n/2) 0 IM z (1) ... IMz (n/2-1) 0

t j
1
n
- z k * w

j * k
0 j n 1–≤ ≤,

k 0=

n 1–
∑=

0 j n 1–≤ ≤ 1 i n 2⁄ 1–≤ ≤

3-12

3 Intel® Math Kernel Library Reference Manual

The mathematical result ist j = cmplx(r j ,0) , where r j is a real vector,
.

Input to the complex-to-real transform routines is a real array of size(n+2) ,
which contains the complex conjugate-symmetric vectorz(0: n-1) in CCS
format (see“Real-to-Complex One-dimensional FFTs”above).

Output of the complex-to-real routines is a real vector of sizen.

Table 3-3is identical toTable 3-2, except for reversing the input and output
vectors. In the complex-to-real routines the last two columns are stored in
the input real array of size(n+2) containing the complex
conjugate-symmetric vector in CCS format.

To compute an inverse FFT of a given length, first initialize the coefficients
by calling the routine you are going to use withisign = 0. Thereafter, any
number of real-to-complex and complex-to-real transforms of the same
length can be computed by calling the appropriate routine with theisign

value other than0.

Table 3-3 Comparison of the Storage Effects of Complex-to-Real and
Complex-to-Complex FFTs

Output Vectors Input Vectors

cfft1d csfft1d cfft1d csfft1d

Complex Data Real Data Complex Data Real Data

Real Imaginary Real Imaginary (Real) (Imaginary)

0.841471 0.000000 0.841471 1.543091 0.000000 1.543091 0.000000

0.909297 0.000000 0.909297 3.875664 0.910042 3.875664 0.910042

0.141120 0.000000 0.141120 -0.915560 -0.397326 -0.915560 -0.397326

-0.756802 0.000000 -0.756802 -0.274874 -0.121691 -0.274874 -0.121691

-0.958924 0.000000 -0.958924 -0.181784 0.000000 -0.181784 0.000000

-0.279415 0.000000 -0.279415 -0.274874 0.121691

0.656987 0.000000 0.656987 -0.915560 0.397326

0.989358 0.000000 0.989358 3.875664 -0.910042

0 j n 1–≤ ≤

Fast Fourier Transforms3

3-13

csfft1d/zdfft1d
Fortran-interface routines.
Compute inverse FFT of a
complex conjugate-symmetric
vector packed in CCS format
(in-place).

call csfft1d (r, n, isign, wsave)

call zdfft1d (r, n, isign, wsave)

Discussion

The operation performed by thecsfft1d/zdfft1d routines is determined
by the value ofisign . See the equations of the operations for
the “Complex-to-Real One-dimensional FFTs”above.

These routines are complementary to the real-to-complex transform
routinesscfft1d/dzfft1d .

Input Parameters

r REALfor csfft1d

DOUBLE PRECISIONfor zdfft1d

Array, DIMENSIONat least(n+2) .
Not referenced ifisign = 0.

If isign is not0, thenr (1: n+2) contains the complex
conjugate-symmetric vector packed in CCS format for
Fortran-interface.
The table below shows the relationship between them
.

r (1) r (2) r (3) r (4) ... r (n-1) r (n) r (n+1) r (n+2)

z (1) 0 REz (2) IMz (2) ... REz (n/2) IMz (n/2) z (n/2+1) 0

3-14

3 Intel® Math Kernel Library Reference Manual

The full complex vectorz(1: n) is defined by
z(i) = cmplx(r (2*i-1), r (2*i)) ,
1 ≤ i ≤ n/2+1 ,

z(n/2+i) = conjg(z(n/2+2-i)) ,
2 ≤ i ≤ n/2 .

After the transform,r (1: n) contains the inverse FFT of
the complex conjugate-symmetric vectorz(1: n) .

n INTEGER. Transform length;n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be
performed:
if isign is 0, initialize the coefficientswsave ;
if isign is not0, perform the inverse FFT.

wsave REALfor csfft1d

DOUBLE PRECISIONfor zdfft1d

Array, DIMENSIONat least(2* n+4) . If isign = 0,
thenwsave contains output data. Otherwise,wsave

contains coefficients required to perform the FFT that
has been initialized on a previous call to this routine or
the complementary real-to-complex FFT routine.

Output Parameters

r If isign is not0, thenr (1: n) is the real result of the
inverse FFT of the complex conjugate-symmetric vector
z(1: n) . Does not change ifisign = 0.

wsave If isign = 0, wsave contains the coefficients required
by the called routine. Otherwisewsave does not change.

Fast Fourier Transforms3

3-15

csfft1dc/zdfft1dc
C-interface routines.Compute
inverse FFT of a complex

conjugate-symmetric vector
packed in CCS format (in-place).

void csfft1dc (float* r, int n, int isign, float* wsave)

void zdfft1dc (double* r, int n, int isign, double* wsave)

Discussion

The operation performed by thecsfft1dc/zdfft1dc routines is
determined by the value ofisign . See the equations of the operations for
the “Complex-to-Real One-dimensional FFTs”above.

These routines are complementary to the real-to-complex transform
routinesscfft1dc/dzfft1dc .

Input Parameters

r float* for csfft1dc

double* for zdfft1dc

Pointer to an array of size at least(n+2) . Not referenced
if isign = 0.

If isign is not0, thenr (0: n+1) contains the complex
conjugate-symmetric vector packed in CCS format for
C-interface.
The table below shows the relationship between them
.

r (0) r (1) r (2) ... r (n/2) r (n/2+1) r (n/2+2) ... r (n) r (n+1)

z (0) REz (1) REz (2) ... z (n/2) 0 IM z(1) ... IMz (n/2-1) 0

3-16

3 Intel® Math Kernel Library Reference Manual

The full complex vectorz(0: n-1) is defined by
z(i) = cmplx(r (i), r (n/2+1+i)) , 0 ≤ i ≤ n/2 ,

z(n/2+i) = conjg(z(n/2-i)) , 1 ≤ i ≤ n/2-1 .
After the transform,r (0: n-1) is the inverse FFT of
the complex conjugate-symmetric vectorz(0: n-1) .

n int . Transform length;n must be a power of 2.

isign int . Flag indicating the type of operation to be
performed:
if isign = 0, initialize the coefficientswsave ;
if isign is not0, perform the inverse FFT.

wsave float* for csfft1dc

double* for zdfft1dc

Pointer to an array of size at least(2* n+4) .
If isign = 0, thenwsave contains output data.
Otherwise,wsave contains coefficients required to
perform the FFT that has been initialized on a previous
call to this routine or the complementary
real-to-complex FFT routine.

Output Parameters

r If isign is not0, thenr (0: n-1) is the real result of the
inverse FFT of the complex conjugate-symmetric vector
z(0: n-1) . Does not change ifisign = 0.

wsave If isign = 0, wsave contains the coefficients required
by the called routine. Otherwisewsave does not change.

Fast Fourier Transforms3

3-17

Two-dimensional FFTs
The two-dimensional FFTs are functionally the same as one-dimensional
FFTs. They contain the following groups:

• Complex-to-Complex Transforms
• Real-to-Complex Transforms
• Complex-to-Real Transforms.

All two-dimensional FFTs are in-place. Transform lengths must be a power
of 2. The complex-to-complex transform routines perform both forward and
inverse transforms of a complex matrix. The real-to-complex transform
routines perform forward transforms of a real matrix. The complex-to-real
transform routines perform inverse transforms of a complex
conjugate-symmetric matrix, which is packed in a real array.

The naming conventions are also the same as those for one-dimensional
FFTs, with “2d” replacing “1d” in all cases.Table 3-4lists the
two-dimensional FFT routine groups and the data types associated with
them.

The C-interface requires scalar values to be passed by value. The major
difference between the one-dimensional and two-dimensional FFTs is that
your application does not need to provide storage for transform coefficients.

Table 3-4 Two-dimensional FFTs: Names and Data Types

Group

Stored as
FORTRAN
Complex
Data

Stored as C
Real Data

Data
Types Description

Complex-
to-
Complex

cfft2d/
zfft2d

cfft2dc/
zfft2dc

c, z Transform complex data to complex
data.

Real-to-
Complex

scfft2d/
dzfft2d

scfft2dc/
dzfft2dc

sc, dz Transform forward real-to-complex data.
Complement csfft2d/zdfft2d and
csfft2dc/zdfft2dc FFTs.

Complex-
to-Real

csfft2d/
zdfft2d

csfft2dc/
zdfft2dc

cs, zd Transform inverse complex-to-real data.
Complement scfft2d/dzfft2d and
scfft2dc/dzfft2dc FFTs.

3-18

3 Intel® Math Kernel Library Reference Manual

The data storage types and data structure requirements are the same as for
one-dimensional FFTs. For more information, see the“Data Storage
Types”and “Data Structure Requirements”sections at the beginning of this
chapter.

Complex-to-Complex Two-dimensional FFTs

Each of the complex-to-complex routines computes a forward or inverse
FFT of a complex matrix in-place.

The forward FFT is computed according to the mathematical equation

The inverse FFT is computed according to the mathematical equation

where , ,i being the imaginary unit.

The operation performed by the complex-to-complex routines is
determined by the value of theisign parameter.

If isign = -1 , perform the forward FFT where input and output are in
normal order.
If isign = +1, perform the inverse FFT where input and output are in
normal order.
If isign = -2 , perform the forward FFT where input is in normal order and
output is in bit-reversed order.
If isign = +2, perform the inverse FFT where input is in bit-reversed order
and output is in normal order.

The above equations apply to all FFTs with all data types indicated in
Table 3-4.

z i j, r k l, * w
m

i– * k
* w

n
j– * l

0 i m 1 0 j n 1–≤ ≤,–≤ ≤,
l 0=

n 1–
∑

k 0=

m 1–
∑=

r i j,
1

m* n
------ z k l, * w

m
i * k

* w
n
j * l

0 i m 1 0 j n 1–≤ ≤,–≤ ≤,
l 0=

n 1–
∑

k 0=

m 1–
∑=

wm
2π i
m

----exp= wn
2πi
n

----exp=

Fast Fourier Transforms3

3-19

cfft2d/zfft2d
Fortran-interface routines. Compute the
forward or inverse FFT of a complex
matrix (in-place).

call cfft2d (r, m, n, isign)

call zfft2d (r, m, n, isign)

Discussion

The operation performed by thecfft2d/zfft2d routines is determined by
the value ofisign . See the equations of the operations
for “Complex-to-Complex Two-dimensional FFTs”.

Input Parameters

r COMPLEXfor cfft2d

DOUBLE COMPLEXfor zfft2d

Array, DIMENSIONat least(m, n) , with its leading
dimension equal tom. This array contains the complex
matrix to be transformed.

m INTEGER. Column transform length (number of rows);
mmust be a power of 2.

n INTEGER. Row transform length (number of columns);
n must be a power of 2.

isign INTEGER. Flag indicating the type of operation to be
performed:
if isign = -1 , perform the forward FFT where input
and output are in normal order;
if isign = +1, perform the inverse FFT where input and
output are in normal order;
if isign = -2 , perform the forward FFT where input is
in normal order and output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is
in bit-reversed order and output is in normal order.

3-20

3 Intel® Math Kernel Library Reference Manual

Output Parameters

r Contains the complex result of the transform depending
on isign .

cfft2dc/zfft2dc
C-interface routines. Compute the
forward or inverse FFT of a complex
matrix (in-place).

void cfft2dc (float* r, float* i, int m, int n, int isign)

void zfft2dc (double* r, double* i, int m, int n, int isign)

Discussion

The operation performed by thecfft2dc/zfft2dc routines is determined
by the value ofisign . See the equations of the operations for the
“Complex-to-Complex Two-dimensional FFTs”above.

Input Parameters

r float* for cfft2dc

double* for zfft2dc

Pointer to a two-dimensional array of size at least
(m, n) , with its leading dimension equal ton. The array
contains the real parts of a complex matrix to be
transformed.

i float* for cfft2dc

double* for zfft2dc

Pointer to a two-dimensional array of size at least
(m, n) , with its leading dimension equal ton. The array
contains the imaginary parts of a complex matrix to be
transformed.

m int . Column transform length (number of rows);mmust
be a power of 2.

Fast Fourier Transforms3

3-21

n int . Row transform length (number of columns);n must be a power of 2.

isign int . Flag indicating the type of operation to be performed:

if isign = -1 , perform the forward FFT where input and output are in
normal order;
if isign = +1, perform the inverse FFT where input and output are in
normal order;
if isign = -2 , perform the forward FFT where input is in normal order
and output is in bit-reversed order;
if isign = +2, perform the inverse FFT where input is in bit-reversed
order and output is in normal order.

Output Parameters

r Contains the real parts of the complex result depending onisign .

i Contains the imaginary parts of the complex depending onisign .

Real-to-Complex Two-dimensional FFTs

Each of the real-to-complex routines computes the forward FFT of a real matrix according to
the mathematical equation

t k,l = cmplx(r k,l ,0) , wherer k,l is a real input matrix,0 ≤ k ≤ m-1 , 0 ≤ l ≤ n-1 .
The mathematical resultzi,j , 0 ≤ i ≤ m-1 , 0 ≤ j ≤ n-1 , is the complex matrix of size(m, n) .
Each column is the complex conjugate-symmetric vector as follows:

for 0 ≤ j ≤ n-1 ,

z(m/2+i,j) = conjg(z(m/2-i,j)) , 1 ≤ i ≤ m/2-1 .
Moreover,z(0,j) andz(m/2,j) are real values forj=0 andj= n/2 .

This mathematical result can be stored in the complex two-dimensional array of size
(m/2+1, n/2+1) or in the real two-dimensional array of size(m+2, n+2) . The data storage of
CCS format is defined later for Fortran-interface and C-interface routines separately.

z i j, t k l, * w
m

i– * k
* w

n
j– * l

0 i m 1 0 j n 1–≤ ≤,–≤ ≤,
l 0=

n 1–
∑

k 0=

m 1–
∑=

3-22

3 Intel® Math Kernel Library Reference Manual

scfft2d/dzfft2d
Fortran-interface routines. Compute
forward FFT of a real matrix and
represent the complex
conjugate-symmetric result in CCS
format (in-place).

call scfft2d (r, m, n)

call dzfft2d (r, m, n)

Discussion

See the equations of the operations for the“Real-to-Complex
Two-dimensional FFTs”above.

These routines are complementary to the complex-to-real transform
routinescsfft2d/zdfft2d .

Input Parameters

r REALfor scfft2d

DOUBLE PRECISIONfor dzfft2d

Array, DIMENSIONat least(m+2, n+2) , with its leading
dimension equal to(m+2) . The firstmrows andn

columns of this array contain the real matrix to be
transformed.Table 3-5presents the input data layout.

m INTEGER. Column transform length (number of rows);m

must be a power of 2.

n INTEGER. Row transform length (number of columns);
n must be a power of 2.

Fast Fourier Transforms3

3-23

* n/u - not used

Output Parameters

r The output real arrayr (1: m+2,1: n+2) contains the complex conjugate-symmetric
matrix z(1: m,1: n) packed in CCS format for Fortran-interface as follows:

• Rows1 andm+1 contain inn+2 locations the complex conjugate-symmetric vectors
z(1,j) andz(m/2+1,j) packed in CCS format (see“Real-to-Complex
One-dimensional FFTs”above).
The full complex vectorz(1,j) is defined by:
z (1,j) = cmplx (r (1,2*j-1), r (1,2*j)), 1 ≤ j ≤ n/2+1 ,
z (1, n/2+1+j) = conjg (z (1, n/2+1-j)), 1 ≤ j ≤ n/2-1 .
The full complex vectorz(m/2+1,j) is defined by:
z (m/2+1,j) = cmplx (r (m+1,2*j-1), r (m+1,2*j)),
1 ≤ j ≤ n/2+1 ,
z (m/2+1, n/2+1+j) = conjg (z (m/2+1, n/2+1-j)),
1 ≤ j ≤ n/2-1 ;

• Rows from3 to m contain inn locations complex vectors represented as
z (i+1,j) = cmplx (r (2*i+1,j), r (2*i+2,j)),
1 ≤ i ≤ m/2-1 , 1 ≤ j ≤ n .

Table 3-5 Fortran-interface Real Data Storage for the Real-to-Complex
and Complex-to-Real Two-dimensional FFTs

r (1,1) r (1,2) ... r (1, n-1) r (1, n) n/u n/u

r (2,1) r (2,2) ... r (2, n-1) r (2, n) n/u n/u

r (3,1) r (3,2) ... r (3, n-1) r (3, n) n/u n/u

r (4,1) r (4,2) ... r (4, n-1) r (4, n) n/u n/u

...

r (m-1,1) r (m-1,2) ... r (m-1, n-1) r (m-1, n) n/u n/u

r (m,1) r (m,2) ... r (m, n-1) r (m, n) n/u n/u

n/u n/u ... n/u n/u n/u n/u

n/u n/u ... n/u n/u n/u n/u

3-24

3 Intel® Math Kernel Library Reference Manual

• The rest matrix elements can be obtained from
z (m/2+1+i,j) = conjg (z (m/2+1-i,j)),
1 ≤ i ≤ m/2-1 , 1 ≤ j ≤ n .

The storage of the complex conjugate-symmetric matrixz for
Fortran-interface is shown inTable 3-6.

* n/u - not used

scfft2dc/dzfft2dc
C-interface routine. Compute forward
FFT of a real matrix and represent the
complex conjugate-symmetric result in
CCS format (in-place).

void scfft2dc (float* r, int m, int n)

void dzfft2dc (double* r, int m, int n)

Table 3-6 Fortran-interface Data Storage of CCS Format for the
Real-to-Complex and Complex-to-Real Two-Dimensional FFTs

z (1,1) 0 REz (1,2) IMz (1,2) ... REz (1,n/2) IMz (1,n/2) z (1,
n/2 +1)

0

0 0 0 0 ... 0 0 0 0

REz (2,1) REz (2,2) REz (2,3) REz (2,4) ... REz (2,n-1) REz (2,n) n/u n/u

IMz (2,1) IMz (2,2) IMz (2,3) IMz (2,4) ... IMz (2,n-1) IMz (2,n) n/u n/u

... n/u n/u

REz (m/2 ,1) REz (m/2 ,2) REz (m/2 ,3) REz (m/2 ,4) ... REz (m/2 ,
n-1)

REz (m/2 ,
n)

n/u n/u

IMz (m/2 ,1) IMz (m/2 ,2) IMz (m/2 ,3) IMz (m/2 ,4) ... IMz (m/2 ,
n-1)

I Mz(m/2 ,
n)

n/u n/u

z (m/2 +1,1) 0 REz (m/2 +1,2) IMz (m/2 +1,2) ... REz (m/2 +1,
n/2)

I Mz(m/2 +1,
n/2)

z (m/2 +1,
n/2 +1)

0

0 0 0 0 ... 0 0 n/u n/u

Fast Fourier Transforms3

3-25

Discussion

See the equations of the operations for the“Real-to-Complex
Two-dimensional FFTs”above.

These routines are complementary to the complex-to-real transform
routinescsfft2dc/zdfft2dc .

Input Parameters

r float* for scfft2dc

double* for dzfft2dc

Pointer to an array of size at least(m+2, n+2) , with its
leading dimension equal to(n+2) . The firstmrows and
n columns of this array contain the real matrix to be
transformed.

Table 3-7presents the input data layout.

m int . Column transform length;
mmust be a power of 2.

n int . Row transform length;
n must be a power of 2.

Table 3-7 C-interface Real Data Storage for a Real-to-Complex
and Complex-to-Real Two-dimensional FFTs

r (0,0) r (0,1) ... r (0,n-2) r (0,n-1) n/u n/u

r (1,0) r (1,1) ... r (1,n-2) r (1,n-1) n/u n/u

r (2,0) r (2,1) ... r (2,n-2) r (2,n-1) n/u n/u

r (3,0) r (3,1) ... r (3,n-2) r (3,n-1) n/u n/u

...

r (m-2,0) r (m-2,1) ... r (m-2,n-2) r (m-2,n-1) n/u n/u

r (m-1,0) r (m-1,1) ... r (m-1,n-2) r (m-1,n-1) n/u n/u

n/u n/u ... n/u n/u n/u n/u

n/u n/u ... n/u n/u n/u n/u

3-26

3 Intel® Math Kernel Library Reference Manual

Output Parameters

r The output real arrayr (0: m+1,0: n+1) contains the complex
conjugate-symmetric matrixz(0: m-1,0: n-1) packed in CCS
format for C-interface as follows:

• Columns0 andn/2 contain inm+2 locations the complex
conjugate-symmetric vectorsz(i,0) andz(i, n/2) in CCS
format (see“Real-to-Complex One-dimensional FFTs”above).
The full complex vectorz(i,0) is defined by:
z (i,0) = cmplx (r (i,0), r (m/2+i+1,0)), 0 ≤ i ≤ m/2 ,
z (m/2+i,0) = conjg (z (m/2-i,0)), 1 ≤ i ≤ m/2-1 .

The full complex vectorz(i,n/2) is defined by:
z (i, n/2) = cmplx (r (i, n/2), r (m/2+i+1, n/2)), 0 ≤ i ≤ m/2 ,
z (m/2+i, n/2) = conjg (z (m/2-i, n/2)), 1 ≤ i ≤ m/2-1 .

• Columns from1 to n/2-1 contain real parts, and columns from
n/2+2 to n contain imaginary parts of complex vectors. These
values for each vector are stored inmlocations represented as
follows
z (i,j) = cmplx (r (i,j), r (i, n/2+1+j)),
0 ≤ i ≤ m-1 , 1 ≤ j ≤ n/2-1 .

• The rest matrix elements can be obtained from
z (i, n/2+j) = conjg (z (i, n/2-j)),
0 ≤ i ≤ m-1 , 1 ≤ j ≤ n/2-1 .

The storage of the complex conjugate-symmetric matrixz for C-interface is
shown inTable 3-8.

Fast Fourier Transforms3

3-27

Complex-to-Real Two-dimensional FFTs

Each of the complex-to-real routines computes a two-dimensional inverse
FFT according to the mathematical equation:

The mathematical inputzi,j , , is a complex
matrix of size(m, n) . Each column is the complex conjugate-symmetric
vector as follows:

Table 3-8 C-interface Data Storage of CCS Format for the Real-to-Complex
and Complex-to-Real Two-dimensional FFT

z (0,0) REz(0,1) ... REz(0,
n/2 -1)

z (0,n/2) 0 IMz (0,1) ... IMz (0,
n/2 -1)

0

REz(1,0) REz(1,1) ... REz(1,
n/2 -1)

REz(1,n/2) 0 IMz (1,1) ... IMz (1,
n/2 -1)

0

... 0 0

REz(m/2 -1,
0)

REz(m/2 -1,
1)

... REz(m/2 -1,
n/2 -1)

REz(m/2 -1,
n/2)

0 IMz (m/2 -1,
1)

... IMz (m/2 -1,
n/2 -1)

0

z (m/2 ,0) REz(m/2 ,1) ... REz(m/2 ,
n/2 -1)

z (m/2 ,n/2) 0 IMz (m/2 ,1) ... IMz (m/2 ,
n/2 -1)

0

0 REz(m/2 +1,
1)

... REz(m/2 +1,
n/2 -1)

0 0 IMz (m/2 +1,
1)

... IMz (m/2 +1,
n/2 -1)

0

IMz (1,0) REz(m/2 +2,
1)

... REz(m/2 +2,
n/2 -1)

IMz (1,n/2) 0 IMz (m/2 +2,
1)

... IMz (m/2 +2,
n/2 -1)

0

... 0 0

IMz (m/2 -2,
0)

REz(m-1,1) ... REz(m-1,
n/2 -1)

IMz (m/2 -2,
n/2)

0 IMz (m-1,1) ... IMz (m-1,
n/2 -1)

0

IMz (m/2 -1,
0)

n/u ... n/u IMz (m/2 -1,
n/2)

n/u n/u ... n/u n/u

0 n/u ... n/u 0 n/u n/u ... n/u n/u

t i j,
1

m*n
------ z k l, * w

m
i * k

* w
n
j * l

0 i m 1 0 j n 1–≤ ≤,–≤ ≤,
l 0=

n 1–
∑

k 0=

m 1–
∑=

0 i m 1 0 j n 1–≤ ≤,–≤ ≤

3-28

3 Intel® Math Kernel Library Reference Manual

for 0 ≤ j ≤ n-1 ,
z(m/2+i,j) = conjg(z(m/2-i,j)) , 1 ≤ i ≤ m/2-1 .
Moreover,z(0,j) andz(m/2,j) are real values forj=0 andj= n/2 .

This mathematical input can be stored in the complex two-dimensional
array of size(m/2+1, n/2+1) or in the real two-dimensional array of size
(m+2, n+2) . For the details of data storage of CCS format
see “Real-to-Complex One-dimensional FFTs”above.

The mathematical result of the transform ist k,l = cmplx(r k,l ,0) ,
wherer k,l is the real matrix, .

csfft2d/zdfft2d
Fortran-interface routine.
Compute inverse FFT of a complex
conjugate-symmetric matrix packed in CCS
format (in-place).

call csfft2d (r, m, n)
call zdfft2d (r, m, n)

Discussion

See the equations of the operations for the“Complex-to-Real
Two-dimensional FFTs”above. These routines are complementary to the
real-to-complex transform routinesscfft2d/dzfft2d .

Input Parameters

r SINGLE PRECISION REAL*4 for csfft2d

DOUBLE PRECISION REAL*8for zdfft2d

Array, DIMENSIONat least(m+2, n+2) , with its leading
dimension equal to(m+2) . This array contains the
complex conjugate-symmetric matrix in CCS format to
be transformed. The input data layout is given inTable
3-6.

0 k m 1 0 l n 1–≤ ≤,–≤ ≤

Fast Fourier Transforms3

3-29

m INTEGER. Column transform length (number of rows);m

must be a power of 2.

n INTEGER. Row transform length (number of columns);
n must be a power of 2.

Output Parameters

r Contains the real result returned by the transform. For
the output data layout, seeTable 3-5.

csfft2dc/zdfft2dc
C-interface routines.
Compute inverse FFT of a complex
conjugate-symmetric matrix packed in
CCS format (in-place).

void csfft2dc (float* r, int m, int n);

void zdfft2dc (double* r, int m, int n);

Discussion

See the equations of the operations for the“Complex-to-Real
Two-dimensional FFTs”above. These routines are complementary to the
real-to-complex transform routinesscfft2dc/dzfft2dc .

Input Parameters

r float* for csfft2dc

double* for zdfft2dc

Pointer to an array of size at least(m+2, n+2) , with its
leading dimension equal to(n+2) . This array contains
the complex conjugate-symmetric matrix in CCS format
to be transformed. The input data layout is given in
Table 3-8.

m int . Column transform length;mmust be a power of 2.

3-30

3 Intel® Math Kernel Library Reference Manual

n int . Row transform length;n must be a power of 2.

Output Parameters

r Contains the real result returned by the transform. The
output data layout is the same as that for the input data
of scfft2dc/dzfft2dc . SeeTable 3-7for the details.

4-1

LAPACK Routines:
Linear Equations 4

This chapter describes the Math Kernel Library implementation of routines
from the LAPACK package that are used for solving systems of linear
equations and performing a number of related computational tasks. The
library includes LAPACK routines for both real and complex data.

Routines are supported for systems of equations with the following types of
matrices:

• general
• banded
• symmetric or Hermitian positive-definite (both full and packed storage)
• symmetric or Hermitian positive-definite banded
• symmetric or Hermitian indefinite (both full and packed storage)
• symmetric or Hermitian indefinite banded
• triangular (both full and packed storage)
• triangular banded
• tridiagonal.

For each of the above matrix types, the library includes routines for
performing the following computations:factoring the matrix (except for
triangular matrices);equilibrating the matrix;solvinga system of linear
equations;estimating the condition numberof a matrix;refining the
solution of linear equations and computing its error bounds;invertingthe
matrix.
To solve a particular problem, you can either call two or more
computational routinesor call a correspondingdriver routinethat combines
several tasks in one call, such as?gesv for factoring and solving. Thus, to
solve a system of linear equations with a general matrix, you can first call
?getrf (LU factorization) and then?getrs (computing the solution).
Then, you might wish to call?gerfs to refine the solution and get the error
bounds. Alternatively, you can just use the driver routine?gesvx which
performs all these tasks in one call.

4-2

4 Intel® Math Kernel Library Reference Manual

Routine Naming Conventions
For each routine introduced in this chapter, you can use the LAPACK name.

LAPACK names are listed in Tables 4-1 and 4-2, and have the structure
xyyzzz or xyyzz , which is described below.

The initial letterx indicates the data type:
s real, single precision c complex, single precision
d real, double precision z complex, double precision

The second and third lettersyy indicate the matrix type and storage scheme:
ge general
gb general band
gt general tridiagonal
po symmetric or Hermitian positive-definite
pp symmetric or Hermitian positive-definite (packed storage)
pb symmetric or Hermitian positive-definite band
pt symmetric or Hermitian positive-definite tridiagonal
sy symmetric indefinite
sp symmetric indefinite (packed storage)
he Hermitian indefinite
hp Hermitian indefinite (packed storage)
tr triangular
tp triangular (packed storage)
tb triangular band

For computational routines, the last three letterszzz indicate the
computation performed:
trf form a triangular matrix factorization
trs solve the linear system with a factored matrix
con estimate the matrix condition number
rfs refine the solution and compute error bounds
tri compute the inverse matrix using the factorization
equ equilibrate a matrix.

For example, the routinesgetrf performs the triangular factorization of
general real matrices in single precision; the corresponding routine for
complex matrices iscgetrf .

For driver routines, the names can end either with -sv (meaning asimple
driver), or with -svx (meaning anexpertdriver).

LAPACK Routines: Linear Equations4

4-3

Matrix Storage Schemes
LAPACK routines use the following matrix storage schemes:

• Full storage: a matrixA is stored in a two-dimensional arraya, with the
matrix elementaij stored in the array elementa(i , j) .

• Packed storagescheme allows you to store symmetric, Hermitian, or
triangular matrices more compactly: the upper or lower triangle of the
matrix is packed by columns in a one-dimensional array.

• Band storage: anmby n band matrix withkl sub-diagonals andku
super-diagonals is stored compactly in a two-dimensional arrayab
with kl +ku +1 rows andn columns. Columns of the matrix are stored
in the corresponding columns of the array, anddiagonalsof the matrix
are stored in rows of the array.

In Chapters 4 and 5, arrays that hold matrices in packed storage have names
ending inp; arrays with matrices in band storage have names ending inb.

For more information on matrix storage schemes, seeMatrix Argumentsin
Appendix A.

Mathematical Notation
Descriptions of LAPACK routines use the following notation:

Ax = b A system of linear equations with ann by n matrix
A = { aij}, a right-hand side vectorb = { bi}, and an
unknown vectorx = { xi}.

AX = B A set of systems with a common matrixA and
multiple right-hand sides. The columns ofB are
individual right-hand sides, and the columns ofX are
the corresponding solutions.

|x| the vector with elements|xi| (absolute values ofxi).

|A| the matrix with elements|aij | (absolute values ofaij).

||x||∞ = maxi |xi| The infinity-normof the vectorx.

||A||∞ = maxi Σj |aij | The infinity-normof the matrixA.

||A||1 = maxj Σi |aij | Theone-normof the matrixA. ||A||1 = ||AT||∞ = ||AH||∞

κ(A) = ||A|| ||A−1|| Thecondition numberof the matrixA.

4-4

4 Intel® Math Kernel Library Reference Manual

Error Analysis
In practice, most computations are performed with rounding errors.
Besides, you often need to solve a systemAx = b where the data (the
elements ofA andb) are not known exactly. Therefore, it’s important to
understand how the data errors and rounding errors can affect the solutionx.

Data perturbations. If x is the exact solution ofAx = b, andx + δx is the
exact solution of a perturbed problem (A + δA)x = (b + δb), then

In other words, relative errors inA or b may be amplified in the solution
vectorx by a factorκ(A) = ||A|| ||A−1|| called thecondition numberof A.

Rounding errors have the same effect as relative perturbationsc(n)ε in
the original data. Hereε is themachine precision, andc(n) is a modest
function of the matrix ordern. The corresponding solution error is
||δx||/||x|| ≤ c(n)κ(A)ε. (The value ofc(n) is seldom greater than 10n.)

Thus, if your matrixA is ill-conditioned(that is, its condition numberκ(A)
is very large), then the error in the solutionx is also large; you may even
encounter a complete loss of precision. LAPACK provides routines that
allow you to estimateκ(A) (seeRoutines for Estimating the Condition
Number) and also give you a more precise estimate for the actual solution
error (seeRefining the Solution and Estimating Its Error).

δx
x

----------- κ A() δA
A

δb
b

-----------+
 , where κ A()≤ A A 1– .=

LAPACK Routines: Linear Equations4

4-5

Computational Routines
Table 4-1lists the LAPACK computational routines for factorizing,
equilibrating, and invertingreal matrices, estimating their condition numbers,
solving systems of equations with real matrices, refining the solution, and
estimating its error.
Table 4-2lists similar routines forcomplexmatrices.

In this table? denotess (single precision) ord (double precision).

Table 4-1 Computational Routines for Systems of Equations with Real Matrices

Matrix type,
storage scheme

Factorize
matrix

Equilibrate
matrix

Solve
system

Condition
number

Estimate
error

Invert
matrix

general ?getrf ?geequ ?getrs ?gecon ?gerfs ?getri

general band ?gbtrf ?gbequ ?gbtrs ?gbcon ?gbrfs

general
tridiagonal

?gttrf ?gttrs ?gtcon ?gtrfs

symmetric
positive-definite

?potrf ?poequ ?potrs ?pocon ?porfs ?potri

symmetric
positive-definite,
packed storage

?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri

symmetric
positive-definite,
band

?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs

symmetric
positive-definite,
tridiagonal

?pttrf ?pttrs ?ptcon ?ptrfs

symmetric
indefinite

?sytrf ?sytrs ?sycon ?syrfs ?sytri

symmetric
indefinite,
packed storage

?sptrf ?sptrs ?spcon ?sprfs ?sptri

triangular ?trtrs ?trcon ?trrfs ?trtri

triangular,
packed storage

?tptrs ?tpcon ?tprfs ?tptri

triangular band ?tbtrs ?tbcon ?tbrfs

4-6

4 Intel® Math Kernel Library Reference Manual

In this table? stands forc (single precision complex) orz (double precision
complex).

Table 4-2 Computational Routines for Systems of Equations with Complex
Matrices

Matrix type,
storage scheme

Factorize
matrix

Equilibrate
matrix

Solve
system

Condition
number

Estimate
error

Invert
matrix

general ?getrf ?geequ ?getrs ?gecon ?gerfs ?getri

general band ?gbtrf ?gbequ ?gbtrs ?gbcon ?gbrfs

general
tridiagonal

?gttrf ?gttrs ?gtcon ?gtrfs

Hermitian
positive-definite

?potrf ?poequ ?potrs ?pocon ?porfs ?potri

Hermitian
positive-definite,
packed storage

?pptrf ?ppequ ?pptrs ?ppcon ?pprfs ?pptri

Hermitian
positive-definite,
band

?pbtrf ?pbequ ?pbtrs ?pbcon ?pbrfs

Hermitian
positive-definite,
tridiagonal

?pttrf ?pttrs ?ptcon ?ptrfs

Hermitian
indefinite

?hetrf ?hetrs ?hecon ?herfs ?hetri

symmetric
indefinite

?sytrf ?sytrs ?sycon ?syrfs ?sytri

Hermitian
indefinite,
packed storage

?hptrf ?hptrs ?hpcon ?hprfs ?hptri

symmetric
indefinite,
packed storage

?sptrf ?sptrs ?spcon ?sprfs ?sptri

triangular ?trtrs ?trcon ?trrfs ?trtri

triangular,
packed storage

?tptrs ?tpcon ?tprfs ?tptri

triangular band ?tbtrs ?tbcon ?tbrfs

LAPACK Routines: Linear Equations4

4-7

Routines for Matrix Factorization
This section describes the LAPACK routines for matrix factorization. The
following factorizations are supported:

• LU factorization
• Cholesky factorization of real symmetric positive-definite matrices
• Cholesky factorization of Hermitian positive-definite matrices
• Bunch-Kaufman factorization of real and complex symmetric matrices
• Bunch-Kaufman factorization of Hermitian matrices.

You can compute theLU factorization using full and band storage of
matrices; the Cholesky factorization using full, packed, and band storage;
and the Bunch-Kaufman factorization using full and packed storage.

?getrf
Computes the LU factorization of a
general m by n matrix.

call sgetrf (m, n, a, lda, ipiv, info)

call dgetrf (m, n, a, lda, ipiv, info)

call cgetrf (m, n, a, lda, ipiv, info)

call zgetrf (m, n, a, lda, ipiv, info)

Discussion

The routine forms theLU factorization of a generalmby n matrix A as

whereP is a permutation matrix,L is lower triangular with unit diagonal
elements (lower trapezoidal ifm> n) andU is upper triangular (upper
trapezoidal ifm< n). UsuallyA is square (m= n), and bothL andU are
triangular. The routine uses partial pivoting, with row interchanges.

A PLU=

4-8

4 Intel® Math Kernel Library Reference Manual

Input Parameters

m INTEGER. The number of rows in the matrixA (m≥ 0).

n INTEGER. The number of columns inA (n ≥ 0).

a REALfor sgetrf

DOUBLE PRECISIONfor dgetrf

COMPLEXfor cgetrf

DOUBLE COMPLEXfor zgetrf .
Array, DIMENSION(lda, *). Contains the matrixA.
The second dimension ofa must be at least max(1,n).

lda INTEGER. The first dimension ofa.

Output Parameters

a Overwritten byL andU. The unit diagonal elements ofL
are not stored.

ipiv INTEGER.
Array, DIMENSIONat least max(1,min(m,n)).
The pivot indices: rowi was interchanged with row
ipiv (i) .

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , uii is 0. The factorization has been
completed, butU is exactly singular. Division by 0 will
occur if you use the factorU for solving a system of
linear equations.

Application Notes

The computedL andU are the exact factors of a perturbed matrixA + E,
where

c(n) is a modest linear function ofn, andε is the machine precision.

The approximate number of floating-point operations for real flavors is

(2/3)n3 if m= n,

(1/3)n2(3m- n) if m> n,

E c min m n,()()εP L U≤

LAPACK Routines: Linear Equations4

4-9

(1/3)m2(3n- m) if m< n.

The number of operations for complex flavors is 4 times greater.

After calling this routine withm= n, you can call the following:

?getrs to solveAX = B or ATX = B or AHX = B;

?gecon to estimate the condition number ofA;

?getri to compute the inverse ofA.

4-10

4 Intel® Math Kernel Library Reference Manual

?gbtrf
Computes the LU factorization of a
general m by n band matrix.

call sgbtrf (m, n, kl, ku, ab, ldab, ipiv, info)

call dgbtrf (m, n, kl, ku, ab, ldab, ipiv, info)

call cgbtrf (m, n, kl, ku, ab, ldab, ipiv, info)

call zgbtrf (m, n, kl, ku, ab, ldab, ipiv, info)

Discussion

The routine forms theLU factorization of a generalmby n band matrixA
with kl non-zero sub-diagonals andku non-zero super-diagonals. Usually
A is square (m= n), and then

whereP is a permutation matrix;L is lower triangular with unit diagonal
elements and at mostkl non-zero elements in each column;U is an upper
triangular band matrix withkl + ku super-diagonals. The routine uses
partial pivoting, with row interchanges (which creates the additionalkl

super-diagonals inU).

Input Parameters
m INTEGER. The number of rows in the matrixA (m≥ 0).
n INTEGER. The number of columns inA (n ≥ 0).
kl INTEGER. The number of sub-diagonals within the

band ofA (kl ≥ 0).
ku INTEGER. The number of super-diagonals within the

band ofA (ku ≥ 0).
ab REALfor sgbtrf

DOUBLE PRECISIONfor dgbtrf

COMPLEXfor cgbtrf

DOUBLE COMPLEXfor zgbtrf .
Array, DIMENSION(ldab, *).

A PLU=

LAPACK Routines: Linear Equations4

4-11

The arrayab contains the matrixA in band storage
(seeMatrix Storage Schemes).
The second dimension ofab must be at least max(1,n).

ldab INTEGER. The first dimension of the arrayab.
(ldab ≥ 2kl + ku +1)

Output Parameters

ab Overwritten byL andU. The diagonal andkl + ku

super-diagonals ofU are stored in the first 1 +kl + ku

rows ofab. The multipliers used to formL are stored in
the nextkl rows.

ipiv INTEGER.
Array, DIMENSIONat least max(1,min(m,n)).
The pivot indices: rowi was interchanged with row
ipiv (i) .

info INTEGER. If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , uii is 0. The factorization has been
completed, butU is exactly singular. Division by 0 will
occur if you use the factorU for solving a system of
linear equations.

Application Notes

The computedL andU are the exact factors of a perturbed matrixA + E,
where

c(k) is a modest linear function ofk, andε is the machine precision.

The total number of floating-point operations for real flavors varies between
approximately 2n(ku +1)kl and 2n(kl +ku +1)kl . The number of
operations for complex flavors is 4 times greater. All these estimates assume
thatkl andku are much less than min(m, n).

After calling this routine withm= n, you can call the following:

?gbtrs to solveAX = B or ATX = B or AHX = B;

?gbcon to estimate the condition number ofA.

E c kl ku 1+ +()εP L U≤

4-12

4 Intel® Math Kernel Library Reference Manual

?gttrf
Computes the LU factorization of a
tridiagonal matrix.

call sgttrf (n, dl, d, du, du2, ipiv, info)

call dgttrf (n, dl, d, du, du2, ipiv, info)

call cgttrf (n, dl, d, du, du2, ipiv, info)

call zgttrf (n, dl, d, du, du2, ipiv, info)

Discussion

The routine computes theLU factorization of a real or complex tridiagonal
matrix A in the form

whereP is a permutation matrix;L is lower bidiagonal with unit diagonal
elements; andU is an upper triangular matrix with nonzeroes in only the
main diagonal and first two superdiagonals. The routine uses elimination
with partial pivoting and row interchanges .

Input Parameters
n INTEGER. The order of the matrixA (n ≥ 0).
dl, d, du REALfor sgttrf

DOUBLE PRECISIONfor dgttrf

COMPLEXfor cgttrf

DOUBLE COMPLEXfor zgttrf .
Arrays containing elements of A.
The arraydl of dimension (n - 1) contains the
sub-diagonal elements ofA.
The arrayd of dimensionn contains the diagonal
elements ofA.
The arraydu of dimension (n - 1) contains the
super-diagonal elements ofA.

A PLU=

LAPACK Routines: Linear Equations4

4-13

Output Parameters

dl Overwritten by the (n-1) multipliers that define the
matrix L from theLU factorization of A.

d Overwritten by then diagonal elements of the upper
triangular matrixU from theLU factorization of A.

du Overwritten by the (n-1) elements of the first
super-diagonal ofU.

du2 REALfor sgttrf

DOUBLE PRECISIONfor dgttrf

COMPLEXfor cgttrf

DOUBLE COMPLEXfor zgttrf .
Array, dimension (n-2). On exit,du2 contains (n-2)
elements of the second super-diagonal ofU.

ipiv INTEGER.
Array, dimension (n).
The pivot indices: rowi was interchanged with row
ipiv (i) .

info INTEGER. If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , uii is 0. The factorization has been
completed, butU is exactly singular. Division by zero
will occur if you use the factorU for solving a system of
linear equations.

Application Notes

?gbtrs to solveAX = B or ATX = B or AHX = B;

?gbcon to estimate the condition number ofA.

4-14

4 Intel® Math Kernel Library Reference Manual

?potrf
Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite
matrix.

call spotrf (uplo , n, a, lda, info)

call dpotrf (uplo , n, a, lda, info)

call cpotrf (uplo , n, a, lda, info)

call zpotrf (uplo , n, a, lda, info)

Discussion

This routine forms the Cholesky factorization of a symmetric positive-
definite or, for complex data, Hermitian positive-definite matrixA:

A = UHU if uplo ='U'

A = LLH if uplo ='L'

whereL is a lower triangular matrix andU is upper triangular.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arraya stores the upper triangular
part of the matrixA, and A is factored asUHU.
If uplo = 'L' , the arraya stores the lower triangular
part of the matrixA; A is factored asLLH.

n INTEGER. The order of matrixA (n ≥ 0).
a REALfor spotrf

DOUBLE PRECISIONfor dpotrf

COMPLEXfor cpotrf

DOUBLE COMPLEXfor zpotrf .
Array, DIMENSION(lda, *).

LAPACK Routines: Linear Equations4

4-15

The arraya contains either the upper or the lower
triangular part of the matrixA (seeuplo).
The second dimension ofa must be at least max(1,n).

lda INTEGER. The first dimension ofa.

Output Parameters

a The upper or lower triangular part ofa is overwritten by
the Cholesky factorU or L, as specified byuplo .

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the leading minor of orderi (and hence the
matrix A itself) is not positive-definite, and the
factorization could not be completed. This may indicate
an error in forming the matrixA.

Application Notes

If uplo = 'U' , the computed factorU is the exact factor of a perturbed
matrix A + E, where

c(n) is a modest linear function ofn, andε is the machine precision.

A similar estimate holds foruplo = 'L' .

The total number of floating-point operations is approximately (1/3)n3 for
real flavors or (4/3)n3 for complex flavors.

After calling this routine, you can call the following:

?potrs to solveAX = B;

?pocon to estimate the condition number ofA;

?potri to compute the inverse ofA.

E c n()ε UH U eij c n()ε aiiajj≤,≤

4-16

4 Intel® Math Kernel Library Reference Manual

?pptrf
Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite
matrix using packed storage.

call spptrf (uplo , n, ap, info)

call dpptrf (uplo , n, ap, info)

call cpptrf (uplo , n, ap, info)

call zpptrf (uplo , n, ap, info)

Discussion

This routine forms the Cholesky factorization of a symmetric positive-
definite or, for complex data, Hermitian positive-definite packed matrixA:

A = UHU if uplo ='U'

A = LLH if uplo ='L'

whereL is a lower triangular matrix andU is upper triangular.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is packed in the arrayap, and howA is factored:
If uplo = 'U' , the arrayap stores the upper triangular
part of the matrixA, and A is factored asUHU.
If uplo = 'L' , the arrayap stores the lower triangular
part of the matrixA; A is factored asLLH.

n INTEGER. The order of matrixA (n ≥ 0).
ap REALfor spptrf

DOUBLE PRECISIONfor dpptrf

COMPLEXfor cpptrf

DOUBLE COMPLEXfor zpptrf .
Array, DIMENSIONat least max(1,n(n+1)/2).

LAPACK Routines: Linear Equations4

4-17

The arrayap contains either the upper or the lower
triangular part of the matrixA (as specified byuplo) in
packed storage(seeMatrix Storage Schemes).

Output Parameters

ap The upper or lower triangular part ofA in packed storage
is overwritten by the Cholesky factorU or L, as
specified byuplo .

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the leading minor of orderi (and hence the
matrix A itself) is not positive-definite, and the
factorization could not be completed. This may indicate
an error in forming the matrixA.

Application Notes

If uplo = 'U' , the computed factorU is the exact factor of a perturbed
matrix A + E, where

c(n) is a modest linear function ofn, andε is the machine precision.

A similar estimate holds foruplo = 'L' .

The total number of floating-point operations is approximately (1/3)n3 for
real flavors and (4/3)n3 for complex flavors.

After calling this routine, you can call the following:

?pptrs to solveAX = B;

?ppcon to estimate the condition number ofA;

?pptri to compute the inverse ofA.

E c n()ε UH U eij c n()ε aiiajj≤,≤

4-18

4 Intel® Math Kernel Library Reference Manual

?pbtrf
Computes the Cholesky factorization of
a symmetric (Hermitian) positive-definite
band matrix.

call spbtrf (uplo, n, kd, ab, ldab, info)

call dpbtrf (uplo, n, kd, ab, ldab, info)

call cpbtrf (uplo, n, kd, ab, ldab, info)

call zpbtrf (uplo, n, kd, ab, ldab, info)

Discussion

This routine forms the Cholesky factorization of a symmetric positive-
definite or, for complex data, Hermitian positive-definite band matrixA:

A = UHU if uplo ='U'

A = LLH if uplo ='L'

whereL is a lower triangular matrix andU is upper triangular.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is stored in the arrayab, and howA is factored:
If uplo = 'U' , the arrayab stores the upper triangular
part of the matrixA, and A is factored asUHU.
If uplo = 'L' , the arrayab stores the lower triangular
part of the matrixA; A is factored asLLH.

n INTEGER. The order of matrixA (n ≥ 0).
kd INTEGER. The number of super-diagonals or

sub-diagonals in the matrixA (kd ≥ 0).
ab REALfor spbtrf

DOUBLE PRECISIONfor dpbtrf

COMPLEXfor cpbtrf

DOUBLE COMPLEXfor zpbtrf .
Array, DIMENSION(ldab ,*).

LAPACK Routines: Linear Equations4

4-19

The arrayap contains either the upper or the lower
triangular part of the matrixA (as specified byuplo) in
band storage(seeMatrix Storage Schemes).
The second dimension ofab must be at least max(1,n).

ldab INTEGER. The first dimension of the arrayab.
(ldab ≥ kd +1)

Output Parameters

ap The upper or lower triangular part ofA (in band storage)
is overwritten by the Cholesky factorU or L, as
specified byuplo .

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the leading minor of orderi (and hence the
matrix A itself) is not positive-definite, and the
factorization could not be completed. This may indicate
an error in forming the matrixA.

Application Notes

If uplo = 'U' , the computed factorU is the exact factor of a perturbed
matrix A + E, where

c(n) is a modest linear function ofn, andε is the machine precision.

A similar estimate holds foruplo = 'L' .

The total number of floating-point operations for real flavors is
approximatelyn(kd +1)2. The number of operations for complex flavors is 4
times greater. All these estimates assume thatkd is much less thann.

After calling this routine, you can call the following:

?pbtrs to solveAX = B;

?pbcon to estimate the condition number ofA;

E c kd 1+()ε UH U eij c kd 1+()ε aiiajj≤,≤

4-20

4 Intel® Math Kernel Library Reference Manual

?pttrf
Computes the factorization of
a symmetric (Hermitian) positive-definite
tridiagonal matrix.

call spttrf (n, d, e, info)

call dpttrf (n, d, e, info)

call cpttrf (n, d, e, info)

call zpttrf (n, d, e, info)

Discussion

This routine forms the factorization of a symmetric positive-definite or, for
complex data, Hermitian positive-definite tridiagonal matrixA:

A = LDLH , whereD is diagonal andL is unit lower bidiagonal. The
factorization may also be regarded as having the formA = UHDU , whereD
is unit upper bidiagonal.

Input Parameters
n INTEGER. The order of the matrixA (n ≥ 0).
d REALfor spttrf, cpttrf

DOUBLE PRECISIONfor dpttrf, zpttrf .
Array, dimension (n). Contains the diagonal elements
of A.

e REALfor spttrf

DOUBLE PRECISIONfor dpttrf

COMPLEXfor cpttrf

DOUBLE COMPLEXfor zpttrf .
Array, dimension (n - 1). Contains the sub-diagonal
elements ofA.

Output Parameters

d Overwritten by then diagonal elements of the diagonal
matrix D from theLDLH factorization of A.

LAPACK Routines: Linear Equations4

4-21

e Overwritten by the (n - 1) off-diagonal elements of the
unit bidiagonal factorL or U from the factorization of A.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the leading minor of orderi (and hence the
matrix A itself) is not positive-definite; ifi < n , the
factorization could not be completed, while ifi = n , the
factorization was completed, butd (n) = 0 .

4-22

4 Intel® Math Kernel Library Reference Manual

?sytrf
Computes the Bunch-Kaufman
factorization of a symmetric matrix.

call ssytrf (uplo , n, a, lda, ipiv, work, lwork, info)

call dsytrf (uplo , n, a, lda, ipiv, work, lwork, info)

call csytrf (uplo , n, a, lda, ipiv, work, lwork, info)

call zsytrf (uplo , n, a, lda, ipiv, work, lwork, info)

Discussion

This routine forms the Bunch-Kaufman factorization of a symmetric matrix:

if uplo ='U' , A = PUDUTPT

if uplo ='L' , A = PLDLTPT

whereA is the input matrix,P is a permutation matrix,U andL are upper
and lower triangular matrices with unit diagonal, andD is a symmetric
block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks.U andL
have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks ofD.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arraya stores the upper triangular
part of the matrixA, and A is factored asPUDUTPT.
If uplo = 'L' , the arraya stores the lower triangular
part of the matrixA; A is factored asPLDLTPT.

n INTEGER. The order of matrixA (n ≥ 0).
a REALfor ssytrf

DOUBLE PRECISIONfor dsytrf

COMPLEXfor csytrf

DOUBLE COMPLEXfor zsytrf .
Array, DIMENSION(lda, *).

LAPACK Routines: Linear Equations4

4-23

The arraya contains either the upper or the lower
triangular part of the matrixA (seeuplo).
The second dimension ofa must be at least max(1,n).

lda INTEGER. The first dimension ofa; at least max(1,n).
work Same type asa. Workspace array of dimensionlwork

lwork INTEGER. The size of thework array (lwork ≥ n)
SeeApplication notesfor the suggested value oflwork .

Output Parameters
a The upper or lower triangular part ofa is overwritten by

details of the block-diagonal matrixD and the
multipliers used to obtain the factorU (or L).

work (1) If info =0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
Contains details of the interchanges and the block
structure ofD.
If ipiv (i) = k > 0, thendii is a 1-by-1 block, and the
i th row and column ofA was interchanged with thek th
row and column.
If uplo = 'U' andipiv (i) =ipiv (i -1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi -1 ,
and (i -1) th row and column ofA was interchanged
with themth row and column.
If uplo = 'L' andipiv (i) =ipiv (i +1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi +1,
and (i +1) th row and column ofA was interchanged
with themth row and column.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , dii is 0. The factorization has been
completed, butD is exactly singular. Division by 0 will
occur if you useD for solving a system of linear
equations.

4-24

4 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try usinglwork =n* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements ofU andL
are not stored. The remaining elements ofU andL are stored in the
corresponding columns of the arraya, but additional row interchanges are
required to recoverU or L explicitly (which is seldom necessary).

If ipiv (i) = i for all i =1... n, then all off-diagonal elements ofU (L)
are stored explicitly in the corresponding elements of the arraya.

If uplo = 'U' , the computed factorsU andD are the exact factors of a
perturbed matrixA + E, where

c(n) is a modest linear function ofn, andε is the machine precision.
A similar estimate holds for the computedL andD whenuplo = 'L' .

The total number of floating-point operations is approximately (1/3)n3 for
real flavors or (4/3)n3 for complex flavors.

After calling this routine, you can call the following:

?sytrs to solveAX = B;

?sycon to estimate the condition number ofA;

?sytri to compute the inverse ofA.

E c n()εP U D UT PT≤

LAPACK Routines: Linear Equations4

4-25

?hetrf
Computes the Bunch-Kaufman
factorization of a complex Hermitian
matrix.

call chetrf (uplo , n, a, lda, ipiv, work, lwork, info)

call zhetrf (uplo , n, a, lda, ipiv, work, lwork, info)

Discussion

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix:

if uplo ='U' , A = PUDUHPT

if uplo ='L' , A = PLDLHPT

whereA is the input matrix,P is a permutation matrix,U andL are upper
and lower triangular matrices with unit diagonal, andD is a Hermitian
block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks.U andL
have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks ofD.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:

If uplo = 'U' , the arraya stores the upper triangular
part of the matrixA, and A is factored asPUDUHPT.
If uplo = 'L' , the arraya stores the lower triangular
part of the matrixA; A is factored asPLDLHPT.

n INTEGER. The order of matrixA (n ≥ 0).

a COMPLEXfor chetrf

DOUBLE COMPLEXfor zhetrf .
Array, DIMENSION(lda, *).
The arraya contains either the upper or the lower
triangular part of the matrixA (seeuplo).
The second dimension ofa must be at least max(1,n).

4-26

4 Intel® Math Kernel Library Reference Manual

lda INTEGER. The first dimension ofa; at least max(1,n).

work Same type asa. Workspace array of dimensionlwork

lwork INTEGER. The size of thework array (lwork ≥ n)
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a The upper or lower triangular part ofa is overwritten by
details of the block-diagonal matrixD and the
multipliers used to obtain the factorU (or L).

work (1) If info =0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
Contains details of the interchanges and the block
structure ofD.
If ipiv (i) = k > 0, thendii is a 1-by-1 block, and the
i th row and column ofA was interchanged with thek th
row and column.

If uplo = 'U' andipiv (i) =ipiv (i -1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi -1 ,
and (i -1) th row and column ofA was interchanged
with themth row and column.

If uplo = 'L' andipiv (i) =ipiv (i +1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi +1,
and (i +1) th row and column ofA was interchanged
with themth row and column.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , dii is 0. The factorization has been
completed, butD is exactly singular. Division by 0 will
occur if you useD for solving a system of linear
equations.

LAPACK Routines: Linear Equations4

4-27

Application Notes

This routine is suitable for Hermitian matrices that are not known to be
positive-definite. IfA is in fact positive-definite, the routine does not
perform interchanges, and no 2-by-2 diagonal blocks occur inD.

For better performance, try usinglwork =n*blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

The 2-by-2 unit diagonal blocks and the unit diagonal elements ofU andL
are not stored. The remaining elements ofU andL are stored in the
corresponding columns of the arraya, but additional row interchanges are
required to recoverU or L explicitly (which is seldom necessary).

If ipiv (i) = i for all i =1... n, then all off-diagonal elements ofU (L)
are stored explicitly in the corresponding elements of the arraya.

If uplo = 'U' , the computed factorsU andD are the exact factors of a
perturbed matrixA + E, where

c(n) is a modest linear function ofn, andε is the machine precision.
A similar estimate holds for the computedL andD whenuplo = 'L' .

The total number of floating-point operations is approximately (4/3)n3.

After calling this routine, you can call the following:

?hetrs to solveAX = B;

?hecon to estimate the condition number ofA;

?hetri to compute the inverse ofA.

E c n()εP U D UT PT≤

4-28

4 Intel® Math Kernel Library Reference Manual

?sptrf
Computes the Bunch-Kaufman
factorization of a symmetric matrix using
packed storage.

call ssptrf (uplo, n, ap, ipiv, info)

call dsptrf (uplo, n, ap, ipiv, info)

call csptrf (uplo, n, ap, ipiv, info)

call zsptrf (uplo, n, ap, ipiv, info)

Discussion

This routine forms the Bunch-Kaufman factorization of a symmetric matrix
A using packed storage:

if uplo ='U' , A = PUDUTPT

if uplo ='L' , A = PLDLTPT

whereP is a permutation matrix,U andL are upper and lower triangular
matrices with unit diagonal, andD is a symmetric block-diagonal matrix
with 1-by-1 and 2-by-2 diagonal blocks.U andL have 2-by-2 unit diagonal
blocks corresponding to the 2-by-2 blocks ofD.

Input Parameters

uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is packed in the arrayap and howA is factored:

If uplo = 'U' , the arrayap stores the upper triangular
part of the matrixA, and A is factored asPUDUTPT.
If uplo = 'L' , the arrayap stores the lower triangular
part of the matrixA; A is factored asPLDLTPT.

n INTEGER. The order of matrixA (n ≥ 0).

LAPACK Routines: Linear Equations4

4-29

ap REALfor ssptrf

DOUBLE PRECISIONfor dsptrf

COMPLEXfor csptrf

DOUBLE COMPLEXfor zsptrf .
Array, DIMENSIONat least max(1,n(n+1)/2).
The arrayap contains either the upper or the lower
triangular part of the matrixA (as specified byuplo) in
packed storage(seeMatrix Storage Schemes).

Output Parameters

ap The upper or lower triangle ofA (as specified byuplo)
is overwritten by details of the block-diagonal matrixD
and the multipliers used to obtain the factorU (or L).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
Contains details of the interchanges and the block
structure ofD.
If ipiv (i) = k > 0, thendii is a 1-by-1 block, and the
i th row and column ofA was interchanged with thek th
row and column.

If uplo = 'U' andipiv (i) =ipiv (i -1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi -1 ,
and (i -1) th row and column ofA was interchanged
with themth row and column.

If uplo = 'L' andipiv (i) =ipiv (i +1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi +1,
and (i +1) th row and column ofA was interchanged
with themth row and column.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , dii is 0. The factorization has been
completed, butD is exactly singular. Division by 0 will
occur if you useD for solving a system of linear
equations.

4-30

4 Intel® Math Kernel Library Reference Manual

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements ofU andL
are not stored. The remaining elements ofU andL overwrite elements of the
corresponding columns of the matrixA, but additional row interchanges are
required to recoverU or L explicitly (which is seldom necessary).

If ipiv (i) = i for all i =1... n, then all off-diagonal elements ofU (L)
are stored explicitly in packed form.

If uplo = 'U' , the computed factorsU andD are the exact factors of a
perturbed matrixA + E, where

c(n) is a modest linear function ofn, andε is the machine precision.
A similar estimate holds for the computedL andD whenuplo = 'L' .

The total number of floating-point operations is approximately (1/3)n3 for
real flavors or (4/3)n3 for complex flavors.

After calling this routine, you can call the following:

?sptrs to solveAX = B;

?spcon to estimate the condition number ofA;

?sptri to compute the inverse ofA.

E c n()εP U D UT PT≤

LAPACK Routines: Linear Equations4

4-31

?hptrf
Computes the Bunch-Kaufman
factorization of a complex Hermitian
matrix using packed storage.

call chptrf (uplo, n, ap, ipiv, info)

call zhptrf (uplo, n, ap, ipiv, info)

Discussion

This routine forms the Bunch-Kaufman factorization of a Hermitian matrix
using packed storage:

if uplo ='U' , A = PUDUHPT

if uplo ='L' , A = PLDLHPT

whereA is the input matrix,P is a permutation matrix,U andL are upper
and lower triangular matrices with unit diagonal, andD is a Hermitian
block-diagonal matrix with 1-by-1 and 2-by-2 diagonal blocks.U andL
have 2-by-2 unit diagonal blocks corresponding to the 2-by-2 blocks ofD.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is packed and howA is factored:

If uplo = 'U' , the arrayap stores the upper triangular
part of the matrixA, and A is factored asPUDUHPT.
If uplo = 'L' , the arrayap stores the lower triangular
part of the matrixA; A is factored asPLDLHPT.

n INTEGER. The order of matrixA (n ≥ 0).

ap COMPLEXfor chptrf

DOUBLE COMPLEXfor zhptrf .
Array, DIMENSIONat least max(1,n(n+1)/2).

4-32

4 Intel® Math Kernel Library Reference Manual

The arrayap contains either the upper or the lower
triangular part of the matrixA (as specified byuplo) in
packed storage(seeMatrix Storage Schemes).

Output Parameters

ap The upper or lower triangle ofA (as specified byuplo)
is overwritten by details of the block-diagonal matrixD
and the multipliers used to obtain the factorU (or L).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
Contains details of the interchanges and the block
structure ofD.
If ipiv (i) = k > 0, thendii is a 1-by-1 block, and the
i th row and column ofA was interchanged with thek th
row and column.

If uplo = 'U' andipiv (i) =ipiv (i -1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi -1 ,
and (i -1) th row and column ofA was interchanged
with themth row and column.

If uplo = 'L' andipiv (i) =ipiv (i +1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi +1,
and (i +1) th row and column ofA was interchanged
with themth row and column.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , dii is 0. The factorization has been
completed, butD is exactly singular. Division by 0 will
occur if you useD for solving a system of linear
equations.

LAPACK Routines: Linear Equations4

4-33

Application Notes

The 2-by-2 unit diagonal blocks and the unit diagonal elements ofU andL
are not stored. The remaining elements ofU andL are stored in the
corresponding columns of the arraya, but additional row interchanges are
required to recoverU or L explicitly (which is seldom necessary).

If ipiv (i) = i for all i =1... n, then all off-diagonal elements ofU (L)
are stored explicitly in the corresponding elements of the arraya.

If uplo = 'U' , the computed factorsU andD are the exact factors of a
perturbed matrixA + E, where

c(n) is a modest linear function ofn, andε is the machine precision.
A similar estimate holds for the computedL andD whenuplo = 'L' .

The total number of floating-point operations is approximately (4/3)n3.

After calling this routine, you can call the following:

?hptrs to solveAX = B;

?hpcon to estimate the condition number ofA;

?hptri to compute the inverse ofA.

Routines for Solving Systems of Linear Equations
This section describes the LAPACK routines for solving systems of linear
equations. Before calling most of these routines, you need to factorize the
matrix of your system of equations (see“Routines for Matrix
Factorization”in this chapter). However, the factorization is not necessary if
your system of equations has a triangular matrix.

E c n()εP U D UT PT≤

4-34

4 Intel® Math Kernel Library Reference Manual

?getrs
Solves a system of linear equations with
an LU-factored square matrix, with
multiple right-hand sides.

call sgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call dgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call cgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

call zgetrs (trans, n, nrhs, a, lda, ipiv, b, ldb, info)

Discussion

This routine solves forX the following systems of linear equations:

AX = B if trans ='N' ,

ATX = B if trans ='T' ,

AHX = B if trans ='C' (for complex matrices only).

Before calling this routine, you must call?getrfto compute theLU
factorization ofA.

Input Parameters
trans CHARACTER*1. Must be'N' or 'T' or 'C' .

Indicates the form of the equations:
If trans = 'N' , thenAX = B is solved forX.
If trans = 'T' , thenATX = B is solved forX.
If trans = 'C' , thenAHX = B is solved forX.

n INTEGER. The order ofA; the number of rows inB (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, b REALfor sgetrs

DOUBLE PRECISIONfor dgetrs

COMPLEXfor cgetrs

DOUBLE COMPLEXfor zgetrs .
Arrays:a(lda, *) , b(ldb, *) .

LAPACK Routines: Linear Equations4

4-35

The arraya contains the matrixA.
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.

The second dimension ofa must be at least max(1,n),
the second dimension ofb at least max(1,nrhs).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?getrf.

Output Parameters

b Overwritten by the solution matrixX.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For each right-hand sideb, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b where

c(n) is a modest linear function ofn, andε is the machine precision.

If x0 is the true solution, the computed solutionx satisfies this error bound:

where cond(A,x) = || |A- 1| |A| |x| ||∞ / ||x||∞ ≤ ||A- 1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller thanκ∞(A); the condition number
of AT andAH might or might not be equal toκ∞(A).

The approximate number of floating-point operations for one right-hand
side vectorb is 2n2 for real flavors and 8n2 for complex flavors.

To estimate the condition numberκ∞(A), call ?gecon.
To refine the solution and estimate the error, call?gerfs.

E c n()εP L U≤

x x0– ∞
x ∞

---------------------- c n() cond A x,()ε≤

4-36

4 Intel® Math Kernel Library Reference Manual

?gbtrs
Solves a system of linear equations with
an LU-factored band matrix, with
multiple right-hand sides.

call sgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call dgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call cgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call zgbtrs (trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

Discussion

This routine solves forX the following systems of linear equations:

AX = B if trans ='N' ,
ATX = B if trans ='T' ,
AHX = B if trans ='C' (for complex matrices only).

HereA is anLU-factored general band matrix of ordern with kl non-zero
sub-diagonals andku non-zero super-diagonals. Before calling this routine,
you must call?gbtrfto compute theLU factorization ofA.

Input Parameters
trans CHARACTER*1. Must be'N' or 'T' or 'C' .
n INTEGER. The order ofA; the number of rows inB (n ≥ 0).
kl INTEGER. The number of sub-diagonals within the band

of A (kl ≥ 0).
ku INTEGER. The number of super-diagonals within the band

of A (ku ≥ 0).
nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ab, b REALfor sgbtrs

DOUBLE PRECISIONfor dgbtrs

COMPLEXfor cgbtrs

DOUBLE COMPLEXfor zgbtrs .
Arrays:ab(ldab, *) , b(ldb, *) .

LAPACK Routines: Linear Equations4

4-37

The arrayab contains the matrixA in band storage
(seeMatrix Storage Schemes).
The arrayb contains the matrixB whose columns are the
right-hand sides for the systems of equations.
The second dimension ofab must be at least max(1,n),
the second dimension ofb at least max(1,nrhs).

ldab INTEGER. The first dimension of the arrayab.
(ldab ≥ 2kl + ku +1).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ipiv INTEGER. Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?gbtrf.

Output Parameters
b Overwritten by the solution matrixX.
info INTEGER. If info =0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

Application Notes

For each right-hand sideb, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b, where

c(k) is a modest linear function ofk, andε is the machine precision.

If x0 is the true solution, the computed solutionx satisfies this error bound:

where cond(A,x) = || |A- 1| |A| |x| ||∞ / ||x||∞ ≤ ||A- 1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller thanκ∞(A); the condition number
of AT andAH might or might not be equal toκ∞(A).

The approximate number of floating-point operations for one right-hand
side vector is 2n(ku + 2kl) for real flavors. The number of operations for
complex flavors is 4 times greater. All these estimates assume thatkl and
ku are much less than min(m, n).

To estimate the condition numberκ∞(A), call ?gbcon.
To refine the solution and estimate the error, call?gbrfs.

E c kl ku 1+ +()εP L U≤

x x0– ∞
x ∞

---------------------- c kl ku 1+ +() cond A x,()ε≤

4-38

4 Intel® Math Kernel Library Reference Manual

?gttrs
Solves a system of linear equations with
a tridiagonal matrix using the LU
factorization computed by?gttrf .

call sgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call dgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call cgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

call zgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

Discussion

This routine solves forX the following systems of linear equations with
multiple right hand sides:

AX = B if trans ='N' ,

ATX = B if trans ='T' ,

AHX = B if trans ='C' (for complex matrices only).

Before calling this routine, you must call?gttrf to compute theLU
factorization ofA.

Input Parameters
trans CHARACTER*1. Must be'N' or 'T' or 'C' .

Indicates the form of the equations:
If trans = 'N' , thenAX = B is solved forX.
If trans = 'T' , thenATX = B is solved forX.
If trans = 'C' , thenAHX = B is solved forX.

n INTEGER. The order ofA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides, i.e., the
number of columns inB (nrhs ≥ 0).

dl,d,du,du2,b REALfor sgttrs

DOUBLE PRECISIONfor dgttrs

COMPLEXfor cgttrs

DOUBLE COMPLEXfor zgttrf .

LAPACK Routines: Linear Equations4

4-39

Arrays:dl (n - 1) , d(n) , du(n - 1) , du2 (n - 2) ,
b(ldb,nrhs) .
The arraydl contains the (n - 1) multipliers that define
the matrixL from theLU factorization of A.
The arrayd contains then diagonal elements of the upper
triangular matrixU from theLU factorization of A.
The arraydu contains the (n - 1) elements of the first
super-diagonal ofU.
The arraydu2 contains the (n - 2) elements of the
second super-diagonal ofU.
The arrayb contains the matrixB whose columns are the
right-hand sides for the systems of equations.

ldb INTEGER. The leading dimension ofb; ldb ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSION (n) .
The ipiv array, as returned by?gttrf.

Output Parameters

b Overwritten by the solution matrixX.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For each right-hand sideb, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b where

c(n) is a modest linear function ofn, andε is the machine precision.

If x0 is the true solution, the computed solutionx satisfies this error bound:

where cond(A,x) = || |A- 1| |A| |x| ||∞ / ||x||∞ ≤ ||A- 1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller thanκ∞(A); the condition number
of AT andAH might or might not be equal toκ∞(A).

E c n()εP L U≤

x x0– ∞
x ∞

---------------------- c n() cond A x,()ε≤

4-40

4 Intel® Math Kernel Library Reference Manual

The approximate number of floating-point operations for one right-hand
side vectorb is 2n2 for real flavors and 8n2 for complex flavors.

To estimate the condition numberκ∞(A), call ?gecon.
To refine the solution and estimate the error, call?gerfs.

LAPACK Routines: Linear Equations4

4-41

?potrs
Solves a system of linear equations with a
Cholesky-factored symmetric (Hermitian)
positive-definite matrix.

call spotrs (uplo, n, nrhs, a, lda, b, ldb, info)

call dpotrs (uplo, n, nrhs, a, lda, b, ldb, info)

call cpotrs (uplo, n, nrhs, a, lda, b, ldb, info)

call zpotrs (uplo, n, nrhs, a, lda, b, ldb, info)

Discussion

This routine solves forX the system of linear equationsAX = B with a
symmetric positive-definite or, for complex data, Hermitian
positive-definite matrixA, given the Cholesky factorization ofA:

A = UHU if uplo ='U'

A = LLH if uplo ='L'

whereL is a lower triangular matrix andU is upper triangular. The system is
solved with multiple right-hand sides stored in the columns of the matrixB.

Before calling this routine, you must call?potrfto compute the Cholesky
factorization ofA.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:
If uplo = 'U' , the arraya stores the factorU of the
Cholesky factorizationA = UHU.
If uplo = 'L' , the arraya stores the factorL of the
Cholesky factorizationA = LLH.

n INTEGER. The order of matrixA (n ≥ 0).
nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

4-42

4 Intel® Math Kernel Library Reference Manual

a, b REALfor spotrs

DOUBLE PRECISIONfor dpotrs

COMPLEXfor cpotrs

DOUBLE COMPLEXfor zpotrs .
Arrays:a(lda, *) , b(ldb, *) .
The arraya contains the factorU or L (seeuplo).
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The second dimension ofa must be at least max(1,n),
the second dimension ofb at least max(1,nrhs).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters
b Overwritten by the solution matrixX.
info INTEGER. If info = 0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

Application Notes

If uplo = 'U' , the computed solution for each right-hand sideb is the exact
solution of a perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function ofn, andε is the machine precision.
A similar estimate holds foruplo = 'L' .
If x0 is the true solution, the computed solutionx satisfies this error bound:

where cond(A,x) = || |A- 1| |A| |x| ||∞ / ||x||∞ ≤ ||A- 1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller thanκ∞(A).
The approximate number of floating-point operations for one right-hand
side vectorb is 2n2 for real flavors and 8n2 for complex flavors.

To estimate the condition numberκ∞(A), call ?pocon.
To refine the solution and estimate the error, call?porfs.

E c n()ε UH U≤

x x0– ∞
x ∞

---------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-43

?pptrs
Solves a system of linear equations with a
packed Cholesky-factored symmetric
(Hermitian) positive-definite matrix.

call spptrs (uplo, n, nrhs, ap, b, ldb, info)

call dpptrs (uplo, n, nrhs, ap, b, ldb, info)

call cpptrs (uplo, n, nrhs, ap, b, ldb, info)

call zpptrs (uplo, n, nrhs, ap, b, ldb, info)

Discussion

This routine solves forX the system of linear equationsAX = B with a
packed symmetric positive-definite or, for complex data, Hermitian
positive-definite matrixA, given the Cholesky factorization ofA:

A = UHU if uplo ='U'

A = LLH if uplo ='L'

whereL is a lower triangular matrix andU is upper triangular. The system is
solved with multiple right-hand sides stored in the columns of the matrixB.

Before calling this routine, you must call?pptrfto compute the Cholesky
factorization ofA.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:
If uplo ='U' , the arraya stores the packed factorU of
the Cholesky factorizationA = UHU.
If uplo ='L' , the arraya stores the packed factorL of
the Cholesky factorizationA = LLH.

n INTEGER. The order of matrixA (n ≥ 0).
nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

4-44

4 Intel® Math Kernel Library Reference Manual

ap, b REALfor spptrs

DOUBLE PRECISIONfor dpptrs

COMPLEXfor cpptrs

DOUBLE COMPLEXfor zpptrs .
Arrays:ap(*) , b(ldb ,*)

The dimension ofap must be at least max(1,n(n+1)/2).
The arrayap contains the factorU or L, as specified by
uplo , in packed storage(seeMatrix Storage Schemes).
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations. The
second dimension ofb must be at least max(1,nrhs).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters
b Overwritten by the solution matrixX.
info INTEGER. If info = 0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

Application Notes

If uplo = 'U' , the computed solution for each right-hand sideb is the exact
solution of a perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function ofn, andε is the machine precision.

A similar estimate holds foruplo = 'L' .

If x0 is the true solution, the computed solutionx satisfies this error bound:

where cond(A,x) = || |A- 1| |A| |x| ||∞ / ||x||∞ ≤ ||A- 1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller thanκ∞(A).

The approximate number of floating-point operations for one right-hand
side vectorb is 2n2 for real flavors and 8n2 for complex flavors.

To estimate the condition numberκ∞(A), call ?ppcon.
To refine the solution and estimate the error, call?pprfs.

E c n()ε UH U≤

x x0– ∞
x ∞

---------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-45

?pbtrs
Solves a system of linear equations with a
Cholesky-factored symmetric (Hermitian)
positive-definite band matrix.

call spbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call dpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call cpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call zpbtrs (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

Discussion

This routine solves forX the system of linear equationsAX = B with a
symmetric positive-definite or, for complex data, Hermitian
positive-definitebandmatrix A, given the Cholesky factorization ofA:

A = UHU if uplo ='U'

A = LLH if uplo ='L'

whereL is a lower triangular matrix andU is upper triangular. The system is
solved with multiple right-hand sides stored in the columns of the matrixB.

Before calling this routine, you must call?pbtrfto compute the Cholesky
factorization ofA in the band storage form.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:
If uplo = 'U' , the arraya stores the factorU of the
factorizationA = UHU in the band storage form.
If uplo = 'L' , the arraya stores the factorL of the
factorizationA = LLH in the band storage form.

n INTEGER. The order of matrixA (n ≥ 0).
kd INTEGER. The number of super-diagonals or

sub-diagonals in the matrixA (kd ≥ 0).
nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

4-46

4 Intel® Math Kernel Library Reference Manual

ab, b REALfor spbtrs

DOUBLE PRECISIONfor dpbtrs

COMPLEXfor cpbtrs

DOUBLE COMPLEXfor zpbtrs .
Arrays:ab(ldab, *) , b(ldb, *) .
The arrayab contains the Cholesky factor, as returned by
the factorization routine, inband storageform.
The arrayb contains the matrixB whose columns are the
right-hand sides for the systems of equations.
The second dimension ofab must be at least max(1,n),
the second dimension ofb at least max(1,nrhs).

ldab INTEGER. The first dimension of the arrayab.
(ldab ≥ kd +1).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters
b Overwritten by the solution matrixX.
info INTEGER. If info =0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

Application Notes
For each right-hand sideb, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b, where

c(k) is a modest linear function ofk, andε is the machine precision.

If x0 is the true solution, the computed solutionx satisfies this error bound:

where cond(A,x) = || |A- 1| |A| |x| ||∞ / ||x||∞ ≤ ||A- 1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller thanκ∞(A).

The approximate number of floating-point operations for one right-hand
side vector is 4n*kd for real flavors and 16n*kd for complex flavors.

To estimate the condition numberκ∞(A), call ?pbcon.
To refine the solution and estimate the error, call?pbrfs.

E c kd 1+()εP UH U or E c kd 1+()εP LH L≤ ≤

x x0– ∞
x ∞

---------------------- c kd 1+() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-47

?pttrs
Solves a system of linear equations with a
symmetric (Hermitian) positive-definite
tridiagonal matrix using the factorization
computed by?pttrf .

call spttrs (n, nrhs, d, e, b, ldb, info)

call dpttrs (n, nrhs, d, e, b, ldb, info)

call cpttrs (uplo, n, nrhs, d, e, b, ldb, info)

call zpttrs (uplo, n, nrhs, d, e, b, ldb, info)

Discussion

This routine solves forX a system of linear equationsAX = B with a
symmetric (Hermitian) positive-definite tridiagonal matrixA.
Before calling this routine, you must call?pttrf to compute theLDLH or
UHDU factorization ofA.

Input Parameters
uplo CHARACTER*1. Used forcpttrs/zpttrs only.

Must be'U' or 'L' .
Specifies whether the superdiagonal or the subdiagonal
of the tridiagonal matrixA is stored and howA is
factored:
If uplo = 'U' , the arraye stores the superdiagonal ofA,
and A is factored asUHDU;
If uplo = 'L' , the arraye stores the subdiagonal ofA,
and A is factored asLDLH.

n INTEGER. The order ofA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides, i.e., the
number of columns of the matrixB (nrhs ≥ 0).

4-48

4 Intel® Math Kernel Library Reference Manual

d REALfor spttrs, cpttrs

DOUBLE PRECISIONfor dpttrs, zpttrs .
Array, dimension (n). Contains the diagonal elements
of the diagonal matrixD from the factorization
computed by?pttrf.

e, b REALfor spttrs

DOUBLE PRECISIONfor dpttrs

COMPLEXfor cpttrs

DOUBLE COMPLEXfor zpttrs .
Arrays:e(n - 1) , b(ldb,nrhs) .
The arraye contains the (n - 1) off-diagonal elements
of the unit bidiagonal factorU or L from the
factorization computed by?pttrf (see uplo).
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.

ldb INTEGER. The leading dimension ofb; ldb ≥ max(1,n).

Output Parameters

b Overwritten by the solution matrixX.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Linear Equations4

4-49

?sytrs
Solves a system of linear equations with a
UDU- or LDL-factored symmetric matrix.

call ssytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call dsytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call csytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call zsytrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

Discussion

This routine solves forX the system of linear equationsAX = B with a
symmetric matrixA, given the Bunch-Kaufman factorization ofA:

if uplo ='U' , A = PUDUTPT

if uplo ='L' , A = PLDLTPT

whereP is a permutation matrix,U andL are upper and lower triangular
matrices with unit diagonal, andD is a symmetric block-diagonal matrix.
The system is solved with multiple right-hand sides stored in the columns of
the matrixB. You must supply to this routine the factorU (or L) and the
arrayipiv returned by the factorization routine?sytrf.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:

If uplo = 'U' , the arraya stores the upper triangular
factorU of the factorizationA = PUDUTPT.
If uplo = 'L' , the arraya stores the lower triangular
factorL of the factorizationA = PLDLTPT.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?sytrf.

4-50

4 Intel® Math Kernel Library Reference Manual

a, b REALfor ssytrs

DOUBLE PRECISIONfor dsytrs

COMPLEXfor csytrs

DOUBLE COMPLEXfor zsytrs .
Arrays:a(lda, *) , b(ldb, *) .
The arraya contains the factorU or L (seeuplo).
The arrayb contains the matrixB whose columns are the
right-hand sides for the system of equations.

The second dimension ofa must be at least max(1,n),
the second dimension ofb at least max(1,nrhs).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters
b Overwritten by the solution matrixX.
info INTEGER. If info =0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

Application Notes

For each right-hand sideb, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function ofn, andε is the machine precision.

If x0 is the true solution, the computed solutionx satisfies this error bound:

where cond(A,x) = || |A- 1| |A| |x| ||∞ / ||x||∞ ≤ ||A- 1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller thanκ∞(A).

The total number of floating-point operations for one right-hand side vector
is approximately 2n2 for real flavors or 8n2 for complex flavors.

To estimate the condition numberκ∞(A), call ?sycon.
To refine the solution and estimate the error, call?syrfs.

E c n()εP U D UT PT or E c n()εP L D LT PT≤≤

x x0– ∞
x ∞

---------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-51

?hetrs
Solves a system of linear equations with a
UDU- or LDL-factored Hermitian matrix.

call chetrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

call zhetrs (uplo, n, nrhs, a, lda, ipiv, b, ldb, info)

Discussion

This routine solves forX the system of linear equationsAX = B with a
Hermitian matrixA, given the Bunch-Kaufman factorization ofA:

if uplo ='U' , A = PUDUHPT

if uplo ='L' , A = PLDLHPT

whereP is a permutation matrix,U andL are upper and lower triangular
matrices with unit diagonal, andD is a symmetric block-diagonal matrix.
The system is solved with multiple right-hand sides stored in the columns of
the matrixB. You must supply to this routine the factorU (or L) and the
arrayipiv returned by the factorization routine?hetrf.

Input Parameters

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates how the input matrixA has been factored:

If uplo = 'U' , the arraya stores the upper triangular
factorU of the factorizationA = PUDUHPT.

If uplo = 'L' , the arraya stores the lower triangular
factorL of the factorizationA = PLDLHPT.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?hetrf.

4-52

4 Intel® Math Kernel Library Reference Manual

a, b COMPLEXfor chetrs .
DOUBLE COMPLEXfor zhetrs .
Arrays:a(lda, *) , b(ldb, *) .
The arraya contains the factorU or L (seeuplo).
The arrayb contains the matrixB whose columns are the
right-hand sides for the system of equations.

The second dimension ofa must be at least max(1,n),
the second dimension ofb at least max(1,nrhs).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters
b Overwritten by the solution matrixX.
info INTEGER. If info =0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

Application Notes

For each right-hand sideb, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function ofn, andε is the machine precision.

If x0 is the true solution, the computed solutionx satisfies this error bound:

where cond(A,x) = || |A- 1| |A| |x| ||∞ / ||x||∞ ≤ ||A- 1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller thanκ∞(A).

The total number of floating-point operations for one right-hand side vector
is approximately 8n2.

To estimate the condition numberκ∞(A), call ?hecon.
To refine the solution and estimate the error, call?herfs.

E c n()εP U D UH PT or E c n()εP L D LH PT≤≤

x x0– ∞
x ∞

---------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-53

?sptrs
Solves a system of linear equations with a
UDU- or LDL-factored symmetric matrix
using packed storage.

call ssptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call dsptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call csptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zsptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

Discussion

This routine solves forX the system of linear equationsAX = B with a
symmetric matrixA, given the Bunch-Kaufman factorization ofA:

if uplo ='U' , A = PUDUTPT

if uplo ='L' , A = PLDLTPT

whereP is a permutation matrix,U andL are upper and lowerpacked
triangular matrices with unit diagonal, andD is a symmetric block-diagonal
matrix. The system is solved with multiple right-hand sides stored in the
columns of the matrixB. You must supply the factorU (or L) and the array
ipiv returned by the factorization routine?sptrf.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:

If uplo = 'U' , the arrayap stores the packed factorU
of the factorizationA = PUDUTPT.
If uplo = 'L' , the arrayap stores the packed factorL of
the factorizationA = PLDLTPT.

n INTEGER. The order of matrixA (n ≥ 0).
nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?sptrf.

4-54

4 Intel® Math Kernel Library Reference Manual

ap, b REALfor ssptrs

DOUBLE PRECISIONfor dsptrs

COMPLEXfor csptrs

DOUBLE COMPLEXfor zsptrs .
Arrays:ap(*) , b(ldb ,*)

The dimension ofap must be at least max(1,n(n+1)/2).
The arrayap contains the factorU or L, as specified by
uplo , in packed storage(seeMatrix Storage Schemes).

The arrayb contains the matrixB whose columns are
the right-hand sides for the system of equations. The
second dimension ofb must be at least max(1,nrhs).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters
b Overwritten by the solution matrixX.
info INTEGER. If info =0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

Application Notes

For each right-hand sideb, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function ofn, andε is the machine precision.

If x0 is the true solution, the computed solutionx satisfies this error bound:

where cond(A,x) = || |A- 1| |A| |x| ||∞ / ||x||∞ ≤ ||A- 1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller thanκ∞(A).

The total number of floating-point operations for one right-hand side vector
is approximately 2n2 for real flavors or 8n2 for complex flavors.

To estimate the condition numberκ∞(A), call ?spcon.
To refine the solution and estimate the error, call?sprfs.

E c n()εP U D UT PT or E c n()εP L D LT PT≤≤

x x0– ∞
x ∞

---------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-55

?hptrs
Solves a system of linear equations with a
UDU- or LDL-factored Hermitian matrix
using packed storage.

call chptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zhptrs (uplo, n, nrhs, ap, ipiv, b, ldb, info)

Discussion

This routine solves forX the system of linear equationsAX = B with a
Hermitian matrixA, given the Bunch-Kaufman factorization ofA:

if uplo ='U' , A = PUDUHPT

if uplo ='L' , A = PLDLHPT

whereP is a permutation matrix,U andL are upper and lowerpacked
triangular matrices with unit diagonal, andD is a symmetric block-diagonal
matrix. The system is solved with multiple right-hand sides stored in the
columns of the matrixB.

You must supply to this routine the arraysap (containingU or L) andipiv

in the form returned by the factorization routine?hptrf.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:

If uplo = 'U' , the arrayap stores the packed factorU
of the factorizationA = PUDUHPT.
If uplo = 'L' , the arrayap stores the packed factorL of
the factorizationA = PLDLHPT.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ipiv INTEGER. Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?hptrf.

4-56

4 Intel® Math Kernel Library Reference Manual

ap, b COMPLEXfor chptrs .
DOUBLE COMPLEXfor zhptrs .
Arrays:ap(*) , b(ldb ,*)

The dimension ofap must be at least max(1,n(n+1)/2).
The arrayap contains the factorU or L, as specified by
uplo , in packed storage(seeMatrix Storage Schemes).

The arrayb contains the matrixB whose columns are
the right-hand sides for the system of equations. The
second dimension ofb must be at least max(1,nrhs).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters
b Overwritten by the solution matrixX.
info INTEGER. If info = 0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

Application Notes

For each right-hand sideb, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b, where

c(n) is a modest linear function ofn, andε is the machine precision.

If x0 is the true solution, the computed solutionx satisfies this error bound:

where cond(A,x) = || |A- 1| |A| |x| ||∞ / ||x||∞ ≤ ||A- 1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller thanκ∞(A).

The total number of floating-point operations for one right-hand side vector
is approximately 8n2 for complex flavors.

To estimate the condition numberκ∞(A), call ?hpcon.
To refine the solution and estimate the error, call?hprfs.

E c n()εP U D UH PT or E c n()εP L D LH PT≤≤

x x0– ∞
x ∞

---------------------- c n() cond A x,()ε≤

LAPACK Routines: Linear Equations4

4-57

?trtrs
Solves a system of linear equations with
a triangular matrix, with multiple
right-hand sides.

call strtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

call dtrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

call ctrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

call ztrtrs (uplo,trans,diag,n,nrhs,a,lda,b,ldb,info)

Discussion

This routine solves forX the following systems of linear equations with a
triangular matrixA, with multiple right-hand sides stored inB:

AX = B if trans ='N' ,
ATX = B if trans ='T' ,
AHX = B if trans ='C' (for complex matrices only).

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whetherA is upper or lower triangular:
If uplo = 'U' , thenA is upper triangular.
If uplo = 'L' , thenA is lower triangular.

trans CHARACTER*1. Must be'N' or 'T' or 'C' .
If trans = 'N' , thenAX = B is solved forX.
If trans = 'T' , thenATX = B is solved forX.
If trans = 'C' , thenAHX = B is solved forX.

diag CHARACTER*1. Must be'N' or 'U' .
If diag = 'N' , thenA is not a unit triangular matrix.
If diag = 'U' , thenA is unit triangular: diagonal elements
of A are assumed to be 1 and not referenced in the arraya.

n INTEGER. The order ofA; the number of rows inB (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

4-58

4 Intel® Math Kernel Library Reference Manual

a, b REALfor strtrs

DOUBLE PRECISIONfor dtrtrs

COMPLEXfor ctrtrs

DOUBLE COMPLEXfor ztrtrs .
Arrays:a(lda, *) , b(ldb, *) .
The arraya contains the matrixA.
The arrayb contains the matrixB whose columns are the
right-hand sides for the systems of equations.
The second dimension ofa must be at least max(1,n), the
second dimension ofb at least max(1,nrhs).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters

b Overwritten by the solution matrixX.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For each right-hand sideb, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b where

c(n) is a modest linear function ofn, andε is the machine precision.
If x0 is the true solution, the computed solutionx satisfies this error bound:

where cond(A,x) = || |A- 1| |A| |x| ||∞ / ||x||∞ ≤ ||A- 1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller thanκ∞(A); the condition number
of AT andAH might or might not be equal toκ∞(A).

The approximate number of floating-point operations for one right-hand
side vectorb is n2 for real flavors and 4n2 for complex flavors.

To estimate the condition numberκ∞(A), call ?trcon.
To estimate the error in the solution, call?trrfs.

E c n()ε A≤

x x0– ∞
x ∞

---------------------- c n() cond A x,()ε, provided c n() cond A x,()ε 1<≤

LAPACK Routines: Linear Equations4

4-59

?tptrs
Solves a system of linear equations with
a packed triangular matrix, with
multiple right-hand sides.

call stptrs (uplo,trans,diag,n,nrhs,ap,b,ldb,info)

call dtptrs (uplo,trans,diag,n,nrhs,ap,b,ldb,info)

call ctptrs (uplo,trans,diag,n,nrhs,ap,b,ldb,info)

call ztptrs (uplo,trans,diag,n,nrhs,ap,b,ldb,info)

Discussion

This routine solves forX the following systems of linear equations with a
packed triangular matrixA, with multiple right-hand sides stored inB:

AX = B if trans ='N' ,
ATX = B if trans ='T' ,
AHX = B if trans ='C' (for complex matrices only).

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whetherA is upper or lower triangular:
If uplo = 'U' , thenA is upper triangular.
If uplo = 'L' , thenA is lower triangular.

trans CHARACTER*1. Must be'N' or 'T' or 'C' .
If trans = 'N' , thenAX = B is solved forX.
If trans = 'T' , thenATX = B is solved forX.
If trans = 'C' , thenAHX = B is solved forX.

diag CHARACTER*1. Must be'N' or 'U' .
If diag = 'N' , thenA is not a unit triangular matrix.
If diag = 'U' , thenA is unit triangular: diagonal elements
are assumed to be 1 and not referenced in the arrayap .

n INTEGER. The order ofA; the number of rows inB (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

4-60

4 Intel® Math Kernel Library Reference Manual

ap, b REALfor stptrs

DOUBLE PRECISIONfor dtptrs

COMPLEXfor ctptrs

DOUBLE COMPLEXfor ztptrs .
Arrays:ap(*) , b(ldb ,*)

The dimension ofap must be at least max(1,n(n+1)/2).
The arrayap contains the matrixA in packed storage
(seeMatrix Storage Schemes).
The arrayb contains the matrixB whose columns are the
right-hand sides for the system of equations. The second
dimension ofb must be at least max(1,nrhs).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters

b Overwritten by the solution matrixX.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For each right-hand sideb, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b where

c(n) is a modest linear function ofn, andε is the machine precision.

If x0 is the true solution, the computed solutionx satisfies this error bound:

where cond(A,x) = || |A- 1| |A| |x| ||∞ / ||x||∞ ≤ ||A- 1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller thanκ∞(A); the condition number
of AT andAH might or might not be equal toκ∞(A).

The approximate number of floating-point operations for one right-hand
side vectorb is n2 for real flavors and 4n2 for complex flavors.

To estimate the condition numberκ∞(A), call ?tpcon.
To estimate the error in the solution, call?tprfs.

E c n()ε A≤

x x0– ∞
x ∞

---------------------- c n() cond A x,()ε, provided c n() cond A x,()ε 1<≤

LAPACK Routines: Linear Equations4

4-61

?tbtrs
Solves a system of linear equations with
a band triangular matrix, with multiple
right-hand sides.

call stbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call dtbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call ctbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

call ztbtrs (uplo, trans, diag, n, kd, nrhs, ab, ldab, b, ldb, info)

Discussion
This routine solves forX the following systems of linear equations with a
band triangular matrixA, with multiple right-hand sides stored inB:
AX = B if trans ='N' ,
ATX = B if trans ='T' ,
AHX = B if trans ='C' (for complex matrices only).

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whetherA is upper or lower triangular:
If uplo = 'U' , thenA is upper triangular.
If uplo = 'L' , thenA is lower triangular.

trans CHARACTER*1. Must be'N' or 'T' or 'C' .
If trans = 'N' , thenAX = B is solved forX.
If trans = 'T' , thenATX = B is solved forX.
If trans = 'C' , thenAHX = B is solved forX.

diag CHARACTER*1. Must be'N' or 'U' .
If diag = 'N' , thenA is not a unit triangular matrix.
If diag = 'U' , thenA is unit triangular: diagonal elements
are assumed to be 1 and not referenced in the arrayab.

n INTEGER. The order ofA; the number of rows inB (n ≥ 0).
kd INTEGER. The number of super-diagonals or

sub-diagonals in the matrixA (kd ≥ 0).
nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

4-62

4 Intel® Math Kernel Library Reference Manual

ab, b REALfor stbtrs

DOUBLE PRECISIONfor dtbtrs

COMPLEXfor ctbtrs

DOUBLE COMPLEXfor ztbtrs .
Arrays:ab(ldab, *) , b(ldb, *) .
The arrayab contains the matrixA in band storageform.
The arrayb contains the matrixB whose columns are the
right-hand sides for the systems of equations.
The second dimension ofab must be at least max(1,n),
the second dimension ofb at least max(1,nrhs).

ldab INTEGER. The first dimension ofab ; ldab ≥ kd + 1.
ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters
b Overwritten by the solution matrixX.
info INTEGER. If info =0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

Application Notes

For each right-hand sideb, the computed solution is the exact solution of a
perturbed system of equations (A + E)x = b where

c(n) is a modest linear function ofn, andε is the machine precision.
If x0 is the true solution, the computed solutionx satisfies this error bound:

where cond(A,x) = || |A- 1| |A| |x| ||∞ / ||x||∞ ≤ ||A- 1||∞ ||A||∞ = κ∞(A).

Note that cond(A,x) can be much smaller thanκ∞(A); the condition number
of AT andAH might or might not be equal toκ∞(A).

The approximate number of floating-point operations for one right-hand
side vectorb is 2n* kd for real flavors and 8n* kd for complex flavors.

To estimate the condition numberκ∞(A), call ?tbcon.
To estimate the error in the solution, call?tbrfs.

E c n()ε A≤

x x0– ∞
x ∞

---------------------- c n() cond A x,()ε, provided c n() cond A x,()ε 1<≤

LAPACK Routines: Linear Equations4

4-63

Routines for Estimating the Condition Number
This section describes the LAPACK routines for estimating thecondition
numberof a matrix. The condition number is used for analyzing the errors
in the solution of a system of linear equations (seeError Analysis). Since
the condition number may be arbitrarily large when the matrix is nearly
singular, the routines actually compute thereciprocalcondition number.

?gecon
Estimates the reciprocal of the condition
number of a general matrix in either the
1-norm or the infinity-norm.

call sgecon (norm,n,a,lda,anorm,rcond,work,iwork,info)

call dgecon (norm,n,a,lda,anorm,rcond,work,iwork,info)

call cgecon (norm,n,a,lda,anorm,rcond,work,rwork,info)

call zgecon (norm,n,a,lda,anorm,rcond,work,rwork,info)

Discussion

This routine estimates the reciprocal of the condition number of a general
matrix A in either the 1-norm or infinity-norm:

 κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = ||A||∞ ||A−1||∞ = κ1 (AT) = κ1 (AH) .
Before calling this routine:

• computeanorm (either||A||1 = maxj Σi |aij | or ||A||∞ = maxi Σj |aij |)
• call ?getrfto compute theLU factorization ofA.

Input Parameters
norm CHARACTER*1. Must be'1' or 'O' or 'I' .

If norm = '1' or 'O' , then the routine estimatesκ1(A).
If norm = 'I' , then the routine estimatesκ∞ (A).

n INTEGER. The order of the matrixA (n ≥ 0).

4-64

4 Intel® Math Kernel Library Reference Manual

a, work REALfor sgecon

DOUBLE PRECISIONfor dgecon

COMPLEXfor cgecon

DOUBLE COMPLEXfor zgecon .
Arrays:a(lda, *) , work (*) .
The arraya contains theLU-factored matrixA, as
returned by?getrf.
The second dimension ofa must be at least max(1,n).
The arraywork is a workspace for the routine.
The dimension ofwork must be at least max(1, 4* n) for
real flavors and max(1, 2* n) for complex flavors.

anorm REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
The norm of theoriginal matrix A (seeDiscussion).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).
iwork INTEGER.

Workspace array,DIMENSION at least max(1,n).
rwork REALfor cgecon

DOUBLE PRECISIONfor zgecon

Workspace array,DIMENSION at least max(1, 2* n).

Output Parameters
rcond REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call to
this routine involves solving a number of systems of linear equationsAx= b
or AHx = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n2 floating-point operations for real
flavors and 8n2 for complex flavors.

LAPACK Routines: Linear Equations4

4-65

?gbcon
Estimates the reciprocal of the condition
number of a band matrix in either the
1-norm or the infinity-norm.

call sgbcon (norm,n,kl,ku,ab,ldab,ipiv,anorm,rcond,work,iwork,info)

call dgbcon (norm,n,kl,ku,ab,ldab,ipiv,anorm,rcond,work,iwork,info)

call cgbcon (norm,n,kl,ku,ab,ldab,ipiv,anorm,rcond,work,rwork,info)

call zgbcon (norm,n,kl,ku,ab,ldab,ipiv,anorm,rcond,work,rwork,info)

Discussion

This routine estimates the reciprocal of the condition number of a general
band matrixA in either the 1-norm or infinity-norm:

 κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = ||A||∞ ||A−1||∞ = κ1 (A

T) = κ1 (A
H) .

Before calling this routine:

• computeanorm (either||A||1 = maxj Σi |aij | or ||A||∞ = maxi Σj |aij |)
• call ?gbtrfto compute theLU factorization ofA.

Input Parameters
norm CHARACTER*1. Must be'1' or 'O' or 'I' .

If norm = '1' or 'O' , then the routine estimatesκ1(A).
If norm = 'I' , then the routine estimatesκ∞ (A).

n INTEGER. The order of the matrixA (n ≥ 0).
kl INTEGER. The number of sub-diagonals within the band

of A (kl ≥ 0).
ku INTEGER. The number of super-diagonals within the

band ofA (ku ≥ 0).
ldab INTEGER. The first dimension of the arrayab.

(ldab ≥ 2kl + ku +1).

ipiv INTEGER. Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?gbtrf.

4-66

4 Intel® Math Kernel Library Reference Manual

ab, work REALfor sgbcon

DOUBLE PRECISIONfor dgbcon

COMPLEXfor cgbcon

DOUBLE COMPLEXfor zgbcon .
Arrays:ab(ldab, *) , work (*) .

The arrayab contains the factored band matrixA,
as returned by?gbtrf.

The second dimension ofab must be at least max(1,n).
The arraywork is a workspace for the routine.

The dimension ofwork must be at least max(1, 3* n) for
real flavors and max(1, 2* n) for complex flavors.

anorm REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
The norm of theoriginal matrix A (seeDiscussion).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor cgbcon

DOUBLE PRECISIONfor zgbcon

Workspace array,DIMENSION at least max(1, 2* n).

Output Parameters
rcond REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Linear Equations4

4-67

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call to
this routine involves solving a number of systems of linear equationsAx= b
or AHx = b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n(ku + 2kl) floating-point operations for
real flavors and 8n(ku + 2kl) for complex flavors.

?gtcon
Estimates the reciprocal of the condition
number of a tridiagonal matrix using the
factorization computed by?gttrf .

call sgtcon (norm,n,dl,d,du,du2,ipiv,anorm,rcond,work,iwork,info)

call dgtcon (norm,n,dl,d,du,du2,ipiv,anorm,rcond,work,iwork,info)

call cgtcon (norm,n,dl,d,du,du2,ipiv,anorm,rcond,work,info)

call zgtcon (norm,n,dl,d,du,du2,ipiv,anorm,rcond,work,info)

Discussion

This routine estimates the reciprocal of the condition number of a real or
complex tridiagonal matrixA in either the 1-norm or infinity-norm:

 κ1(A) = ||A||1 ||A−1||1
 κ∞ (A) = ||A||∞ ||A−1||∞

An estimate is obtained for||A−1||, and the reciprocal of the condition
number is computed asrcond = 1 / (||A|| ||A−1||).
Before calling this routine:

• computeanorm (either||A||1 = maxj Σi |aij | or ||A||∞ = maxi Σj |aij |)
• call ?gttrf to compute theLU factorization ofA.

4-68

4 Intel® Math Kernel Library Reference Manual

Input Parameters
norm CHARACTER*1. Must be'1' or 'O' or 'I' .

If norm = '1' or 'O' , then the routine estimatesκ1(A).
If norm = 'I' , then the routine estimatesκ∞ (A).

n INTEGER. The order of the matrixA (n ≥ 0).
dl,d,du,du2 REALfor sgtcon

DOUBLE PRECISIONfor dgtcon

COMPLEXfor cgtcon

DOUBLE COMPLEXfor zgtcon .
Arrays:dl (n - 1) , d(n) , du(n - 1) , du2 (n - 2) .
The arraydl contains the (n - 1) multipliers that define
the matrixL from theLU factorization of A as
computed by?gttrf.
The arrayd contains then diagonal elements of the
upper triangular matrixU from theLU factorization of
A.
The arraydu contains the (n - 1) elements of the first
super-diagonal ofU.
The arraydu2 contains the (n - 2) elements of the
second super-diagonal ofU.

ipiv INTEGER.
Array, DIMENSION (n) .
The array of pivot indices, as returned by?gttrf.

anorm REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
The norm of theoriginal matrix A (seeDiscussion).

work REALfor sgtcon

DOUBLE PRECISIONfor dgtcon

COMPLEXfor cgtcon

DOUBLE COMPLEXfor zgtcon .
Workspace array,DIMENSION (2* n) .

iwork INTEGER.
Workspace array,DIMENSION (n) .
Used for real flavors only.

LAPACK Routines: Linear Equations4

4-69

Output Parameters
rcond REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n2 floating-point operations for real flavors and 8n2

for complex flavors.

4-70

4 Intel® Math Kernel Library Reference Manual

?pocon
Estimates the reciprocal of the condition
number of a symmetric (Hermitian)
positive-definite matrix.

call spocon (uplo,n,a,lda,anorm,rcond,work,iwork,info)

call dpocon (uplo,n,a,lda,anorm,rcond,work,iwork,info)

call cpocon (uplo,n,a,lda,anorm,rcond,work,rwork,info)

call zpocon (uplo,n,a,lda,anorm,rcond,work,rwork,info)

Discussion

This routine estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite matrixA:

 κ1(A) = ||A||1 ||A−1||1 (sinceA is symmetric or Hermitian,κ∞(A) = κ1(A)).
Before calling this routine:
• computeanorm (either||A||1 = maxj Σi |aij | or ||A||∞ = maxi Σj |aij |)
• call ?potrfto compute the Cholesky factorization ofA.

Input Parameters

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates how the input matrixA has been factored:

If uplo = 'U' , the arraya stores the upper triangular
factorU of the factorizationA = UHU.

If uplo = 'L' , the arraya stores the lower triangular
factorL of the factorizationA = LLH.

n INTEGER. The order of the matrixA (n ≥ 0).
a, work REALfor spocon

DOUBLE PRECISIONfor dpocon

COMPLEXfor cpocon

DOUBLE COMPLEXfor zpocon .
Arrays:a(lda, *) , work (*) .

LAPACK Routines: Linear Equations4

4-71

The arraya contains the factored matrixA, as returned
by ?potrf.
The second dimension ofa must be at least max(1,n).
The arraywork is a workspace for the routine.
The dimension ofwork must be at least max(1, 3* n) for
real flavors and max(1, 2* n) for complex flavors.

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).
anorm REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
The norm of theoriginal matrix A (seeDiscussion).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor cpocon

DOUBLE PRECISIONfor zpocon

Workspace array,DIMENSION at least max(1,n).

Output Parameters
rcond REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n2 floating-point operations for real flavors and 8n2

for complex flavors.

4-72

4 Intel® Math Kernel Library Reference Manual

?ppcon
Estimates the reciprocal of the condition
number of a packed symmetric (Hermitian)
positive-definite matrix.

call sppcon (uplo,n,ap,anorm,rcond,work,iwork,info)

call dppcon (uplo,n,ap,anorm,rcond,work,iwork,info)

call cppcon (uplo,n,ap,anorm,rcond,work,rwork,info)

call zppcon (uplo,n,ap,anorm,rcond,work,rwork,info)

Discussion

This routine estimates the reciprocal of the condition number of a packed
symmetric (Hermitian) positive-definite matrixA:

 κ1(A) = ||A||1 ||A−1||1 (sinceA is symmetric or Hermitian,κ∞(A) = κ1(A)).
Before calling this routine:
• computeanorm (either||A||1 = maxj Σi |aij | or ||A||∞ = maxi Σj |aij |)
• call ?pptrfto compute the Cholesky factorization ofA.

Input Parameters

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates how the input matrixA has been factored:

If uplo = 'U' , the arrayap stores the upper triangular
factorU of the factorizationA = UHU.

If uplo = 'L' , the arrayap stores the lower triangular
factorL of the factorizationA = LLH.

n INTEGER. The order of the matrixA (n ≥ 0).
ap, work REALfor sppcon

DOUBLE PRECISIONfor dppcon

COMPLEXfor cppcon

DOUBLE COMPLEXfor zppcon .
Arrays:ap(*) , work (*) .

LAPACK Routines: Linear Equations4

4-73

The arrayap contains the packed factored matrixA, as
returned by?pptrf.
The dimension ofap must be at least max(1,n(n+1)/2).
The arraywork is a workspace for the routine.
The dimension ofwork must be at least max(1, 3* n) for
real flavors and max(1, 2* n) for complex flavors.

anorm REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
The norm of theoriginal matrix A (seeDiscussion).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor cppcon

DOUBLE PRECISIONfor zppcon

Workspace array,DIMENSION at least max(1,n).

Output Parameters
rcond REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n2 floating-point operations for real flavors and 8n2

for complex flavors.

4-74

4 Intel® Math Kernel Library Reference Manual

?pbcon
Estimates the reciprocal of the condition
number of a symmetric (Hermitian)
positive-definite band matrix.

call spbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)

call dpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, iwork, info)

call cpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)

call zpbcon (uplo, n, kd, ab, ldab, anorm, rcond, work, rwork, info)

Discussion

This routine estimates the reciprocal of the condition number of a
symmetric (Hermitian) positive-definite band matrixA:
 κ1(A) = ||A||1 ||A−1||1 (sinceA is symmetric or Hermitian,κ∞(A) = κ1(A)).
Before calling this routine:

• computeanorm (either||A||1 = maxj Σi |aij | or ||A||∞ = maxi Σj |aij |)
• call ?pbtrfto compute the Cholesky factorization ofA.

Input Parameters

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates how the input matrixA has been factored:
If uplo = 'U' , the arrayab stores the upper triangular
factorU of the Cholesky factorizationA = UHU.
If uplo = 'L' , the arrayab stores the lower triangular
factorL of the factorizationA = LLH.

n INTEGER. The order of the matrixA (n ≥ 0).
kd INTEGER. The number of super-diagonals or

sub-diagonals in the matrixA (kd ≥ 0).
ldab INTEGER. The first dimension of the arrayab.

(ldab ≥ kd +1).

ab, work REALfor spbcon

DOUBLE PRECISIONfor dpbcon

COMPLEXfor cpbcon

DOUBLE COMPLEXfor zpbcon .

LAPACK Routines: Linear Equations4

4-75

Arrays:ab(ldab ,*) , work (*) .

The arrayab contains the factored matrixA in band
form, as returned by?pbtrf.
The second dimension ofab must be at least max(1,n),
The arraywork is a workspace for the routine.
The dimension ofwork must be at least max(1, 3* n) for
real flavors and max(1, 2* n) for complex flavors.

anorm REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
The norm of theoriginal matrix A (seeDiscussion).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor cpbcon

DOUBLE PRECISIONfor zpbcon .
Workspace array,DIMENSION at least max(1,n).

Output Parameters
rcond REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 4n(kd + 1) floating-point operations for real flavors
and 16n(kd + 1) for complex flavors.

4-76

4 Intel® Math Kernel Library Reference Manual

?ptcon
Estimates the reciprocal of the condition
number of a symmetric (Hermitian)
positive-definite tridiagonal matrix.

call sptcon (n, d, e , anorm, rcond, work, info)

call dptcon (n, d, e , anorm, rcond, work, info)

call cptcon (n, d, e , anorm, rcond, work, info)

call zptcon (n, d, e , anorm, rcond, work, info)

Discussion

This routine computes the reciprocal of the condition number (in the
1-norm) of a real symmetric or complex Hermitian positive-definite
tridiagonal matrix using the factorizationA = LDLH or A = UHDU
computed by?pttrf :

 κ1(A) = ||A||1 ||A−1||1 (sinceA is symmetric or Hermitian,κ∞(A) = κ1(A)).

The norm||A−1|| is computed by a direct method, and the reciprocal of the
condition number is computed asrcond = 1 / (||A|| ||A−1||).

Before calling this routine:
• computeanorm as ||A||1 = maxj Σi |aij |
• call ?pttrf to compute the factorization ofA.

Input Parameters
n INTEGER. The order of the matrixA (n ≥ 0).
d, work REALfor single precision flavors

DOUBLE PRECISIONfor double precision flavors.
Arrays, dimension(n) .
The arrayd contains then diagonal elements of the
diagonal matrixD from the factorization ofA, as
computed by?pttrf ;
work is a workspace array.

LAPACK Routines: Linear Equations4

4-77

e REALfor sptcon

DOUBLE PRECISIONfor dptcon

COMPLEXfor cptcon

DOUBLE COMPLEXfor zptcon .
Array, DIMENSION (n - 1) .
Contains off-diagonal elements of the unit bidiagonal
factorU or L from the factorization computed by?pttrf .

anorm REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
The 1- norm of theoriginal matrix A (seeDiscussion).

Output Parameters
rcond REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 4n(kd + 1) floating-point operations for real flavors
and 16n(kd + 1) for complex flavors.

4-78

4 Intel® Math Kernel Library Reference Manual

?sycon
Estimates the reciprocal of the condition
number of a symmetric matrix.

call ssycon (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)

call dsycon (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)

call csycon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

call zsycon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

Discussion

This routine estimates the reciprocal of the condition number of a
symmetric matrixA:

 κ1(A) = ||A||1 ||A−1||1 (sinceA is symmetric,κ∞(A) = κ1(A)).

Before calling this routine:
• computeanorm (either||A||1 = maxj Σi |aij | or ||A||∞ = maxi Σj |aij |)
• call ?sytrfto compute the factorization ofA.

Input Parameters

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates how the input matrixA has been factored:
If uplo = 'U' , the arraya stores the upper triangular
factorU of the factorizationA = PUDUTPT.
If uplo = 'L' , the arraya stores the lower triangular
factorL of the factorizationA = PLDLTPT.

n INTEGER. The order of matrixA (n ≥ 0).

a, work REALfor ssycon

DOUBLE PRECISIONfor dsycon

COMPLEXfor csycon

DOUBLE COMPLEXfor zsycon .
Arrays:a(lda ,*) , work (*) .
The arraya contains the factored matrixA, as returned
by ?sytrf.
The second dimension ofa must be at least max(1,n).

LAPACK Routines: Linear Equations4

4-79

The arraywork is a workspace for the routine.
The dimension ofwork must be at least max(1, 2* n).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ipiv INTEGER. Array, DIMENSIONat least max(1,n).
The arrayipiv , as returned by?sytrf.

anorm REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
The norm of theoriginal matrix A (seeDiscussion).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor csycon

DOUBLE PRECISIONfor zsycon .
Workspace array,DIMENSION at least max(1,n).

Output Parameters

rcond REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n2 floating-point operations for real flavors and 8n2

for complex flavors.

4-80

4 Intel® Math Kernel Library Reference Manual

?hecon
Estimates the reciprocal of the condition
number of a Hermitian matrix.

call checon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

call zhecon (uplo, n, a, lda, ipiv, anorm, rcond, work, rwork, info)

Discussion

This routine estimates the reciprocal of the condition number of a Hermitian
matrix A:

 κ1(A) = ||A||1 ||A−1||1 (sinceA is Hermitian,κ∞(A) = κ1(A)).

Before calling this routine:
• computeanorm (either||A||1 = maxj Σi |aij | or ||A||∞ = maxi Σj |aij |)
• call ?hetrfto compute the factorization ofA.

Input Parameters

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates how the input matrixA has been factored:

If uplo = 'U' , the arraya stores the upper triangular
factorU of the factorizationA = PUDUHPT.

If uplo = 'L' , the arraya stores the lower triangular
factorL of the factorizationA = PLDLHPT.

n INTEGER. The order of matrixA (n ≥ 0).

a, work COMPLEXfor checon

DOUBLE COMPLEXfor zhecon .
Arrays:a(lda, *) , work (*) .

The arraya contains the factored matrixA, as returned
by ?hetrf.
The second dimension ofa must be at least max(1,n).

The arraywork is a workspace for the routine.
The dimension ofwork must be at least max(1, 2* n).

LAPACK Routines: Linear Equations4

4-81

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ipiv INTEGER. Array, DIMENSIONat least max(1,n).
The arrayipiv , as returned by?hetrf.

anorm REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
The norm of theoriginal matrix A (seeDiscussion).

rwork REALfor checon

DOUBLE PRECISIONfor zhecon

Workspace array,DIMENSION at least max(1,n).

Output Parameters

rcond REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 5 and never more than 11. Each solution
requires approximately 8n2 floating-point operations.

4-82

4 Intel® Math Kernel Library Reference Manual

?spcon
Estimates the reciprocal of the condition
number of a packed symmetric matrix.

call sspcon (uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)

call dspcon (uplo, n, ap, ipiv, anorm, rcond, work, iwork, info)

call cspcon (uplo, n, ap, ipiv, anorm, rcond, work, rwork, info)

call zspcon (uplo, n, ap, ipiv, anorm, rcond, work, rwork, info)

Discussion

This routine estimates the reciprocal of the condition number of a packed
symmetric matrixA:

 κ1(A) = ||A||1 ||A−1||1 (sinceA is symmetric,κ∞(A) = κ1(A)).

Before calling this routine:
• computeanorm (either||A||1 = maxj Σi |aij | or ||A||∞ = maxi Σj |aij |)
• call ?sptrfto compute the factorization ofA.

Input Parameters

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates how the input matrixA has been factored:
If uplo = 'U' , the arrayap stores the packed upper
triangular factorU of the factorizationA = PUDUTPT.
If uplo = 'L' , the arrayap stores the packed lower
triangular factorL of the factorizationA = PLDLTPT.

n INTEGER. The order of matrixA (n ≥ 0).

ap, work REALfor sspcon

DOUBLE PRECISIONfor dspcon

COMPLEXfor cspcon

DOUBLE COMPLEXfor zspcon .
Arrays:ap(*) , work (*) .

The arrayap contains the packed factored matrixA, as
returned by?sptrf.
The dimension ofap must be at least max(1,n(n+1)/2).

LAPACK Routines: Linear Equations4

4-83

The arraywork is a workspace for the routine.
The dimension ofwork must be at least max(1, 2* n).

ipiv INTEGER. Array, DIMENSIONat least max(1,n).
The arrayipiv , as returned by?sptrf.

anorm REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
The norm of theoriginal matrix A (seeDiscussion).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor cspcon

DOUBLE PRECISIONfor zspcon

Workspace array,DIMENSION at least max(1,n).

Output Parameters

rcond REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n2 floating-point operations for real flavors and 8n2

for complex flavors.

4-84

4 Intel® Math Kernel Library Reference Manual

?hpcon
Estimates the reciprocal of the condition
number of a packed Hermitian matrix.

call chpcon (uplo, n, ap, ipiv, anorm, rcond, work, rwork, info)

call zhpcon (uplo, n, ap, ipiv, anorm, rcond, work, rwork, info)

Discussion

This routine estimates the reciprocal of the condition number of a Hermitian
matrix A:

 κ1(A) = ||A||1 ||A−1||1 (sinceA is Hermitian,κ∞(A) = κ1(A)).

Before calling this routine:

• computeanorm (either||A||1 = maxj Σi |aij | or ||A||∞ = maxi Σj |aij |)
• call ?hptrfto compute the factorization ofA.

Input Parameters

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates how the input matrixA has been factored:

If uplo = 'U' , the arrayap stores the packed upper
triangular factorU of the factorizationA = PUDUTPT.

If uplo = 'L' , the arrayap stores the packed lower
triangular factorL of the factorizationA = PLDLTPT.

n INTEGER. The order of matrixA (n ≥ 0).

ap, work COMPLEXfor chpcon

DOUBLE COMPLEXfor zhpcon .
Arrays:ap(*) , work (*) .

The arrayap contains the packed factored matrixA, as
returned by?hptrf.
The dimension ofap must be at least max(1,n(n+1)/2).

The arraywork is a workspace for the routine.
The dimension ofwork must be at least max(1, 2* n).

LAPACK Routines: Linear Equations4

4-85

ipiv INTEGER. Array, DIMENSIONat least max(1,n).
The arrayipiv , as returned by?hptrf.

anorm REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
The norm of theoriginal matrix A (seeDiscussion).

rwork REALfor chpcon

DOUBLE PRECISIONfor zhpcon .
Workspace array,DIMENSION at least max(1,n).

Output Parameters

rcond REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 5 and never more than 11. Each solution
requires approximately 8n2 floating-point operations.

4-86

4 Intel® Math Kernel Library Reference Manual

?trcon
Estimates the reciprocal of the condition
number of a triangular matrix.

call strcon (norm, uplo, diag, n, a, lda, rcond, work, iwork, info)
call dtrcon (norm, uplo, diag, n, a, lda, rcond, work, iwork, info)

call ctrcon (norm, uplo, diag, n, a, lda, rcond, work, rwork, info)
call ztrcon (norm, uplo, diag, n, a, lda, rcond, work, rwork, info)

Discussion

This routine estimates the reciprocal of the condition number of a triangular
matrix A in either the 1-norm or infinity-norm:

 κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = ||A||∞ ||A−1||∞ = κ1 (A

T) = κ1 (A
H) .

Input Parameters
norm CHARACTER*1. Must be'1' or 'O' or 'I' .

If norm = '1' or 'O' , then the routine estimatesκ1(A).
If norm = 'I' , then the routine estimatesκ∞ (A).

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates whetherA is upper or lower triangular:
If uplo = 'U' , the arraya stores the upper triangle ofA,
other array elements are not referenced.
If uplo = 'L' , the arraya stores the lower triangle ofA,
other array elements are not referenced.

diag CHARACTER*1. Must be'N' or 'U' .

If diag = 'N' , thenA is not a unit triangular matrix.

If diag = 'U' , thenA is unit triangular: diagonal elements
are assumed to be 1 and not referenced in the arraya.

n INTEGER. The order of the matrixA (n ≥ 0).

LAPACK Routines: Linear Equations4

4-87

a, work REALfor strcon

DOUBLE PRECISIONfor dtrcon

COMPLEXfor ctrcon

DOUBLE COMPLEXfor ztrcon .
Arrays:a(lda, *) , work (*) .
The arraya contains the matrixA.
The second dimension ofa must be at least max(1,n).
The arraywork is a workspace for the routine.
The dimension ofwork must be at least max(1, 3* n) for
real flavors and max(1, 2* n) for complex flavors.

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).
iwork INTEGER.

Workspace array,DIMENSION at least max(1,n).
rwork REALfor ctrcon

DOUBLE PRECISIONfor ztrcon .
Workspace array,DIMENSION at least max(1,n).

Output Parameters
rcond REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximatelyn2 floating-point operations for real flavors and 4n2

operations for complex flavors.

4-88

4 Intel® Math Kernel Library Reference Manual

?tpcon
Estimates the reciprocal of the condition
number of a packed triangular matrix.

call stpcon (norm,uplo,diag,n,ap,rcond,work,iwork,info)

call dtpcon (norm,uplo,diag,n,ap,rcond,work,iwork,info)

call ctpcon (norm,uplo,diag,n,ap,rcond,work,rwork,info)

call ztpcon (norm,uplo,diag,n,ap,rcond,work,rwork,info)

Discussion

This routine estimates the reciprocal of the condition number of a packed
triangular matrixA in either the 1-norm or infinity-norm:

 κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = ||A||∞ ||A−1||∞ = κ1 (A

T) = κ1 (A
H) .

Input Parameters
norm CHARACTER*1. Must be'1' or 'O' or 'I' .

If norm = '1' or 'O' , then the routine estimatesκ1(A).
If norm = 'I' , then the routine estimatesκ∞ (A).

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates whetherA is upper or lower triangular:
If uplo = 'U' , the arrayap stores the upper triangle ofA
in packed form.
If uplo = 'L' , the arrayap stores the lower triangle ofA
in packed form.

diag CHARACTER*1. Must be'N' or 'U' .

If diag = 'N' , thenA is not a unit triangular matrix.

If diag = 'U' , thenA is unit triangular: diagonal elements
are assumed to be 1 and not referenced in the arrayap .

n INTEGER. The order of the matrixA (n ≥ 0).

LAPACK Routines: Linear Equations4

4-89

ap, work REALfor stpcon

DOUBLE PRECISIONfor dtpcon

COMPLEXfor ctpcon

DOUBLE COMPLEXfor ztpcon .
Arrays:ap(*) , work (*) .
The arrayap contains the packed matrixA.
The dimension ofap must be at least max(1,n(n+1)/2).
The arraywork is a workspace for the routine.
The dimension ofwork must be at least max(1, 3* n) for
real flavors and max(1, 2* n) for complex flavors.

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor ctpcon

DOUBLE PRECISIONfor ztpcon

Workspace array,DIMENSION at least max(1,n).

Output Parameters
rcond REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximatelyn2 floating-point operations for real flavors and 4n2

operations for complex flavors.

4-90

4 Intel® Math Kernel Library Reference Manual

?tbcon
Estimates the reciprocal of the condition
number of a triangular band matrix.

call stbcon (norm,uplo,diag,n,kd,ab,ldab,rcond,work,iwork,info)

call dtbcon (norm,uplo,diag,n,kd,ab,ldab,rcond,work,iwork,info)

call ctbcon (norm,uplo,diag,n,kd,ab,ldab,rcond,work,rwork,info)

call ztbcon (norm,uplo,diag,n,kd,ab,ldab,rcond,work,rwork,info)

Discussion

This routine estimates the reciprocal of the condition number of a triangular
band matrixA in either the 1-norm or infinity-norm:

 κ1(A) = ||A||1 ||A−1||1 = κ∞(AT) = κ∞(AH)
 κ∞ (A) = ||A||∞ ||A−1||∞ = κ1 (A

T) = κ1 (A
H) .

Input Parameters
norm CHARACTER*1. Must be'1' or 'O' or 'I' .

If norm = '1' or 'O' , then the routine estimatesκ1(A).
If norm = 'I' , then the routine estimatesκ∞ (A).

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates whetherA is upper or lower triangular:
If uplo = 'U' , the arrayap stores the upper triangle ofA
in packed form.
If uplo = 'L' , the arrayap stores the lower triangle ofA
in packed form.

diag CHARACTER*1. Must be'N' or 'U' .

If diag = 'N' , thenA is not a unit triangular matrix.

If diag = 'U' , thenA is unit triangular: diagonal elements
are assumed to be 1 and not referenced in the arrayab.

n INTEGER. The order of the matrixA (n ≥ 0).

kd INTEGER. The number of super-diagonals or
sub-diagonals in the matrixA (kd ≥ 0).

LAPACK Routines: Linear Equations4

4-91

ab, work REALfor stbcon

DOUBLE PRECISIONfor dtbcon

COMPLEXfor ctbcon

DOUBLE COMPLEXfor ztbcon .
Arrays:ab(ldab ,*) , work (*) .
The arrayab contains the band matrixA.
The second dimension ofab must be at least max(1,n)).
The arraywork is a workspace for the routine.
The dimension ofwork must be at least max(1, 3* n) for
real flavors and max(1, 2* n) for complex flavors.

ldab INTEGER. The first dimension of the arrayab.
(ldab ≥ kd +1).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor ctbcon

DOUBLE PRECISIONfor ztbcon .
Workspace array,DIMENSION at least max(1,n).

Output Parameters
rcond REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal of the condition number.
The routine setsrcond =0 if the estimate underflows; in
this case the matrix is singular (to working precision).
However, anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

info INTEGER. If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computedrcond is never less thanρ (the reciprocal of the true
condition number) and in practice is nearly always less than 10ρ. A call
to this routine involves solving a number of systems of linear equations
Ax = b; the number is usually 4 or 5 and never more than 11. Each solution
requires approximately 2n(kd + 1) floating-point operations for real flavors
and 8n(kd + 1) operations for complex flavors.

4-92

4 Intel® Math Kernel Library Reference Manual

Refining the Solution and Estimating Its Error
This section describes the LAPACK routines for refining the computed
solution of a system of linear equations and estimating the solution error.
You can call these routines after factorizing the matrix of the system of
equations and computing the solution (seeRoutines for Matrix
FactorizationandRoutines for Solving Systems of Linear Equations).

?gerfs
Refines the solution of a system of linear
equations with a general matrix and
estimates its error.

call sgerfs (trans,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call dgerfs (trans,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call cgerfs (trans,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call zgerfs (trans,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equationsAX= B or ATX = B or AHX = B with a general matrixA, with
multiple right-hand sides. For each computed solution vectorx, the routine
computes thecomponent-wise backward errorβ. This error is the smallest
relative perturbation in elements ofA andb such thatx is the exact solution
of the perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

LAPACK Routines: Linear Equations4

4-93

Before calling this routine:

• call the factorization routine?getrf
• call the solver routine?getrs.

Input Parameters
trans CHARACTER*1. Must be'N' or 'T' or 'C' .

Indicates the form of the equations:
If trans = 'N' , the system has the formAX = B.
If trans = 'T' , the system has the formATX = B.
If trans = 'C' , the system has the formAHX = B.

n INTEGER. The order of the matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, af, b, x, work REALfor sgerfs

DOUBLE PRECISIONfor dgerfs

COMPLEXfor cgerfs

DOUBLE COMPLEXfor zgerfs .
Arrays:

a(lda, *) contains the original matrixA, as supplied
to ?getrf.

af (ldaf, *) contains the factored matrixA, as returned
by ?getrf.

b(ldb, *) contains the right-hand side matrixB.

x(ldx, *) contains the solution matrixX.

work (*) is a workspace array.

The second dimension ofa andaf must be at least
max(1,n); the second dimension ofb andx must be at
least max(1,nrhs); the dimension ofwork must be at
least max(1, 3* n) for real flavors and max(1, 2* n) for
complex flavors.

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldaf INTEGER. The first dimension ofaf ; ldaf ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

4-94

4 Intel® Math Kernel Library Reference Manual

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?getrf.

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor cgerfs

DOUBLE PRECISIONfor zgerfs .
Workspace array,DIMENSION at least max(1,n).

Output Parameters
x The refined solution matrixX.
ferr, berr REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The bounds returned inferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 4n2 floating-point operations (for real flavors) or 16n2

operations (for complex flavors). In addition, each step of iterative
refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5.
Estimating the forward error involves solving a number of systems of linear
equationsAx= b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n2 floating-point operations for real
flavors or 8n2 for complex flavors.

LAPACK Routines: Linear Equations4

4-95

?gbrfs
Refines the solution of a system of linear
equations with a general band matrix
and estimates its error.

call sgbrfs (trans,n,kl,ku,nrhs,ab,ldab,afb,ldafb,ipiv,
b,ldb,x,ldx,ferr,berr,work,iwork,info)

call dgbrfs (trans,n,kl,ku,nrhs,ab,ldab,afb,ldafb,ipiv,
b,ldb,x,ldx,ferr,berr,work,iwork,info)

call cgbrfs (trans,n,kl,ku,nrhs,ab,ldab,afb,ldafb,ipiv,
b,ldb,x,ldx,ferr,berr,work,rwork,info)

call zgbrfs (trans,n,kl,ku,nrhs,ab,ldab,afb,ldafb,ipiv,
b,ldb,x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equationsAX = B or ATX = B or AHX = B with a band matrixA, with
multiple right-hand sides. For each computed solution vectorx, the routine
computes thecomponent-wise backward errorβ. This error is the smallest
relative perturbation in elements ofA andb such thatx is the exact solution
of the perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

Before calling this routine:

• call the factorization routine?gbtrf

• call the solver routine?gbtrs.

4-96

4 Intel® Math Kernel Library Reference Manual

Input Parameters
trans CHARACTER*1. Must be'N' or 'T' or 'C' .

Indicates the form of the equations:

If trans = 'N' , the system has the formAX = B.

If trans = 'T' , the system has the formATX = B.

If trans = 'C' , the system has the formAHX = B.

n INTEGER. The order of the matrixA (n ≥ 0).

kl INTEGER. The number of sub-diagonals within the band
of A (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the
band ofA (ku ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ab,afb,b,x,work REALfor sgbrfs

DOUBLE PRECISIONfor dgbrfs

COMPLEXfor cgbrfs

DOUBLE COMPLEXfor zgbrfs .

Arrays:

ab(ldab, *) contains the original band matrixA, as
supplied to?gbtrf, but stored in rows from 1 tokl + ku

+ 1.

afb (ldafb, *) contains the factored band matrixA, as
returned by?gbtrf.

b(ldb, *) contains the right-hand side matrixB.

x(ldx, *) contains the solution matrixX.

work (*) is a workspace array.

The second dimension ofab andafb must be at least
max(1,n); the second dimension ofb andx must be at
least max(1,nrhs); the dimension ofwork must be at
least max(1, 3* n) for real flavors and max(1, 2* n) for
complex flavors.

ldab INTEGER. The first dimension ofab.
ldafb INTEGER. The first dimension ofafb .

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

LAPACK Routines: Linear Equations4

4-97

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?gbtrf.

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor cgbrfs

DOUBLE PRECISIONfor zgbrfs

Workspace array,DIMENSION at least max(1,n).

Output Parameters
x The refined solution matrixX.
ferr, berr REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The bounds returned inferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 4n(kl + ku) floating-point operations (for real flavors) or
16n(kl + ku) operations (for complex flavors). In addition, each step of
iterative refinement involves 2n(4kl + 3ku) operations (for real flavors) or
8n(4kl + 3ku) operations (for complex flavors); the number of iterations
may range from 1 to 5. Estimating the forward error involves solving a
number of systems of linear equationsAx = b; the number is usually 4 or 5
and never more than 11. Each solution requires approximately 2n2

floating-point operations for real flavors or 8n2 for complex flavors.

4-98

4 Intel® Math Kernel Library Reference Manual

?gtrfs
Refines the solution of a system of linear
equations with a tridiagonal matrix and
estimates its error.

call sgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, ferr, berr, work, iwork, info)

call dgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, ferr, berr, work, iwork, info)

call cgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, ferr, berr, work, rwork, info)

call zgtrfs (trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b,
ldb, x, ldx, ferr, berr, work, rwork, info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equationsAX = B or ATX = B or AHX = B with a tridiagonal matrixA,
with multiple right-hand sides. For each computed solution vectorx, the
routine computes thecomponent-wise backward errorβ. This error is the
smallest relative perturbation in elements ofA andb such thatx is the exact
solution of the perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

Before calling this routine:

• call the factorization routine?gttrf
• call the solver routine?gttrs.

Input Parameters
trans CHARACTER*1. Must be'N' or 'T' or 'C' .

Indicates the form of the equations:
If trans = 'N' , the system has the formAX = B.
If trans = 'T' , the system has the formATX = B.
If trans = 'C' , the system has the formAHX = B.

LAPACK Routines: Linear Equations4

4-99

n INTEGER. The order of the matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides , i.e., the
number of columns of the matrix B (nrhs ≥ 0).

dl,d,du,dlf,df,

duf,du2,b,x,work REALfor sgtrfs

DOUBLE PRECISIONfor dgtrfs

COMPLEXfor cgtrfs

DOUBLE COMPLEXfor zgtrfs .
Arrays:

dl , dimension(n - 1) , contains the subdiagonal
elements ofA.

d, dimension(n) , contains the diagonal elements ofA.

du , dimension(n - 1) , contains the superdiagonal
elements ofA.

dlf , dimension(n - 1) , contains the (n - 1) multipliers
that define the matrixL from theLU factorization of A
as computed by?gttrf.

df , dimension(n) , contains then diagonal elements
of the upper triangular matrixU from theLU
factorization of A.

duf , dimension(n - 1) , contains the (n - 1) elements
of the first super-diagonal ofU.

du2 , dimension(n - 2) , contains the (n - 2) elements
of the second super-diagonal ofU.

b(ldb,nrhs) contains the right-hand side matrixB.

x(ldx,nrhs) contains the solution matrixX, as
computed by?gttrs.

work (*) is a workspace array;
the dimension ofwork must be at least max(1, 3* n) for
real flavors and max(1, 2* n) for complex flavors.

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?gttrf.

4-100

4 Intel® Math Kernel Library Reference Manual

iwork INTEGER.
Workspace array,DIMENSION (n) . Used for real
flavors only.

rwork REALfor cgtrfs

DOUBLE PRECISIONfor zgtrfs .
Workspace array,DIMENSION (n) . Used for complex
flavors only.

Output Parameters
x The refined solution matrixX.
ferr, berr REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Linear Equations4

4-101

?porfs
Refines the solution of a system of linear
equations with a symmetric (Hermitian)
positive-definite matrix and estimates its
error.

call sporfs (uplo,n,nrhs,a,lda,af,ldaf,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call dporfs (uplo,n,nrhs,a,lda,af,ldaf,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call cporfs (uplo,n,nrhs,a,lda,af,ldaf,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call zporfs (uplo,n,nrhs,a,lda,af,ldaf,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equationsAX = B with a symmetric (Hermitian) positive definite
matrix A, with multiple right-hand sides. For each computed solution vector
x, the routine computes thecomponent-wise backward errorβ. This error is
the smallest relative perturbation in elements ofA andb such thatx is the
exact solution of the perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

Before calling this routine:

• call the factorization routine?potrf
• call the solver routine?potrs.

4-102

4 Intel® Math Kernel Library Reference Manual

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:
If uplo = 'U' , the arrayaf stores the factorU of the
Cholesky factorizationA = UHU.
If uplo = 'L' , the arrayaf stores the factorL of the
Cholesky factorizationA = LLH.

n INTEGER. The order of the matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, af, b, x, work REALfor sporfs

DOUBLE PRECISIONfor dporfs

COMPLEXfor cporfs

DOUBLE COMPLEXfor zporfs .
Arrays:

a(lda, *) contains the original matrixA, as supplied
to ?potrf.

af (ldaf, *) contains the factored matrixA, as returned
by ?potrf.

b(ldb, *) contains the right-hand side matrixB.

x(ldx, *) contains the solution matrixX.

work (*) is a workspace array.

The second dimension ofa andaf must be at least
max(1,n); the second dimension ofb andx must be at
least max(1,nrhs); the dimension ofwork must be at
least max(1, 3* n) for real flavors and max(1, 2* n) for
complex flavors.

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldaf INTEGER. The first dimension ofaf ; ldaf ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor cporfs

DOUBLE PRECISIONfor zporfs

Workspace array,DIMENSION at least max(1,n).

LAPACK Routines: Linear Equations4

4-103

Output Parameters
x The refined solution matrixX.
ferr, berr REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The bounds returned inferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 4n2 floating-point operations (for real flavors) or 16n2

operations (for complex flavors). In addition, each step of iterative
refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5.
Estimating the forward error involves solving a number of systems of linear
equationsAx= b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n2 floating-point operations for real
flavors or 8n2 for complex flavors.

4-104

4 Intel® Math Kernel Library Reference Manual

?pprfs
Refines the solution of a system of linear
equations with a packed symmetric
(Hermitian) positive-definite matrix and
estimates its error.

call spprfs (uplo,n,nrhs,ap,afp,b,ldb,x,ldx,
ferr,berr,work,iwork,info)

call dpprfs (uplo,n,nrhs,ap,afp,b,ldb,x,ldx,
ferr,berr,work,iwork,info)

call cpprfs (uplo,n,nrhs,ap,afp,b,ldb,x,ldx,
ferr,berr,work,rwork,info)

call zpprfs (uplo,n,nrhs,ap,afp,b,ldb,x,ldx,
ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equationsAX = B with a packed symmetric (Hermitian) positive
definite matrixA, with multiple right-hand sides. For each computed
solution vectorx, the routine computes thecomponent-wise backward error
β. This error is the smallest relative perturbation in elements ofA andb such
thatx is the exact solution of the perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

Before calling this routine:

• call the factorization routine?pptrf
• call the solver routine?pptrs.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:

LAPACK Routines: Linear Equations4

4-105

If uplo = 'U' , the arrayafp stores the packed factorU
of the Cholesky factorizationA = UHU.
If uplo = 'L' , the arrayafp stores the packed factorL
of the Cholesky factorizationA = LLH.

n INTEGER. The order of the matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ap, afp, b, x, work REALfor spprfs

DOUBLE PRECISIONfor dpprfs

COMPLEXfor cpprfs

DOUBLE COMPLEXfor zpprfs .
Arrays:

ap(*) contains the original packed matrixA, as
supplied to?pptrf.

afp (*) contains the factored packed matrixA, as
returned by?pptrf.

b(ldb, *) contains the right-hand side matrixB.

x(ldx, *) contains the solution matrixX.

work (*) is a workspace array.

The dimension of arraysap andafp must be at least
max(1,n(n+1)/2); the second dimension ofb andx must
be at least max(1,nrhs); the dimension ofwork must be
at least max(1, 3* n) for real flavors and max(1, 2* n) for
complex flavors.

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor cpprfs

DOUBLE PRECISIONfor zpprfs

Workspace array,DIMENSION at least max(1,n).

Output Parameters
x The refined solution matrixX.

4-106

4 Intel® Math Kernel Library Reference Manual

ferr, berr REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The bounds returned inferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 4n2 floating-point operations (for real flavors) or 16n2

operations (for complex flavors). In addition, each step of iterative
refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear
equationsAx = b; the number of systems is usually 4 or 5 and never more
than 11. Each solution requires approximately 2n2 floating-point operations
for real flavors or 8n2 for complex flavors.

LAPACK Routines: Linear Equations4

4-107

?pbrfs
Refines the solution of a system of linear
equations with a band symmetric
(Hermitian) positive-definite matrix and
estimates its error.

call spbrfs (uplo,n,kd,nrhs,ab,ldab,afb,ldafb,
b,ldb,x,ldx,ferr,berr,work,iwork,info)

call dpbrfs (uplo,n,kd,nrhs,ab,ldab,afb,ldafb,
b,ldb,x,ldx,ferr,berr,work,iwork,info)

call cpbrfs (uplo,n,kd,nrhs,ab,ldab,afb,ldafb,
b,ldb,x,ldx,ferr,berr,work,rwork,info)

call zpbrfs (uplo,n,kd,nrhs,ab,ldab,afb,ldafb,
b,ldb,x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equationsAX= B with a symmetric (Hermitian) positive definite band
matrix A, with multiple right-hand sides. For each computed solution vector
x, the routine computes thecomponent-wise backward errorβ. This error is
the smallest relative perturbation in elements ofA andb such thatx is the
exact solution of the perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

Before calling this routine:

• call the factorization routine?pbtrf

• call the solver routine?pbtrs.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:

4-108

4 Intel® Math Kernel Library Reference Manual

If uplo = 'U' , the arrayafb stores the factorU of the
Cholesky factorizationA = UHU.
If uplo = 'L' , the arrayafb stores the factorL of the
Cholesky factorizationA = LLH.

n INTEGER. The order of the matrixA (n ≥ 0).

kd INTEGER. The number of super-diagonals or
sub-diagonals in the matrixA (kd ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ab,afb,b,x,work REALfor spbrfs

DOUBLE PRECISIONfor dpbrfs

COMPLEXfor cpbrfs

DOUBLE COMPLEXfor zpbrfs .

Arrays:

ab(ldab, *) contains the original band matrixA, as
supplied to?pbtrf.

afb (ldafb, *) contains the factored band matrixA, as
returned by?pbtrf.

b(ldb, *) contains the right-hand side matrixB.

x(ldx, *) contains the solution matrixX.

work (*) is a workspace array.

The second dimension ofab andafb must be at least
max(1,n); the second dimension ofb andx must be at
least max(1,nrhs); the dimension ofwork must be at
least max(1, 3* n) for real flavors and max(1, 2* n) for
complex flavors.

ldab INTEGER. The first dimension ofab ; ldab ≥ kd + 1.

ldafb INTEGER. The first dimension ofafb ; ldafb ≥ kd + 1.

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor cpbrfs

DOUBLE PRECISIONfor zpbrfs

Workspace array,DIMENSION at least max(1,n).

LAPACK Routines: Linear Equations4

4-109

Output Parameters
x The refined solution matrixX.
ferr, berr REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The bounds returned inferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 8n* kd floating-point operations (for real flavors) or 32n* kd

operations (for complex flavors). In addition, each step of iterative
refinement involves 12n* kd operations (for real flavors) or 48n* kd

operations (for complex flavors); the number of iterations may range from 1
to 5.

Estimating the forward error involves solving a number of systems of linear
equationsAx= b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 4n* kd floating-point operations for real
flavors or 16n* kd for complex flavors.

4-110

4 Intel® Math Kernel Library Reference Manual

?ptrfs
Refines the solution of a system of linear
equations with a symmetric (Hermitian)
positive-definite tridiagonal matrix and
estimates its error.

call sptrfs (n,nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,work,info)

call dptrfs (n,nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,work,info)

call cptrfs (uplo,n,nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,
work,rwork,info)

call cptrfs (uplo,n,nrhs,d,e,df,ef,b,ldb,x,ldx,ferr,berr,
work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equationsAX = B with a symmetric (Hermitian) positive definite
tridiagonal matrixA, with multiple right-hand sides. For each computed
solution vectorx, the routine computes thecomponent-wise backward error
β. This error is the smallest relative perturbation in elements ofA andb such
thatx is the exact solution of the perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

Before calling this routine:

• call the factorization routine?pttrf
• call the solver routine?pttrs.

Input Parameters
uplo CHARACTER*1. Used for complex flavors only.

Must be'U' or 'L' .
Specifies whether the superdiagonal or the subdiagonal
of the tridiagonal matrixA is stored and howA is
factored:

LAPACK Routines: Linear Equations4

4-111

If uplo = 'U' , the arraye stores the superdiagonal ofA,
and A is factored asUHDU;
If uplo = 'L' , the arraye stores the subdiagonal ofA,
and A is factored asLDLH.

n INTEGER. The order of the matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

d,df,rwork REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors
Arrays: d(n) , df (n) , rwork (n) .
The arrayd contains then diagonal elements of the
tridiagonal matrix A.
The arraydf contains then diagonal elements of the
diagonal matrixD from the factorization ofA as
computed by?pttrf.
The arrayrwork is a workspace array used for complex
flavors only.

e,ef,b,x,work REALfor sptrfs

DOUBLE PRECISIONfor dptrfs

COMPLEXfor cptrfs

DOUBLE COMPLEXfor zptrfs .
Arrays:e(n - 1) , ef (n - 1) , b(ldb,nrhs) ,
x(ldx,nrhs) , work (*) .
The arraye contains the (n - 1) off-diagonal elements
of the tridiagonal matrixA (see uplo).
The arrayef contains the (n - 1) off-diagonal elements
of the unit bidiagonal factorU or L from the
factorization computed by?pttrf (see uplo).
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The arrayx contains the solution matrixX as computed
by ?pttrs.
The arraywork is a workspace array. The dimension of
work must be at least 2* n for real flavors, and at least
n for complex flavors.

ldb INTEGER. The leading dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The leading dimension ofx ; ldx ≥ max(1,n).

4-112

4 Intel® Math Kernel Library Reference Manual

Output Parameters
x The refined solution matrixX.
ferr, berr REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Linear Equations4

4-113

?syrfs
Refines the solution of a system of linear
equations with a symmetric matrix and
estimates its error.

call ssyrfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call dsyrfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call csyrfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call zsyrfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equationsAX = B with a symmetric full-storage matrixA, with
multiple right-hand sides. For each computed solution vectorx, the routine
computes thecomponent-wise backward errorβ. This error is the smallest
relative perturbation in elements ofA andb such thatx is the exact solution
of the perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

Before calling this routine:

• call the factorization routine?sytrf
• call the solver routine?sytrs.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:

4-114

4 Intel® Math Kernel Library Reference Manual

If uplo = 'U' , the arrayaf stores the Bunch-Kaufman
factorizationA = PUDUTPT.
If uplo = 'L' , the arrayaf stores the Bunch-Kaufman
factorizationA = PLDLTPT.

n INTEGER. The order of the matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, af, b, x, work REALfor ssyrfs

DOUBLE PRECISIONfor dsyrfs

COMPLEXfor csyrfs

DOUBLE COMPLEXfor zsyrfs .
Arrays:

a(lda, *) contains the original matrixA, as supplied
to ?sytrf.

af (ldaf, *) contains the factored matrixA, as returned
by ?sytrf.

b(ldb, *) contains the right-hand side matrixB.

x(ldx, *) contains the solution matrixX.

work (*) is a workspace array.

The second dimension ofa andaf must be at least
max(1,n); the second dimension ofb andx must be at
least max(1,nrhs); the dimension ofwork must be at
least max(1, 3* n) for real flavors and max(1, 2* n) for
complex flavors.

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldaf INTEGER. The first dimension ofaf ; ldaf ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?sytrf.

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor csyrfs

DOUBLE PRECISIONfor zsyrfs .
Workspace array,DIMENSION at least max(1,n).

LAPACK Routines: Linear Equations4

4-115

Output Parameters
x The refined solution matrixX.
ferr, berr REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The bounds returned inferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 4n2 floating-point operations (for real flavors) or 16n2

operations (for complex flavors). In addition, each step of iterative
refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5.
Estimating the forward error involves solving a number of systems of linear
equationsAx= b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 2n2 floating-point operations for real
flavors or 8n2 for complex flavors.

4-116

4 Intel® Math Kernel Library Reference Manual

?herfs
Refines the solution of a system of linear
equations with a complex Hermitian
matrix and estimates its error.

call cherfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call zherfs (uplo,n,nrhs,a,lda,af,ldaf,ipiv,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equationsAX = B with a complex Hermitian full-storage matrixA,
with multiple right-hand sides. For each computed solution vectorx, the
routine computes thecomponent-wise backward errorβ. This error is the
smallest relative perturbation in elements ofA andb such thatx is the exact
solution of the perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

Before calling this routine:

• call the factorization routine?hetrf
• call the solver routine?hetrs.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:
If uplo = 'U' , the arrayaf stores the Bunch-Kaufman
factorizationA = PUDUHPT.
If uplo = 'L' , the arrayaf stores the Bunch-Kaufman
factorizationA = PLDLHPT.

n INTEGER. The order of the matrixA (n ≥ 0).

LAPACK Routines: Linear Equations4

4-117

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, af, b, x, work COMPLEXfor cherfs

DOUBLE COMPLEXfor zherfs .

Arrays:

a(lda, *) contains the original matrixA, as supplied
to ?hetrf.

af (ldaf, *) contains the factored matrixA, as returned
by ?hetrf.

b(ldb, *) contains the right-hand side matrixB.

x(ldx, *) contains the solution matrixX.

work (*) is a workspace array.

The second dimension ofa andaf must be at least
max(1,n); the second dimension ofb andx must be at
least max(1,nrhs); the dimension ofwork must be at
least max(1, 2* n).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldaf INTEGER. The first dimension ofaf ; ldaf ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?hetrf.

rwork REALfor cherfs

DOUBLE PRECISIONfor zherfs .
Workspace array,DIMENSION at least max(1,n).

4-118

4 Intel® Math Kernel Library Reference Manual

Output Parameters
x The refined solution matrixX.
ferr, berr REALfor cherfs

DOUBLE PRECISIONfor zherfs .
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The bounds returned inferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 16n2 operations. In addition, each step of iterative refinement
involves 24n2 operations; the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear
equationsAx= b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 8n2 floating-point operations.

The real counterpart of this routine isssyrfs / dsyrfs .

LAPACK Routines: Linear Equations4

4-119

?sprfs
Refines the solution of a system of linear
equations with a packed symmetric
matrix and estimates the solution error.

call ssprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work,iwork,info)

call dsprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work,iwork,info)

call csprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work,rwork,info)

call zsprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equationsAX = B with a packed symmetric matrixA, with multiple
right-hand sides. For each computed solution vectorx, the routine computes
thecomponent-wise backward errorβ. This error is the smallest relative
perturbation in elements ofA andb such thatx is the exact solution of the
perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

Before calling this routine:

• call the factorization routine?sptrf
• call the solver routine?sptrs.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:

4-120

4 Intel® Math Kernel Library Reference Manual

If uplo = 'U' , the arrayafp stores the packed
Bunch-Kaufman factorizationA = PUDUTPT.
If uplo = 'L' , the arrayafp stores the packed
Bunch-Kaufman factorizationA = PLDLTPT.

n INTEGER. The order of the matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ap, afp, b, x, work REALfor ssprfs

DOUBLE PRECISIONfor dsprfs

COMPLEXfor csprfs

DOUBLE COMPLEXfor zsprfs .
Arrays:

ap(*) contains the original packed matrixA, as
supplied to?sptrf.

afp (*) contains the factored packed matrixA, as
returned by?sptrf.

b(ldb, *) contains the right-hand side matrixB.

x(ldx, *) contains the solution matrixX.

work (*) is a workspace array.

The dimension of arraysap andafp must be at least
max(1,n(n+1)/2); the second dimension ofb andx must
be at least max(1,nrhs); the dimension ofwork must be
at least max(1, 3* n) for real flavors and max(1, 2* n) for
complex flavors..

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?sptrf.

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor csprfs

DOUBLE PRECISIONfor zsprfs

Workspace array,DIMENSION at least max(1,n).

LAPACK Routines: Linear Equations4

4-121

Output Parameters
x The refined solution matrixX.
ferr, berr REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The bounds returned inferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 4n2 floating-point operations (for real flavors) or 16n2

operations (for complex flavors). In addition, each step of iterative
refinement involves 6n2 operations (for real flavors) or 24n2 operations (for
complex flavors); the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear
equationsAx = b; the number of systems is usually 4 or 5 and never more
than 11. Each solution requires approximately 2n2 floating-point operations
for real flavors or 8n2 for complex flavors.

4-122

4 Intel® Math Kernel Library Reference Manual

?hprfs
Refines the solution of a system of linear
equations with a packed complex Hermitian
matrix and estimates the solution error.

call chprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work,rwork,info)

call zhprfs (uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,
ferr,berr,work,rwork,info)

Discussion

This routine performs an iterative refinement of the solution to a system of
linear equationsAX = B with a packed complex Hermitian matrixA, with
multiple right-hand sides. For each computed solution vectorx, the routine
computes thecomponent-wise backward errorβ. This error is the smallest
relative perturbation in elements ofA andb such thatx is the exact solution
of the perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

Finally, the routine estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

Before calling this routine:

• call the factorization routine?hptrf
• call the solver routine?hptrs.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:
If uplo = 'U' , the arrayafp stores the packed
Bunch-Kaufman factorizationA = PUDUHPT.
If uplo = 'L' , the arrayafp stores the packed
Bunch-Kaufman factorizationA = PLDLHPT.

n INTEGER. The order of the matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

LAPACK Routines: Linear Equations4

4-123

ap, afp, b, x, work COMPLEXfor chprfs

DOUBLE COMPLEXfor zhprfs .

Arrays:

ap(*) contains the original packed matrixA, as
supplied to?hptrf.

afp (*) contains the factored packed matrixA, as
returned by?hptrf.

b(ldb, *) contains the right-hand side matrixB.

x(ldx, *) contains the solution matrixX.

work (*) is a workspace array.

The dimension of arraysap andafp must be at least
max(1,n(n+1)/2); the second dimension ofb andx must
be at least max(1,nrhs); the dimension ofwork must be
at least max(1, 2* n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?hptrf.

rwork REALfor chprfs

DOUBLE PRECISIONfor zhprfs

Workspace array,DIMENSION at least max(1,n).

Output Parameters
x The refined solution matrixX.
ferr, berr REALfor chprfs .

DOUBLE PRECISIONfor zhprfs .
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

4-124

4 Intel® Math Kernel Library Reference Manual

Application Notes

The bounds returned inferr are not rigorous, but in practice they almost
always overestimate the actual error.

For each right-hand side, computation of the backward error involves a
minimum of 16n2 operations. In addition, each step of iterative refinement
involves 24n2 operations; the number of iterations may range from 1 to 5.

Estimating the forward error involves solving a number of systems of linear
equationsAx= b; the number is usually 4 or 5 and never more than 11. Each
solution requires approximately 8n2 floating-point operations.

The real counterpart of this routine isssprfs / dsprfs .

?trrfs
Estimates the error in the solution of
a system of linear equations with a
triangular matrix.

call strrfs (uplo , trans,diag,n,nrhs,a,lda,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call dtrrfs (uplo , trans,diag,n,nrhs,a,lda,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call ctrrfs (uplo , trans,diag,n,nrhs,a,lda,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call ztrrfs (uplo , trans,diag,n,nrhs,a,lda,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine estimates the errors in the solution to a system of linear
equationsAX = B or ATX = B or AHX = B with a triangular matrixA, with
multiple right-hand sides. For each computed solution vectorx, the routine
computes thecomponent-wise backward errorβ. This error is the smallest
relative perturbation in elements ofA andb such thatx is the exact solution
of the perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

LAPACK Routines: Linear Equations4

4-125

The routine also estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

Before calling this routine, call the solver routine?trtrs.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whetherA is upper or lower triangular:
If uplo = 'U' , thenA is upper triangular.
If uplo = 'L' , thenA is lower triangular.

trans CHARACTER*1. Must be'N' or 'T' or 'C' .
Indicates the form of the equations:
If trans = 'N' , the system has the formAX = B.
If trans = 'T' , the system has the formATX = B.
If trans = 'C' , the system has the formAHX = B.

diag CHARACTER*1. Must be'N' or 'U' .
If diag = 'N' , thenA is not a unit triangular matrix.
If diag = 'U' , thenA is unit triangular: diagonal elements
of A are assumed to be 1 and not referenced in the arraya.

n INTEGER. The order of the matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

a, b, x, work REALfor strrfs

DOUBLE PRECISIONfor dtrrfs

COMPLEXfor ctrrfs

DOUBLE COMPLEXfor ztrrfs .
Arrays:

a(lda, *) contains the upper or lower triangular matrixA,
as specified byuplo .

b(ldb, *) contains the right-hand side matrixB.

x(ldx, *) contains the solution matrixX.

work (*) is a workspace array.

The second dimension ofa must be at least max(1,n);
the second dimension ofb andx must be at least
max(1,nrhs); the dimension ofwork must be at least
max(1, 3* n) for real flavors and max(1, 2* n) for
complex flavors.

4-126

4 Intel® Math Kernel Library Reference Manual

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor ctrrfs

DOUBLE PRECISIONfor ztrrfs

Workspace array,DIMENSION at least max(1,n).

Output Parameters
ferr, berr REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The bounds returned inferr are not rigorous, but in practice they almost
always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of
systems of linear equationsAx = b; the number of systems is usually 4 or 5
and never more than 11. Each solution requires approximatelyn2

floating-point operations for real flavors or 4n2 for complex flavors.

LAPACK Routines: Linear Equations4

4-127

?tprfs
Estimates the error in the solution of
a system of linear equations with a
packed triangular matrix.

call stprfs (uplo , trans,diag,n,nrhs,ap,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call dtprfs (uplo , trans,diag,n,nrhs,ap,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call ctprfs (uplo , trans,diag,n,nrhs,ap,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call ztprfs (uplo , trans,diag,n,nrhs,ap,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine estimates the errors in the solution to a system of linear
equationsAX = B or ATX = B or AHX = B with a packed triangular matrixA,
with multiple right-hand sides. For each computed solution vectorx, the
routine computes thecomponent-wise backward errorβ. This error is the
smallest relative perturbation in elements ofA andb such thatx is the exact
solution of the perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

The routine also estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

Before calling this routine, call the solver routine?tptrs.

4-128

4 Intel® Math Kernel Library Reference Manual

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whetherA is upper or lower triangular:
If uplo = 'U' , thenA is upper triangular.
If uplo = 'L' , thenA is lower triangular.

trans CHARACTER*1. Must be'N' or 'T' or 'C' .
Indicates the form of the equations:
If trans = 'N' , the system has the formAX = B.
If trans = 'T' , the system has the formATX = B.
If trans = 'C' , the system has the formAHX = B.

diag CHARACTER*1. Must be'N' or 'U' .
If diag = 'N' , A is not a unit triangular matrix.
If diag = 'U' , A is unit triangular: diagonal elements ofA
are assumed to be 1 and not referenced in the arrayap .

n INTEGER. The order of the matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ap, b, x, work REALfor strrfs

DOUBLE PRECISIONfor dtrrfs

COMPLEXfor ctrrfs

DOUBLE COMPLEXfor ztrrfs .
Arrays:

ap(*) contains the upper or lower triangular matrixA, as
specified byuplo .

b(ldb, *) contains the right-hand side matrixB.

x(ldx, *) contains the solution matrixX.

work (*) is a workspace array.

The dimension ofap must be at least max(1,n(n+1)/2);
the second dimension ofb andx must be at least
max(1,nrhs); the dimension ofwork must be at least
max(1, 3* n) for real flavors and max(1, 2* n) for complex
flavors.

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

LAPACK Routines: Linear Equations4

4-129

rwork REALfor ctrrfs

DOUBLE PRECISIONfor ztrrfs

Workspace array,DIMENSION at least max(1,n).

Output Parameters
ferr, berr REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The bounds returned inferr are not rigorous, but in practice they almost
always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of
systems of linear equationsAx = b; the number of systems is usually 4 or 5
and never more than 11. Each solution requires approximatelyn2

floating-point operations for real flavors or 4n2 for complex flavors.

4-130

4 Intel® Math Kernel Library Reference Manual

?tbrfs
Estimates the error in the solution of
a system of linear equations with a
triangular band matrix.

call stbrfs (uplo , trans,diag,n,kd,nrhs,ab,ldab,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call dtbrfs (uplo , trans,diag,n,kd,nrhs,ab,ldab,b,ldb,
x,ldx,ferr,berr,work,iwork,info)

call ctbrfs (uplo , trans,diag,n,kd,nrhs,ab,ldab,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

call ztbrfs (uplo , trans,diag,n,kd,nrhs,ab,ldab,b,ldb,
x,ldx,ferr,berr,work,rwork,info)

Discussion

This routine estimates the errors in the solution to a system of linear
equationsAX = B or ATX = B or AHX = B with a triangular band matrixA,
with multiple right-hand sides. For each computed solution vectorx, the
routine computes thecomponent-wise backward errorβ. This error is the
smallest relative perturbation in elements ofA andb such thatx is the exact
solution of the perturbed system:

|δaij |/|aij | ≤ β |aij |, |δbi|/|bi| ≤ β |bi| such that (A + δA)x = (b + δb).

The routine also estimates thecomponent-wise forward errorin the
computed solution||x − xe||∞/||x||∞ (herexe is the exact solution).

Before calling this routine, call the solver routine?tbtrs.

LAPACK Routines: Linear Equations4

4-131

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whetherA is upper or lower triangular:
If uplo = 'U' , thenA is upper triangular.
If uplo = 'L' , thenA is lower triangular.

trans CHARACTER*1. Must be'N' or 'T' or 'C' .
Indicates the form of the equations:
If trans = 'N' , the system has the formAX = B.
If trans = 'T' , the system has the formATX = B.
If trans = 'C' , the system has the formAHX = B.

diag CHARACTER*1. Must be'N' or 'U' .
If diag = 'N' , A is not a unit triangular matrix.
If diag = 'U' , A is unit triangular: diagonal elements ofA
are assumed to be 1 and not referenced in the arrayab.

n INTEGER. The order of the matrixA (n ≥ 0).

kd INTEGER. The number of super-diagonals or
sub-diagonals in the matrixA (kd ≥ 0).

nrhs INTEGER. The number of right-hand sides (nrhs ≥ 0).

ab, b, x, work REALfor stbrfs

DOUBLE PRECISIONfor dtbrfs

COMPLEXfor ctbrfs

DOUBLE COMPLEXfor ztbrfs .
Arrays:

ab(ldab, *) contains the upper or lower triangular matrix
A, as specified byuplo , in band storage format.

b(ldb, *) contains the right-hand side matrixB.

x(ldx, *) contains the solution matrixX.

work (*) is a workspace array.

The second dimension ofa must be at least max(1,n);
the second dimension ofb andx must be at least
max(1,nrhs).
The dimension ofwork must be at least max(1, 3* n) for
real flavors and max(1, 2* n) for complex flavors.

ldab INTEGER. The first dimension of the arrayab.
(ldab ≥ kd +1).

4-132

4 Intel® Math Kernel Library Reference Manual

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor ctbrfs

DOUBLE PRECISIONfor ztbrfs

Workspace array,DIMENSION at least max(1,n).

Output Parameters
ferr, berr REALfor single precision flavors.

DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The bounds returned inferr are not rigorous, but in practice they almost
always overestimate the actual error.

A call to this routine involves, for each right-hand side, solving a number of
systems of linear equationsAx = b; the number of systems is usually 4 or 5
and never more than 11. Each solution requires approximately 2n* kd

floating-point operations for real flavors or 8n* kd operations for complex
flavors.

LAPACK Routines: Linear Equations4

4-133

Routines for Matrix Inversion
It is seldom necessary to compute an explicit inverse of a matrix.
In particular, do not attempt to solve a system of equationsAx = b by first
computingA−1 and then forming the matrix-vector productx = A−1b.
Call a solver routine instead (seeRoutines for Solving Systems of Linear
Equations); this is more efficient and more accurate.

However, matrix inversion routines are provided for the rare occasions
when an explicit inverse matrix is needed.

?getri
Computes the inverse of an LU-factored
general matrix.

call sgetri (n, a, lda, ipiv, work, lwork, info)

call dgetri (n, a, lda, ipiv, work, lwork, info)

call cgetri (n, a, lda, ipiv, work, lwork, info)

call zgetri (n, a, lda, ipiv, work, lwork, info)

Discussion

This routine computes the inverse (A−1) of a general matrixA.
Before calling this routine, call?getrfto factorizeA.

Input Parameters

n INTEGER. The order of the matrixA (n ≥ 0).

a, work REALfor sgetri

DOUBLE PRECISIONfor dgetri

COMPLEXfor cgetri

DOUBLE COMPLEXfor zgetri .
Arrays:a(lda, *) , work (lwork) .
a(lda ,*) contains the factorization of the matrixA, as
returned by?getrf: A = PLU.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

4-134

4 Intel® Math Kernel Library Reference Manual

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?getrf.

lwork INTEGER. The size of thework array (lwork ≥ n)
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by then by n matrix A- 1.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance.
Use thislwork for subsequent runs.

info INTEGER. If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , thei th diagonal element of the factorU is
zero,U is singular, and the inversion could not be
completed.

Application Notes

For better performance, try usinglwork = n* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

The computed inverseX satisfies the following error bound:

wherec(n) is a modest linear function ofn; ε is the machine precision;
I denotes the identity matrix;P, L, andU are the factors of the matrix
factorizationA = PLU.

The total number of floating-point operations is approximately (4/3)n3 for
real flavors and (16/3)n3 for complex flavors.

XA I– c n()ε X P L U≤

LAPACK Routines: Linear Equations4

4-135

?potri
Computes the inverse of a symmetric
(Hermitian) positive-definite matrix.

call spotri (uplo, n, a, lda, info)

call dpotri (uplo, n, a, lda, info)

call cpotri (uplo, n, a, lda, info)

call zpotri (uplo, n, a, lda, info)

Discussion

This routine computes the inverse (A−1) of a symmetric positive definite or,
for complex flavors, Hermitian positive-definite matrixA.
Before calling this routine, call?potrfto factorizeA.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:
If uplo = 'U' , the arraya stores the factorU of the
Cholesky factorizationA = UHU.
If uplo = 'L' , the arraya stores the factorL of the
Cholesky factorizationA = LLH.

n INTEGER. The order of the matrixA (n ≥ 0).

a REALfor spotri

DOUBLE PRECISIONfor dpotri

COMPLEXfor cpotri

DOUBLE COMPLEXfor zpotri .
Array: a(lda, *) .

Contains the factorization of the matrixA, as returned by
?potrf.

The second dimension ofa must be at least max(1,n).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

4-136

4 Intel® Math Kernel Library Reference Manual

Output Parameters

a Overwritten by then by n matrix A- 1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , thei th diagonal element of the Cholesky
factor (and hence the factor itself) is zero, and the
inversion could not be completed.

Application Notes

The computed inverseX satisfies the following error bounds:

wherec(n) is a modest linear function ofn, andε is the machine precision;
I denotes the identity matrix.

The 2-norm||A||2 of a matrixA is defined by||A||2 = maxx·x=1(Ax · Ax)1/2,
and the condition numberκ2(A) is defined byκ2(A) = ||A||2 ||A−1||2 .

The total number of floating-point operations is approximately (2/3)n3 for
real flavors and (8/3)n3 for complex flavors.

XA I– 2 c n()εκ2 A() AX I– 2 c n()εκ2 A()≤,≤

LAPACK Routines: Linear Equations4

4-137

?pptri
Computes the inverse of a packed
symmetric (Hermitian) positive-definite
matrix

call spptri (uplo, n, ap, info)

call dpptri (uplo, n, ap, info)

call cpptri (uplo, n, ap, info)

call zpptri (uplo, n, ap, info)

Discussion

This routine computes the inverse (A−1) of a symmetric positive definite or,
for complex flavors, Hermitian positive-definite matrixA in packedform.
Before calling this routine, call?pptrfto factorizeA.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:
If uplo = 'U' , the arrayap stores the packed factorU
of the Cholesky factorizationA = UHU.
If uplo = 'L' , the arrayap stores the packed factorL of
the Cholesky factorizationA = LLH.

n INTEGER. The order of the matrixA (n ≥ 0).

ap REALfor spptri

DOUBLE PRECISIONfor dpptri

COMPLEXfor cpptri

DOUBLE COMPLEXfor zpptri .
Array, DIMENSIONat least max(1,n(n+1)/2).

Contains the factorization of the packed matrixA,
as returned by?pptrf.

The dimensionap must be at least max(1,n(n+1)/2).

4-138

4 Intel® Math Kernel Library Reference Manual

Output Parameters

ap Overwritten by the packedn by n matrix A- 1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , thei th diagonal element of the Cholesky
factor (and hence the factor itself) is zero, and the
inversion could not be completed.

Application Notes

The computed inverseX satisfies the following error bounds:

wherec(n) is a modest linear function ofn, andε is the machine precision;
I denotes the identity matrix.

The 2-norm||A||2 of a matrixA is defined by||A||2 = maxx·x=1(Ax · Ax)1/2,
and the condition numberκ2(A) is defined byκ2(A) = ||A||2 ||A−1||2 .

The total number of floating-point operations is approximately (2/3)n3 for
real flavors and (8/3)n3 for complex flavors.

XA I– 2 c n()εκ2 A() AX I– 2 c n()εκ2 A()≤,≤

LAPACK Routines: Linear Equations4

4-139

?sytri
Computes the inverse of a symmetric
matrix.

call ssytri (uplo, n, a, lda, ipiv, work, info)

call dsytri (uplo, n, a, lda, ipiv, work, info)

call csytri (uplo, n, a, lda, ipiv, work, info)

call zsytri (uplo, n, a, lda, ipiv, work, info)

Discussion

This routine computes the inverse (A−1) of a symmetric matrixA.
Before calling this routine, call?sytrfto factorizeA.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:
If uplo = 'U' , the arraya stores the Bunch-Kaufman
factorizationA = PUDUTPT.
If uplo = 'L' , the arraya stores the Bunch-Kaufman
factorizationA = PLDLTPT.

n INTEGER. The order of the matrixA (n ≥ 0).

a, work REALfor ssytri

DOUBLE PRECISIONfor dsytri

COMPLEXfor csytri

DOUBLE COMPLEXfor zsytri .
Arrays:

a(lda, *) contains the factorization of the matrixA,
as returned by?sytrf.
The second dimension ofa must be at least max(1,n).

work (*) is a workspace array.
The dimension ofwork must be at least max(1,2* n).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

4-140

4 Intel® Math Kernel Library Reference Manual

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?sytrf.

Output Parameters

a Overwritten by then by n matrix A- 1.

info INTEGER.
If info = 0, the execution is successful.
If info =-i , the i th parameter had an illegal value.
If info = i , thei th diagonal element ofD is zero,D is
singular, and the inversion could not be completed.

Application Notes

The computed inverseX satisfies the following error bounds:

for uplo = 'U' , and

for uplo = 'L' . Herec(n) is a modest linear function ofn, andε is the
machine precision;I denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for
real flavors and (8/3)n3 for complex flavors.

DUTPTXPU I– c n()ε D UT PT X P U D D 1–+()≤

DLTPTXPL I– c n()ε D LT PT X P L D D 1–+()≤

LAPACK Routines: Linear Equations4

4-141

?hetri
Computes the inverse of a complex
Hermitian matrix.

call chetri (uplo, n, a, lda, ipiv, work, info)

call zhetri (uplo, n, a, lda, ipiv, work, info)

Discussion

This routine computes the inverse (A−1) of a complex Hermitian matrixA.
Before calling this routine, call?hetrfto factorizeA.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:
If uplo = 'U' , the arraya stores the Bunch-Kaufman
factorizationA = PUDUHPT.
If uplo = 'L' , the arraya stores the Bunch-Kaufman
factorizationA = PLDLHPT.

n INTEGER. The order of the matrixA (n ≥ 0).

a, work COMPLEXfor chetri

DOUBLE COMPLEXfor zhetri .
Arrays:

a(lda, *) contains the factorization of the matrixA,
as returned by?hetrf.
The second dimension ofa must be at least max(1,n).

work (*) is a workspace array.
The dimension ofwork must be at least max(1,n).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?hetrf.

4-142

4 Intel® Math Kernel Library Reference Manual

Output Parameters

a Overwritten by then by n matrix A- 1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , thei th diagonal element ofD is zero,D is
singular, and the inversion could not be completed.

Application Notes

The computed inverseX satisfies the following error bounds:

for uplo = 'U' , and

for uplo = 'L' . Herec(n) is a modest linear function ofn, andε is the
machine precision;I denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for
real flavors and (8/3)n3 for complex flavors.

The real counterpart of this routine is?sytri .

DUHPTXPU I– c n()ε D UH PT X P U D D 1–+()≤

DLHPTXPL I– c n()ε D LH PT X P L D D 1–+()≤

LAPACK Routines: Linear Equations4

4-143

?sptri
Computes the inverse of a symmetric
matrix using packed storage.

call ssptri (uplo, n, ap, ipiv, work, info)

call dsptri (uplo, n, ap, ipiv, work, info)

call csptri (uplo, n, ap, ipiv, work, info)

call zsptri (uplo, n, ap, ipiv, work, info)

Discussion

This routine computes the inverse (A−1) of a packed symmetric matrixA.
Before calling this routine, call?sptrfto factorizeA.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:
If uplo = 'U' , the arrayap stores the Bunch-Kaufman
factorizationA = PUDUTPT.
If uplo = 'L' , the arrayap stores the Bunch-Kaufman
factorizationA = PLDLTPT.

n INTEGER. The order of the matrixA (n ≥ 0).

ap, work REALfor ssptri

DOUBLE PRECISIONfor dsptri

COMPLEXfor csptri

DOUBLE COMPLEXfor zsptri .
Arrays:

ap(*) contains the factorization of the matrixA,
as returned by?sptrf.
The dimension ofap must be at least max(1,n(n+1)/2).

work (*) is a workspace array.
The dimension ofwork must be at least max(1,n).

4-144

4 Intel® Math Kernel Library Reference Manual

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?sptrf.

Output Parameters

ap Overwritten by then by n matrix A- 1 in packed form.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , thei th diagonal element ofD is zero,D is
singular, and the inversion could not be completed.

Application Notes

The computed inverseX satisfies the following error bounds:

for uplo = 'U' , and

for uplo = 'L' . Herec(n) is a modest linear function ofn, andε is the
machine precision;I denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for
real flavors and (8/3)n3 for complex flavors.

DUTPTXPU I– c n()ε D UT PT X P U D D 1–+()≤

DLTPTXPL I– c n()ε D LT PT X P L D D 1–+()≤

LAPACK Routines: Linear Equations4

4-145

?hptri
Computes the inverse of a complex
Hermitian matrix using packed storage.

call chptri (uplo, n, ap, ipiv, work, info)

call zhptri (uplo, n, ap, ipiv, work, info)

Discussion

This routine computes the inverse (A−1) of a complex Hermitian matrixA
using packed storage.
Before calling this routine, call?hptrfto factorizeA.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates how the input matrixA has been factored:
If uplo = 'U' , the arrayap stores the packed
Bunch-Kaufman factorizationA = PUDUHPT.
If uplo = 'L' , the arrayap stores the packed
Bunch-Kaufman factorizationA = PLDLHPT.

n INTEGER. The order of the matrixA (n ≥ 0).

ap COMPLEXfor chptri

DOUBLE COMPLEXfor zhptri .
Arrays:

ap(*) contains the factorization of the matrixA,
as returned by?hptrf.
The dimension ofap must be at least max(1,n(n+1)/2).

work (*) is a workspace array.
The dimension ofwork must be at least max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The ipiv array, as returned by?hptrf.

4-146

4 Intel® Math Kernel Library Reference Manual

Output Parameters

ap Overwritten by then by n matrix A- 1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , thei th diagonal element ofD is zero,D is
singular, and the inversion could not be completed.

Application Notes

The computed inverseX satisfies the following error bounds:

for uplo = 'U' , and

for uplo = 'L' . Herec(n) is a modest linear function ofn, andε is the
machine precision;I denotes the identity matrix.

The total number of floating-point operations is approximately (2/3)n3 for
real flavors and (8/3)n3 for complex flavors.

The real counterpart of this routine is?sptri .

DUHPTXPU I– c n()ε D UH PT X P U D D 1–+()≤

DLHPTXPL I– c n()ε D LH PT X P L D D 1–+()≤

LAPACK Routines: Linear Equations4

4-147

?trtri
Computes the inverse of a triangular
matrix.

call strtri (uplo, diag, n, a, lda, info)

call dtrtri (uplo, diag, n, a, lda, info)

call ctrtri (uplo, diag, n, a, lda, info)

call ztrtri (uplo, diag, n, a, lda, info)

Discussion

This routine computes the inverse (A−1) of a triangular matrixA.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whetherA is upper or lower triangular:
If uplo = 'U' , thenA is upper triangular.
If uplo = 'L' , thenA is lower triangular.

diag CHARACTER*1. Must be'N' or 'U' .
If diag = 'N' , thenA is not a unit triangular matrix.
If diag = 'U' , A is unit triangular: diagonal elements of
A are assumed to be 1 and not referenced in the arraya.

n INTEGER. The order of the matrixA (n ≥ 0).

a REALfor strtri

DOUBLE PRECISIONfor dtrtri

COMPLEXfor ctrtri

DOUBLE COMPLEXfor ztrtri .

Array: DIMENSION (lda, *) .
Contains the matrixA.
The second dimension ofa must be at least max(1,n).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

4-148

4 Intel® Math Kernel Library Reference Manual

Output Parameters

a Overwritten by then by n matrix A- 1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , thei th diagonal element ofA is zero,A is
singular, and the inversion could not be completed.

Application Notes

The computed inverseX satisfies the following error bounds:

wherec(n) is a modest linear function ofn; ε is the machine precision;
I denotes the identity matrix.

The total number of floating-point operations is approximately (1/3)n3 for
real flavors and (4/3)n3 for complex flavors.

?tptri
Computes the inverse of a triangular
matrix using packed storage.

call stptri (uplo, diag, n, ap, info)

call dtptri (uplo, diag, n, ap, info)

call ctptri (uplo, diag, n, ap, info)

call ztptri (uplo, diag, n, ap, info)

Discussion

This routine computes the inverse (A−1) of a packed triangular matrixA.

XA I– c n()ε X A≤

X A 1–– c n()ε A 1– A X≤

LAPACK Routines: Linear Equations4

4-149

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whetherA is upper or lower triangular:
If uplo = 'U' , thenA is upper triangular.
If uplo = 'L' , thenA is lower triangular.

diag CHARACTER*1. Must be'N' or 'U' .

If diag = 'N' , thenA is not a unit triangular matrix.
If diag = 'U' , A is unit triangular: diagonal elements of
A are assumed to be 1 and not referenced in the arrayap.

n INTEGER. The order of the matrixA (n ≥ 0).

ap REALfor stptri

DOUBLE PRECISIONfor dtptri

COMPLEXfor ctptri

DOUBLE COMPLEXfor ztptri .

Array: DIMENSIONat least max(1,n(n+1)/2).
Contains the packed triangular matrixA.

Output Parameters

ap Overwritten by the packedn by n matrix A- 1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the i th diagonal element ofA is zero,A is
singular, and the inversion could not be completed.

Application Notes

The computed inverseX satisfies the following error bounds:

wherec(n) is a modest linear function ofn; ε is the machine precision;
I denotes the identity matrix.

The total number of floating-point operations is approximately (1/3)n3 for
real flavors and (4/3)n3 for complex flavors.

XA I– c n()ε X A≤

X A 1–– c n()ε A 1– A X≤

4-150

4 Intel® Math Kernel Library Reference Manual

Routines for Matrix Equilibration
Routines described in this section are used to compute scaling factors
needed to equilibrate a matrix. Note that these routines do not actually scale
the matrices.

?geequ
Computes row and column scaling
factors intended to equilibrate a matrix
and reduce its condition number.

call sgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call dgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call cgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

call zgeequ (m, n, a, lda, r, c, rowcnd, colcnd, amax, info)

Discussion

This routine computes row and column scalings intended to equilibrate an
m-by-n matrixA and reduce its condition number. The output arrayr returns
the row scale factors and the arrayc the column scale factors. These factors
are chosen to try to make the largest element in each row and column of the
matrix B with elementsbij=r (i)* aij* c(j) have absolute value 1.

Input Parameters
m INTEGER. The number of rows of the matrix A,m ≥0.
n INTEGER. The number of columns of the matrix A,

n ≥0.

a REALfor sgeequ

DOUBLE PRECISIONfor dgeequ

COMPLEXfor cgeequ

DOUBLE COMPLEXfor zgeequ .

LAPACK Routines: Linear Equations4

4-151

Array: DIMENSION (lda, *) .
Contains them-by-n matrix A whose equilibration
factors are to be computed.
The second dimension ofa must be at least max(1,n).

lda INTEGER. The leading dimension ofa; lda ≥ max(1,m).

Output Parameters

r, c REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Arrays:r (m), c(n).
If info = 0, or info > m, the arrayr contains the row
scale factors of the matrixA.
If info = 0 , the arrayc contains the column scale
factors of the matrixA.

rowcnd REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
If info = 0 or info > m, rowcnd contains the ratio of
the smallestr (i) to the largestr (i).

colcnd REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
If info = 0, colcnd contains the ratio of the smallest
c(i) to the largestc(i).

amax REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Absolute value of the largest element of the matrixA.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i and

i ≤ m, the i th row of A is exactly zero;
i > m, the (i - m)th column ofA is exactly zero.

4-152

4 Intel® Math Kernel Library Reference Manual

Application Notes

All the components ofr andc are restricted to be between SMLNUM =
smallest safe number and BIGNUM = largest safe number. Use of these
scaling factors is not guaranteed to reduce the condition number ofA but
works well in practice.

If rowcnd ≥ 0.1 and amax is neither too large nor too small, it is not worth
scaling by r . If colcnd ≥ 0.1 , it is not worth scaling byc .

If amax is very close to overflow or very close to underflow, the matrixA
should be scaled.

LAPACK Routines: Linear Equations4

4-153

?gbequ
Computes row and column scaling
factors intended to equilibrate a band
matrix and reduce its condition number.

call sgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)

call dgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)

call cgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)

call zgbequ (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,amax,info)

Discussion

This routine computes row and column scalings intended to equilibrate an
m-by-n band matrixA and reduce its condition number. The output arrayr

returns the row scale factors and the arrayc the column scale factors. These
factors are chosen to try to make the largest element in each row and
column of the matrix B with elementsbij=r (i)* aij* c(j) have absolute
value 1.

Input Parameters
m INTEGER. The number of rows of the matrix A,m ≥0.
n INTEGER. The number of columns of the matrix A,

n ≥0.
kl INTEGER. The number of sub-diagonals within the band

of A (kl ≥ 0).
ku INTEGER. The number of super-diagonals within the

band ofA (ku ≥ 0).

ab REALfor sgbequ

DOUBLE PRECISIONfor dgbequ

COMPLEXfor cgbequ

DOUBLE COMPLEXfor zgbequ .

Array, DIMENSION (ldab, *) .
Contains the original band matrixA stored in rows
from 1 tokl + ku + 1.

4-154

4 Intel® Math Kernel Library Reference Manual

The second dimension ofab must be at least max(1,n);

ldab INTEGER. The leading dimension ofab,
ldab ≥ kl +ku +1.

Output Parameters

r, c REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Arrays:r (m), c(n).
If info = 0, or info > m, the arrayr contains the row
scale factors of the matrixA.
If info = 0 , the arrayc contains the column scale
factors of the matrixA.

rowcnd REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
If info = 0 or info > m, rowcnd contains the ratio of
the smallestr (i) to the largestr (i).

colcnd REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
If info = 0, colcnd contains the ratio of the smallest
c(i) to the largestc(i).

amax REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Absolute value of the largest element of the matrixA.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i and

i ≤ m, the i th row of A is exactly zero;
i > m, the (i - m)th column ofA is exactly zero.

Application Notes

All the components ofr andc are restricted to be between SMLNUM =
smallest safe number and BIGNUM = largest safe number. Use of these
scaling factors is not guaranteed to reduce the condition number ofA but
works well in practice.

LAPACK Routines: Linear Equations4

4-155

If rowcnd ≥ 0.1 and amax is neither too large nor too small, it is not worth
scaling by r . If colcnd ≥ 0.1 , it is not worth scaling byc.

If amax is very close to overflow or very close to underflow, the matrixA
should be scaled.

?poequ
Computes row and column scaling
factors intended to equilibrate a
symmetric (Hermitian) positive definite
matrix and reduce its condition number.

call spoequ (n, a, lda, s, scond, amax, info)

call dpoequ (n, a, lda, s, scond, amax, info)

call cpoequ (n, a, lda, s, scond, amax, info)

call zpoequ (n, a, lda, s, scond, amax, info)

Discussion

This routine computes row and column scalings intended to equilibrate a
symmetric (Hermitian) positive definite matrixA and reduce its condition
number (with respect to the two-norm). The output arrays returns scale
factors computed as

These factors are chosen so that the scaled matrix B with elements
bij=s(i)* aij* s(j) has diagonal elements equal to 1.

This choice ofs puts the condition number ofB within a factorn of the
smallest possible condition number over all possible diagonal scalings.

Input Parameters
n INTEGER. The order of the matrix A,n ≥0.

s i() 1

ai i,
------------=

4-156

4 Intel® Math Kernel Library Reference Manual

a REALfor spoequ

DOUBLE PRECISIONfor dpoequ

COMPLEXfor cpoequ

DOUBLE COMPLEXfor zpoequ .

Array: DIMENSION (lda, *) .
Contains then-by-n symmetric or Hermitian positive
definite matrixA whose scaling factors are to be
computed. Only diagonal elements ofA are referenced.
The second dimension ofa must be at least max(1,n).

lda INTEGER. The leading dimension ofa; lda ≥ max(1,m).

Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Array, DIMENSION (n).
If info = 0, the arrays contains the scale factors forA.

scond REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
If info = 0, scond contains the ratio of the smallest
s(i) to the largests(i).

amax REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Absolute value of the largest element of the matrixA.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the i th diagonal element ofA is
nonpositive.

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth
scaling by s .

If amax is very close to overflow or very close to underflow, the matrixA
should be scaled.

LAPACK Routines: Linear Equations4

4-157

?ppequ
Computes row and column scaling factors
intended to equilibrate a symmetric
(Hermitian) positive definite matrix in packed
storage and reduce its condition number.

call sppequ (uplo , n, ap, s, scond, amax, info)

call dppequ (uplo , n, ap, s, scond, amax, info)

call cppequ (uplo , n, ap, s, scond, amax, info)

call zppequ (uplo , n, ap, s, scond, amax, info)

Discussion

This routine computes row and column scalings intended to equilibrate a
symmetric (Hermitian) positive definite matrixA in packed storage and
reduce its condition number (with respect to the two-norm). The output
arrays returns scale factors computed as

These factors are chosen so that the scaled matrix B with elements
bij=s(i)* aij* s(j) has diagonal elements equal to 1.

This choice ofs puts the condition number ofB within a factorn of the
smallest possible condition number over all possible diagonal scalings.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is packed in the arrayap:
If uplo = 'U' , the arrayap stores the upper triangular
part of the matrixA.
If uplo = 'L' , the arrayap stores the lower triangular
part of the matrixA.

s i() 1

ai i,
------------=

4-158

4 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of matrixA (n ≥ 0).
ap REALfor sppequ

DOUBLE PRECISIONfor dppequ

COMPLEXfor cppequ

DOUBLE COMPLEXfor zppequ .
Array, DIMENSIONat least max(1,n(n+1)/2).
The arrayap contains either the upper or the lower
triangular part of the matrixA (as specified byuplo) in
packed storage(seeMatrix Storage Schemes).

Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Array, DIMENSION (n).
If info = 0, the arrays contains the scale factors forA.

scond REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
If info = 0, scond contains the ratio of the smallest
s(i) to the largests(i).

amax REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Absolute value of the largest element of the matrixA.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the i th diagonal element ofA is
nonpositive.

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth
scaling by s .

If amax is very close to overflow or very close to underflow, the matrixA
should be scaled.

LAPACK Routines: Linear Equations4

4-159

?pbequ
Computes row and column scaling factors
intended to equilibrate a symmetric (Hermitian)
positive definite band matrix and reduce its
condition number.

call spbequ (uplo , n, kd, ab, ldab, s, scond, amax, info)
call dpbequ (uplo , n, kd, ab, ldab, s, scond, amax, info)
call cpbequ (uplo , n, kd, ab, ldab, s, scond, amax, info)
call zpbequ (uplo , n, kd, ab, ldab, s, scond, amax, info)

Discussion

This routine computes row and column scalings intended to equilibrate a
symmetric (Hermitian) positive definite matrixA in packed storage and
reduce its condition number (with respect to the two-norm). The output
arrays returns scale factors computed as

These factors are chosen so that the scaled matrix B with elements
bij=s(i)* aij* s(j) has diagonal elements equal to 1.
This choice ofs puts the condition number ofB within a factorn of the
smallest possible condition number over all possible diagonal scalings.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is packed in the arrayab:
If uplo = 'U' , the arrayab stores the upper triangular
part of the matrixA.
If uplo = 'L' , the arrayab stores the lower triangular
part of the matrixA.

n INTEGER. The order of matrixA (n ≥ 0).
kd INTEGER. The number of super-diagonals or

sub-diagonals in the matrixA (kd ≥ 0).

s i() 1

ai i,
------------=

4-160

4 Intel® Math Kernel Library Reference Manual

ab REALfor spbequ

DOUBLE PRECISIONfor dpbequ

COMPLEXfor cpbequ

DOUBLE COMPLEXfor zpbequ .
Array, DIMENSION(ldab ,*).
The arrayap contains either the upper or the lower
triangular part of the matrixA (as specified byuplo) in
band storage(seeMatrix Storage Schemes).
The second dimension ofab must be at least max(1,n).

ldab INTEGER. The leading dimension of the arrayab.
(ldab ≥ kd +1).

Output Parameters

s REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Array, DIMENSION (n).
If info = 0, the arrays contains the scale factors forA.

scond REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
If info = 0, scond contains the ratio of the smallest
s(i) to the largests(i).

amax REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Absolute value of the largest element of the matrixA.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the i th diagonal element ofA is
nonpositive.

Application Notes

If scond ≥ 0.1 and amax is neither too large nor too small, it is not worth
scaling by s .

If amax is very close to overflow or very close to underflow, the matrixA
should be scaled.

LAPACK Routines: Linear Equations4

4-161

Driver Routines
Table 4-3lists the LAPACK driver routines for solving systems of linear
equations with real or complex matrices.

In this table? stands fors (single precision real),d (double precision real),
c (single precision complex), orz (double precision complex).

Table 4-3 Driver Routines for Solving Systems of Linear Equations

Matrix type,
storage scheme

Simple Driver Expert Driver

general ?gesv ?gesvx

general band ?gbsv ?gbsvx

general tridiagonal ?gtsv ?gtsvx

symmetric/Hermitian
positive-definite

?posv ?posvx

symmetric/Hermitian
positive-definite,
packed storage

?ppsv ?ppsvx

symmetric/Hermitian
positive-definite,
band

?pbsv ?pbsvx

symmetric/Hermitian
positive-definite,
tridiagonal

?ptsv ?ptsvx

symmetric/Hermitian
indefinite

?sysv /?hesv ?sysvx /?hesvx

symmetric/Hermitian
indefinite,
packed storage

?spsv /?hpsv ?spsvx /?hpsvx

complex symmetric ?sysv ?sysvx

complex symmetric,
packed storage

?spsv ?spsvx

4-162

4 Intel® Math Kernel Library Reference Manual

?gesv
Computes the solution to the system of
linear equations with a square matrix A
and multiple right-hand sides.

call sgesv (n, nrhs, a, lda, ipiv, b, ldb, info)

call dgesv (n, nrhs, a, lda, ipiv, b, ldb, info)

call cgesv (n, nrhs, a, lda, ipiv, b, ldb, info)

call zgesv (n, nrhs, a, lda, ipiv, b, ldb, info)

Discussion

This routine solves forX the system of linear equationsAX = B, where A is
ann-by-n matrix, the columns of matrixB are individual right-hand sides,
and the columns ofX are the corresponding solutions.

TheLU decomposition with partial pivoting and row interchanges is used to
factorA as A = P L U, whereP is a permutation matrix,L is unit lower
triangular, andU is upper triangular. The factored form ofA is then used to
solve the system of equationsAX = B.

Input Parameters

n INTEGER. The order ofA; the number of rows inB
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

a, b REALfor sgesv

DOUBLE PRECISIONfor dgesv

COMPLEXfor cgesv

DOUBLE COMPLEXfor zgesv .
Arrays:a(lda, *) , b(ldb, *) .

The arraya contains the matrixA.
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The second dimension ofa must be at least max(1,n),
the second dimension ofb at least max(1,nrhs).

LAPACK Routines: Linear Equations4

4-163

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters

a Overwritten by the factorsL andU from the
factorization ofA = P L U; the unit diagonal elements of
L are not stored .

b Overwritten by the solution matrixX.

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The pivot indices that define the permutation matrixP;
row i of the matrix was interchanged with rowipiv (i).

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , U(i ,i) is exactly zero. The factorization
has been completed, but the factorU is exactly singular,
so the solution could not be computed.

?gesvx
Computes the solution to the system of
linear equations with a square matrix A
and multiple right-hand sides, and
provides error bounds on the solution.

call sgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r,
c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r,
c, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r,
c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

call zgesvx (fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r,
c, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

4-164

4 Intel® Math Kernel Library Reference Manual

Discussion

This routine uses theLU factorization to compute the solution to a real or
complex system of linear equationsAX = B, where A is ann-by-n matrix,
the columns of matrixB are individual right-hand sides, and the columns of
X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine?gesvx performs the following steps:

1. If fact = 'E', real scaling factorsr and c are computed to equilibrate
the system:

trans = 'N': diag(r)* A* diag(c) * diag(c)-1* X = diag(r)* B

trans = 'T': (diag(r)* A* diag(c))T * diag(r)-1* X = diag(c)* B

trans = 'C': (diag(r)* A*diag(c))H * diag(r)-1* X = diag(c)* B

Whether or not the system will be equilibrated depends on the scaling of the
matrixA, but if equilibration is used,A is overwritten by diag(r)* A* diag(c)
andB by diag(r)* B (if trans ='N') or diag(c)* B (if trans = 'T' or 'C').

2. If fact = 'N' or 'E', theLU decomposition is used to factor the matrixA
(after equilibration iffact = 'E') asA = P L U, whereP is a permutation
matrix,L is a unit lower triangular matrix, andU is upper triangular.

3. If someUi,i = 0, so thatU is exactly singular, then the routine returns
with info = i . Otherwise, the factored form ofA is used to estimate the
condition number of the matrixA. If the reciprocal of the condition number
is less than machine precision,info = n + 1 is returned as a warning, but
the routine still goes on to solve forX and compute error bounds as
described below.

4. The system of equations is solved forX using the factored form ofA.

5. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

6. If equilibration was used, the matrixX is premultiplied by diag(c) (if
trans = 'N') or diag(r) (if trans = 'T' or 'C') so that it solves the original
system before equilibration.

LAPACK Routines: Linear Equations4

4-165

Input Parameters

fact CHARACTER*1. Must be'F' , 'N' , or 'E' .

Specifies whether or not the factored form of the matrix
A is supplied on entry, and if not, whether the matrixA
should be equilibrated before it is factored.

If fact = 'F' : on entry,af andipiv contain the
factored form ofA. If equed is not 'N', the matrixA has
been equilibrated with scaling factors given byr andc .
a, af , andipiv are not modified.

If fact = 'N' , the matrixA will be copied toaf and
factored.
If fact = 'E' , the matrixA will be equilibrated if
necessary, then copied toaf and factored.

trans CHARACTER*1. Must be'N' , 'T' , or 'C' .

Specifies the form of the system of equations:

If trans = 'N' , the system has the formA X = B
(No transpose);
If trans = 'T' , the system has the formAT X = B
(Transpose);
If trans = 'C' , the system has the formAH X = B
(Conjugate transpose);

n INTEGER. The number of linear equations; the order of
the matrixA (n ≥ 0).

nrhs INTEGER. The number of right hand sides; the number
of columns of the matricesB andX (nrhs ≥ 0).

a,af,b,work REALfor sgesvx

DOUBLE PRECISIONfor dgesvx

COMPLEXfor cgesvx

DOUBLE COMPLEXfor zgesvx .
Arrays:a(lda, *) , af (ldaf, *) , b(ldb, *) ,
work (*) .

The arraya contains the matrixA. If fact = 'F' and
equed is not 'N', thenA must have been equilibrated by
the scaling factors inr and/orc . The second dimension

4-166

4 Intel® Math Kernel Library Reference Manual

of a must be at least max(1,n).
The arrayaf is an input argument iffact = 'F' . It
contains the factored form of the matrixA, i.e., the
factorsL andU from the factorizationA = P L U as
computed by?getrf. If equed is not 'N', thenaf is the
factored form of the equilibrated matrixA. The second
dimension ofaf must be at least max(1,n).
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations. The
second dimension ofb must be at least max(1,nrhs).

work (*) is a workspace array.
The dimension ofwork must be at least max(1,4* n) for
real flavors, and at least max(1,2* n) for complex
flavors.

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldaf INTEGER. The first dimension ofaf ; ldaf ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The arrayipiv is an input argument iffact = 'F' .
It contains the pivot indices from the factorization
A = P L U as computed by?getrf; row i of the matrix
was interchanged with rowipiv (i).

equed CHARACTER*1. Must be'N' , 'R' , 'C' , or 'B' .
equed is an input argument iffact = 'F' . It specifies
the form of equilibration that was done:
If equed = 'N' , no equilibration was done (always
true if fact = 'N');
If equed = 'R' , row equilibration was done andA has
been premultiplied by diag(r);
If equed = 'C' , column equilibration was done andA
has been postmultiplied by diag(c);
If equed = 'B' , both row and column equilibration was
done;A has been replaced by diag(r)* A* diag(c).

LAPACK Routines: Linear Equations4

4-167

r, c REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Arrays:r (n), c(n).
The arrayr contains the row scale factors forA, and the
arrayc contains the column scale factors forA. These
arrays are input arguments iffact = 'F' only; otherwise
they are output arguments.
If equed = 'R' or 'B' , A is multiplied on the left by
diag(r); if equed = 'N' or 'C' , r is not accessed.
If fact = 'F' andequed = 'R' or 'B' , each element of
r must be positive.

If equed = 'C' or 'B' , A is multiplied on the right by
diag(c); if equed = 'N' or 'R' , c is not accessed.
If fact = 'F' andequed = 'C' or 'B' , each element of
c must be positive.

ldx INTEGER. The first dimension of the output arrayx ;
ldx ≥ max(1,n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n); used
in real flavors only.

rwork REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Workspace array,DIMENSION at least max(1, 2* n);
used in complex flavors only.

Output Parameters

x REALfor sgesvx

DOUBLE PRECISIONfor dgesvx

COMPLEXfor cgesvx

DOUBLE COMPLEXfor zgesvx .
Array, DIMENSION (ldx, *) .

If info = 0 or info = n+1, the arrayx contains the
solution matrixX to theoriginal system of equations.
Note thatA andB are modified on exit ifequed ≠ 'N' ,
and the solution to theequilibratedsystem is:
diag(c)-1* X, if trans = 'N' andequed = 'C' or 'B' ;

4-168

4 Intel® Math Kernel Library Reference Manual

diag(r)-1* X, if trans = 'T' or 'C' andequed = 'R'

or 'B' .
The second dimension ofx must be at least
max(1,nrhs).

a Array a is not modified on exit iffact = 'F' or 'N', or if
fact = 'E' andequed = 'N'.
If equed ≠ 'N' , A is scaled on exit as follows:
equed = 'R' : A = diag(r)* A
equed = 'C' : A = A* diag(c)
equed = 'B' : A = diag(r)* A* diag(c)

af If fact = 'N' or 'E' , thenaf is an output argument and
on exit returns the factorsL andU from the factorization
A = P L U of the original matrixA(if fact = 'N') or of
the equilibrated matrixA (if fact = 'E'). See the
description ofa for the form of the equilibrated matrix.

b Overwritten by diag(r)* B if trans = 'N' and
equed = 'R' or 'B' ;
overwritten by diag(c)* B if trans = 'T' andequed

= 'C' or 'B' ;
not changed ifequed = 'N' .

r, c These arrays are output arguments iffact ≠ 'F' .
See the description ofr, c in Input Argumentssection.

rcond REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal condition number of the
matrix A after equilibration (if done). The routine sets
rcond =0 if the estimate underflows; in this case the
matrix is singular (to working precision). However,
anytimercond is small compared to 1.0,
for the working precision, the matrix may be poorly
conditioned or even singular.

ferr, berr REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

LAPACK Routines: Linear Equations4

4-169

ipiv If fact = 'N' or 'E' , thenipiv is an output argument
and on exit contains the pivot indices from the
factorizationA = P L U of the original matrixA(if fact

= 'N') or of the equilibrated matrixA (if fact = 'E').

equed If fact ≠ 'F' , thenequed is an output argument. It
specifies the form of equilibration that was done (see the
description ofequed in Input Argumentssection).

work, rwork On exit,work (1) for real flavors, orrwork (1) for
complex flavors, contains the reciprocal pivot growth
factor norm(A)/norm(U). The "max absolute element"
norm is used. Ifwork (1) for real flavors, orrwork (1)
for complex flavors is much less than 1, then the
stability of theLU factorization of the (equilibrated)
matrixA could be poor. This also means that the solution
x , condition estimatorrcond , and forward error bound
ferr could be unreliable. If factorization fails with
0 < info ≤ n, thenwork (1) for real flavors, orrwork (1)
for complex flavors contains the reciprocal pivot growth
factor for the leadinginfo columns ofA.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , andi ≤ n, thenU(i ,i) is exactly zero. The
factorization has been completed, but the factorU is
exactly singular, so the solution and error bounds could
not be computed;rcond = 0 is returned.
If info = i , andi = n +1, thenU is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value ofrcond

would suggest.

4-170

4 Intel® Math Kernel Library Reference Manual

?gbsv
Computes the solution to the system of
linear equations with a band matrix A
and multiple right-hand sides.

call sgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call dgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call cgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

call zgbsv (n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)

Discussion

This routine solves forX the real or complex system of linear equations
AX = B, where A is ann-by-n band matrix withkl subdiagonals andku

superdiagonals, the columns of matrixB are individual right-hand sides,
and the columns ofX are the corresponding solutions.

TheLU decomposition with partial pivoting and row interchanges is used to
factorA as A = L U, whereL is a product of permutation and unit lower
triangular matrices withkl subdiagonals, andU is upper triangular with
kl +ku superdiagonals. The factored form ofA is then used to solve the
system of equationsAX = B.

Input Parameters

n INTEGER. The order ofA; the number of rows inB
(n ≥ 0).

kl INTEGER. The number of sub-diagonals within the
band ofA (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the
band ofA (ku ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

ab, b REALfor sgbsv

DOUBLE PRECISIONfor dgbsv

COMPLEXfor cgbsv

LAPACK Routines: Linear Equations4

4-171

DOUBLE COMPLEXfor zgbsv .
Arrays:ab(ldab, *), b(ldb, *).
The arrayab contains the matrixA in band storage
(seeMatrix Storage Schemes).
The second dimension ofab must be at least max(1,n).
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The second dimension ofb must be at least
max(1,nrhs).

ldab INTEGER. The first dimension of the arrayab.
(ldab ≥ 2kl + ku +1)

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters

ab Overwritten byL andU. The diagonal andkl + ku

super-diagonals ofU are stored in the first 1 +kl + ku

rows ofab. The multipliers used to formL are stored in
the nextkl rows.

b Overwritten by the solution matrixX.

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The pivot indices: rowi was interchanged with row
ipiv (i) .

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , U(i ,i) is exactly zero. The factorization
has been completed, but the factorU is exactly singular,
so the solution could not be computed.

4-172

4 Intel® Math Kernel Library Reference Manual

?gbsvx
Computes the solution to the real or
complex system of linear equations with a
band matrix A and multiple right-hand
sides, and provides error bounds on the
solution.

call sgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr,

work, iwork, info)

call dgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr,

work, iwork, info)

call cgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr,

work, rwork, info)

call zgbsvx (fact, trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb,
ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr,

work, rwork, info)

Discussion

This routine uses theLU factorization to compute the solution to a real or
complex system of linear equationsAX = B, ATX = B, or AHX = B, where
A is a band matrix of ordern with kl subdiagonals andku superdiagonals,
the columns of matrixB are individual right-hand sides, and the columns of
X are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine?gbsvx performs the following steps:

1. If fact = 'E', real scaling factorsr and c are computed to equilibrate
the system:

trans = 'N': diag(r)* A* diag(c) * diag(c)-1* X = diag(r)* B

trans = 'T': (diag(r)* A* diag(c))T * diag(r)-1* X = diag(c)* B

trans = 'C': (diag(r)* A*diag(c))H * diag(r)-1* X = diag(c)* B

LAPACK Routines: Linear Equations4

4-173

Whether or not the system will be equilibrated depends on the scaling of the
matrixA, but if equilibration is used,A is overwritten by diag(r)* A* diag(c)
andB by diag(r)* B (if trans ='N') or diag(c)* B (if trans = 'T' or 'C').

2. If fact = 'N' or 'E', theLU decomposition is used to factor the matrixA
(after equilibration iffact = 'E') asA = L U, whereL is a product of
permutation and unit lower triangular matrices withkl subdiagonals, and
U is upper triangular withkl +ku superdiagonals.

3. If someUi,i = 0, so thatU is exactly singular, then the routine returns
with info = i . Otherwise, the factored form ofA is used to estimate the
condition number of the matrixA. If the reciprocal of the condition number
is less than machine precision,info = n + 1 is returned as a warning, but
the routine still goes on to solve forX and compute error bounds as
described below.

4. The system of equations is solved forX using the factored form ofA.

5. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

6. If equilibration was used, the matrixX is premultiplied by diag(c) (if
trans = 'N') or diag(r) (if trans = 'T' or 'C') so that it solves the original
system before equilibration.

Input Parameters

fact CHARACTER*1. Must be'F' , 'N' , or 'E' .

Specifies whether or not the factored form of the matrix
A is supplied on entry, and if not, whether the matrixA
should be equilibrated before it is factored.

If fact = 'F' : on entry,afb andipiv contain the
factored form ofA. If equed is not 'N', the matrixA has
been equilibrated with scaling factors given byr andc .
ab , afb , andipiv are not modified.

If fact = 'N' , the matrixA will be copied toafb and
factored.
If fact = 'E' , the matrixA will be equilibrated if
necessary, then copied toafb and factored.

trans CHARACTER*1. Must be'N' , 'T' , or 'C' .

4-174

4 Intel® Math Kernel Library Reference Manual

Specifies the form of the system of equations:

If trans = 'N' , the system has the formA X = B
(No transpose);
If trans = 'T' , the system has the formAT X = B
(Transpose);
If trans = 'C' , the system has the formAH X = B
(Conjugate transpose);

n INTEGER. The number of linear equations; the order of
the matrixA (n ≥ 0).

kl INTEGER. The number of sub-diagonals within the
band ofA (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the
band ofA (ku ≥ 0).

nrhs INTEGER. The number of right hand sides; the number
of columns of the matricesB andX (nrhs ≥ 0).

ab,afb,b,work REALfor sgesvx

DOUBLE PRECISIONfor dgesvx

COMPLEXfor cgesvx

DOUBLE COMPLEXfor zgesvx .
Arrays:a(lda, *) , af (ldaf, *) , b(ldb, *) ,
work (*) .

The arrayab contains the matrixA in band storage
(seeMatrix Storage Schemes).
The second dimension ofab must be at least max(1,n).
If fact = 'F' andequed is not 'N', thenA must have

been equilibrated by the scaling factors inr and/orc .

The arrayafb is an input argument iffact = 'F' .
The second dimension ofafb must be at least max(1,n).
It contains the factored form of the matrixA, i.e., the
factorsL andU from the factorizationA = L U as
computed by?gbtrf. U is stored as an upper triangular
band matrix withkl + ku super-diagonals in the first
1 + kl + ku rows ofafb . The multipliers used during

LAPACK Routines: Linear Equations4

4-175

the factorization are stored in the nextkl rows.
If equed is not 'N', thenafb is the factored form of the
equilibrated matrixA.

The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations. The
second dimension ofb must be at least max(1,nrhs).

work (*) is a workspace array.
The dimension ofwork must be at least max(1,3* n) for
real flavors, and at least max(1,2* n) for complex
flavors.

ldab INTEGER. The first dimension ofab ; ldab ≥ kl +ku +1.

ldafb INTEGER. The first dimension ofafb ;
ldafb ≥ 2* kl +ku+1.

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The arrayipiv is an input argument iffact = 'F' .
It contains the pivot indices from the factorization
A = L U as computed by?gbtrf; row i of the matrix was
interchanged with rowipiv (i).

equed CHARACTER*1. Must be'N' , 'R' , 'C' , or 'B' .
equed is an input argument iffact = 'F' . It specifies
the form of equilibration that was done:
If equed = 'N' , no equilibration was done (always
true if fact = 'N');
If equed = 'R' , row equilibration was done andA has
been premultiplied by diag(r);
If equed = 'C' , column equilibration was done andA
has been postmultiplied by diag(c);
If equed = 'B' , both row and column equilibration was
done;A has been replaced by diag(r)* A* diag(c).

r, c REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Arrays:r (n), c(n).
The arrayr contains the row scale factors forA, and the

4-176

4 Intel® Math Kernel Library Reference Manual

arrayc contains the column scale factors forA. These
arrays are input arguments iffact = 'F' only; otherwise
they are output arguments.
If equed = 'R' or 'B' , A is multiplied on the left by
diag(r); if equed = 'N' or 'C' , r is not accessed.
If fact = 'F' andequed = 'R' or 'B' , each element of
r must be positive.
If equed = 'C' or 'B' , A is multiplied on the right by
diag(c); if equed = 'N' or 'R' , c is not accessed.
If fact = 'F' andequed = 'C' or 'B' , each element of
c must be positive.

ldx INTEGER. The first dimension of the output arrayx ;
ldx ≥ max(1,n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n); used
in real flavors only.

rwork REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Workspace array,DIMENSION at least max(1,n); used
in complex flavors only.

Output Parameters

x REALfor sgbsvx

DOUBLE PRECISIONfor dgbsvx

COMPLEXfor cgbsvx

DOUBLE COMPLEXfor zgbsvx .
Array, DIMENSION (ldx, *) .

If info = 0 or info = n+1, the arrayx contains the
solution matrixX to theoriginal system of equations.
Note thatA andB are modified on exit ifequed ≠ 'N' ,
and the solution to theequilibratedsystem is:
diag(c)-1* X, if trans = 'N' andequed = 'C' or 'B' ;
diag(r)-1* X, if trans = 'T' or 'C' andequed = 'R'

or 'B' .
The second dimension ofx must be at least
max(1,nrhs).

LAPACK Routines: Linear Equations4

4-177

ab Array ab is not modified on exit iffact = 'F' or 'N', or if
fact = 'E' andequed = 'N'.
If equed ≠ 'N' , A is scaled on exit as follows:
equed = 'R' : A = diag(r)* A
equed = 'C' : A = A* diag(c)
equed = 'B' : A = diag(r)* A* diag(c)

afb If fact = 'N' or 'E' , thenafb is an output argument
and on exit returns details of theLU factorization of the
original matrixA(if fact = 'N') or of the equilibrated
matrixA (if fact = 'E'). See the description ofab for the
form of the equilibrated matrix.

b Overwritten by diag(r)* b if trans = 'N' and
equed = 'R' or 'B' ;
overwritten by diag(c)* b if trans = 'T' andequed

= 'C' or 'B' ;
not changed ifequed = 'N' .

r, c These arrays are output arguments iffact ≠ 'F' .
See the description ofr, c in Input Argumentssection.

rcond REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal condition number of the
matrix A after equilibration (if done).
If rcond is less than the machine precision (in
particular, ifrcond = 0), the matrix is singular to
working precision. This condition is indicated by a
return code ofinfo > 0.

ferr, berr REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

ipiv If fact = 'N' or 'E' , thenipiv is an output argument
and on exit contains the pivot indices from the
factorizationA = L U of the original matrixA(if fact =
'N') or of the equilibrated matrixA (if fact = 'E').

4-178

4 Intel® Math Kernel Library Reference Manual

equed If fact ≠ 'F' , thenequed is an output argument. It
specifies the form of equilibration that was done (see the
description ofequed in Input Argumentssection).

work, rwork On exit,work (1) for real flavors, orrwork (1) for
complex flavors, contains the reciprocal pivot growth
factor norm(A)/norm(U). The "max absolute element"
norm is used. Ifwork (1) for real flavors, orrwork (1)
for complex flavors is much less than 1, then the
stability of theLU factorization of the (equilibrated)
matrixA could be poor. This also means that the solution
x , condition estimatorrcond , and forward error bound
ferr could be unreliable. If factorization fails with
0 < info ≤ n, thenwork (1) for real flavors, orrwork (1)
for complex flavors contains the reciprocal pivot growth
factor for the leadinginfo columns ofA.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , andi ≤ n, thenU(i ,i) is exactly zero. The
factorization has been completed, but the factorU is
exactly singular, so the solution and error bounds could
not be computed;rcond = 0 is returned.
If info = i , andi = n +1, thenU is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value ofrcond

would suggest.

LAPACK Routines: Linear Equations4

4-179

?gtsv
Computes the solution to the system of
linear equations with a tridiagonal
matrix A and multiple right-hand sides.

call sgtsv (n, nrhs, dl, d, du, b, ldb, info)

call dgtsv (n, nrhs, dl, d, du, b, ldb, info)

call cgtsv (n, nrhs, dl, d, du, b, ldb, info)

call zgtsv (n, nrhs, dl, d, du, b, ldb, info)

Discussion

This routine solves forX the system of linear equationsAX = B, where A is
ann-by-n tridiagonal matrix, the columns of matrixB are individual
right-hand sides, and the columns ofX are the corresponding solutions.
The routine uses Gaussian elimination with partial pivoting.

Note that the equationATX = B may be solved by interchanging the order
of the argumentsdu anddl .

Input Parameters

n INTEGER. The order ofA; the number of rows inB
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

dl, d, du, b REALfor sgtsv

DOUBLE PRECISIONfor dgtsv

COMPLEXfor cgtsv

DOUBLE COMPLEXfor zgtsv .
Arrays:dl (n - 1), d(n), du(n - 1), b(ldb, *).
The arraydl contains the (n - 1) subdiagonal elements
of A.
The arrayd contains the diagonal elements ofA.
The arraydu contains the (n - 1) superdiagonal
elements ofA.

4-180

4 Intel® Math Kernel Library Reference Manual

The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The second dimension ofb must be at least
max(1,nrhs).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters

dl Overwritten by the (n-2) elements of the second
superdiagonal of the upper triangular matrixU from the
LU factorization of A. These elements are stored in
dl (1), ... ,dl (n-2).

d Overwritten by then diagonal elements ofU.

du Overwritten by the (n-1) elements of the first
superdiagonal ofU.

b Overwritten by the solution matrixX.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , U(i ,i) is exactly zero, and the solution has
not been computed. The factorization has not been
completed unlessi = n.

LAPACK Routines: Linear Equations4

4-181

?gtsvx
Computes the solution to the real or complex
system of linear equations with a tridiagonal
matrix A and multiple right-hand sides, and
provides error bounds on the solution.

call sgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
iwork, info)

call dgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
iwork, info)

call cgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
rwork, info)

call zgtsvx (fact, trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
ipiv, b, ldb, x, ldx, rcond, ferr, berr, work,
rwork, info)

Discussion

This routine uses theLU factorization to compute the solution to a real or
complex system of linear equationsAX = B, ATX = B, or AHX = B, where
A is a tridiagonal matrix of ordern, the columns of matrixB are individual
right-hand sides, and the columns ofX are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine?gtsvx performs the following steps:

1. If fact = 'N', theLU decomposition is used to factor the matrixA as
A = LU, whereL is a product of permutation and unit lower bidiagonal
matrices andU is an upper triangular matrix with nonzeroes in only the
main diagonal and first two superdiagonals.

2. If someUi,i = 0, so thatU is exactly singular, then the routine returns
with info = i . Otherwise, the factored form ofA is used to estimate the
condition number of the matrixA. If the reciprocal of the condition number

4-182

4 Intel® Math Kernel Library Reference Manual

is less than machine precision,info = n + 1 is returned as a warning, but
the routine still goes on to solve forX and compute error bounds as
described below.

3. The system of equations is solved forX using the factored form ofA.

4. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be'F' or 'N' .

Specifies whether or not the factored form of the matrix
A has been supplied on entry.

If fact = 'F' : on entry,dlf , df , duf , du2 , and
ipiv contain the factored form ofA; arraysdl , d, du ,
dlf , df , duf , du2 , andipiv will not be modified.

If fact = 'N' , the matrixA will be copied todlf , df ,
andduf and factored.

trans CHARACTER*1. Must be'N' , 'T' , or 'C' .

Specifies the form of the system of equations:

If trans = 'N' , the system has the formA X = B
(No transpose);
If trans = 'T' , the system has the formAT X = B
(Transpose);
If trans = 'C' , the system has the formAH X = B
(Conjugate transpose);

n INTEGER. The number of linear equations; the order of
the matrixA (n ≥ 0).

nrhs INTEGER. The number of right hand sides; the number
of columns of the matricesB andX (nrhs ≥ 0).

dl,d,du,dlf,df,

duf,du2,b,x,work REALfor sgtsvx

DOUBLE PRECISIONfor dgtsvx

COMPLEXfor cgtsvx

DOUBLE COMPLEXfor zgtsvx .
Arrays:

LAPACK Routines: Linear Equations4

4-183

dl , dimension(n - 1) , contains the subdiagonal
elements ofA.

d, dimension(n) , contains the diagonal elements ofA.

du , dimension(n - 1) , contains the superdiagonal
elements ofA.

dlf , dimension(n - 1) . If fact = 'F' , thendlf is an
input argument and on entry contains the (n - 1)
multipliers that define the matrixL from theLU
factorization of A as computed by?gttrf.

df , dimension(n) . If fact = 'F' , thendf is an input
argument and on entry contains then diagonal elements
of the upper triangular matrixU from theLU
factorization of A.

duf , dimension(n - 1) . If fact = 'F' , thenduf is an
input argument and on entry contains the (n - 1)
elements of the first super-diagonal ofU.

du2 , dimension(n - 2) . If fact = 'F' , thendu2 is an
input argument and on entry contains the (n - 2)
elements of the second super-diagonal ofU.

b(ldb,*) contains the right-hand side matrixB. The
second dimension ofb must be at least max(1,nrhs).

x(ldx,*) contains the solution matrixX. The second
dimension ofx must be at least max(1,nrhs).

work (*) is a workspace array;
the dimension ofwork must be at least max(1, 3* n) for
real flavors and max(1, 2* n) for complex flavors.

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The first dimension ofx ; ldx ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n). If fact = 'F' , then
ipiv is an input argument and on entry contains the
pivot indices, as returned by?gttrf.

iwork INTEGER.
Workspace array,DIMENSION (n) . Used for real
flavors only.

4-184

4 Intel® Math Kernel Library Reference Manual

rwork REALfor cgtsvx

DOUBLE PRECISIONfor zgtsvx .
Workspace array,DIMENSION (n) . Used for complex
flavors only.

Output Parameters

x REALfor sgtsvx

DOUBLE PRECISIONfor dgtsvx

COMPLEXfor cgtsvx

DOUBLE COMPLEXfor zgtsvx .
Array, DIMENSION (ldx, *) .

If info = 0 or info = n+1, the arrayx contains the
solution matrixX. The second dimension ofx must be
at least max(1,nrhs).

dlf If fact = 'N' , thendlf is an output argument and on
exit contains the (n - 1) multipliers that define the
matrix L from theLU factorization of A.

df If fact = 'N' , thendf is an output argument and on exit
contains then diagonal elements of the upper triangular
matrix U from theLU factorization of A.

duf If fact = 'N' , thenduf is an output argument and on
exit contains the (n - 1) elements of the first
super-diagonal ofU.

du2 If fact = 'N' , thendu2 is an output argument and on
exit contains the (n - 2) elements of the second
super-diagonal ofU.

ipiv The arrayipiv is an output argument iffact = 'N' and,
on exit, contains the pivot indices from the factorization
A = L U ; row i of the matrix was interchanged with
row ipiv (i). The value ofipiv (i) will always be
eitheri or i +1; ipiv (i)=i indicates a row interchange
was not required.

rcond REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal condition number of the

LAPACK Routines: Linear Equations4

4-185

matrix A.
If rcond is less than the machine precision (in
particular, ifrcond = 0), the matrix is singular to
working precision. This condition is indicated by a
return code ofinfo > 0.

ferr, berr REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and backward errors,
respectively, for each solution vector.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , andi ≤ n, thenU(i ,i) is exactly zero. The
factorization has not been completed unlessi = n, but
the factorU is exactly singular, so the solution and error
bounds could not be computed;rcond = 0 is returned.
If info = i , andi = n +1, thenU is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value ofrcond

would suggest.

4-186

4 Intel® Math Kernel Library Reference Manual

?posv
Computes the solution to the system of
linear equations with a symmetric or
Hermitian positive definite matrix A and
multiple right-hand sides.

call sposv (uplo, n, nrhs, a, lda, b, ldb, info)

call dposv (uplo, n, nrhs, a, lda, b, ldb, info)

call cposv (uplo, n, nrhs, a, lda, b, ldb, info)

call zposv (uplo, n, nrhs, a, lda, b, ldb, info)

Discussion

This routine solves forX the real or complex system of linear equations
AX = B, where A is ann-by-n symmetric/Hermitian positive definite
matrix, the columns of matrixB are individual right-hand sides, and the
columns ofX are the corresponding solutions.

The Cholesky decomposition is used to factor A asA = UHU if uplo ='U'

or A = LLH if uplo ='L' , whereU is an upper triangular matrix andL is a
lower triangular matrix. The factored form ofA is then used to solve the
system of equationsAX = B.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arraya stores the upper triangular
part of the matrixA, and A is factored asUHU.
If uplo = 'L' , the arraya stores the lower triangular
part of the matrixA; A is factored asLLH.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

LAPACK Routines: Linear Equations4

4-187

a, b REALfor sposv

DOUBLE PRECISIONfor dposv

COMPLEXfor cposv

DOUBLE COMPLEXfor zposv .
Arrays:a(lda, *), b(ldb, *).
The arraya contains either the upper or the lower
triangular part of the matrixA (seeuplo).
The second dimension ofa must be at least max(1,n).
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The second dimension ofb must be at least
max(1,nrhs).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters

a If info =0, the upper or lower triangular part ofa is
overwritten by the Cholesky factorU or L, as specified
by uplo .

b Overwritten by the solution matrixX.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the leading minor of orderi (and hence the
matrix A itself) is not positive definite, so the
factorization could not be completed, and the solution
has not been computed.

4-188

4 Intel® Math Kernel Library Reference Manual

?posvx
Uses the Cholesky factorization to compute
the solution to the system of linear
equations with a symmetric or Hermitian
positive definite matrix A, and provides
error bounds on the solution.

call sposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

call zposvx (fact, uplo, n, nrhs, a, lda, af, ldaf, equed, s, b,
ldb, x, ldx, rcond, ferr, berr, work, rwork, info)

Discussion

This routine uses the Cholesky factorizationA=UHU or A=LLH to compute
the solution to a real or complex system of linear equationsAX = B, where
A is a n-by-n real symmetric/Hermitian positive definite matrix, the
columns of matrixB are individual right-hand sides, and the columns ofX
are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine?posvx performs the following steps:

1. If fact = 'E', real scaling factorss are computed to equilibrate
the system:

diag(s)* A* diag(s) * diag(s)-1* X = diag(s)* B

Whether or not the system will be equilibrated depends on the scaling of the
matrixA, but if equilibration is used,A is overwritten by diag(s)* A* diag(s)
andB by diag(s)* B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the
matrix A (after equilibration iffact = 'E') as

LAPACK Routines: Linear Equations4

4-189

A = UH U, if uplo = ‘U’, or
A = L LH , if uplo = ‘ L’,
whereU is an upper triangular matrix andL is a lower triangular matrix.

3. If the leadingi -by-i principal minor is not positive definite, then the
routine returns withinfo = i . Otherwise, the factored form ofA is used to
estimate the condition number of the matrixA. If the reciprocal of the
condition number is less than machine precision,info = n + 1 is returned
as a warning, but the routine still goes on to solve forX and compute error
bounds as described below.

4. The system of equations is solved forX using the factored form ofA.

5. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

6. If equilibration was used, the matrixX is premultiplied by diag(s) so that
it solves the original system before equilibration.

Input Parameters

fact CHARACTER*1. Must be'F' , 'N' , or 'E' .

Specifies whether or not the factored form of the matrix
A is supplied on entry, and if not, whether the matrixA
should be equilibrated before it is factored.

If fact = 'F' : on entry,af contains the factored form
of A. If equed = 'Y' , the matrixA has been equilibrated
with scaling factors given bys .
a andaf will not be modified.

If fact = 'N' , the matrixA will be copied toaf and
factored.
If fact = 'E' , the matrixA will be equilibrated if
necessary, then copied toaf and factored.

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arraya stores the upper triangular
part of the matrixA, and A is factored asUHU.
If uplo = 'L' , the arraya stores the lower triangular
part of the matrixA; A is factored asLLH.

4-190

4 Intel® Math Kernel Library Reference Manual

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

a,af,b,work REALfor sposvx

DOUBLE PRECISIONfor dposvx

COMPLEXfor cposvx

DOUBLE COMPLEXfor zposvx .
Arrays:a(lda, *) , af (ldaf, *) , b(ldb, *) ,
work (*) .

The arraya contains the matrixAas specified byuplo .
If fact = 'F' andequed = 'Y', thenA must have been
equilibrated by the scaling factors ins , anda must
contain the equilibrated matrix diag(s)* A* diag(s). The
second dimension ofa must be at least max(1,n).

The arrayaf is an input argument iffact = 'F' .
It contains the triangular factorU or L from the
Cholesky factorization ofA in the same storage format
asA. If equed is not 'N', thenaf is the factored form of
the equilibrated matrix diag(s)* A* diag(s). The second
dimension ofaf must be at least max(1,n).

The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations. The
second dimension ofb must be at least max(1,nrhs).

work (*) is a workspace array.
The dimension ofwork must be at least max(1,3* n) for
real flavors, and at least max(1,2* n) for complex
flavors.

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldaf INTEGER. The first dimension ofaf ; ldaf ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

equed CHARACTER*1. Must be'N' or 'Y' .
equed is an input argument iffact = 'F' . It specifies
the form of equilibration that was done:
If equed = 'N' , no equilibration was done (always

LAPACK Routines: Linear Equations4

4-191

true if fact = 'N');
If equed = 'Y' , equilibration was done andA has been
replaced by diag(s)* A* diag(s).

s REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Array, DIMENSION (n).
The arrays contains the scale factors forA. This array
is an input argument iffact = 'F' only; otherwise it is an
output argument.
If equed = 'N' , s is not accessed.
If fact = 'F' andequed = 'Y' , each element ofs must
be positive.

ldx INTEGER. The first dimension of the output arrayx ;
ldx ≥ max(1,n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n); used
in real flavors only.

rwork REAL for cposvx ;
DOUBLE PRECISIONfor zposvx .
Workspace array,DIMENSION at least max(1,n); used
in complex flavors only.

Output Parameters

x REALfor sposvx

DOUBLE PRECISIONfor dposvx

COMPLEXfor cposvx

DOUBLE COMPLEXfor zposvx .
Array, DIMENSION (ldx, *) .

If info = 0 or info = n+1, the arrayx contains the
solution matrixX to theoriginal system of equations.
Note that ifequed = 'Y' , A andB are modified on exit,
and the solution to the equilibrated system is
diag(s)-1* X.
The second dimension ofx must be at least
max(1,nrhs).

4-192

4 Intel® Math Kernel Library Reference Manual

a Array a is not modified on exit iffact = 'F' or 'N', or if
fact = 'E' andequed = 'N'.
If fact = 'E' andequed = 'Y', A is overwritten by
diag(s)* A* diag(s)

af If fact = 'N' or 'E' , thenaf is an output argument and
on exit returns the triangular factorU or L from the
Cholesky factorizationA=UHU or A=LLH of the
original matrixA(if fact = 'N'), or of the equilibrated
matrix A (if fact = 'E'). See the description ofa for the
form of the equilibrated matrix.

b Overwritten by diag(s)* B , if equed = 'Y' ;
not changed ifequed = 'N' .

s This array is an output argument iffact ≠ 'F' .
See the description ofs in Input Argumentssection.

rcond REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal condition number of the
matrix A after equilibration (if done). Ifrcond is less
than the machine precision (in particular, ifrcond = 0),
the matrix is singular to working precision. This
condition is indicated by a return code ofinfo > 0.

ferr, berr REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

equed If fact ≠ 'F' , thenequed is an output argument. It
specifies the form of equilibration that was done (see the
description ofequed in Input Argumentssection).

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , andi ≤ n, the leading minor of orderi (and
hence the matrixA itself) is not positive definite, so the
factorization could not be completed, and the solution
and error bounds could not be computed;rcond = 0 is

LAPACK Routines: Linear Equations4

4-193

returned.
If info = i , andi = n +1, thenU is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value ofrcond

would suggest.

?ppsv
Computes the solution to the system of linear
equations with a symmetric (Hermitian)
positive definite packed matrix A and
multiple right-hand sides.

call sppsv (uplo, n, nrhs, ap, b, ldb, info)

call dppsv (uplo, n, nrhs, ap, b, ldb, info)

call cppsv (uplo, n, nrhs, ap, b, ldb, info)

call zppsv (uplo, n, nrhs, ap, b, ldb, info)

Discussion

This routine solves forX the real or complex system of linear equations
AX = B, where A is ann-by-n real symmetric/Hermitian positive definite
matrix stored in packed format, the columns of matrixB are individual
right-hand sides, and the columns ofX are the corresponding solutions.

The Cholesky decomposition is used to factor A asA = UHU if uplo ='U'

or A = LLH if uplo ='L' , whereU is an upper triangular matrix andL is a
lower triangular matrix. The factored form ofA is then used to solve the
system of equationsAX = B.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

4-194

4 Intel® Math Kernel Library Reference Manual

Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arraya stores the upper triangular
part of the matrixA, and A is factored asUHU.
If uplo = 'L' , the arraya stores the lower triangular
part of the matrixA; A is factored asLLH.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

ap, b REALfor sppsv

DOUBLE PRECISIONfor dppsv

COMPLEXfor cppsv

DOUBLE COMPLEXfor zppsv .
Arrays:ap(*), b(ldb, *).
The arrayap contains either the upper or the lower
triangular part of the matrixA (as specified byuplo) in
packed storage(seeMatrix Storage Schemes).
The dimension ofap must be at least max(1,n(n+1)/2).
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The second dimension ofb must be at least
max(1,nrhs).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters

ap If info =0, the upper or lower triangular part ofA in
packed storage is overwritten by the Cholesky factorU
or L, as specified byuplo .

b Overwritten by the solution matrixX.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the leading minor of orderi (and hence the
matrix A itself) is not positive definite, so the
factorization could not be completed, and the solution
has not been computed.

LAPACK Routines: Linear Equations4

4-195

?ppsvx
Uses the Cholesky factorization to compute the
solution to the system of linear equations with a
symmetric (Hermitian) positive definite packed
matrix A, and provides error bounds on the
solution.

call sppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)

call dppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)

call cppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

call zppsvx (fact, uplo, n, nrhs, ap, afp, equed, s, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

Discussion

This routine uses the Cholesky factorizationA=UHU or A=LLH to compute
the solution to a real or complex system of linear equationsAX = B, where
A is a n-by-n symmetric or Hermitian positive definite matrix stored in
packed format, the columns of matrixB are individual right-hand sides, and
the columns ofX are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine?ppsvx performs the following steps:

1. If fact = 'E', real scaling factorss are computed to equilibrate
the system:

diag(s)* A* diag(s) * diag(s)-1* X = diag(s)* B

Whether or not the system will be equilibrated depends on the scaling of the
matrixA, but if equilibration is used,A is overwritten by diag(s)* A* diag(s)
andB by diag(s)* B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the
matrix A (after equilibration iffact = 'E') as

4-196

4 Intel® Math Kernel Library Reference Manual

A = UH U, if uplo = ‘U’, or
A = L LH , if uplo = ‘ L’,
whereU is an upper triangular matrix andL is a lower triangular matrix.

3. If the leadingi -by-i principal minor is not positive definite, then the
routine returns withinfo = i . Otherwise, the factored form ofA is used to
estimate the condition number of the matrixA. If the reciprocal of the
condition number is less than machine precision,info = n + 1 is returned
as a warning, but the routine still goes on to solve forX and compute error
bounds as described below.

4. The system of equations is solved forX using the factored form ofA.

5. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

6. If equilibration was used, the matrixX is premultiplied by diag(s) so that
it solves the original system before equilibration.

Input Parameters

fact CHARACTER*1. Must be'F' , 'N' , or 'E' .

Specifies whether or not the factored form of the matrix
A is supplied on entry, and if not, whether the matrixA
should be equilibrated before it is factored.

If fact = 'F' : on entry,afp contains the factored form
of A. If equed = 'Y' , the matrixA has been equilibrated
with scaling factors given bys .
ap andafp will not be modified.

If fact = 'N' , the matrixA will be copied toafp and
factored.
If fact = 'E' , the matrixA will be equilibrated if
necessary, then copied toafp and factored.

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arrayap stores the upper triangular
part of the matrixA, and A is factored asUHU.
If uplo = 'L' , the arrayap stores the lower triangular
part of the matrixA; A is factored asLLH.

LAPACK Routines: Linear Equations4

4-197

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

ap,afp,b,work REALfor sppsvx

DOUBLE PRECISIONfor dppsvx

COMPLEXfor cppsvx

DOUBLE COMPLEXfor zppsvx .
Arrays:ap(*) , afp (*) , b(ldb ,*) , work (*) .

The arrayap contains the upper or lower triangle of the
original symmetric/Hermitian matrix A inpacked
storage(seeMatrix Storage Schemes). In case when
fact = 'F' andequed = 'Y', ap must contain the
equilibrated matrix diag(s)* A* diag(s).

The arrayafp is an input argument iffact = 'F' and
contains the triangular factorU or L from the Cholesky
factorization ofA in the same storage format asA. If
equed is not 'N', thenafp is the factored form of the
equilibrated matrixA.
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
work (*) is a workspace array.
The dimension of arraysap andafp must be at least
max(1,n(n+1)/2); the second dimension ofb must be at
least max(1,nrhs); the dimension ofwork must be at
least max(1, 3* n) for real flavors and max(1, 2* n) for
complex flavors.

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

equed CHARACTER*1. Must be'N' or 'Y' .
equed is an input argument iffact = 'F' . It specifies
the form of equilibration that was done:
If equed = 'N' , no equilibration was done (always
true if fact = 'N');
If equed = 'Y' , equilibration was done andA has been
replaced by diag(s)* A* diag(s).

4-198

4 Intel® Math Kernel Library Reference Manual

s REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Array, DIMENSION (n).
The arrays contains the scale factors forA. This array
is an input argument iffact = 'F' only; otherwise it is an
output argument.
If equed = 'N' , s is not accessed.
If fact = 'F' andequed = 'Y' , each element ofs must
be positive.

ldx INTEGER. The first dimension of the output arrayx ;
ldx ≥ max(1,n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n); used
in real flavors only.

rwork REAL for cppsvx ;
DOUBLE PRECISIONfor zppsvx .
Workspace array,DIMENSION at least max(1,n); used
in complex flavors only.

Output Parameters

x REALfor sppsvx

DOUBLE PRECISIONfor dppsvx

COMPLEXfor cppsvx

DOUBLE COMPLEXfor zppsvx .
Array, DIMENSION (ldx, *) .

If info = 0 or info = n+1, the arrayx contains the
solution matrixX to theoriginal system of equations.
Note that ifequed ='Y' , A andB are modified on exit,
and the solution to the equilibrated system is
diag(s)-1* X.
The second dimension ofx must be at least
max(1,nrhs).

ap Array ap is not modified on exit iffact = 'F' or 'N', or if
fact = 'E' andequed = 'N'.
If fact = 'E' andequed = 'Y', A is overwritten by
diag(s)* A* diag(s)

LAPACK Routines: Linear Equations4

4-199

afp If fact = 'N' or 'E' , thenafp is an output argument
and on exit returns the triangular factorU or L from the
Cholesky factorizationA=UHU or A=LLH of the
original matrixA(if fact = 'N'), or of the equilibrated
matrixA (if fact = 'E'). See the description ofap for the
form of the equilibrated matrix.

b Overwritten by diag(s)* B , if equed = 'Y' ;
not changed ifequed = 'N' .

s This array is an output argument iffact ≠ 'F' .
See the description ofs in Input Argumentssection.

rcond REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal condition number of the
matrix A after equilibration (if done). Ifrcond is less
than the machine precision (in particular, ifrcond = 0),
the matrix is singular to working precision. This
condition is indicated by a return code ofinfo > 0.

ferr, berr REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

equed If fact ≠ 'F' , thenequed is an output argument. It
specifies the form of equilibration that was done (see the
description ofequed in Input Argumentssection).

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , andi ≤ n, the leading minor of orderi
(and hence the matrixA itself) is not positive definite, so
the factorization could not be completed, and the
solution and error bounds could not be computed;
rcond = 0 is returned.
If info = i , andi = n +1, thenU is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value ofrcond

would suggest.

4-200

4 Intel® Math Kernel Library Reference Manual

?pbsv
Computes the solution to the system of
linear equations with a symmetric or
Hermitian positive definite band
matrix A and multiple right-hand sides.

call spbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call dpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call cpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

call zpbsv (uplo, n, kd, nrhs, ab, ldab, b, ldb, info)

Discussion

This routine solves forX the real or complex system of linear equations
AX = B, where A is ann-by-n symmetric/Hermitian positive definite band
matrix, the columns of matrixB are individual right-hand sides, and the
columns ofX are the corresponding solutions.

The Cholesky decomposition is used to factor A asA = UHU if uplo ='U'

or A = LLH if uplo ='L' , whereU is an upper triangular band matrix and
L is a lower triangular band matrix, with the same number of superdiagonals
or subdiagonals asA. The factored form ofA is then used to solve the
system of equationsAX = B.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is stored in the arrayab, and howA is factored:
If uplo = 'U' , the arrayab stores the upper triangular
part of the matrixA, and A is factored asUHU.
If uplo = 'L' , the arrayab stores the lower triangular
part of the matrixA; A is factored asLLH.

n INTEGER. The order of matrixA (n ≥ 0).

LAPACK Routines: Linear Equations4

4-201

kd INTEGER. The number of superdiagonals of the
matrix A if uplo = 'U' , or the number of subdiagonals
if uplo = 'L' (kd ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

ab, b REALfor spbsv

DOUBLE PRECISIONfor dpbsv

COMPLEXfor cpbsv

DOUBLE COMPLEXfor zpbsv .
Arrays:ab(ldab , *), b(ldb, *).
The arrayab contains either the upper or the lower
triangular part of the matrixA (as specified byuplo) in
band storage(seeMatrix Storage Schemes).
The second dimension ofab must be at least max(1,n).
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The second dimension ofb must be at least
max(1,nrhs).

ldab INTEGER. The first dimension of the arrayab.
(ldab ≥ kd +1)

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters

ab The upper or lower triangular part ofA (in band storage)
is overwritten by the Cholesky factorU or L, as
specified byuplo , in the same storage format asA.

b Overwritten by the solution matrixX.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the leading minor of orderi (and hence the
matrix A itself) is not positive definite, so the
factorization could not be completed, and the solution
has not been computed.

4-202

4 Intel® Math Kernel Library Reference Manual

?pbsvx
Uses the Cholesky factorization to compute the
solution to the system of linear equations with a
symmetric (Hermitian) positive definite band
matrix A, and provides error bounds on the
solution.

call spbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed,
s, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call dpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed,
s, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call cpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed,
s, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

call zpbsvx (fact, uplo, n, kd, nrhs, ab, ldab, afb, ldafb, equed,
s, b, ldb, x, ldx, rcond, ferr, berr, work, iwork, info)

Discussion

This routine uses the Cholesky factorizationA=UHU or A=LLH to compute
the solution to a real or complex system of linear equationsAX = B, where
A is a n-by-n symmetric or Hermitian positive definite band matrix, the
columns of matrixB are individual right-hand sides, and the columns ofX
are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine?pbsvx performs the following steps:

1. If fact = 'E', real scaling factorss are computed to equilibrate
the system:

diag(s)* A* diag(s) * diag(s)-1* X = diag(s)* B

Whether or not the system will be equilibrated depends on the scaling of the
matrixA, but if equilibration is used,A is overwritten by diag(s)* A* diag(s)
andB by diag(s)* B .

2. If fact = 'N' or 'E', the Cholesky decomposition is used to factor the
matrix A (after equilibration iffact = 'E') as

LAPACK Routines: Linear Equations4

4-203

A = UH U, if uplo = ‘U’, or
A = L LH , if uplo = ‘ L’,
whereU is an upper triangular band matrix andL is a lower triangular band
matrix.

3. If the leadingi -by-i principal minor is not positive definite, then the
routine returns withinfo = i . Otherwise, the factored form ofA is used to
estimate the condition number of the matrixA. If the reciprocal of the
condition number is less than machine precision,info = n + 1 is returned
as a warning, but the routine still goes on to solve forX and compute error
bounds as described below.

4. The system of equations is solved forX using the factored form ofA.

5. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

6. If equilibration was used, the matrixX is premultiplied by diag(s) so that
it solves the original system before equilibration.

Input Parameters

fact CHARACTER*1. Must be'F' , 'N' , or 'E' .

Specifies whether or not the factored form of the matrix
A is supplied on entry, and if not, whether the matrixA
should be equilibrated before it is factored.

If fact = 'F' : on entry,afb contains the factored form
of A. If equed = 'Y' , the matrixA has been equilibrated
with scaling factors given bys .
ab andafb will not be modified.

If fact = 'N' , the matrixA will be copied toafb and
factored.
If fact = 'E' , the matrixA will be equilibrated if
necessary, then copied toafb and factored.

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:

4-204

4 Intel® Math Kernel Library Reference Manual

If uplo = 'U' , the arrayab stores the upper triangular
part of the matrixA, and A is factored asUHU.
If uplo = 'L' , the arrayab stores the lower triangular
part of the matrixA; A is factored asLLH.

n INTEGER. The order of matrixA (n ≥ 0).
kd INTEGER. The number of super-diagonals or

sub-diagonals in the matrixA (kd ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

ab,afb,b,work REALfor spbsvx

DOUBLE PRECISIONfor dpbsvx

COMPLEXfor cpbsvx

DOUBLE COMPLEXfor zpbsvx .
Arrays:ab(ldab ,*) , afb (ldab ,*) , b(ldb ,*) ,
work (*) .
The arrayab contains the upper or lower triangle of the
matrix A in band storage (seeMatrix Storage Schemes).
If fact = 'F' andequed = 'Y', thenab must contain the

equilibrated matrix diag(s)* A* diag(s). The second
dimension ofab must be at least max(1,n).
The arrayafb is an input argument iffact = 'F' .

It contains the triangular factorU or L from the
Cholesky factorization of the band matrixA in the same
storage format asA. If equed = 'Y', thenafb is the
factored form of the equilibrated matrixA.
The second dimension ofafb must be at least max(1,n).

The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations. The
second dimension ofb must be at least max(1,nrhs).

work (*) is a workspace array.
The dimension ofwork must be at least max(1,3* n) for
real flavors, and at least max(1,2* n) for complex
flavors.

ldab INTEGER. The first dimension ofab ; ldab ≥ kd +1.

ldafb INTEGER. The first dimension ofafb ; ldafb ≥ kd +1.

LAPACK Routines: Linear Equations4

4-205

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

equed CHARACTER*1. Must be'N' or 'Y' .
equed is an input argument iffact = 'F' . It specifies
the form of equilibration that was done:
If equed = 'N' , no equilibration was done (always
true if fact = 'N');
If equed = 'Y' , equilibration was done andA has been
replaced by diag(s)* A* diag(s).

s REAL for single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Array, DIMENSION (n).
The arrays contains the scale factors forA. This array
is an input argument iffact = 'F' only; otherwise it is an
output argument.
If equed = 'N' , s is not accessed.
If fact = 'F' andequed = 'Y' , each element ofs must
be positive.

ldx INTEGER. The first dimension of the output arrayx ;
ldx ≥ max(1,n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n); used
in real flavors only.

rwork REAL for cpbsvx ;
DOUBLE PRECISIONfor zpbsvx .
Workspace array,DIMENSION at least max(1,n); used
in complex flavors only.

Output Parameters

x REALfor spbsvx

DOUBLE PRECISIONfor dpbsvx

COMPLEXfor cpbsvx

DOUBLE COMPLEXfor zpbsvx .
Array, DIMENSION (ldx, *) .

4-206

4 Intel® Math Kernel Library Reference Manual

If info = 0 or info = n+1, the arrayx contains the
solution matrixX to theoriginal system of equations.
Note that ifequed ='Y' , A andB are modified on exit,
and the solution to the equilibrated system is
diag(s)-1* X.
The second dimension ofx must be at least
max(1,nrhs).

ab On exit, if fact = 'E' andequed = 'Y', A is overwritten
by diag(s)* A* diag(s)

afb If fact = 'N' or 'E' , thenafb is an output argument
and on exit returns the triangular factorU or L from the
Cholesky factorizationA=UHU or A=LLH of the
original matrixA(if fact = 'N'), or of the equilibrated
matrixA (if fact = 'E'). See the description ofab for the
form of the equilibrated matrix.

b Overwritten by diag(s)* B , if equed = 'Y' ;
not changed ifequed = 'N' .

s This array is an output argument iffact ≠ 'F' .
See the description ofs in Input Argumentssection.

rcond REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal condition number of the
matrix A after equilibration (if done). Ifrcond is less
than the machine precision (in particular, ifrcond = 0),
the matrix is singular to working precision. This
condition is indicated by a return code ofinfo > 0.

ferr, berr REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

equed If fact ≠ 'F' , thenequed is an output argument. It
specifies the form of equilibration that was done (see the
description ofequed in Input Argumentssection).

LAPACK Routines: Linear Equations4

4-207

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , andi ≤ n, the leading minor of orderi (and
hence the matrixA itself) is not positive definite, so the
factorization could not be completed, and the solution
and error bounds could not be computed;rcond = 0 is
returned.
If info = i , andi = n +1, thenU is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value ofrcond

would suggest.

?ptsv
Computes the solution to the system of
linear equations with a symmetric or
Hermitian positive definite tridiagonal
matrix A and multiple right-hand sides.

call sptsv (n, nrhs, d, e, b, ldb, info)

call dptsv (n, nrhs, d, e, b, ldb, info)

call cptsv (n, nrhs, d, e, b, ldb, info)

call zptsv (n, nrhs, d, e, b, ldb, info)

Discussion

This routine solves forX the real or complex system of linear equations
AX = B, where A is ann-by-n symmetric/Hermitian positive definite
tridiagonal matrix, the columns of matrixB are individual right-hand sides,
and the columns ofX are the corresponding solutions.

A is factored as A = L D LH , and the factored form ofA is then used to
solve the system of equationsAX = B.

4-208

4 Intel® Math Kernel Library Reference Manual

Input Parameters
n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

d REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
Array, dimension at least max(1,n). Contains the
diagonal elements of the tridiagonal matrixA.

e, b REALfor sptsv

DOUBLE PRECISIONfor dptsv

COMPLEXfor cptsv

DOUBLE COMPLEXfor zptsv .
Arrays:e(n - 1) , b(ldb, *).
The arraye contains the (n - 1) subdiagonal elements
of A.
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The second dimension ofb must be at least
max(1,nrhs).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters

d Overwritten by then diagonal elements of the diagonal
matrix D from theLDLH factorization of A.

e Overwritten by the (n - 1) subdiagonal elements of the
unit bidiagonal factorL from the factorization of A.

b Overwritten by the solution matrixX.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the leading minor of orderi (and hence the
matrix A itself) is not positive definite, and the solution
has not been computed. The factorization has not been
completed unlessi = n.

LAPACK Routines: Linear Equations4

4-209

?ptsvx
Uses the factorization A=LDLH to compute
the solution to the system of linear equations
with a symmetric (Hermitian) positive definite
tridiagonal matrix A, and provides error bounds
on the solution.

call sptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond,
ferr, berr, work, info)

call dptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond,
ferr, berr, work, info)

call cptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

call zptsvx (fact, n, nrhs, d, e, df, ef, b, ldb, x, ldx, rcond,
ferr, berr, work, rwork, info)

Discussion

This routine uses the Cholesky factorizationA=L D LH to compute the
solution to a real or complex system of linear equationsAX= B, where A is
a n-by-n symmetric or Hermitian positive definite tridiagonal matrix, the
columns of matrixB are individual right-hand sides, and the columns ofX
are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine?ptsvx performs the following steps:

1. If fact = 'N', the matrix A is factored asA = L D LH, whereL is a unit
lower bidiagonal matrix andD is diagonal. The factorization can also be
regarded as having the formA = UH D U.

2. If the leadingi -by-i principal minor is not positive definite, then the
routine returns withinfo = i . Otherwise, the factored form ofA is used to
estimate the condition number of the matrixA. If the reciprocal of the
condition number is less than machine precision,info = n + 1 is returned
as a warning, but the routine still goes on to solve forX and compute error
bounds as described below.

4-210

4 Intel® Math Kernel Library Reference Manual

3. The system of equations is solved forX using the factored form ofA.

4. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be'F' or 'N' .

Specifies whether or not the factored form of the matrix
A is supplied on entry.

If fact = 'F' : on entry,df andef contain the
factored form ofA. Arraysd, e, df , andef will not be
modified.

If fact = 'N' , the matrixA will be copied todf andef

and factored.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

d,df,rwork REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors
Arrays: d(n) , df (n) , rwork (n) .
The arrayd contains then diagonal elements of the
tridiagonal matrix A.
The arraydf is an input argument iffact = 'F' and
on entry contains then diagonal elements of the
diagonal matrixD from theL D LH factorization of A .
The arrayrwork is a workspace array used for complex
flavors only.

e,ef,b,work REALfor sptsvx

DOUBLE PRECISIONfor dptsvx

COMPLEXfor cptsvx

DOUBLE COMPLEXfor zptsvx .
Arrays:e(n - 1) , ef (n - 1) , b(ldb,*) , work (*) .
The arraye contains the (n - 1) subdiagonal elements
of the tridiagonal matrixA.

LAPACK Routines: Linear Equations4

4-211

The arrayef is an input argument iffact = 'F' and
on entry contains the (n - 1) subdiagonal elements of
the unit bidiagonal factorL from theL D LH

factorization of A.
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The arraywork is a workspace array. The dimension of
work must be at least 2* n for real flavors, and at least
n for complex flavors.

ldb INTEGER. The leading dimension ofb; ldb ≥ max(1,n).

ldx INTEGER. The leading dimension ofx ; ldx ≥ max(1,n).

Output Parameters

x REALfor sptsvx

DOUBLE PRECISIONfor dptsvx

COMPLEXfor cptsvx

DOUBLE COMPLEXfor zptsvx .
Array, DIMENSION (ldx, *) .

If info = 0 or info = n+1, the arrayx contains the
solution matrixX to the system of equations. The
second dimension ofx must be at least max(1,nrhs).

df, ef These arrays are output arguments iffact = 'N' .
See the description ofdf, ef in Input Arguments
section.

rcond REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal condition number of the
matrix A after equilibration (if done). Ifrcond is less
than the machine precision (in particular, ifrcond = 0),
the matrix is singular to working precision. This
condition is indicated by a return code ofinfo > 0.

ferr, berr REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

4-212

4 Intel® Math Kernel Library Reference Manual

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , andi ≤ n, the leading minor of orderi (and
hence the matrixA itself) is not positive definite, so the
factorization could not be completed, and the solution
and error bounds could not be computed;rcond = 0 is
returned.
If info = i , andi = n +1, thenU is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value ofrcond

would suggest.

?sysv
Computes the solution to the system of
linear equations with a real or complex
symmetric matrix A and multiple
right-hand sides.

call ssysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call dsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call csysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call zsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

Discussion

This routine solves forX the real or complex system of linear equations
AX = B, where A is ann-by-n symmetric matrix, the columns of matrixB
are individual right-hand sides, and the columns ofX are the corresponding
solutions.

LAPACK Routines: Linear Equations4

4-213

The diagonal pivoting method is used to factorA as A = U D UT or
A = L D LT , whereU (or L) is a product of permutation and unit upper
(lower) triangular matrices, andD is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.

The factored form ofA is then used to solve the system of equationsAX = B.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arraya stores the upper triangular
part of the matrixA, and A is factored asUDUT.
If uplo = 'L' , the arraya stores the lower triangular
part of the matrixA; A is factored asLDLT.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

a, b, work REALfor ssysv

DOUBLE PRECISIONfor dsysv

COMPLEXfor csysv

DOUBLE COMPLEXfor zsysv .
Arrays:a(lda, *), b(ldb, *), work (lwork).
The arraya contains either the upper or the lower
triangular part of the symmetric matrixA (seeuplo).
The second dimension ofa must be at least max(1,n).
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The second dimension ofb must be at least
max(1,nrhs).
work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

lwork INTEGER. The size of thework array (lwork ≥ 1)
SeeApplication notesfor the suggested value oflwork .

4-214

4 Intel® Math Kernel Library Reference Manual

Output Parameters
a If info = 0, a is overwritten by the block-diagonal

matrix D and the multipliers used to obtain the factorU
(or L) from the factorization ofA as computed by?sytrf.

b If info = 0, b is overwritten by the solution matrixX.

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
Contains details of the interchanges and the block
structure ofD, as determined by?sytrf.
If ipiv (i) = k > 0, thendii is a 1-by-1 diagonal block,
and thei th row and column ofA was interchanged with
thek th row and column.
If uplo = 'U' andipiv (i) =ipiv (i -1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi -1 ,
and (i -1) th row and column ofA was interchanged
with themth row and column.
If uplo = 'L' andipiv (i) =ipiv (i +1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi +1,
and (i +1) th row and column ofA was interchanged
with themth row and column.

work (1) If info =0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , dii is 0. The factorization has been
completed, butD is exactly singular, so the solution
could not be computed.

Application Notes

For better performance, try usinglwork = n* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm.

If you are in doubt how much workspace to supply, uselwork =-1 for the
first run. In this case, a workspace query is assumed; the routine only
calculates the optimal size of thework array, returns this value as the first

LAPACK Routines: Linear Equations4

4-215

entrywork (1) of thework array , and no error message related tolwork

is issued by XERBLA. On exit, examinework (1) and use this value for
subsequent runs.

?sysvx
Uses the diagonal pivoting factorization to
compute the solution to the system of linear
equations with a real or complex symmetric
matrix A, and provides error bounds on the
solution.

call ssysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, lwork, iwork, info)

call dsysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, lwork, iwork, info)

call csysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, lwork, rwork, info)

call zsysvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, lwork, rwork, info)

Discussion

This routine uses the diagonal pivoting factorization to compute the solution
to a real or complex system of linear equationsAX = B, where A is a
n-by-n symmetric matrix, the columns of matrixB are individual right-hand
sides, and the columns ofX are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine?sysvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A.
The form of the factorization isA = U D UT or A = L D LT, where U (or L)
is a product of permutation and unit upper (lower) triangular matrices, and
D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

4-216

4 Intel® Math Kernel Library Reference Manual

2. If somedi,i = 0, so thatD is exactly singular, then the routine returns
with info = i . Otherwise, the factored form ofA is used to estimate the
condition number of the matrixA. If the reciprocal of the condition number
is less than machine precision,info = n + 1 is returned as a warning, but
the routine still goes on to solve forX and compute error bounds as
described below.

3. The system of equations is solved forX using the factored form ofA.

4. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be'F' or 'N' .

Specifies whether or not the factored form of the matrix
A has been supplied on entry.

If fact = 'F' : on entry,af andipiv contain the
factored form ofA. Arraysa, af , andipiv will not be
modified.

If fact = 'N' , the matrixA will be copied toaf and
factored.

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arraya stores the upper triangular
part of the symmetric matrixA, and A is factored
asUDUT.
If uplo = 'L' , the arraya stores the lower triangular
part of the symmetric matrixA; A is factored asLDLT.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

a,af,b,work REALfor ssysvx

DOUBLE PRECISIONfor dsysvx

COMPLEXfor csysvx

LAPACK Routines: Linear Equations4

4-217

DOUBLE COMPLEXfor zsysvx .
Arrays:a(lda, *) , af (ldaf, *) , b(ldb, *) ,
work (*) .

The arraya contains either the upper or the lower
triangular part of the symmetric matrixA (seeuplo).
The second dimension ofa must be at least max(1,n).

The arrayaf is an input argument iffact = 'F' . It
contains he block diagonal matrixD and the multipliers
used to obtain the factorU or L from the factorizationA
= U D UT or A = L D LT as computed by?sytrf.
The second dimension ofaf must be at least max(1,n).

The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations. The
second dimension ofb must be at least max(1,nrhs).

work (*) is a workspace array of dimension (lwork).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldaf INTEGER. The first dimension ofaf ; ldaf ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The arrayipiv is an input argument iffact = 'F' .
It contains details of the interchanges and the block
structure ofD, as determined by?sytrf.
If ipiv (i) = k > 0, thendii is a 1-by-1 diagonal block,
and thei th row and column ofA was interchanged with
thek th row and column.

If uplo = 'U' andipiv (i) =ipiv (i -1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi -1 ,
and (i -1) th row and column ofA was interchanged
with themth row and column.
If uplo = 'L' andipiv (i) =ipiv (i +1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi +1,
and (i +1) th row and column ofA was interchanged
with themth row and column.

4-218

4 Intel® Math Kernel Library Reference Manual

ldx INTEGER. The leading dimension of the output arrayx ;
ldx ≥ max(1,n).

lwork INTEGER. The size of thework array .
SeeApplication notesfor the suggested value oflwork .

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n); used
in real flavors only.

rwork REAL for csysvx ;
DOUBLE PRECISIONfor zsysvx .
Workspace array,DIMENSION at least max(1,n); used
in complex flavors only.

Output Parameters

x REALfor ssysvx

DOUBLE PRECISIONfor dsysvx

COMPLEXfor csysvx

DOUBLE COMPLEXfor zsysvx .
Array, DIMENSION (ldx, *) .

If info = 0 or info = n+1, the arrayx contains the
solution matrixX to the system of equations. The
second dimension ofx must be at least max(1,nrhs).

af, ipiv These arrays are output arguments iffact = 'N' .
See the description ofaf, ipiv in Input Arguments
section.

rcond REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal condition number of the
matrixA. If rcond is less than the machine precision (in
particular, ifrcond = 0), the matrix is singular to
working precision. This condition is indicated by a
return code ofinfo > 0.

ferr, berr REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

LAPACK Routines: Linear Equations4

4-219

work (1) If info =0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , andi ≤ n, thendii is exactly zero. The
factorization has been completed, but the block diagonal
matrix D is exactly singular, so the solution and error
bounds could not be computed;rcond = 0 is returned.
If info = i , andi = n +1, thenD is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value ofrcond

would suggest.

Application Notes

For real flavors,lwork must be at least 3* n, and for complex flavors at
least 2* n. For better performance, try usinglwork = n* blocksize, where
blocksizeis the optimal block size for?sytrf .

If you are in doubt how much workspace to supply, uselwork =-1 for the
first run. In this case, a workspace query is assumed; the routine only
calculates the optimal size of thework array, returns this value as the first
entrywork (1) of thework array , and no error message related tolwork

is issued by XERBLA. On exit, examinework (1) and use this value for
subsequent runs.

4-220

4 Intel® Math Kernel Library Reference Manual

?hesvx
Uses the diagonal pivoting factorization to
compute the solution to the complex system of
linear equations with a Hermitian matrix A, and
provides error bounds on the solution.

call chesvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, lwork, rwork, info)

call zhesvx (fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,
x, ldx, rcond, ferr, berr, work, lwork, rwork, info)

Discussion

This routine uses the diagonal pivoting factorization to compute the solution
to a complex system of linear equationsAX = B, where A is a n-by-n
Hermitian matrix, the columns of matrixB are individual right-hand sides,
and the columns ofX are the corresponding solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine?hesvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A.
The form of the factorization isA = U D UH or A = L D LH, where U (or L)
is a product of permutation and unit upper (lower) triangular matrices, and
D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

2. If somedi,i = 0, so thatD is exactly singular, then the routine returns
with info = i . Otherwise, the factored form ofA is used to estimate the
condition number of the matrixA. If the reciprocal of the condition number
is less than machine precision,info = n + 1 is returned as a warning, but
the routine still goes on to solve forX and compute error bounds as
described below.

3. The system of equations is solved forX using the factored form ofA.

4. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

LAPACK Routines: Linear Equations4

4-221

Input Parameters

fact CHARACTER*1. Must be'F' or 'N' .

Specifies whether or not the factored form of the matrix
A has been supplied on entry.

If fact = 'F' : on entry,af andipiv contain the
factored form ofA. Arraysa, af , andipiv will not be
modified.

If fact = 'N' , the matrixA will be copied toaf and
factored.

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arraya stores the upper triangular
part of the Hermitian matrixA, and A is factored
asUDUH.
If uplo = 'L' , the arraya stores the lower triangular
part of the Hermitian matrixA; A is factored asLDLH.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

a,af,b,work COMPLEXfor chesvx

DOUBLE COMPLEXfor zhesvx .
Arrays:a(lda, *) , af (ldaf, *) , b(ldb, *) ,
work (*) .

The arraya contains either the upper or the lower
triangular part of the Hermitian matrixA (seeuplo).
The second dimension ofa must be at least max(1,n).

The arrayaf is an input argument iffact = 'F' . It
contains he block diagonal matrixD and the multipliers
used to obtain the factorU or L from the factorizationA
= U D UH or A = L D LH as computed by?hetrf.
The second dimension ofaf must be at least max(1,n).

4-222

4 Intel® Math Kernel Library Reference Manual

The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations. The
second dimension ofb must be at least max(1,nrhs).

work (*) is a workspace array of dimension (lwork).

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldaf INTEGER. The first dimension ofaf ; ldaf ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The arrayipiv is an input argument iffact = 'F' .
It contains details of the interchanges and the block
structure ofD, as determined by?hetrf.
If ipiv (i) = k > 0, thendii is a 1-by-1 diagonal block,
and thei th row and column ofA was interchanged with
thek th row and column.

If uplo = 'U' andipiv (i) =ipiv (i -1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi -1 ,
and (i -1) th row and column ofA was interchanged
with themth row and column.
If uplo = 'L' andipiv (i) =ipiv (i +1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi +1,
and (i +1) th row and column ofA was interchanged
with themth row and column.

ldx INTEGER. The leading dimension of the output arrayx ;
ldx ≥ max(1,n).

lwork INTEGER. The size of thework array .
SeeApplication notesfor the suggested value oflwork .

rwork REAL for chesvx ;
DOUBLE PRECISIONfor zhesvx .
Workspace array,DIMENSION at least max(1,n).

Output Parameters

x COMPLEXfor chesvx

DOUBLE COMPLEXfor zhesvx .
Array, DIMENSION (ldx, *) .

LAPACK Routines: Linear Equations4

4-223

If info = 0 or info = n+1, the arrayx contains the
solution matrixX to the system of equations. The
second dimension ofx must be at least max(1,nrhs).

af, ipiv These arrays are output arguments iffact = 'N' .
See the description ofaf, ipiv in Input Arguments
section.

rcond REALfor chesvx ;
DOUBLE PRECISIONfor zhesvx .
An estimate of the reciprocal condition number of the
matrixA. If rcond is less than the machine precision (in
particular, ifrcond = 0), the matrix is singular to
working precision. This condition is indicated by a
return code ofinfo > 0.

ferr, berr REALfor chesvx ;
DOUBLE PRECISIONfor zhesvx .
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

work (1) If info =0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , andi ≤ n, thendii is exactly zero. The
factorization has been completed, but the block diagonal
matrix D is exactly singular, so the solution and error
bounds could not be computed;rcond = 0 is returned.
If info = i , andi = n +1, thenD is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value ofrcond

would suggest.

4-224

4 Intel® Math Kernel Library Reference Manual

Application Notes

The value oflwork must be at least 2* n. For better performance, try using
lwork = n* blocksize, whereblocksizeis the optimal block size for?hetrf .

If you are in doubt how much workspace to supply, uselwork =-1 for the
first run. In this case, a workspace query is assumed; the routine only
calculates the optimal size of thework array, returns this value as the first
entrywork (1) of thework array , and no error message related tolwork

is issued by XERBLA. On exit, examinework (1) and use this value for
subsequent runs.

?hesv
Computes the solution to the system of
linear equations with a Hermitian
matrix A and multiple right-hand sides.

call chesv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

call zhesv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)

Discussion

This routine solves forX the real or complex system of linear equations
AX = B, where A is ann-by-n symmetric matrix, the columns of matrixB
are individual right-hand sides, and the columns ofX are the corresponding
solutions.

The diagonal pivoting method is used to factorA as A = U D UH or
A = L D LH , whereU (or L) is a product of permutation and unit upper
(lower) triangular matrices, andD is Hermitian and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.

The factored form ofA is then used to solve the system of equationsAX = B.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

LAPACK Routines: Linear Equations4

4-225

Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arraya stores the upper triangular
part of the matrixA, and A is factored asUDUH.
If uplo = 'L' , the arraya stores the lower triangular
part of the matrixA; A is factored asLDLH.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

a, b, work COMPLEXfor chesv

DOUBLE COMPLEXfor zhesv .
Arrays:a(lda, *), b(ldb, *), work (lwork).
The arraya contains either the upper or the lower
triangular part of the Hermitian matrixA (seeuplo).
The second dimension ofa must be at least max(1,n).
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The second dimension ofb must be at least
max(1,nrhs).
work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; lda ≥ max(1,n).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

lwork INTEGER. The size of thework array (lwork ≥ 1)
SeeApplication notesfor the suggested value oflwork .

Output Parameters
a If info = 0, a is overwritten by the block-diagonal

matrix D and the multipliers used to obtain the factorU
(or L) from the factorization ofA as computed by?hetrf.

b If info = 0, b is overwritten by the solution matrixX.

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
Contains details of the interchanges and the block
structure ofD, as determined by?hetrf.

4-226

4 Intel® Math Kernel Library Reference Manual

If ipiv (i) = k > 0, thendii is a 1-by-1 diagonal block,
and thei th row and column ofA was interchanged with
thek th row and column.
If uplo = 'U' andipiv (i) =ipiv (i -1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi -1 ,
and (i -1) th row and column ofA was interchanged
with themth row and column.
If uplo = 'L' andipiv (i) =ipiv (i +1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi +1,
and (i +1) th row and column ofA was interchanged
with themth row and column.

work (1) If info =0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , dii is 0. The factorization has been
completed, butD is exactly singular, so the solution
could not be computed.

Application Notes

For better performance, try usinglwork = n* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm.

If you are in doubt how much workspace to supply, uselwork =-1 for the
first run. In this case, a workspace query is assumed; the routine only
calculates the optimal size of thework array, returns this value as the first
entrywork (1) of thework array , and no error message related tolwork

is issued by XERBLA. On exit, examinework (1) and use this value for
subsequent runs.

LAPACK Routines: Linear Equations4

4-227

?spsv
Computes the solution to the system of
linear equations with a real or complex
symmetric matrix A stored in packed
format, and multiple right-hand sides.

call sspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call dspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call cspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zspsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

Discussion

This routine solves forX the real or complex system of linear equations
AX = B, where A is ann-by-n symmetric matrix stored in packed format,
the columns of matrixB are individual right-hand sides, and the columns of
X are the corresponding solutions.

The diagonal pivoting method is used to factorA as A = U D UT or
A = L D LT , whereU (or L) is a product of permutation and unit upper
(lower) triangular matrices, andD is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.

The factored form ofA is then used to solve the system of equationsAX = B.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arrayap stores the upper triangular
part of the matrixA, and A is factored asUDUT.
If uplo = 'L' , the arrayap stores the lower triangular
part of the matrixA; A is factored asLDLT.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

4-228

4 Intel® Math Kernel Library Reference Manual

ap, b REALfor sspsv

DOUBLE PRECISIONfor dspsv

COMPLEXfor cspsv

DOUBLE COMPLEXfor zspsv .
Arrays:ap(*) , b(ldb ,*)

The dimension ofap must be at least max(1,n(n+1)/2).
The arrayap contains the factorU or L, as specified by
uplo , in packed storage(seeMatrix Storage Schemes).
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The second dimension ofb must be at least
max(1,nrhs).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters
ap The block-diagonal matrixD and the multipliers used to

obtain the factorU (or L) from the factorization ofA as
computed by?sptrf, stored as a packed triangular matrix
in the same storage format asA.

b If info = 0, b is overwritten by the solution matrixX.

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
Contains details of the interchanges and the block
structure ofD, as determined by?sptrf.
If ipiv (i) = k > 0, thendii is a 1-by-1 block, and the
i th row and column ofA was interchanged with thek th
row and column.

If uplo = 'U' andipiv (i) =ipiv (i -1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi -1 ,
and (i -1) th row and column ofA was interchanged
with themth row and column.

If uplo = 'L' andipiv (i) =ipiv (i +1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi +1,
and (i +1) th row and column ofA was interchanged
with themth row and column.

LAPACK Routines: Linear Equations4

4-229

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , dii is 0. The factorization has been
completed, butD is exactly singular, so the solution
could not be computed.

4-230

4 Intel® Math Kernel Library Reference Manual

?spsvx
Uses the diagonal pivoting factorization to
compute the solution to the system of linear
equations with a real or complex symmetric
matrix A stored in packed format, and provides
error bounds on the solution.

call sspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)

call dspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, iwork, info)

call cspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

call zspsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

Discussion

This routine uses the diagonal pivoting factorization to compute the solution
to a real or complex system of linear equationsAX = B, where A is a
n-by-n symmetric matrix stored in packed format, the columns of matrixB
are individual right-hand sides, and the columns ofX are the corresponding
solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine?spsvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A.
The form of the factorization isA = U D UT or A = L D LT, where U (or L)
is a product of permutation and unit upper (lower) triangular matrices, and
D is symmetric and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

2. If somedi,i = 0, so thatD is exactly singular, then the routine returns
with info = i . Otherwise, the factored form ofA is used to estimate the
condition number of the matrixA. If the reciprocal of the condition number

LAPACK Routines: Linear Equations4

4-231

is less than machine precision,info = n + 1 is returned as a warning, but
the routine still goes on to solve forX and compute error bounds as
described below.

3. The system of equations is solved forX using the factored form ofA.

4. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

Input Parameters

fact CHARACTER*1. Must be'F' or 'N' .

Specifies whether or not the factored form of the matrix
A has been supplied on entry.

If fact = 'F' : on entry,afp andipiv contain the
factored form ofA. Arraysap, afp , andipiv will not
be modified.

If fact = 'N' , the matrixA will be copied toafp and
factored.

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arrayap stores the upper triangular
part of the symmetric matrixA, and A is factored
asUDUT.
If uplo = 'L' , the arrayap stores the lower triangular
part of the symmetric matrixA; A is factored asLDLT.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

ap,afp,b,work REALfor sspsvx

DOUBLE PRECISIONfor dspsvx

COMPLEXfor cspsvx

DOUBLE COMPLEXfor zspsvx .
Arrays:ap(*) , afp (*) , b(ldb ,*) , work (*) .

4-232

4 Intel® Math Kernel Library Reference Manual

The arrayap contains the upper or lower triangle of the
symmetric matrix A inpacked storage(seeMatrix
Storage Schemes).

The arrayafp is an input argument iffact = 'F' . It
contains the block diagonal matrixD and the multipliers
used to obtain the factorU or L from the factorization
A = U D UT or A = L D LT as computed by?sptrf, in

the same storage format asA.
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
work (*) is a workspace array.
The dimension of arraysap andafp must be at least
max(1,n(n+1)/2); the second dimension ofb must be at
least max(1,nrhs); the dimension ofwork must be at
least max(1, 3* n) for real flavors and max(1, 2* n) for
complex flavors.

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The arrayipiv is an input argument iffact = 'F' .
It contains details of the interchanges and the block
structure ofD, as determined by?sptrf.
If ipiv (i) = k > 0, thendii is a 1-by-1 diagonal block,
and thei th row and column ofA was interchanged with
thek th row and column.

If uplo = 'U' andipiv (i) =ipiv (i -1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi -1 ,
and (i -1) th row and column ofA was interchanged
with themth row and column.
If uplo = 'L' andipiv (i) =ipiv (i +1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi +1,
and (i +1) th row and column ofA was interchanged
with themth row and column.

ldx INTEGER. The leading dimension of the output arrayx ;
ldx ≥ max(1,n).

LAPACK Routines: Linear Equations4

4-233

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n); used
in real flavors only.

rwork REAL for cspsvx ;
DOUBLE PRECISIONfor zspsvx .
Workspace array,DIMENSION at least max(1,n); used
in complex flavors only.

Output Parameters

x REALfor sspsvx

DOUBLE PRECISIONfor dspsvx

COMPLEXfor cspsvx

DOUBLE COMPLEXfor zspsvx .
Array, DIMENSION (ldx, *) .

If info = 0 or info = n+1, the arrayx contains the
solution matrixX to the system of equations. The
second dimension ofx must be at least max(1,nrhs).

afp, ipiv These arrays are output arguments iffact = 'N' .
See the description ofafp, ipiv in Input Arguments
section.

rcond REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
An estimate of the reciprocal condition number of the
matrixA. If rcond is less than the machine precision (in
particular, ifrcond = 0), the matrix is singular to
working precision. This condition is indicated by a
return code ofinfo > 0.

ferr, berr REALfor single precision flavors.
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , andi ≤ n, thendii is exactly zero. The
factorization has been completed, but the block diagonal

4-234

4 Intel® Math Kernel Library Reference Manual

matrix D is exactly singular, so the solution and error
bounds could not be computed;rcond = 0 is returned.
If info = i , andi = n +1, thenD is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value ofrcond

would suggest.

LAPACK Routines: Linear Equations4

4-235

?hpsvx
Uses the diagonal pivoting factorization to
compute the solution to the system of linear
equations with a Hermitian matrix A stored in
packed format, and provides error bounds on
the solution.

call chpsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

call zhpsvx (fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,
rcond, ferr, berr, work, rwork, info)

Discussion

This routine uses the diagonal pivoting factorization to compute the solution
to a complex system of linear equationsAX = B, where A is a n-by-n
Hermitian matrix stored in packed format, the columns of matrixB are
individual right-hand sides, and the columns ofX are the corresponding
solutions.

Error bounds on the solution and a condition estimate are also provided.

The routine?hpsvx performs the following steps:

1. If fact = 'N', the diagonal pivoting method is used to factor the matrix A.
The form of the factorization isA = U D UH or A = L D LH, where U (or L)
is a product of permutation and unit upper (lower) triangular matrices, and
D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

2. If somedi,i = 0, so thatD is exactly singular, then the routine returns
with info = i . Otherwise, the factored form ofA is used to estimate the
condition number of the matrixA. If the reciprocal of the condition number
is less than machine precision,info = n + 1 is returned as a warning, but
the routine still goes on to solve forX and compute error bounds as
described below.

3. The system of equations is solved forX using the factored form ofA.

4. Iterative refinement is applied to improve the computed solution matrix
and calculate error bounds and backward error estimates for it.

4-236

4 Intel® Math Kernel Library Reference Manual

Input Parameters

fact CHARACTER*1. Must be'F' or 'N' .

Specifies whether or not the factored form of the matrix
A has been supplied on entry.

If fact = 'F' : on entry,afp andipiv contain the
factored form ofA. Arraysap, afp , andipiv will not
be modified.

If fact = 'N' , the matrixA will be copied toafp and
factored.

uplo CHARACTER*1. Must be'U' or 'L' .
Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arrayap stores the upper triangular
part of the Hermitian matrixA, and A is factored
asUDUH.
If uplo = 'L' , the arrayap stores the lower triangular
part of the Hermitian matrixA; A is factored asLDLH.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

ap,afp,b,work COMPLEXfor chpsvx

DOUBLE COMPLEXfor zhpsvx .
Arrays:ap(*) , afp (*) , b(ldb ,*) , work (*) .

The arrayap contains the upper or lower triangle of the
Hermitian matrix A inpacked storage(seeMatrix
Storage Schemes).

The arrayafp is an input argument iffact = 'F' . It
contains the block diagonal matrixD and the multipliers
used to obtain the factorU or L from the factorization
A = U D UH or A = L D LH as computed by?hptrf, in

the same storage format asA.
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
work (*) is a workspace array.

LAPACK Routines: Linear Equations4

4-237

The dimension of arraysap andafp must be at least
max(1,n(n+1)/2); the second dimension ofb must be at
least max(1,nrhs); the dimension ofwork must be at
least max(1, 2* n) .

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
The arrayipiv is an input argument iffact = 'F' .
It contains details of the interchanges and the block
structure ofD, as determined by?hptrf.
If ipiv (i) = k > 0, thendii is a 1-by-1 diagonal block,
and thei th row and column ofA was interchanged with
thek th row and column.

If uplo = 'U' andipiv (i) =ipiv (i -1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi -1 ,
and (i -1) th row and column ofA was interchanged
with themth row and column.
If uplo = 'L' andipiv (i) =ipiv (i +1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi +1,
and (i +1) th row and column ofA was interchanged
with themth row and column.

ldx INTEGER. The leading dimension of the output arrayx ;
ldx ≥ max(1,n).

rwork REAL for chpsvx ;
DOUBLE PRECISIONfor zhpsvx .
Workspace array,DIMENSION at least max(1,n).

Output Parameters

x COMPLEXfor chpsvx

DOUBLE COMPLEXfor zhpsvx .
Array, DIMENSION (ldx, *) .

If info = 0 or info = n+1, the arrayx contains the
solution matrixX to the system of equations. The
second dimension ofx must be at least max(1,nrhs).

4-238

4 Intel® Math Kernel Library Reference Manual

afp, ipiv These arrays are output arguments iffact = 'N' .
See the description ofafp, ipiv in Input Arguments
section.

rcond REAL for chpsvx ;
DOUBLE PRECISIONfor zhpsvx .
An estimate of the reciprocal condition number of the
matrixA. If rcond is less than the machine precision (in
particular, ifrcond = 0), the matrix is singular to
working precision. This condition is indicated by a
return code ofinfo > 0.

ferr, berr REAL for chpsvx ;
DOUBLE PRECISIONfor zhpsvx .
Arrays,DIMENSIONat least max(1,nrhs). Contain the
component-wise forward and relative backward errors,
respectively, for each solution vector.

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , andi ≤ n, thendii is exactly zero. The
factorization has been completed, but the block diagonal
matrix D is exactly singular, so the solution and error
bounds could not be computed;rcond = 0 is returned.
If info = i , andi = n +1, thenD is nonsingular, but
rcond is less than machine precision, meaning that the
matrix is singular to working precision. Nevertheless,
the solution and error bounds are computed because
there are a number of situations where the computed
solution can be more accurate than the value ofrcond

would suggest.

LAPACK Routines: Linear Equations4

4-239

?hpsv
Computes the solution to the system of
linear equations with a Hermitian
matrix A stored in packed format, and
multiple right-hand sides.

call chpsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

call zhpsv (uplo, n, nrhs, ap, ipiv, b, ldb, info)

Discussion

This routine solves forX the system of linear equationsAX= B, where A is
ann-by-n Hermitian matrix stored in packed format, the columns of matrix
B are individual right-hand sides, and the columns ofX are the
corresponding solutions.

The diagonal pivoting method is used to factorA as A = U D UH or
A = L D LH , whereU (or L) is a product of permutation and unit upper
(lower) triangular matrices, andD is Hermitian and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.

The factored form ofA is then used to solve the system of equationsAX = B.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Indicates whether the upper or lower triangular part ofA
is stored and howA is factored:
If uplo = 'U' , the arrayap stores the upper triangular
part of the matrixA, and A is factored asUDUH.
If uplo = 'L' , the arrayap stores the lower triangular
part of the matrixA; A is factored asLDLH.

n INTEGER. The order of matrixA (n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

4-240

4 Intel® Math Kernel Library Reference Manual

ap, b COMPLEXfor chpsv

DOUBLE COMPLEXfor zhpsv .
Arrays:ap(*) , b(ldb ,*)

The dimension ofap must be at least max(1,n(n+1)/2).
The arrayap contains the factorU or L, as specified by
uplo , in packed storage(seeMatrix Storage Schemes).
The arrayb contains the matrixB whose columns are
the right-hand sides for the systems of equations.
The second dimension ofb must be at least
max(1,nrhs).

ldb INTEGER. The first dimension ofb; ldb ≥ max(1,n).

Output Parameters
ap The block-diagonal matrixD and the multipliers used to

obtain the factorU (or L) from the factorization ofA as
computed by?hptrf, stored as a packed triangular matrix
in the same storage format asA.

b If info = 0, b is overwritten by the solution matrixX.

ipiv INTEGER.
Array, DIMENSIONat least max(1,n).
Contains details of the interchanges and the block
structure ofD, as determined by?hptrf.
If ipiv (i) = k > 0, thendii is a 1-by-1 block, and the
i th row and column ofA was interchanged with thek th
row and column.

If uplo = 'U' andipiv (i) =ipiv (i -1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi -1 ,
and (i -1) th row and column ofA was interchanged
with themth row and column.

If uplo = 'L' andipiv (i) =ipiv (i +1) = - m< 0,
thenD has a 2-by-2 block in rows/columnsi andi +1,
and (i +1) th row and column ofA was interchanged
with themth row and column.

LAPACK Routines: Linear Equations4

4-241

info INTEGER. If info =0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , dii is 0. The factorization has been
completed, butD is exactly singular, so the solution
could not be computed.

5-1

LAPACK Routines:
Least Squares and
Eigenvalue Problems 5

This chapter describes the Math Kernel Library implementation of routines
from the LAPACK package that are used for solving linear least-squares
problems, eigenvalue and singular value problems, as well as performing a
number of related computational tasks.

Sections in this chapter include descriptions of LAPACKcomputational
routinesanddriver routines.

For full reference on LAPACK routines and related information see [LUG].

Least-Squares Problems. A typical least-squares problemis as follows:
given a matrixA and a vectorb, find the vectorx that minimizes the sum of
squaresΣi ((Ax)i - bi)

2 or, equivalently, find the vectorx that minimizes the
2-norm||Ax − b||2.

In the most usual case,A is anm by n matrix with m ≥ n and rank(A) = n.
This problem is also referred to as finding theleast-squares solutionto an
overdeterminedsystem of linear equations (here we have more equations
than unknowns). To solve this problem, you can use theQRfactorization of
the matrix A (seeQR Factorizationon page 5-6).

If m < n and rank(A) = m, there exist an infinite number of solutionsx which
exactly satisfyAx = b, and thus minimize the norm||Ax − b||2. In this case it
is often useful to find the unique solution that minimizes||x||2. This problem
is referred to as finding theminimum-norm solutionto anunderdetermined
system of linear equations (here we have more unknowns than equations).
To solve this problem, you can use theLQ factorization of the matrix A (see
LQ Factorizationon page 5-7).

5-2

5 Intel® Math Kernel Library Reference Manual

In the general case you may have arank-deficient least-squares problem,
with rank(A) < min(m, n): find theminimum-norm least-squares solution
that minimizes both||x||2 and||Ax − b||2. In this case (or when the rank of A
is in doubt) you can use theQRfactorization with pivoting orsingular value
decomposition(seepage 5-74).

Eigenvalue Problems (from Germaneigen“own”) are stated as follows:
given a matrixA, find theeigenvaluesλ and the correspondingeigenvectors
z that satisfy the equation

Az= λz (right eigenvectorsz)

or the equation
zHA = λzH (left eigenvectorsz).

If A is a real symmetric or complex Hermitian matrix, the above two
equations are equivalent, and the problem is called asymmetriceigenvalue
problem. Routines for solving this type of problems are described in the
sectionSymmetric Eigenvalue Problems(seepage 5-101).

Routines for solving eigenvalue problems with nonsymmetric or
non-Hermitian matrices are described in the sectionNonsymmetric
Eigenvalue Problems(seepage 5-174).

The library also includes routines that handlegeneralized symmetric-
definite eigenvalue problems: find the eigenvaluesλ and the corresponding
eigenvectorsx that satisfy one of the following equations:

Az= λBz, ABz= λz, or BAz= λz

whereA is symmetric or Hermitian, andB is symmetric positive-definite or
Hermitian positive-definite. Routines for reducing these problems to
standard symmetric eigenvalue problems are described in the section
Generalized Symmetric-Definite Eigenvalue Problems(seepage 5-157).

* * *

To solve a particular problem, you usually call several computational
routines. Sometimes you need to combine the routines of this chapter with
other LAPACK routines described in Chapter 4 as well as with BLAS
routines (Chapter 2).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-3

For example, to solve a set of least-squares problems minimizing||Ax − b||2
for all columnsb of a given matrixB (whereA andB are real matrices), you
can call?geqrf to form the factorizationA = QR, then call?ormqr to
computeC = QHB, and finally call the BLAS routine?trsm to solve forX
the system of equationsRX= C.

Another way is to call an appropriate driver routine that performs several
tasks in one call. For example, to solve the least-squares problem the driver
routine?gels can be used.

5-4

5 Intel® Math Kernel Library Reference Manual

Routine Naming Conventions
For each routine in this chapter, you can use the LAPACK name.

LAPACK names have the structurexyyzzz , which is described below.

The initial letterx indicates the data type:
s real, single precision c complex, single precision
d real, double precision z complex, double precision

The second and third lettersyy indicate the matrix type and storage scheme:
bd bidiagonal matrix
ge general matrix
gb general band matrix
hs upper Hessenberg matrix
or (real) orthogonal matrix
op (real) orthogonal matrix (packed storage)
un (complex) unitary matrix
up (complex) unitary matrix (packed storage)
pt symmetric or Hermitian positive-definite tridiagonal matrix
sy symmetric matrix
sp symmetric matrix (packed storage)
sb (real) symmetric band matrix
st (real) symmetric tridiagonal matrix
he Hermitian matrix
hp Hermitian matrix (packed storage)
hb (complex) Hermitian band matrix
tr triangular or quasi-triangular matrix.

The last three letterszzz indicate the computation performed, for example:
qrf form theQR factorization
lqf form theLQ factorization.

Thus, the routinesgeqrf forms theQRfactorization of general real
matrices in single precision; the corresponding routine for complex matrices
is cgeqrf .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-5

Matrix Storage Schemes
LAPACK routines use the following matrix storage schemes:

• Full storage: a matrixA is stored in a two-dimensional arraya, with the
matrix elementaij stored in the array elementa(i , j) .

• Packed storagescheme allows you to store symmetric, Hermitian, or
triangular matrices more compactly: the upper or lower triangle of the
matrix is packed by columns in a one-dimensional array.

• Band storage: anmby n band matrix withkl sub-diagonals andku
super-diagonals is stored compactly in a two-dimensional arrayab
with kl +ku +1 rows andn columns. Columns of the matrix are stored
in the corresponding columns of the array, anddiagonalsof the matrix
are stored in rows of the array.

In Chapters 4 and 5, arrays that hold matrices in packed storage have names
ending inp; arrays with matrices in band storage have names ending inb.

For more information on matrix storage schemes, seeMatrix Argumentsin
Appendix A.

Mathematical Notation
In addition to the mathematical notation used in previous chapters,
descriptions of routines in this chapter use the following notation:

λi Eigenvaluesof the matrixA (for the definition of
eigenvalues, seeEigenvalue Problemson page 5-2).

σi Singular valuesof the matrixA. They are equal to
square roots of the eigenvalues ofAHA. (For more
information, seeSingular Value Decomposition).

||x||2 The2-normof the vectorx: ||x||2 = (Σi |xi|
2)1/2 = ||x||E .

||A||2 The2-norm(or spectral norm) of the matrixA.
||A||2 = maxi σi , ||A||2

2 = max|x|=1(Ax·Ax).

||A||E TheEuclidean normof the matrixA: ||A||E2 = Σi Σj |aij |
2

(for vectors, the Euclidean norm and the 2-norm are
equal:||x||E = ||x||2).

θ(x, y) Theacute angle between vectors xandy:
cosθ(x, y) = |x·y| / (||x||2 ||y||2).

5-6

5 Intel® Math Kernel Library Reference Manual

Computational Routines
In the sections that follow, the descriptions of LAPACK computational
routines are given. These routines perform distinct computational tasks that
can be used for:

Orthogonal Factorizations

Singular Value Decomposition

Symmetric Eigenvalue Problems

Generalized Symmetric-Definite Eigenvalue Problems

Nonsymmetric Eigenvalue Problems

Generalized Nonsymmetric Eigenvalue Problems

Generalized Singular Value Decomposition

See also the respectivedriver routines.

Orthogonal Factorizations

This section describes the LAPACK routines for theQR (RQ)andLQ (QL)
factorization of matrices. Routines for theRZfactorization as well as for
generalizedQRandRQ factorizations are also included.

QR Factorization. Assume thatA is anm by n matrix to be factored.
If m ≥ n, theQR factorization is given by

whereR is ann by n upper triangular matrix with real diagonal elements,
andQ is anm by m orthogonal (or unitary) matrix.

You can use theQR factorization for solving the following least-squares
problem: minimize||Ax − b||2 where A is a full-rankm by n matrix (m ≥ n).
After factoring the matrix, compute the solutionx by solvingRx= (Q1)

T b.

If m < n, theQRfactorization is given by

whereR is trapezoidal,R1 is upper triangular andR2 is rectangular.

The LAPACK routines do not form the matrixQ explicitly. Instead,Q is
represented as a product of min(m, n) elementary reflectors. Routines are
provided to work withQ in this representation.

A Q R
0

 Q1 Q2,() R
0

 = =

A QR Q R1R2()= =

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-7

LQ Factorization of anm by n matrix A is as follows. Ifm ≤ n,

whereL is anm by m lower triangular matrix with real diagonal elements,
andQ is ann by n orthogonal (or unitary) matrix.

If m > n, theLQ factorization is

whereL1 is ann by n lower triangular matrix,L2 is rectangular, andQ is an
n by n orthogonal (or unitary) matrix.

You can use theLQ factorization to find the minimum-norm solution of an
underdetermined system of linear equationsAx = b whereA is anm by n
matrix of rankm (m < n). After factoring the matrix, compute the solution
vectorx as follows: solveLy = b for y, and then computex = (Q1)

H y.

Table 5-1 lists LAPACK routines that perform orthogonal factorization of
matrices.

Table 5-1 Computational Routines for Orthogonal Factorization

Matrix type, factorization
Factorize
without pivoting

Factorize
with pivoting

Generate
matrix Q

Apply
matrix Q

general matrices,
QR factorization

?geqrf ?geqpf
?geqp3

?orgqr
?ungqr

?ormqr
?unmqr

general matrices,
RQ factorization

?gerqf ?orgrq
?ungrq

?ormrq
?unmrq

general matrices,
LQ factorization

?gelqf ?orglq
?unglq

?ormlq
?unmlq

general matrices,
QL factorization

?geqlf ?orgql
?ungql

?ormql
?unmql

trapezoidal matrices,
RZ factorization

?tzrzf ?ormrz
?unmrz

pair of matrices, generalized
QR factorization

?ggqrf

pair of matrices, generalized
RQ factorization

?ggrqf

A L 0,()Q L 0,() Q1

Q2
 LQ1= = =

A L1

L2
 Q=

5-8

5 Intel® Math Kernel Library Reference Manual

?geqrf
Computes the QR factorization of a
general m by n matrix.

call sgeqrf (m, n, a, lda, tau, work, lwork, info)

call dgeqrf (m, n, a, lda, tau, work, lwork, info)

call cgeqrf (m, n, a, lda, tau, work, lwork, info)

call zgeqrf (m, n, a, lda, tau, work, lwork, info)

Discussion

The routine forms theQR factorization of a generalmby n matrix A
(seeOrthogonal Factorizationson page 5-6). No pivoting is performed.

The routine does not form the matrixQ explicitly. Instead,Q is represented
as a product of min(m, n) elementary reflectors. Routines are provided to
work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrixA (m≥ 0).

n INTEGER. The number of columns inA (n ≥ 0).

a, work REALfor sgeqrf

DOUBLE PRECISIONfor dgeqrf

COMPLEXfor cgeqrf

DOUBLE COMPLEXfor zgeqrf .
Arrays:
a(lda, *) contains the matrixA.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array (lwork ≥ n)
SeeApplication notesfor the suggested value oflwork .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-9

Output Parameters

a Overwritten by the factorization data as follows:

If m≥ n, the elements below the diagonal are overwritten
by the details of the unitary matrixQ, and the upper
triangle is overwritten by the corresponding elements of
the upper triangular matrixR.

If m< n, the strictly lower triangular part is overwritten
by the details of the unitary matrixQ, and the remaining
elements are overwritten by the corresponding elements
of themby n upper trapezoidal matrixR.

tau REALfor sgeqrf

DOUBLE PRECISIONfor dgeqrf

COMPLEXfor cgeqrf

DOUBLE COMPLEXfor zgeqrf .
Array, DIMENSIONat least max (1, min(m, n)).
Contains additional information on the matrixQ.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =n* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

The computed factorization is the exact factorization of a matrixA + E,
where||E||2 = O(ε) ||A||2.

5-10

5 Intel® Math Kernel Library Reference Manual

The approximate number of floating-point operations for real flavors is

(4/3)n3 if m= n,

(2/3)n2(3m- n) if m> n,

(2/3)m2(3n- m) if m< n.

The number of operations for complex flavors is 4 times greater.

To solve a set of least-squares problems minimizing||Ax − b||2 for all
columnsb of a given matrixB, you can call the following:

?geqrf (this routine) to factorizeA = QR;

?ormqr to computeC = QTB (for real matrices);

?unmqr to computeC = QHB (for complex matrices);

?trsm(a BLAS routine) to solveRX= C.

(The columns of the computedX are the least-squares solution vectorsx.)

To compute the elements ofQ explicitly, call

?orgqr (for real matrices)

?ungqr (for complex matrices).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-11

?geqpf
Computes the QR factorization of a
general m by n matrix with pivoting.

call sgeqpf (m, n, a, lda, jpvt, tau, work, info)

call dgeqpf (m, n, a, lda, jpvt, tau, work, info)

call cgeqpf (m, n, a, lda, jpvt, tau, work, rwork, info)

call zgeqpf (m, n, a, lda, jpvt, tau, work, rwork, info)

Discussion

This routine is deprecated and has been replaced by routine?geqp3.

The routine?geqpf forms theQRfactorization of a generalmby n matrix
A with column pivoting:AP = QR(seeOrthogonal Factorizationson page
5-6). HereP denotes ann by n permutation matrix.

The routine does not form the matrixQ explicitly. Instead,Q is represented
as a product of min(m, n) elementary reflectors. Routines are provided to
work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrixA (m≥ 0).

n INTEGER. The number of columns inA (n ≥ 0).

a, work REALfor sgeqpf

DOUBLE PRECISIONfor dgeqpf

COMPLEXfor cgeqpf

DOUBLE COMPLEXfor zgeqpf .
Arrays:
a (lda, *) contains the matrixA.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array; must be at least
max(1, 3∗n).

5-12

5 Intel® Math Kernel Library Reference Manual

jpvt INTEGER. Array, DIMENSION at least max(1, n).

On entry, ifjpvt (i) > 0, thei th column ofA is moved
to the beginning ofAP before the computation, and
fixed in place during the computation.
If jpvt (i) = 0, thei th column ofA is a free column
(that is, it may be interchanged during the computation
with any other free column).

rwork REALfor cgeqpf

DOUBLE PRECISIONfor zgeqpf .
A workspace array,DIMENSIONat least max(1, 2* n).

Output Parameters

a Overwritten by the factorization data as follows:

If m≥ n, the elements below the diagonal are overwritten
by the details of the unitary (orthogonal) matrixQ, and
the upper triangle is overwritten by the corresponding
elements of the upper triangular matrixR.

If m< n, the strictly lower triangular part is overwritten
by the details of the matrixQ, and the remaining
elements are overwritten by the corresponding elements
of themby n upper trapezoidal matrixR.

tau REALfor sgeqpf

DOUBLE PRECISIONfor dgeqpf

COMPLEXfor cgeqpf

DOUBLE COMPLEXfor zgeqpf .
Array, DIMENSIONat least max (1, min(m, n)).
Contains additional information on the matrixQ.

jpvt Overwritten by details of the permutation matrixP in the
factorizationAP = QR. More precisely, the columns of
AP are the columns ofA in the following order:
jpvt (1) , jpvt (2) , ... , jpvt (n) .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-13

Application Notes

The computed factorization is the exact factorization of a matrixA + E,
where||E||2 = O(ε) ||A||2.

The approximate number of floating-point operations for real flavors is

(4/3)n3 if m= n,

(2/3)n2(3m- n) if m> n,

(2/3)m2(3n- m) if m< n.

The number of operations for complex flavors is 4 times greater.

To solve a set of least-squares problems minimizing||Ax − b||2 for all
columnsb of a given matrixB, you can call the following:

?geqpf (this routine) to factorizeAP = QR;

?ormqr to computeC = QTB (for real matrices);

?unmqr to computeC = QHB (for complex matrices);

?trsm(a BLAS routine) to solveRX= C.

(The columns of the computedX are the permuted least-squares solution
vectorsx; the output arrayjpvt specifies the permutation order.)

To compute the elements ofQ explicitly, call

?orgqr (for real matrices)

?ungqr (for complex matrices).

5-14

5 Intel® Math Kernel Library Reference Manual

?geqp3
Computes the QR factorization of a
general m by n matrix with column
pivoting using Level 3 BLAS.

call sgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, info)

call dgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, info)

call cgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, rwork, info)

call zgeqp3 (m, n, a, lda, jpvt, tau, work, lwork, rwork, info)

Discussion

The routine forms theQR factorization of a generalmby n matrix A with
column pivoting:AP = QR(seeOrthogonal Factorizationson page 5-6)
using Level 3 BLAS. HereP denotes ann by n permutation matrix.
Use this routine instead of?geqpf for better performance.

The routine does not form the matrixQ explicitly. Instead,Q is represented
as a product of min(m, n) elementary reflectors. Routines are provided to
work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrixA (m≥ 0).

n INTEGER. The number of columns inA (n ≥ 0).

a, work REALfor sgeqp3

DOUBLE PRECISIONfor dgeqp3

COMPLEXfor cgeqp3

DOUBLE COMPLEXfor zgeqp3 .
Arrays:
a (lda, *) contains the matrixA.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-15

lwork INTEGER. The size of thework array; must be at least
max(1, 3∗n+1) for real flavors, and at least max(1, n+1)
for complex flavors.

jpvt INTEGER. Array, DIMENSION at least max(1, n).

On entry, ifjpvt (i) ≠ 0, thei th column ofA is moved
to the beginning ofAP before the computation, and
fixed in place during the computation.
If jpvt (i) = 0, thei th column ofA is a free column
(that is, it may be interchanged during the computation
with any other free column).

rwork REALfor cgeqp3

DOUBLE PRECISIONfor zgeqp3 .
A workspace array,DIMENSIONat least max(1, 2* n).
Used in complex flavors only.

Output Parameters

a Overwritten by the factorization data as follows:

If m≥ n, the elements below the diagonal are overwritten
by the details of the unitary (orthogonal) matrixQ, and
the upper triangle is overwritten by the corresponding
elements of the upper triangular matrixR.

If m< n, the strictly lower triangular part is overwritten
by the details of the matrixQ, and the remaining
elements are overwritten by the corresponding elements
of themby n upper trapezoidal matrixR.

tau REALfor sgeqp3

DOUBLE PRECISIONfor dgeqp3

COMPLEXfor cgeqp3

DOUBLE COMPLEXfor zgeqp3 .
Array, DIMENSIONat least max (1, min(m, n)).
Contains scalar factors of the elementary reflectors for
the matrixQ.

5-16

5 Intel® Math Kernel Library Reference Manual

jpvt Overwritten by details of the permutation matrixP in the
factorizationAP = QR. More precisely, the columns of
AP are the columns ofA in the following order:
jpvt (1) , jpvt (2) , ... , jpvt (n) .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

To solve a set of least-squares problems minimizing||Ax − b||2 for all
columnsb of a given matrixB, you can call the following:

?geqp3 (this routine) to factorizeAP = QR;

?ormqr to computeC = QTB (for real matrices);

?unmqr to computeC = QHB (for complex matrices);

?trsm(a BLAS routine) to solveRX= C.

(The columns of the computedX are the permuted least-squares solution
vectorsx; the output arrayjpvt specifies the permutation order.)

To compute the elements ofQ explicitly, call

?orgqr (for real matrices)

?ungqr (for complex matrices).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-17

?orgqr
Generates the real orthogonal matrix Q of
the QR factorization formed by?geqrf .

call sorgqr (m, n, k, a, lda, tau, work, lwork, info)

call dorgqr (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates the whole or part ofmby morthogonal matrixQ of the
QR factorization formed by the routinessgeqrf /dgeqrf (seepage 5-8) or
sgeqpf /dgeqpf (seepage 5-11). Use this routine after a call to
sgeqrf /dgeqrf or sgeqpf /dgeqpf .

UsuallyQ is determined from theQR factorization of anmby p matrix A
with m≥ p. To compute the whole matrixQ, use:

call ?orgqr (m, m, p, a, lda, tau, work, lwork, info)

To compute the leadingp columns ofQ (which form an orthonormal basis
in the space spanned by the columns ofA):

call ?orgqr (m, p, p, a, lda, tau, work, lwork, info)

To compute the matrixQk of theQRfactorization ofA’s leadingk columns:

call ?orgqr (m, m, k, a, lda, tau, work, lwork, info)

To compute the leadingk columns ofQk (which form an orthonormal basis
in the space spanned byA’s leadingk columns):

call ?orgqr (m, k, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The order of the orthogonal matrixQ (m≥ 0).

n INTEGER. The number of columns ofQ to be computed
(0 ≤ n ≤ m).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ (0 ≤ k ≤ n).

5-18

5 Intel® Math Kernel Library Reference Manual

a, tau, work REALfor sorgqr

DOUBLE PRECISIONfor dorgqr

Arrays:
a(lda, *) andtau (*) are the arrays returned by
sgeqrf / dgeqrf or sgeqpf / dgeqpf .
The second dimension ofa must be at least max(1,n).
The dimension oftau must be at least max(1,k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array (lwork ≥ n)
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten byn leading columns of themby m

orthogonal matrixQ.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =n* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The computedQ differs from an exactly orthogonal matrix by a matrixE
such that||E||2 = O(ε) ||A||2 whereε is the machine precision.

The total number of floating-point operations is approximately
4* m* n* k - 2* (m+ n)* k2 + (4/3)* k3.
If n = k , the number is approximately (2/3)* n2* (3m- n).

The complex counterpart of this routine is?ungqr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-19

?ormqr
Multiplies a real matrix by the orthogonal
matrix Q of the QR factorization formed by
?geqrf or ?geqpf .

call sormqr (side,trans,m , n,k,a,ld a,tau,c,ldc,work,lwork,info)

call dormqr (side,trans,m , n,k,a,ld a,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a real matrixC by Q or QT, whereQ is the orthogonal
matrix Q of theQR factorization formed by the routinessgeqrf /dgeqrf

(seepage 5-8) or sgeqpf /dgeqpf (seepage 5-11).

Depending on the parametersside andtrans , the routine can form one of
the matrix productsQC, QTC, CQ, or CQT (overwriting the result onC).

Input Parameters

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QT is applied toC from the left.
If side ='R' , Q or QT is applied toC from the right.

trans CHARACTER*1. Must be either'N' or 'T' .
If trans ='N' , the routine multipliesC by Q.
If trans ='T' , the routine multipliesC by QT.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ. Constraints:
0 ≤ k ≤ m if side ='L' ;
0 ≤ k ≤ n if side ='R' .

a,work,tau,c REALfor sgeqrf

DOUBLE PRECISIONfor dgeqrf .
Arrays:
a(lda, *) andtau (*) are the arrays returned by

5-20

5 Intel® Math Kernel Library Reference Manual

sgeqrf / dgeqrf or sgeqpf / dgeqpf .
The second dimension ofa must be at least max(1,k).
The dimension oftau must be at least max(1,k).

c(ldc, *) contains the matrixC.
The second dimension ofc must be at least max(1,n)

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa. Constraints:
lda ≥ max(1,m) if side ='L' ;
lda ≥ max(1,n) if side ='R' .

ldc INTEGER. The first dimension ofc . Constraint:
ldc ≥ max(1,m).

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QTC, CQ, or CQT

(as specified byside andtrans).

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = n* blocksize(if side ='L') or
lwork = m* blocksize(if side ='R') whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The complex counterpart of this routine is?unmqr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-21

?ungqr
Generates the complex unitary matrix Q of
the QR factorization formed by?geqrf .

call cungqr (m, n, k, a, lda, tau, work, lwork, info)

call zungqr (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates the whole or part ofmby munitary matrixQ of theQR
factorization formed by the routinescgeqrf /zgeqrf (seepage 5-8) or
cgeqpf /zgeqpf (seepage 5-11). Use this routine after a call to
cgeqrf /zgeqrf or cgeqpf /zgeqpf .

UsuallyQ is determined from theQR factorization of anmby p matrix A
with m≥ p. To compute the whole matrixQ, use:

call ?ungqr (m, m, p, a, lda, tau, work, lwork, info)

To compute the leadingp columns ofQ (which form an orthonormal basis
in the space spanned by the columns ofA):

call ?ungqr (m, p, p, a, lda, tau, work, lwork, info)

To compute the matrixQk of theQRfactorization ofA’s leadingk columns:

call ?ungqr (m, m, k, a, lda, tau, work, lwork, info)

To compute the leadingk columns ofQk (which form an orthonormal basis
in the space spanned byA’s leadingk columns):

call ?ungqr (m, k, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The order of the unitary matrixQ (m≥ 0).

n INTEGER. The number of columns ofQ to be computed
(0 ≤ n ≤ m).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ (0 ≤ k ≤ n).

5-22

5 Intel® Math Kernel Library Reference Manual

a, tau, work COMPLEXfor cungqr

DOUBLE COMPLEXfor zungqr

Arrays:
a(lda, *) andtau (*) are the arrays returned by
cgeqrf /zgeqrf or cgeqpf /zgeqpf .
The second dimension ofa must be at least max(1,n).
The dimension oftau must be at least max(1,k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array (lwork ≥ n)
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten byn leading columns of themby munitary
matrix Q.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =n* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The computedQ differs from an exactly unitary matrix by a matrixE such
that ||E||2 = O(ε) ||A||2 whereε is the machine precision.

The total number of floating-point operations is approximately
16* m* n* k - 8* (m+ n)* k2 + (16/3)* k3.
If n = k , the number is approximately (8/3)* n2* (3m- n).

The real counterpart of this routine is?orgqr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-23

?unmqr
Multiplies a complex matrix by the unitary
matrix Q of the QR factorization formed by
?geqrf .

call cunmqr (side,trans,m , n,k,a,ld a,tau,c,ldc,work,lwork,info)

call zunmqr (side,trans,m , n,k,a,ld a,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a rectangular complex matrixC by Q or QH, whereQ
is the unitary matrixQ of theQRfactorization formed by the routines
cgeqrf /zgeqrf (seepage 5-8) or cgeqpf /zgeqpf (seepage 5-11).

Depending on the parametersside andtrans , the routine can form one of
the matrix productsQC, QHC, CQ, or CQH (overwriting the result onC).

Input Parameters

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QH is applied toC from the left.
If side ='R' , Q or QH is applied toC from the right.

trans CHARACTER*1. Must be either'N' or 'C' .
If trans ='N' , the routine multipliesC by Q.
If trans ='C' , the routine multipliesC by QH.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ. Constraints:
0 ≤ k ≤ m if side ='L' ;
0 ≤ k ≤ n if side ='R' .

a,work,tau,c COMPLEXfor cgeqrf

DOUBLE COMPLEXfor zgeqrf .
Arrays:
a(lda, *) andtau (*) are the arrays returned by

5-24

5 Intel® Math Kernel Library Reference Manual

cgeqrf / zgeqrf or cgeqpf / zgeqpf .
The second dimension ofa must be at least max(1,k).
The dimension oftau must be at least max(1,k).

c(ldc, *) contains the matrixC.
The second dimension ofc must be at least max(1,n)

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa. Constraints:
lda ≥ max(1,m) if side ='L' ;
lda ≥ max(1,n) if side ='R' .

ldc INTEGER. The first dimension ofc . Constraint:
ldc ≥ max(1,m).

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QHC, CQ, or CQH

(as specified byside andtrans).

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = n* blocksize(if side ='L') or
lwork = m* blocksize(if side ='R') whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The real counterpart of this routine is?ormqr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-25

?gelqf
Computes the LQ factorization of a
general m by n matrix.

call sgelqf (m, n, a, lda, tau, work, lwork, info)

call dgelqf (m, n, a, lda, tau, work, lwork, info)

call cgelqf (m, n, a, lda, tau, work, lwork, info)

call zgelqf (m, n, a, lda, tau, work, lwork, info)

Discussion

The routine forms theLQ factorization of a generalmby n matrix A
(seeOrthogonal Factorizationson page 5-6). No pivoting is performed.

The routine does not form the matrixQ explicitly. Instead,Q is represented
as a product of min(m, n) elementary reflectors. Routines are provided to
work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrixA (m≥ 0).

n INTEGER. The number of columns inA (n ≥ 0).

a, work REALfor sgelqf

DOUBLE PRECISIONfor dgelqf

COMPLEXfor cgelqf

DOUBLE COMPLEXfor zgelqf .
Arrays:
a(lda, *) contains the matrixA.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array; at least max(1,m).
SeeApplication notesfor the suggested value oflwork .

5-26

5 Intel® Math Kernel Library Reference Manual

Output Parameters

a Overwritten by the factorization data as follows:

If m≤ n, the elements above the diagonal are overwritten
by the details of the unitary (orthogonal) matrixQ, and
the lower triangle is overwritten by the corresponding
elements of the lower triangular matrixL.

If m> n, the strictly upper triangular part is overwritten
by the details of the matrixQ, and the remaining
elements are overwritten by the corresponding elements
of themby n lower trapezoidal matrixL.

tau REALfor sgelqf

DOUBLE PRECISIONfor dgelqf

COMPLEXfor cgelqf

DOUBLE COMPLEXfor zgelqf .
Array, DIMENSIONat least max(1, min(m, n)).
Contains additional information on the matrixQ.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =m* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

The computed factorization is the exact factorization of a matrixA + E,
where||E||2 = O(ε) ||A||2.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-27

The approximate number of floating-point operations for real flavors is

(4/3)n3 if m= n,

(2/3)n2(3m- n) if m> n,

(2/3)m2(3n- m) if m< n.

The number of operations for complex flavors is 4 times greater.

To find the minimum-norm solution of an underdetermined least-squares
problem minimizing||Ax − b||2 for all columnsb of a given matrixB, you
can call the following:

?gelqf (this routine) to factorizeA = LQ;

?trsm(a BLAS routine) to solveLY = B for Y;

?ormlq to computeX = (Q1)
TY (for real matrices);

?unmlq to computeX = (Q1)
HY (for complex matrices).

(The columns of the computedX are the minimum-norm solution vectorsx.
HereA is anmby n matrix with m< n; Q1 denotes the firstmcolumns ofQ).

To compute the elements ofQ explicitly, call

?orglq (for real matrices)

?unglq (for complex matrices).

5-28

5 Intel® Math Kernel Library Reference Manual

?orglq
Generates the real orthogonal matrix Q of
the LQ factorization formed by?gelqf .

call sorglq (m, n, k, a, lda, tau, work, lwork, info)

call dorglq (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates the whole or part ofn by n orthogonal matrixQ of the
LQ factorization formed by the routinessgelqf /dgelqf (seepage 5-25).
Use this routine after a call tosgelqf /dgelqf .

UsuallyQ is determined from theLQ factorization of anp by n matrix A
with n ≥ p. To compute the whole matrixQ, use:

call ?orglq (n, n, p, a, lda, tau, work, lwork, info)

To compute the leadingp rows ofQ (which form an orthonormal basis in
the space spanned by the rows ofA):

call ?orglq (p, n, p, a, lda, tau, work, lwork, info)

To compute the matrixQk of theLQ factorization ofA’s leadingk rows:

call ?orglq (n, n, k, a, lda, tau, work, lwork, info)

To compute the leadingk rows ofQk (which form an orthonormal basis in
the space spanned byA’s leadingk rows):

call ?orgqr (k, n, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The number of rows ofQ to be computed
(0 ≤ m≤ n).

n INTEGER. The order of the orthogonal matrixQ (n ≥ m).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ (0 ≤ k ≤ m).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-29

a, tau, work REALfor sorglq

DOUBLE PRECISIONfor dorglq

Arrays:
a(lda, *) andtau (*) are the arrays returned by
sgelqf /dgelqf .
The second dimension ofa must be at least max(1,n).
The dimension oftau must be at least max(1,k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array; at least max(1,m).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten bymleading rows of then by n orthogonal
matrix Q.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =m* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The computedQ differs from an exactly orthogonal matrix by a matrixE
such that||E||2 = O(ε) ||A||2 whereε is the machine precision.

The total number of floating-point operations is approximately
4* m* n* k - 2* (m+ n)* k2 + (4/3)* k3.
If m= k , the number is approximately (2/3)* m2* (3n - m).

The complex counterpart of this routine is?unglq.

5-30

5 Intel® Math Kernel Library Reference Manual

?ormlq
Multiplies a real matrix by the orthogonal
matrix Q of the LQ factorization formed by
?gelqf .

call sormlq (side,trans,m , n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormlq (side,trans,m , n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a realm-by-n matrix C by Q or QT, whereQ is the
orthogonal matrixQ of theLQ factorization formed by the routine
sgelqf /dgelqf (seepage 5-25).

Depending on the parametersside andtrans , the routine can form one of
the matrix productsQC, QTC, CQ, or CQT (overwriting the result onC).

Input Parameters

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QT is applied toC from the left.
If side ='R' , Q or QT is applied toC from the right.

trans CHARACTER*1. Must be either'N' or 'T' .
If trans ='N' , the routine multipliesC by Q.
If trans ='T' , the routine multipliesC by QT.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ. Constraints:
0 ≤ k ≤ m if side ='L' ;
0 ≤ k ≤ n if side ='R' .

a,work,tau,c REALfor sormlq

DOUBLE PRECISIONfor dormlq .
Arrays:
a(lda, *) andtau (*) are arrays returned by?gelqf .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-31

The second dimension ofa must be:
at least max(1,m) if side ='L' ;
at least max(1,n) if side ='R' .
The dimension oftau must be at least max(1,k).

c(ldc, *) contains the matrixC.
The second dimension ofc must be at least max(1,n)

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; lda ≥ max(1,k).

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,m).

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QTC, CQ, or CQT

(as specified byside andtrans).

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = n* blocksize(if side ='L') or
lwork = m* blocksize(if side ='R') whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The complex counterpart of this routine is?unmlq.

5-32

5 Intel® Math Kernel Library Reference Manual

?unglq
Generates the complex unitary matrix Q of
the LQ factorization formed by?gelqf .

call cunglq (m, n, k, a, lda, tau, work, lwork, info)

call zunglq (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates the whole or part ofn by n unitary matrixQ of theLQ
factorization formed by the routinescgelqf /zgelqf (seepage 5-25). Use
this routine after a call tocgelqf /zgelqf .

UsuallyQ is determined from theLQ factorization of anp by n matrix A
with n ≥ p. To compute the whole matrixQ, use:

call ?unglq (n, n, p, a, lda, tau, work, lwork, info)

To compute the leadingp rows ofQ (which form an orthonormal basis in
the space spanned by the rows ofA):

call ?unglq (p, n, p, a, lda, tau, work, lwork, info)

To compute the matrixQk of theLQ factorization ofA’s leadingk rows:

call ?unglq (n, n, k, a, lda, tau, work, lwork, info)

To compute the leadingk rows ofQk (which form an orthonormal basis in
the space spanned byA’s leadingk rows):

call ?ungqr (k, n, k, a, lda, tau, work, lwork, info)

Input Parameters

m INTEGER. The number of rows ofQ to be computed
(0 ≤ m≤ n).

n INTEGER. The order of the unitary matrixQ (n ≥ m).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ (0 ≤ k ≤ m).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-33

a, tau, work COMPLEXfor cunglq

DOUBLE COMPLEXfor zunglq

Arrays:
a(lda, *) andtau (*) are the arrays returned by
sgelqf /dgelqf .
The second dimension ofa must be at least max(1,n).
The dimension oftau must be at least max(1,k).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array; at least max(1,m).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten bymleading rows of then by n unitary
matrix Q.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = m* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The computedQ differs from an exactly unitary matrix by a matrixE such
that ||E||2 = O(ε) ||A||2 whereε is the machine precision.

The total number of floating-point operations is approximately
16* m* n* k - 8* (m+ n)* k2 + (16/3)* k3.
If m= k , the number is approximately (8/3)* m2* (3n - m) .

The real counterpart of this routine is?orglq.

5-34

5 Intel® Math Kernel Library Reference Manual

?unmlq
Multiplies a complex matrix by the unitary
matrix Q of the LQ factorization formed by
?gelqf .

call cunmlq (side,trans,m , n,k,a,lda,tau,c,ldc,work,lwork,info)

call zunmlq (side,trans,m , n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a realm-by-n matrix C by Q or QH, whereQ is the
unitary matrixQ of theLQ factorization formed by the routine
cgelqf /zgelqf (seepage 5-25).

Depending on the parametersside andtrans , the routine can form one of
the matrix productsQC, QHC, CQ, or CQH (overwriting the result onC).

Input Parameters

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QH is applied toC from the left.
If side ='R' , Q or QH is applied toC from the right.

trans CHARACTER*1. Must be either'N' or 'C' .
If trans ='N' , the routine multipliesC by Q.
If trans ='C' , the routine multipliesC by QH.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ. Constraints:
0 ≤ k ≤ m if side ='L' ;
0 ≤ k ≤ n if side ='R' .

a,work,tau,c COMPLEXfor cunmlq

DOUBLE COMPLEXfor zunmlq .
Arrays:
a(lda, *) andtau (*) are arrays returned by?gelqf .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-35

The second dimension ofa must be:
at least max(1,m) if side ='L' ;
at least max(1,n) if side ='R' .
The dimension oftau must be at least max(1,k).

c(ldc, *) contains the matrixC.
The second dimension ofc must be at least max(1,n)

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; lda ≥ max(1,k).

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,m).

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QHC, CQ, or CQH

(as specified byside andtrans).

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = n* blocksize(if side ='L') or
lwork = m* blocksize(if side ='R') whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The real counterpart of this routine is?ormlq.

5-36

5 Intel® Math Kernel Library Reference Manual

?geqlf
Computes the QL factorization of a
general m by n matrix.

call sgeqlf (m, n, a, lda, tau, work, lwork, info)

call dgeqlf (m, n, a, lda, tau, work, lwork, info)

call cgeqlf (m, n, a, lda, tau, work, lwork, info)

call zgeqlf (m, n, a, lda, tau, work, lwork, info)

Discussion

The routine forms theQL factorization of a generalm-by-n matrix A.
No pivoting is performed.

The routine does not form the matrixQ explicitly. Instead,Q is represented
as a product of min(m, n) elementary reflectors. Routines are provided to
work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrixA (m≥ 0).

n INTEGER. The number of columns inA (n ≥ 0).

a, work REALfor sgeqlf

DOUBLE PRECISIONfor dgeqlf

COMPLEXfor cgeqlf

DOUBLE COMPLEXfor zgeqlf .
Arrays:
a(lda, *) contains the matrixA.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array; at least max(1,n).
SeeApplication notesfor the suggested value oflwork .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-37

Output Parameters

a Overwritten on exit by the factorization data as follows:

if m≥ n, the lower triangle of the subarray
a(m-n+1:m, 1:n) contains then-by-n lower triangular
matrix L;
if m≤ n, the elements on and below the (n-m)th
superdiagonal contain them-by-n lower trapezoidal
matrix L;
in both cases, the remaining elements, with the array
tau , represent the orthogonal/unitary matrixQ as a
product of elementary reflectors.

tau REALfor sgeqlf

DOUBLE PRECISIONfor dgeqlf

COMPLEXfor cgeqlf

DOUBLE COMPLEXfor zgeqlf .
Array, DIMENSIONat least max(1, min(m, n)).
Contains scalar factors of the elementary reflectors for
the matrixQ.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =n* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.
Related routines include:
?orgql to generate matrix Q (for real matrices);
?ungql to generate matrix Q (for complex matrices);
?ormql to apply matrix Q (for real matrices);
?unmql to apply matrix Q (for complex matrices).

5-38

5 Intel® Math Kernel Library Reference Manual

?orgql
Generates the real matrix Q of the QL
factorization formed by?geqlf .

call sorgql (m, n, k, a, lda, tau, work, lwork, info)

call dorgql (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates anm-by-n real matrixQ with orthonormal columns,
which is defined as the lastn columns of a product ofk elementary
reflectorsHi of order m: Q = Hk ⋅⋅⋅ H2H1 as returned by the routines
sgeqlf /dgeqlf . Use this routine after a call tosgeqlf /dgeqlf .

Input Parameters

m INTEGER. The number of rows of the matrixQ
(m≥ 0).

n INTEGER. The number of columns of the matrixQ
(m≥ n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ (n ≥ k ≥ 0).

a, tau, work REALfor sorgql

DOUBLE PRECISIONfor dorgql

Arrays:a(lda, *) , tau (*) , work (lwork) .

On entry, the (n - k + i)th column ofa mustcontain the
vector whichdefines the elementary reflectorHi, for i =
1,2,...,k , as returned bysgeqlf /dgeqlf in the lastk
columns of its array argumenta;
tau (i) must contain the scalar factor of the elementary
reflectorHi, as returned bysgeqlf /dgeqlf ;

The second dimension ofa must be at least max(1,n).
The dimension oftau must be at least max(1,k).

work (lwork) is a workspace array.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-39

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array; at least max(1,n).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by them-by-n matrix Q.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =n* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The complex counterpart of this routine is?ungql.

5-40

5 Intel® Math Kernel Library Reference Manual

?ungql
Generates the complex matrix Q of the QL
factorization formed by?geqlf .

call cungql (m, n, k, a, lda, tau, work, lwork, info)

call zungql (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates anm-by-n complex matrixQ with orthonormal
columns, which is defined as the lastn columns of a product ofk
elementary reflectorsHi of order m: Q = Hk ⋅⋅⋅ H2 H1 as returned by the
routinescgeqlf /zgeqlf . Use this routine after a call tocgeqlf /zgeqlf .

Input Parameters

m INTEGER. The number of rows of the matrixQ
(m≥ 0).

n INTEGER. The number of columns of the matrixQ
(m≥ n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ (n ≥ k ≥ 0).

a, tau, work COMPLEXfor cungql

DOUBLE COMPLEXfor zungql

Arrays:a(lda, *) , tau (*) , work (lwork) .

On entry, the (n - k + i)th column ofa mustcontain the
vector whichdefines the elementary reflectorHi, for i =
1,2,...,k , as returned bycgeqlf /zgeqlf in the lastk
columns of its array argumenta;
tau (i) must contain the scalar factor of the elementary
reflectorHi, as returned bycgeqlf /zgeqlf ;

The second dimension ofa must be at least max(1,n).
The dimension oftau must be at least max(1,k).

work (lwork) is a workspace array.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-41

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array; at least max(1,n).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by them-by-n matrix Q.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =n* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The real counterpart of this routine is?orgql.

5-42

5 Intel® Math Kernel Library Reference Manual

?ormql
Multiplies a real matrix by the orthogonal
matrix Q of the QL factorization formed by
?geqlf .

call sormql (side,trans,m , n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormql (side,trans,m , n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

This routine multiplies a realm-by-n matrix C by Q or QT, whereQ is the
orthogonal matrixQ of theQL factorization formed by the routine
sgeqlf /dgeqlf .

Depending on the parametersside andtrans , the routine?ormql can
form one of the matrix productsQC, QTC, CQ, or CQT (overwriting the
result overC).

Input Parameters

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QT is applied toC from the left.
If side ='R' , Q or QT is applied toC from the right.

trans CHARACTER*1. Must be either'N' or 'T' .
If trans ='N' , the routine multipliesC by Q.
If trans ='T' , the routine multipliesC by QT.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ. Constraints:
0 ≤ k ≤ m if side ='L' ;
0 ≤ k ≤ n if side ='R' .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-43

a,tau,c,work REALfor sormql

DOUBLE PRECISIONfor dormql .
Arrays:a(lda, *) , tau (*) , c(ldc, *) ,
work (lwork) .

On entry, thei th column ofa mustcontain the vector
which defines the elementary reflectorHi, for i =
1,2,...,k , as returned bysgeqlf /dgeqlf in the lastk
columns of its array argumenta.
The second dimension ofa must be at least max(1,k).

tau (i) must contain the scalar factor of the elementary
reflectorHi, as returned bysgeqlf /dgeqlf .
The dimension oftau must be at least max(1,k).

c(ldc, *) contains them-by-n matrix C.
The second dimension ofc must be at least max(1,n)

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa;

if side ='L' , lda ≥ max(1,m);
if side ='R' , lda ≥ max(1,n) .

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,m).

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QTC, CQ, or CQT

(as specified byside andtrans).

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

5-44

5 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try usinglwork = n* blocksize(if side ='L') or
lwork = m* blocksize(if side ='R') whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The complex counterpart of this routine is?unmql.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-45

?unmql
Multiplies a complex matrix by the unitary
matrix Q of the QL factorization formed by
?geqlf .

call cunmql (side,trans,m , n,k,a,ld a,tau,c,ldc,work,lwork,info)

call zunmql (side,trans,m , n,k,a,ld a,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a complexm-by-n matrix C by Q or QH, whereQ is
the unitary matrixQ of theQL factorization formed by the routine
cgeqlf /zgeqlf .

Depending on the parametersside andtrans , the routine?unmql can
form one of the matrix productsQC, QHC, CQ, or CQH (overwriting the
result overC).

Input Parameters

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QH is applied toC from the left.
If side ='R' , Q or QH is applied toC from the right.

trans CHARACTER*1. Must be either'N' or 'C' .
If trans ='N' , the routine multipliesC by Q.
If trans ='C' , the routine multipliesC by QH.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ. Constraints:
0 ≤ k ≤ m if side ='L' ;
0 ≤ k ≤ n if side ='R' .

5-46

5 Intel® Math Kernel Library Reference Manual

a,tau,c,work COMPLEXfor cunmql

DOUBLE COMPLEXfor zunmql .
Arrays:a(lda, *) , tau (*) , c(ldc, *) ,
work (lwork) .

On entry, thei th column ofa mustcontain the vector
which defines the elementary reflectorHi, for i =
1,2,...,k , as returned bycgeqlf /zgeqlf in the lastk
columns of its array argumenta.
The second dimension ofa must be at least max(1,k).

tau (i) must contain the scalar factor of the elementary
reflectorHi, as returned bycgeqlf /zgeqlf .
The dimension oftau must be at least max(1,k).

c(ldc, *) contains them-by-n matrix C.
The second dimension ofc must be at least max(1,n)

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa;

if side ='L' , lda ≥ max(1,m);
if side ='R' , lda ≥ max(1,n) .

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,m).

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QHC, CQ, or CQH

(as specified byside andtrans).

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-47

Application Notes

For better performance, try usinglwork = n* blocksize(if side ='L') or
lwork = m* blocksize(if side ='R') whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The real counterpart of this routine is?ormql.

5-48

5 Intel® Math Kernel Library Reference Manual

?gerqf
Computes the RQ factorization of a
general m by n matrix.

call sgerqf (m, n, a, lda, tau, work, lwork, info)

call dgerqf (m, n, a, lda, tau, work, lwork, info)

call cgerqf (m, n, a, lda, tau, work, lwork, info)

call zgerqf (m, n, a, lda, tau, work, lwork, info)

Discussion

The routine forms theRQ factorization of a generalm-by-n matrix A.
No pivoting is performed.

The routine does not form the matrixQ explicitly. Instead,Q is represented
as a product of min(m, n) elementary reflectors. Routines are provided to
work with Q in this representation.

Input Parameters

m INTEGER. The number of rows in the matrixA (m≥ 0).

n INTEGER. The number of columns inA (n ≥ 0).

a, work REALfor sgerqf

DOUBLE PRECISIONfor dgerqf

COMPLEXfor cgerqf

DOUBLE COMPLEXfor zgerqf .
Arrays:
a(lda, *) contains them-by-n matrix A.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array;
lwork ≥ max(1,m).
SeeApplication notesfor the suggested value oflwork .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-49

Output Parameters

a Overwritten on exit by the factorization data as follows:
if m≤ n, the upper triangle of the subarray
a(1:m, n-m+1:n) contains them-by-mupper triangular
matrix R;
if m≥ n, the elements on and above the (m-n)th
subdiagonal contain them-by-n upper trapezoidal
matrix R;
in both cases, the remaining elements, with the array
tau , represent the orthogonal/unitary matrixQ as a
product of min(m,n) elementary reflectors.

tau REALfor sgerqf

DOUBLE PRECISIONfor dgerqf

COMPLEXfor cgerqf

DOUBLE COMPLEXfor zgerqf .
Array, DIMENSIONat least max (1, min(m, n)).
Contains scalar factors of the elementary reflectors for
the matrixQ.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =m* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.
Related routines include:
?orgrq to generate matrix Q (for real matrices);
?ungrq to generate matrix Q (for complex matrices);
?ormrq to apply matrix Q (for real matrices);
?unmrq to apply matrix Q (for complex matrices).

5-50

5 Intel® Math Kernel Library Reference Manual

?orgrq
Generates the real matrix Q of the RQ
factorization formed by?gerqf .

call sorgrq (m, n, k, a, lda, tau, work, lwork, info)

call dorgrq (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates anm-by-n real matrixQ with orthonormal rows,
which is defined as the lastmrows of a product ofk elementary reflectorsHi
of order n : Q = H1 H2 ⋅⋅⋅ Hk as returned by the routinessgerqf /dgerqf .
Use this routine after a call tosgerqf /dgerqf .

Input Parameters

m INTEGER. The number of rows of the matrixQ
(m≥ 0).

n INTEGER. The number of columns of the matrixQ
(n ≥ m).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ (m≥ k ≥ 0).

a, tau, work REALfor sorgrq

DOUBLE PRECISIONfor dorgrq

Arrays:a(lda, *) , tau (*) , work (lwork) .

On entry, the (m - k + i)th row of a mustcontain the
vector whichdefines the elementary reflectorHi, for i =
1,2,...,k , as returned bysgerqf /dgerqf in the lastk
rows of its array argumenta;
tau (i) must contain the scalar factor of the elementary
reflectorHi, as returned bysgerqf /dgerqf ;

The second dimension ofa must be at least max(1,n).
The dimension oftau must be at least max(1,k).

work (lwork) is a workspace array.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-51

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array; at least max(1,m).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by them-by-n matrix Q.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =m* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The complex counterpart of this routine is?ungrq.

5-52

5 Intel® Math Kernel Library Reference Manual

?ungrq
Generates the complex matrix Q of the RQ
factorization formed by?gerqf .

call cungrq (m, n, k, a, lda, tau, work, lwork, info)

call zungrq (m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates anm-by-n complex matrixQ with orthonormal rows,
which is defined as the lastmrows of a product ofk elementary reflectorsHi
of order n : Q = H1

H H2
H ⋅⋅⋅ Hk

H as returned by the routines
sgerqf /dgerqf . Use this routine after a call tosgerqf /dgerqf .

Input Parameters

m INTEGER. The number of rows of the matrixQ
(m≥ 0).

n INTEGER. The number of columns of the matrixQ
(n ≥ m).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ (m≥ k ≥ 0).

a, tau, work REALfor cungrq

DOUBLE PRECISIONfor zungrq

Arrays:a(lda, *) , tau (*) , work (lwork) .

On entry, the (m - k + i)th row of a mustcontain the
vector whichdefines the elementary reflectorHi, for i =
1,2,...,k , as returned bysgerqf /dgerqf in the lastk
rows of its array argumenta;
tau (i) must contain the scalar factor of the elementary
reflectorHi, as returned bysgerqf /dgerqf ;

The second dimension ofa must be at least max(1,n).
The dimension oftau must be at least max(1,k).

work (lwork) is a workspace array.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-53

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array; at least max(1,m).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by them-by-n matrix Q.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =m* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The real counterpart of this routine is?orgrq.

5-54

5 Intel® Math Kernel Library Reference Manual

?ormrq
Multiplies a real matrix by the orthogonal
matrix Q of the RQ factorization formed by
?gerqf .

call sormrq (side,trans,m , n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormrq (side,trans,m , n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a realm-by-n matrix C by Q or QT, whereQ is the
real orthogonal matrix defined as a product ofk elementary reflectorsHi :
Q = H1 H2 ⋅⋅⋅ Hk as returned by theRQ factorization routine
sgerqf /dgerqf .

Depending on the parametersside andtrans , the routine can form one of
the matrix productsQC, QTC, CQ, or CQT (overwriting the result overC).

Input Parameters

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QT is applied toC from the left.
If side ='R' , Q or QT is applied toC from the right.

trans CHARACTER*1. Must be either'N' or 'T' .
If trans ='N' , the routine multipliesC by Q.
If trans ='T' , the routine multipliesC by QT.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ. Constraints:
0 ≤ k ≤ m, if side ='L' ;
0 ≤ k ≤ n , if side ='R' .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-55

a,tau,c,work REALfor sormrq

DOUBLE PRECISIONfor dormrq .
Arrays:a(lda, *) , tau (*) , c(ldc, *) ,
work (lwork) .

On entry, thei th row of a mustcontain the vector which
defines the elementary reflectorHi, for i = 1,2,...,k , as
returned bysgerqf /dgerqf in the lastk rows of its
array argumenta.
The second dimension ofa must be at least max(1,m) if
side ='L' , and at least max(1,n) if side ='R' .

tau (i) must contain the scalar factor of the elementary
reflectorHi, as returned bysgerqf /dgerqf .
The dimension oftau must be at least max(1,k).

c(ldc, *) contains them-by-n matrix C.
The second dimension ofc must be at least max(1,n)

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; lda ≥ max(1,k) .

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,m).

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QTC, CQ, or CQT

(as specified byside andtrans).

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

5-56

5 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try usinglwork = n* blocksize(if side ='L') or
lwork = m* blocksize(if side ='R') whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The complex counterpart of this routine is?unmrq.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-57

?unmrq
Multiplies a complex matrix by the unitary
matrix Q of the RQ factorization formed by
?gerqf .

call cunmrq (side,trans,m , n,k,a,ld a,tau,c,ldc,work,lwork,info)

call zunmrq (side,trans,m , n,k,a,ld a,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a complexm-by-n matrix C by Q or QH, whereQ is
the complex unitary matrix defined as a product ofk elementary reflectors
Hi : Q = H1

H H2
H ⋅⋅⋅ Hk

H as returned by theRQ factorization routine
cgerqf /zgerqf .

Depending on the parametersside andtrans , the routine can form one of
the matrix productsQC, QHC, CQ, or CQH (overwriting the result overC).

Input Parameters

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QH is applied toC from the left.
If side ='R' , Q or QH is applied toC from the right.

trans CHARACTER*1. Must be either'N' or 'C' .
If trans ='N' , the routine multipliesC by Q.
If trans ='C' , the routine multipliesC by QH.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ. Constraints:
0 ≤ k ≤ m, if side ='L' ;
0 ≤ k ≤ n , if side ='R' .

5-58

5 Intel® Math Kernel Library Reference Manual

a,tau,c,work COMPLEXfor cunmrq

DOUBLE COMPLEXfor zunmrq .
Arrays:a(lda, *) , tau (*) , c(ldc, *) ,
work (lwork) .

On entry, thei th row of a mustcontain the vector which
defines the elementary reflectorHi, for i = 1,2,...,k , as
returned bycgerqf /zgerqf in the lastk rows of its
array argumenta.
The second dimension ofa must be at least max(1,m) if
side ='L' , and at least max(1,n) if side ='R' .

tau (i) must contain the scalar factor of the elementary
reflectorHi, as returned bycgerqf /zgerqf .
The dimension oftau must be at least max(1,k).

c(ldc, *) contains them-by-n matrix C.
The second dimension ofc must be at least max(1,n)

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; lda ≥ max(1,k) .

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,m).

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QHC, CQ, or CQH

(as specified byside andtrans).

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-59

Application Notes

For better performance, try usinglwork = n* blocksize(if side ='L') or
lwork = m* blocksize(if side ='R') whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The real counterpart of this routine is?ormrq.

5-60

5 Intel® Math Kernel Library Reference Manual

?tzrzf
Reduces the upper trapezoidal matrix A
to upper triangular form.

call stzrzf (m, n, a, lda, tau, work, lwork, info)

call dtzrzf (m, n, a, lda, tau, work, lwork, info)

call ctzrzf (m, n, a, lda, tau, work, lwork, info)

call ztzrzf (m, n, a, lda, tau, work, lwork, info)

Discussion

This routine reduces them-by-n (m ≤ n) real/complex upper trapezoidal
matrix A to upper triangular form by means of orthogonal/unitary
transformations. The upper trapezoidal matrixA is factored as

A = (R 0) * Z,

whereZ is ann-by-n orthogonal/unitary matrix and R is anm-by-mupper
triangular matrix.

Input Parameters

m INTEGER. The number of rows in the matrixA (m≥ 0).

n INTEGER. The number of columns inA (n ≥ m).

a, work REALfor stzrzf

DOUBLE PRECISIONfor dtzrzf

COMPLEXfor ctzrzf

DOUBLE COMPLEXfor ztzrzf .
Arrays:a(lda, *), work (lwork).

The leadingm-by-n upper trapezoidal part of the arraya

contains the matrixA to be factorized.
The second dimension ofa must be at least max(1,n).

work is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The size of thework array;

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-61

lwork ≥ max(1,m).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten on exit by the factorization data as follows:

the leadingm-by-mupper triangular part ofa contains
the upper triangular matrixR, and elementsm +1 ton of
the firstmrows ofa, with the arraytau , represent the
orthogonal matrixZ as a product ofmelementary
reflectors.

tau REALfor stzrzf

DOUBLE PRECISIONfor dtzrzf

COMPLEXfor ctzrzf

DOUBLE COMPLEXfor ztzrzf .
Array, DIMENSIONat least max (1,m).
Contains scalar factors of the elementary reflectors for
the matrixZ.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =m* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm.
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.
Related routines include:

?ormrz to apply matrix Q (for real matrices);

?unmrz to apply matrix Q (for complex matrices).

5-62

5 Intel® Math Kernel Library Reference Manual

?ormrz
Multiplies a real matrix by the orthogonal
matrix defined from the factorization
formed by?tzrzf .

call sormrz (side,trans,m , n,k,l,a,lda,tau,c,ldc,work,lwork,info)

call dormrz (side,trans,m , n,k,l,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a realm-by-n matrix C by Q or QT, whereQ is the
real orthogonal matrix defined as a product ofk elementary reflectorsHi :
Q = H1 H2 ⋅⋅⋅ Hk as returned by the factorization routinestzrzf /dtzrzf .

Depending on the parametersside andtrans , the routine can form one of
the matrix productsQC, QTC, CQ, or CQT (overwriting the result overC).

The matrixQ is of ordermif side ='L' and of ordern if side ='R' .

Input Parameters

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QT is applied toC from the left.
If side ='R' , Q or QT is applied toC from the right.

trans CHARACTER*1. Must be either'N' or 'T' .
If trans ='N' , the routine multipliesC by Q.
If trans ='T' , the routine multipliesC by QT.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ. Constraints:
0 ≤ k ≤ m, if side ='L' ;
0 ≤ k ≤ n , if side ='R' .

l INTEGER.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-63

The number of columns of the matrixA containing the
meaningful part of the Householder reflectors.
Constraints:
0 ≤ l ≤ m, if side ='L' ;
0 ≤ l ≤ n , if side ='R' .

a,tau,c,work REALfor sormrz

DOUBLE PRECISIONfor dormrz .
Arrays:a(lda, *) , tau (*) , c(ldc, *) ,
work (lwork) .

On entry, thei th row of a mustcontain the vector which
defines the elementary reflectorHi, for i = 1,2,...,k , as
returned bystzrzf /dtzrzf in the lastk rows of its
array argumenta.
The second dimension ofa must be at least max(1,m) if
side ='L' , and at least max(1,n) if side ='R' .

tau (i) must contain the scalar factor of the elementary
reflectorHi, as returned bystzrzf /dtzrzf .
The dimension oftau must be at least max(1,k).

c(ldc, *) contains them-by-n matrix C.
The second dimension ofc must be at least max(1,n)

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; lda ≥ max(1,k) .

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,m).

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QTC, CQ, or CQT

(as specified byside andtrans).

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

5-64

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = n* blocksize(if side ='L') or
lwork = m* blocksize(if side ='R') whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The complex counterpart of this routine is?unmrz.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-65

?unmrz
Multiplies a complex matrix by the unitary
matrix defined from the factorization
formed by?tzrzf .

call cunmrz (side,trans,m , n,k,l,a,lda,tau,c,ldc,work,lwork,info)

call zunmrz (side,trans,m , n,k,l,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a complexm-by-n matrix C by Q or QH, whereQ is
the unitary matrix defined as a product ofk elementary reflectorsHi :
Q = H1

H H2
H ⋅⋅⋅ Hk

H as returned by the factorization routine
ctzrzf /ztzrzf .

Depending on the parametersside andtrans , the routine can form one of
the matrix productsQC, QHC, CQ, or CQH (overwriting the result overC).

The matrixQ is of ordermif side ='L' and of ordern if side ='R' .

Input Parameters

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QH is applied toC from the left.
If side ='R' , Q or QH is applied toC from the right.

trans CHARACTER*1. Must be either'N' or 'C' .
If trans ='N' , the routine multipliesC by Q.
If trans ='C' , the routine multipliesC by QH.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

k INTEGER. The number of elementary reflectors whose
product defines the matrixQ. Constraints:
0 ≤ k ≤ m, if side ='L' ;
0 ≤ k ≤ n , if side ='R' .

l INTEGER.

5-66

5 Intel® Math Kernel Library Reference Manual

The number of columns of the matrixA containing the
meaningful part of the Householder reflectors.
Constraints:
0 ≤ l ≤ m, if side ='L' ;
0 ≤ l ≤ n , if side ='R' .

a,tau,c,work COMPLEXfor cunmrz

DOUBLE COMPLEXfor zunmrz .
Arrays:a(lda, *) , tau (*) , c(ldc, *) ,
work (lwork) .

On entry, thei th row of a mustcontain the vector which
defines the elementary reflectorHi, for i = 1,2,...,k , as
returned byctzrzf /ztzrzf in the lastk rows of its
array argumenta.
The second dimension ofa must be at least max(1,m) if
side ='L' , and at least max(1,n) if side ='R' .

tau (i) must contain the scalar factor of the elementary
reflectorHi, as returned byctzrzf /ztzrzf .
The dimension oftau must be at least max(1,k).

c(ldc, *) contains them-by-n matrix C.
The second dimension ofc must be at least max(1,n)

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; lda ≥ max(1,k) .

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,m).

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QHC, CQ, or CQH

(as specified byside andtrans).

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-67

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = n* blocksize(if side ='L') or
lwork = m* blocksize(if side ='R') whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The real counterpart of this routine is?ormrz.

5-68

5 Intel® Math Kernel Library Reference Manual

?ggqrf
Computes the generalized QR
factorization of two matrices.

call sggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call dggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call cggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

call zggqrf (n, m, p, a, lda, taua, b, ldb, taub, work, lwork, info)

Discussion

The routine forms the generalizedQR factorization of ann-by-mmatrix A
and ann-by-p matrix B as A = Q R, B = Q T Z ,
where Q is ann-by-n orthogonal/unitary matrix,Z is ap-by-p
orthogonal/unitary matrix, andR andT assume one of the forms:

, if n ≥ m

or

, if n < m ,

whereR11 is upper triangular, and

, if n ≤ p , or

, if n > p

whereT12 or T21 is ap-by-p upper triangular matrix.

R m

n m–

=

m

R
11

0

n m n–
R n= R11(R12)

p n– n
T n= 0(T12)

T n p–

p

=

p

T11

T21

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-69

In particular, ifB is square and nonsingular, theGQRfactorization ofA and
B implicitly gives theQR factorization ofB-1A as:

B -1 A = ZH (T -1 R)

Input Parameters

n INTEGER. The number of rows of the matricesA andB
(n ≥ 0).

m INTEGER. The number of columns inA (m≥ 0).

p INTEGER. The number of columns inB (p ≥ 0).

a, b, work REALfor sggqrf

DOUBLE PRECISIONfor dggqrf

COMPLEXfor cggqrf

DOUBLE COMPLEXfor zggqrf .
Arrays:
a(lda, *) contains the matrixA.
The second dimension ofa must be at least max(1,m).

b(ldb, *) contains the matrixB.
The second dimension ofb must be at least max(1,p).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

lwork INTEGER. The size of thework array; must be at least
max(1,n, m, p)
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a, b Overwritten by the factorization data as follows:

on exit, the elements on and above the diagonal of the
arraya contain the min(n,m)-by-mupper trapezoidal
matrix R (R is upper triangular ifn ≥ m); the elements
below the diagonal, with the arraytaua , represent the
orthogonal/unitary matrixQ as a product of min(n,m)
elementary reflectors ;

5-70

5 Intel® Math Kernel Library Reference Manual

if n ≤ p, the upper triangle of the subarray
b(1:n, p-n+1:p) contains then-by-n upper triangular
matrix T;
if n > p, the elements on and above the (n-p)th
subdiagonal contain then-by-p upper trapezoidal
matrix T; the remaining elements, with the arraytaub ,
represent the orthogonal/unitary matrixZ as a product of
elementary reflectors.

taua, taub REALfor sggqrf

DOUBLE PRECISIONfor dggqrf

COMPLEXfor cggqrf

DOUBLE COMPLEXfor zggqrf .
Arrays,DIMENSIONat least max (1, min(n, m)) for taua

and at least max (1, min(n, p)) for taub .
The arraytaua contains the scalar factors of the
elementary reflectors which represent the
orthogonal/unitary matrixQ.

The arraytaub contains the scalar factors of the
elementary reflectors which represent the
orthogonal/unitary matrixZ.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try using
lwork ≥ max(n,m,p)* max(nb1,nb2,nb3),
wherenb1 is the optimal blocksize for theQR factorization of ann-by-m

matrix,nb2 is the optimal blocksize for theRQ factorization of ann-by-p
matrix, andnb3 is the optimal blocksize for a call of?ormqr/?unmqr .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-71

?ggrqf
Computes the generalized RQ
factorization of two matrices.

call sggrqf (m, p, n , a, lda, taua, b, ldb, taub, work, lwork, info)

call dggrqf (m, p, n , a, lda, taua, b, ldb, taub, work, lwork, info)

call cggrqf (m, p, n , a, lda, taua, b, ldb, taub, work, lwork, info)

call zggrqf (m, p, n , a, lda, taua, b, ldb, taub, work, lwork, info)

Discussion

The routine forms the generalizedRQ factorization of anm-by-n matrix A
and anp-by-n matrix B as A = R Q, B = Z T Q ,
where Q is ann-by-n orthogonal/unitary matrix,Z is ap-by-p
orthogonal/unitary matrix, andR andT assume one of the forms:

, if m≤ n ,

or

, if m> n

whereR11 or R21 is upper triangular, and

, if p ≥ n

or

, if p < n ,

n m– m
R m= 0(R12)

R m n–

n

=

n

R11

R21

T n

p n–

=

n

T11

0

p n p–
T p= T11(T12)

5-72

5 Intel® Math Kernel Library Reference Manual

whereT11 is upper triangular.

In particular, ifB is square and nonsingular, theGRQfactorization ofA and
B implicitly gives theRQ factorization of AB-1 as:

AB -1 = (R T-1) ZH

Input Parameters

m INTEGER. The number of rows of the matrixA (m≥ 0).

p INTEGER. The number of rows inB (p ≥ 0).

n INTEGER. The number of columns of the matricesA
andB (n ≥ 0).

a, b, work REALfor sggrqf

DOUBLE PRECISIONfor dggrqf

COMPLEXfor cggrqf

DOUBLE COMPLEXfor zggrqf .
Arrays:
a(lda, *) contains them-by-n matrix A.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains thep-by-n matrix B.
The second dimension ofb must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

ldb INTEGER. The first dimension ofb; at least max(1,p).

lwork INTEGER. The size of thework array; must be at least
max(1,n, m, p)
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a, b Overwritten by the factorization data as follows:

on exit, if m≤ n, the upper triangle of the subarray
a(1:m, n-m+1:n) contains them-by-mupper triangular
matrix R;
if m> n, the elements on and above the (m-n)th
subdiagonal contain them-by-n upper trapezoidal

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-73

matrix R; the remaining elements, with the arraytaua ,
represent the orthogonal/unitary matrixQ as a product
of elementary reflectors;
the elements on and above the diagonal of the arrayb

contain the min(p,n)-by-n upper trapezoidal matrixT (T
is upper triangular ifp ≥ n); the elements below the
diagonal, with the arraytaub , represent the
orthogonal/unitary matrixZ as a product of elementary
reflectors.

taua, taub REALfor sggrqf

DOUBLE PRECISIONfor dggrqf

COMPLEXfor cggrqf

DOUBLE COMPLEXfor zggrqf .
Arrays,DIMENSIONat least max (1, min(m, n)) for taua

and at least max (1, min(p, n)) for taub .
The arraytaua contains the scalar factors of the
elementary reflectors which represent the
orthogonal/unitary matrixQ.

The arraytaub contains the scalar factors of the
elementary reflectors which represent the
orthogonal/unitary matrixZ.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try using
lwork ≥ max(n,m,p)* max(nb1,nb2,nb3),

wherenb1 is the optimal blocksize for theRQ factorization of anm-by-n
matrix,nb2 is the optimal blocksize for theQR factorization of anp-by-n
matrix, andnb3 is the optimal blocksize for a call of?ormrq/?unmrq .
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

5-74

5 Intel® Math Kernel Library Reference Manual

Singular Value Decomposition

This section describes LAPACK routines for computing thesingular value
decomposition(SVD) of a generalm by n matrix A:

A = UΣVH.

In this decomposition,U andV are unitary (for complexA) or orthogonal
(for realA); Σ is anm by n diagonal matrix with real diagonal elementsσi:

σ1 ≥ σ2 ≥ ... ≥ σmin(m, n) ≥ 0.

The diagonal elementsσi aresingular valuesof A. The first min(m, n)
columns of the matricesU andV are, respectively,left andright singular
vectorsof A. The singular values and singular vectors satisfy

Avi = σiui and AHui = σivi

whereui andvi are theith columns ofU andV, respectively.

To find the SVD of a general matrixA, call the LAPACK routine?gebrd or
?gbbrd for reducingA to a bidiagonal matrixB by a unitary (orthogonal)
transformation:A = QBPH. Then call?bdsqr , which forms the SVD of a
bidiagonal matrix:B = U1ΣV1

H.

Thus, the sought-for SVD ofA is given byA = UΣVH = (QU1) Σ (V1
HPH).

Table 5-2 Computational Routines for Singular Value Decomposition (SVD)

Operation Real matrices Complex matrices

Reduce A to a bidiagonal matrix B:
A = QBPH (full storage)

?gebrd ?gebrd

Reduce A to a bidiagonal matrix B:
A = QBPH (band storage)

?gbbrd ?gbbrd

Generate the orthogonal (unitary)
matrix Q or P

?orgbr ?ungbr

Apply the orthogonal (unitary)
matrix Q or P

?ormbr ?unmbr

Form singular value decomposition
of the bidiagonal matrix B:
B = U ΣVH

?bdsqr
?bdsdc

?bdsqr

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-75

Figure 5-1 Decision Tree: Singular Value Decomposition

Figure 5-1 presents a decision tree that helps you choose the right sequence
of routines for SVD, depending on whether you need singular values only or
singular vectors as well, whetherA is real or complex, and so on.

You can use the SVD to find a minimum-norm solution to a (possibly)
rank-deficient least-squares problem of minimizing||Ax− b||2. The effective
rankk of the matrixA can be determined as the number of singular values
which exceed a suitable threshold. The minimum-norm solution is

x = Vk(Σk)−1c

whereΣk is the leadingk by k submatrix ofΣ, the matrixVk consists of the
first k columns ofV = PV1, and the vectorc consists of the firstk elements
of UHb = U1

HQHb.

no

yes

no

no

Is A a complex
matrix?

Is A bidiagonal?

no

Are singular
values only
required?

Are singular
values only
required?

?GEBRD ?BDSQR

?GEBRD ?UNGBR

?BDSQR

?GEBRD

?BDSQR

?GEBRD ?ORGBR

?BDSQR

?BDSQR
yes

yes

yes

no

Is A banded?
?GBBRD

?BDSQR

yes

Is A banded?
no

yes

?GBBRD

?BDSQR

5-76

5 Intel® Math Kernel Library Reference Manual

?gebrd
Reduces a general matrix to bidiagonal
form.

call sgebrd (m, n, a, lda, d, e, tauq, taup, work, lwork, info)

call dgebrd (m, n, a, lda, d, e, tauq, taup, work, lwork, info)

call cgebrd (m, n, a, lda, d, e, tauq, taup, work, lwork, info)

call zgebrd (m, n, a, lda, d, e, tauq, taup, work, lwork, info)

Discussion

The routine reduces a generalmby n matrix A to a bidiagonal matrixB by
an orthogonal (unitary) transformation.

If m≥ n, the reduction is given by

whereB1 is ann by n upper diagonal matrix,Q andP are orthogonal or, for
a complexA, unitary matrices;Q1 consists of the firstn columns ofQ.

If m< n, the reduction is given by

whereB1 is anmby mlower diagonal matrix,Q andP are orthogonal or, for
a complexA, unitary matrices;P1 consists of the firstmrows ofP.

The routine does not form the matricesQ andP explicitly, but represents
them as products of elementary reflectors. Routines are provided to work
with the matricesQ andP in this representation:

If the matrixA is real,

• to computeQ andP explicitly, call ?orgbr.
• to multiply a general matrix byQ or P, call ?ormbr.

If the matrixA is complex,

• to computeQ andP explicitly, call ?ungbr.
• to multiply a general matrix byQ or P, call ?unmbr.

A QBPH Q B1

0
 PH Q1B1PH,= = =

A QBPH Q B10()PH Q1B1P1
H,= = =

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-77

Input Parameters

m INTEGER. The number of rows in the matrixA (m≥ 0).

n INTEGER. The number of columns inA (n ≥ 0).

a, work REALfor sgebrd

DOUBLE PRECISIONfor dgebrd

COMPLEXfor cgebrd

DOUBLE COMPLEXfor zgebrd .

Arrays:
a(lda, *) contains the matrixA.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

lwork INTEGER. The dimension ofwork ; at least max(1,m, n).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a If m≥ n, the diagonal and first super-diagonal ofa are
overwritten by the upper bidiagonal matrixB. Elements
below the diagonal are overwritten by details ofQ, and
the remaining elements are overwritten by details ofP.

If m< n, the diagonal and first sub-diagonal ofa are
overwritten by the lower bidiagonal matrixB. Elements
above the diagonal are overwritten by details ofP, and
the remaining elements are overwritten by details ofQ.

d REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Array, DIMENSIONat least max(1, min(m, n)).
Contains the diagonal elements ofB.

e REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Array, DIMENSIONat least max(1, min(m, n) − 1).
Contains the off-diagonal elements ofB.

5-78

5 Intel® Math Kernel Library Reference Manual

tauq,taup REALfor sgebrd

DOUBLE PRECISIONfor dgebrd

COMPLEXfor cgebrd

DOUBLE COMPLEXfor zgebrd .
Arrays,DIMENSIONat least max (1, min(m, n)).
Contain further details of the matricesQ andP.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = (m+ n)* blocksize, where
blocksizeis a machine-dependent value (typically, 16 to 64) required for
optimum performance of theblocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

The computed matricesQ, B, andP satisfyQBPH = A + E, where
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function ofn, and
ε is the machine precision.

The approximate number of floating-point operations for real flavors is
(4/3)* n2* (3* m− n) for m≥ n,
(4/3)* m2* (3* n − m) for m< n.
The number of operations for complex flavors is four times greater.

If n is much less thanm, it can be more efficient to first form theQR
factorization ofA by calling?geqrfand then reduce the factorR to
bidiagonal form. This requires approximately 2* n2* (m+ n) floating-point
operations.

If mis much less thann, it can be more efficient to first form theLQ
factorization ofA by calling?gelqfand then reduce the factorL to
bidiagonal form. This requires approximately 2* m2* (m+ n) floating-point
operations.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-79

?gbbrd
Reduces a general band matrix to
bidiagonal form.

call sgbbrd (vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, info)

call dgbbrd (vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, info)

call cgbbrd (vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, rwork, info)

call zgbbrd (vect, m, n, ncc, kl, ku, ab, ldab, d, e, q, ldq, pt,
ldpt, c, ldc, work, rwork, info)

Discussion

This routine reduces anmby n band matrixA to upper bidiagonal matrixB:
A = QBPH. Here the matricesQ andP are orthogonal (for realA) or unitary
(for complexA). They are determined as products of Givens rotation
matrices, and may be formed explicitly by the routine if required. The
routine can also update a matrixC as follows:C = QHC.

Input Parameters

vect CHARACTER*1. Must be'N' or 'Q' or 'P' or 'B' .
If vect = 'N' , neitherQ nor PH is generated.
If vect = 'Q' , the routine generates the matrixQ.
If vect = 'P' , the routine generates the matrixPH.
If vect = 'B' , the routine generates bothQ andPH.

m INTEGER. The number of rows in the matrixA (m≥ 0).

n INTEGER. The number of columns inA (n ≥ 0).

ncc INTEGER. The number of columns inC (ncc ≥ 0).

kl INTEGER. The number of sub-diagonals within the
band ofA (kl ≥ 0).

ku INTEGER. The number of super-diagonals within the
band ofA (ku ≥ 0).

5-80

5 Intel® Math Kernel Library Reference Manual

ab,c,work REALfor sgbbrd

DOUBLE PRECISIONfor dgbbrd

COMPLEXfor cgbbrd

DOUBLE COMPLEXfor zgbbrd .
Arrays:
ab(ldab, *) contains the matrixA in band storage
(seeMatrix Storage Schemes).
The second dimension ofa must be at least max(1,n).

c(ldc, *) contains anmby ncc matrix C.
If ncc = 0, the arrayc is not referenced. The second
dimension ofc must be at least max(1,ncc).

work (*) is a workspace array.
The dimension ofwork must be at least 2* max(m, n) for
real flavors, or max(m, n) for complex flavors.

ldab INTEGER. The first dimension of the arrayab

(ldab ≥ kl + ku + 1).

ldq INTEGER. The first dimension of the output arrayq.
ldq ≥ max(1,m) if vect = 'Q' or 'B' ,
ldq ≥ 1 otherwise.

ldpt INTEGER. The first dimension of the output arraypt .
ldpt ≥ max(1,n) if vect = 'P' or 'B' ,
ldpt ≥ 1 otherwise.

ldc INTEGER. The first dimension of the arrayc .
ldc ≥ max(1,m) if ncc > 0; ldc ≥ 1 if ncc = 0.

rwork REALfor cgbbrd

DOUBLE PRECISIONfor zgbbrd .
A workspace array,DIMENSIONat least max(m, n).

Output Parameters

ab Overwritten by values generated during the reduction.

d REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Array, DIMENSIONat least max(1, min(m, n)).
Contains the diagonal elements of the matrixB.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-81

e REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Array, DIMENSIONat least max(1, min(m, n) − 1).
Contains the off-diagonal elements ofB.

q, pt REALfor sgebrd

DOUBLE PRECISIONfor dgebrd

COMPLEXfor cgebrd

DOUBLE COMPLEXfor zgebrd .
Arrays:

q(ldq ,*) contains the outputmby mmatrix Q.
The second dimension ofq must be at least max(1,m).

p(ldpt ,*) contains the outputn by n matrix PH.
The second dimension ofpt must be at least max(1,n).

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed matricesQ, B, andP satisfyQBPH = A + E, where
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function ofn, and
ε is the machine precision.

If m= n, the total number of floating-point operations for real flavors is
approximately the sum of:

6* n2* (kl + ku) if vect = 'N' andncc = 0,

3* n2* ncc * (kl + ku − 1)/ (kl + ku) if C is updated, and

3* n3* (kl + ku − 1)/ (kl + ku) if either Q or PH is generated
(double this if both).

To estimate the number of operations for complex flavors, use the same
formulas with the coefficients 20 and 10 (instead of 6 and 3).

5-82

5 Intel® Math Kernel Library Reference Manual

?orgbr
Generates the real orthogonal matrix Q
or PT determined by?gebrd .

call sorgbr (vect, m, n, k, a, lda, tau, work, lwork, info)

call dorgbr (vect, m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates the whole or part of the orthogonal matricesQ andPT

formed by the routinessgebrd /dgebrd (seepage 5-76). Use this routine
after a call tosgebrd /dgebrd . All valid combinations of arguments are
described inInput parameters. In most cases you’ll need the following:

To compute the wholemby mmatrix Q:
call ?orgbr ('Q', m, m, n, a ...)

(note that the arraya must have at leastmcolumns).

To form then leading columns ofQ if m> n:
call ?orgbr ('Q', m, n, n, a ...)

To compute the wholen by n matrix PT:
call ?orgbr ('P', n, n, m, a ...)

(note that the arraya must have at leastn rows).

To form themleading rows ofPT if m< n:
call ?orgbr ('P', m, n, m, a ...)

Input Parameters

vect CHARACTER*1. Must be'Q' or 'P' .
If vect = 'Q' , the routine generates the matrixQ.
If vect = 'P' , the routine generates the matrixPT.

m INTEGER. The number of required rows ofQ or PT.

n INTEGER. The number of required columns ofQ or PT.

k INTEGER. One of the dimensions ofA in ?gebrd :
If vect = 'Q' , the number of columns inA;
If vect = 'P' , the number of rows inA.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-83

Constraints:m≥ 0, n ≥ 0, k ≥ 0.
For vect ='Q' : k ≤ n ≤ m if m> k , or m= n if m≤ k .
For vect ='P' : k ≤ m≤ n if n > k , or m= n if n ≤ k .

a, work REALfor sorgbr

DOUBLE PRECISIONfor dorgbr .
Arrays:
a(lda, *) is the arraya as returned by?gebrd .
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

tau REALfor sorgbr

DOUBLE PRECISIONfor dorgbr .
Forvect = 'Q' , the arraytauq as returned by?gebrd .
For vect = 'P' , the arraytaup as returned by?gebrd .
The dimension oftau must be at least max(1, min(m,k))
for vect ='Q' , or max(1, min(m, k)) for vect = 'P' .

lwork INTEGER. The size of thework array.
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by the orthogonal matrixQ or PT (or the
leading rows or columns thereof) as specified byvect ,
m, andn.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = min(m, n)* blocksize, where
blocksizeis a machine-dependent value (typically, 16 to 64) required for
optimum performance of theblocked algorithm.

5-84

5 Intel® Math Kernel Library Reference Manual

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

The computed matrixQ differs from an exactly orthogonal matrix by a
matrix E such that||E||2 = O(ε).

The approximate numbers of floating-point operations for the cases listed in
Discussionare as follows:

To form the whole ofQ:

(4/3)n(3m2 - 3m* n + n2) if m> n;

(4/3)m3 if m≤ n.

To form then leading columns ofQ when m> n:

(2/3)n2(3m- n2) if m> n.

To form the whole ofPT:

(4/3)n3 if m≥ n;

(4/3)m(3n2 - 3m* n + m2) if m< n.

To form themleading columns ofPT when m< n:

(2/3)n2(3m- n2) if m> n.

The complex counterpart of this routine is?ungbr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-85

?ormbr
Multiplies an arbitrary real matrix by
the real orthogonal matrix Q or PT

determined by?gebrd .

call sormbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call dormbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

Given an arbitrary real matrixC, this routine forms one of the matrix
productsQC, QTC, CQ, CQT, PC, PTC, CP, or CPT, whereQ andP are
orthogonal matrices computed by a call tosgebrd /dgebrd (seepage 5-76).
The routine overwrites the product onC.

Input Parameters

In the descriptions below,r denotes the order ofQ or PT:
If side ='L' , r = m; if side ='R' , r = n.

vect CHARACTER*1. Must be'Q' or 'P' .
If vect ='Q' , thenQ or QT is applied toC.
If vect ='P' , thenP or PT is applied toC.

side CHARACTER*1. Must be'L' or 'R' .
If side ='L' , multipliers are applied toC from the left.
If side ='R' , they are applied toC from the right.

trans CHARACTER*1. Must be'N' or 'T' .
If trans ='N' , thenQ or P is applied toC.
If trans ='T' , thenQT or PT is applied toC.

m INTEGER. The number of rows inC.

n INTEGER. The number of columns inC.

k INTEGER. One of the dimensions ofA in ?gebrd :
If vect = 'Q' , the number of columns inA;
If vect = 'P' , the number of rows inA.

Constraints:m≥ 0, n ≥ 0, k ≥ 0.

5-86

5 Intel® Math Kernel Library Reference Manual

a, c, work REALfor sormbr

DOUBLE PRECISIONfor dormbr .
Arrays:
a(lda, *) is the arraya as returned by?gebrd .
Its second dimension must be at least max(1, min(r ,k))
for vect = 'Q' , or max(1,r)) for vect = 'P' .

c(ldc, *) holds the matrixC.
Its second dimension must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa. Constraints:
lda ≥ max(1,r) if vect = 'Q' ;
lda ≥ max(1, min(r ,k)) if vect = 'P' .

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,m).

tau REALfor sormbr

DOUBLE PRECISIONfor dormbr .
Array, DIMENSIONat least max (1, min(r , k)).
Forvect = 'Q' , the arraytauq as returned by?gebrd .
For vect = 'P' , the arraytaup as returned by?gebrd .

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QTC, CQ, CQT, PC,
PTC, CP, or CPT, as specified byvect , side , and
trans .

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-87

Application Notes

For better performance, try using
lwork = n* blocksizefor side ='L' , or
lwork = m* blocksizefor side ='R' ,

whereblocksizeis a machine-dependent value (typically, 16 to 64) required
for optimum performance of theblocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

The computed product differs from the exact product by a matrixE such
that ||E||2 = O(ε) ||C||2.

The total number of floating-point operations is approximately

2* n* k(2* m- k) if side ='L' and m≥ k ;

2* m* k(2* n - k) if side ='R' and n ≥ k ;

2* m2* n if side ='L' and m< k ;

2* n2* m if side ='R' and n < k .

The complex counterpart of this routine is?unmbr.

5-88

5 Intel® Math Kernel Library Reference Manual

?ungbr
Generates the complex unitary matrix Q
or PH determined by?gebrd .

call cungbr (vect, m, n, k, a, lda, tau, work, lwork, info)

call zungbr (vect, m, n, k, a, lda, tau, work, lwork, info)

Discussion

The routine generates the whole or part of the unitary matricesQ andPH

formed by the routinescgebrd /zgebrd (seepage 5-76). Use this routine
after a call tocgebrd /zgebrd . All valid combinations of arguments are
described inInput Parameters; in most cases you’ll need the following:

To compute the wholemby mmatrix Q:
call ?ungbr ('Q', m, m, n, a ...)

(note that the arraya must have at leastmcolumns).

To form then leading columns ofQ if m> n:
call ?ungbr ('Q', m, n, n, a ...)

To compute the wholen by n matrix PH:
call ?ungbr ('P', n, n, m, a ...)

(note that the arraya must have at leastn rows).

To form themleading rows ofPH if m< n:
call ?ungbr ('P', m, n, m, a ...)

Input Parameters

vect CHARACTER*1. Must be'Q' or 'P' .
If vect = 'Q' , the routine generates the matrixQ.
If vect = 'P' , the routine generates the matrixPH.

m INTEGER. The number of required rows ofQ or PH.

n INTEGER. The number of required columns ofQ or PH.

k INTEGER. One of the dimensions ofA in ?gebrd :
If vect = 'Q' , the number of columns inA;
If vect = 'P' , the number of rows inA.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-89

Constraints:m≥ 0, n ≥ 0, k ≥ 0.
For vect ='Q' : k ≤ n ≤ m if m> k , or m= n if m≤ k .
For vect ='P' : k ≤ m≤ n if n > k , or m= n if n ≤ k .

a, work COMPLEXfor cungbr

DOUBLE COMPLEXfor zungbr .
Arrays:
a(lda, *) is the arraya as returned by?gebrd .
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

tau COMPLEXfor cungbr

DOUBLE COMPLEXfor zungbr .
Forvect = 'Q' , the arraytauq as returned by?gebrd .
For vect = 'P' , the arraytaup as returned by?gebrd .
The dimension oftau must be at least max(1, min(m,k))
for vect ='Q' , or max(1, min(m, k)) for vect = 'P' .

lwork INTEGER. The size of thework array.
Constraint:lwork ≥ max(1, min(m, n)).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by the orthogonal matrixQ or PT (or the
leading rows or columns thereof) as specified byvect ,
m, andn.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

5-90

5 Intel® Math Kernel Library Reference Manual

Application Notes

For better performance, try usinglwork = min(m, n)* blocksize, where
blocksizeis a machine-dependent value (typically, 16 to 64) required for
optimum performance of theblocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

The computed matrixQ differs from an exactly orthogonal matrix by a
matrix E such that||E||2 = O(ε).

The approximate numbers of floating-point operations for the cases listed in
Discussionare as follows:

To form the whole ofQ:

(16/3)n(3m2 - 3m* n + n2) if m> n;

(16/3)m3 if m≤ n.

To form then leading columns ofQ when m> n:

(8/3)n2(3m- n2) if m> n.

To form the whole ofPT:

(16/3)n3 if m≥ n;

(16/3)m(3n2 - 3m* n + m2) if m< n.

To form themleading columns ofPT when m< n:

(8/3)n2(3m- n2) if m> n.

The real counterpart of this routine is?orgbr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-91

?unmbr
Multiplies an arbitrary complex matrix
by the unitary matrix Q or P determined
by ?gebrd .

call cunmbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

call zunmbr (vect,side,trans,m,n,k,a,lda,tau,c,ldc,work,lwork,info)

Discussion

Given an arbitrary complex matrixC, this routine forms one of the matrix
productsQC, QHC, CQ, CQH, PC, PHC, CP, or CPH, whereQ andP are
orthogonal matrices computed by a call tocgebrd /zgebrd (seepage 5-76).
The routine overwrites the product onC.

Input Parameters

In the descriptions below,r denotes the order ofQ or PH:
If side ='L' , r = m; if side ='R' , r = n.

vect CHARACTER*1. Must be'Q' or 'P' .
If vect ='Q' , thenQ or QH is applied toC.
If vect ='P' , thenP or PH is applied toC.

side CHARACTER*1. Must be'L' or 'R' .
If side ='L' , multipliers are applied toC from the left.
If side ='R' , they are applied toC from the right.

trans CHARACTER*1. Must be'N' or 'C' .
If trans ='N' , thenQ or P is applied toC.
If trans ='C' , thenQH or PH is applied toC.

m INTEGER. The number of rows inC.

n INTEGER. The number of columns inC.

k INTEGER. One of the dimensions ofA in ?gebrd :
If vect = 'Q' , the number of columns inA;
If vect = 'P' , the number of rows inA.

Constraints:m≥ 0, n ≥ 0, k ≥ 0.

5-92

5 Intel® Math Kernel Library Reference Manual

a, c, work COMPLEXfor cunmbr

DOUBLE COMPLEXfor zunmbr .
Arrays:
a(lda, *) is the arraya as returned by?gebrd .
Its second dimension must be at least max(1, min(r ,k))
for vect = 'Q' , or max(1,r)) for vect = 'P' .

c(ldc, *) holds the matrixC.
Its second dimension must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa. Constraints:
lda ≥ max(1,r) if vect = 'Q' ;
lda ≥ max(1, min(r ,k)) if vect = 'P' .

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,m).

tau COMPLEXfor cunmbr

DOUBLE COMPLEXfor zunmbr .
Array, DIMENSIONat least max (1, min(r , k)).
Forvect = 'Q' , the arraytauq as returned by?gebrd .
For vect = 'P' , the arraytaup as returned by?gebrd .

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QHC, CQ, CQH, PC,
PHC, CP, or CPH, as specified byvect , side , and
trans .

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-93

Application Notes

For better performance, try using
lwork = n* blocksizefor side ='L' , or
lwork = m* blocksizefor side ='R' ,

whereblocksizeis a machine-dependent value (typically, 16 to 64) required
for optimum performance of theblocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

The computed product differs from the exact product by a matrixE such
that ||E||2 = O(ε) ||C||2.

The total number of floating-point operations is approximately

8* n* k(2* m- k) if side ='L' and m≥ k ;

8* m* k(2* n - k) if side ='R' and n ≥ k ;

8* m2* n if side ='L' and m< k ;

8* n2* m if side ='R' and n < k .

The real counterpart of this routine is?ormbr.

5-94

5 Intel® Math Kernel Library Reference Manual

?bdsqr
Computes the singular value decomposition
of a general matrix that has been reduced
to bidiagonal form.

call sbdsqr (uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info)

call dbdsqr (uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info)

call cbdsqr (uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info)

call zbdsqr (uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu,
c, ldc, work, info)

Discussion

This routine computes the singular values and, optionally, the right and/or
left singular vectors from theSingular Value Decomposition(SVD) of a real
n-by-n (upper or lower) bidiagonal matrixB using the implicit zero-shift
QRalgorithm. The SVD ofB has the formB = Q * S* PH whereS is the
diagonal matrix of singular values,Q is an orthogonal matrix of left singular
vectors, andP is an orthogonal matrix of right singular vectors. If left
singular vectors are requested, this subroutine actually returnsU * Q instead
of Q, and, if right singular vectors are requested, this subroutine returns
PH * VT instead ofPH, for given real/complex input matricesU andVT.
WhenU andVT are the orthogonal/unitary matrices that reduce a general
matrix A to bidiagonal form:A = U * B * VT, as computed by?gebrd , then

A = (U * Q) * S* (PH * VT)
is the SVD ofA. Optionally, the subroutine may also computeQH * C for a
given real/complex input matrixC.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

If uplo = 'U' , B is an upper bidiagonal matrix.
If uplo = 'L' , B is a lower bidiagonal matrix.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-95

n INTEGER. The order of the matrixB (n ≥ 0).

ncvt INTEGER. The number of columns of the matrixVT,
that is, the number of right singular vectors (ncvt ≥ 0).
Setncvt = 0 if no right singular vectors are required.

nru INTEGER. The number of rows inU, that is, the number
of left singular vectors (nru ≥ 0).
Setnru = 0 if no left singular vectors are required.

ncc INTEGER. The number of columns in the matrixC
used for computing the productQHC (ncc ≥ 0).
Setncc = 0 if no matrixC is supplied.

d, e, work REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Arrays:
d(*) contains the diagonal elements ofB.
The dimension ofd must be at least max(1,n).

e(*) contains the (n- 1) off-diagonal elements ofB.
The dimension ofe must be at least max(1,n).
e(n) is used for workspace.

work (*) is a workspace array.
The dimension ofwork must be at least
max(1, 2* n) if ncvt = nru = ncc = 0;
max(1, 4* (n- 1)) otherwise.

vt, u, c REALfor sbdsqr

DOUBLE PRECISIONfor dbdsqr

COMPLEXfor cbdsqr

DOUBLE COMPLEXfor zbdsqr .
Arrays:
vt (ldvt ,*) contains ann by ncvt matrix VT.
The second dimension ofvt must be at least
max(1,ncvt).
vt is not referenced ifncvt = 0.

u(ldu ,*) contains annru by n unit matrixU.
The second dimension ofu must be at least max(1,n).
u is not referenced ifnru = 0.

5-96

5 Intel® Math Kernel Library Reference Manual

c(ldc ,*) contains the matrixC for computing the
productQH * C. The second dimension ofc must be at
least max(1,ncc). The array is not referenced ifncc = 0.

ldvt INTEGER. The first dimension ofvt . Constraints:
ldvt ≥ max(1,n) if ncvt > 0;
ldvt ≥ 1 if ncvt = 0.

ldu INTEGER. The first dimension ofu. Constraint:
ldu ≥ max(1,nru).

ldc INTEGER. The first dimension ofc . Constraints:
ldc ≥ max(1,n) if ncc > 0;
ldc ≥ 1 otherwise.

Output Parameters

d On exit, if info = 0, overwritten by the singular values
in decreasing order (seeinfo).

e On exit, if info = 0, e is destroyed. See alsoinfo

below.

c Overwritten by the productQH * C.

vt On exit, this array is overwritten byPH * VT.

u On exit, this array is overwritten byU * Q .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the algorithm failed to converge;
i specifies how many off-diagonals did not converge.
In this case,d ande contain on exit the diagonal and
off-diagonal elements, respectively, of a bidiagonal
matrix orthogonally equivalent toB.

Application Notes

Each singular value and singular vector is computed to high relative
accuracy. However, the reduction to bidiagonal form (prior to calling the
routine) may decrease the relative accuracy in the small singular values of
the original matrix if its singular values vary widely in magnitude.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-97

If σi is an exact singular value ofB, andsi is the corresponding computed
value, then

 |si - σi| ≤ p(m, n)εσi

wherep(m, n) is a modestly increasing function ofm andn, andε is the
machine precision. If only singular values are computed, they are computed
more accurately than when some singular vectors are also computed (that is,
the functionp(m, n) is smaller).

If ui is the corresponding exact left singular vector ofB, andwi is the
corresponding computed left singular vector, then the angleθ(ui, wi)
between them is bounded as follows:
 θ(ui, wi) ≤ p(m, n)ε / mini≠j(|σi - σj|/|σi + σj|).
Here mini≠j(|σi - σj|/|σi + σj|) is therelative gapbetweenσi and the other
singular values. A similar error bound holds for the right singular vectors.

The total number of real floating-point operations is roughly proportional to
n2 if only the singular values are computed. About 6n2* nru additional
operations (12n2* nru for complex flavors) are required to compute the left
singular vectors and about 6n2* ncvt operations (12n2* ncvt for complex
flavors) to compute the right singular vectors.

5-98

5 Intel® Math Kernel Library Reference Manual

?bdsdc
Computes the singular value decomposition
of a real bidiagonal matrix using a divide
and conquer method.

call sbdsdc (uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work,
iwork, info)

call dbdsdc (uplo, compq, n, d, e, u, ldu, vt, ldvt, q, iq, work,
iwork, info)

Discussion

This routine computes theSingular Value Decomposition(SVD) of a real
n-by-n (upper or lower) bidiagonal matrixB: B = U Σ VT, using a divide
and conquer method, whereΣ is a diagonal matrix with non-negative
diagonal elements (the singular values ofB), andU andV are orthogonal
matrices of left and right singular vectors, respectively.?bdsdc can be used
to compute all singular values, and optionally, singular vectors or singular
vectors in compact form.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

If uplo = 'U' , B is an upper bidiagonal matrix.
If uplo = 'L' , B is a lower bidiagonal matrix.

compq CHARACTER*1. Must be'N' , 'P' , or 'I' .
If compq = 'N' , compute singular values only.
If compq = 'P' , compute singular values and compute
singular vectors in compact form.
If compq = 'I' , compute singular values and singular
vectors.

n INTEGER. The order of the matrixB (n ≥ 0).

d, e, work REAL for sbdsdc

DOUBLE PRECISIONfor sbdsdc .
Arrays:

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-99

d(*) contains then diagonal elements of the bidiagonal
matrix B. The dimension ofd must be at least max(1,n).

e(*) contains the off-diagonal elements of the
bidiagonal matrixB. The dimension ofe must be at least
max(1,n).

work (*) is a workspace array.
The dimension ofwork must be at least:
max(1, 4* n), if compq = 'N' ;
max(1, 6* n), if compq = 'P' ;
max(1, 3* n2+4* n), if compq = 'I' .

ldu INTEGER. The first dimension of the output arrayu;
ldu ≥ 1. If singular vectors are desired, then
ldu ≥ max(1,n).

ldvt INTEGER. The first dimension of the output arrayvt ;
ldvt ≥ 1. If singular vectors are desired, then
ldvt ≥ max(1,n).

iwork INTEGER.
Workspace array, dimension at least max(1, 8* n).

Output Parameters

d If info = 0, overwritten by the singular values ofB.

e On exit,e is overwritten.

u, vt, q REAL for sbdsdc

DOUBLE PRECISIONfor sbdsdc .
Arrays:u(ldu ,*) , vt (ldvt ,*) , q(*) .
If compq = 'I' , then on exitu contains the left singular
vectors of the bidiagonal matrixB, unlessinfo ≠ 0 (see
info). For other values ofcompq, u is not referenced.
The second dimension ofu must be at least max(1,n).

If compq = 'I' , then on exitvt contains the right
singular vectors of the bidiagonal matrixB, unless
info ≠ 0 (seeinfo). For other values ofcompq, vt is
not referenced. The second dimension ofvt must be at
least max(1,n).

5-100

5 Intel® Math Kernel Library Reference Manual

If compq = 'P' , then on exit, ifinfo = 0, q andiq

contain the left and right singular vectors in a compact
form. Specifically,q contains all theREAL(for sbdsdc)
or DOUBLE PRECISION(for dbdsdc) data for singular
vectors. For other values ofcompq , q is not referenced.
SeeApplication notesfor details.

iq INTEGER.
Array: iq (*) .
If compq = 'P' , then on exit, ifinfo = 0, q andiq

contain the left and right singular vectors in a compact
form. Specifically,iq contains all theINTEGERdata for
singular vectors. For other values ofcompq , iq is not
referenced. SeeApplication notesfor details.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , the algorithm failed to compute a singular
value. The update process of divide and conquer failed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-101

Symmetric Eigenvalue Problems

Symmetric eigenvalue problemsare posed as follows: given ann by n real
symmetric or complex Hermitian matrixA, find theeigenvaluesλ and the
correspondingeigenvectors zthat satisfy the equation

Az= λz. (or, equivalently,zHA = λzH).

In such eigenvalue problems, alln eigenvalues are real not only for real
symmetric but also for complex Hermitian matricesA, and there exists an
orthonormal system ofn eigenvectors. IfA is a symmetric or Hermitian
positive-definite matrix, all eigenvalues are positive.

To solve a symmetric eigenvalue problem with LAPACK, you usually need
to reduce the matrix to tridiagonal form and then solve the eigenvalue
problem with the tridiagonal matrix obtained. LAPACK includes routines for
reducing the matrix to a tridiagonal form by an orthogonal (or unitary)
similarity transformationA = QTQH as well as for solving tridiagonal
symmetric eigenvalue problems. These routines are listed inTable 5-3.

There are different routines for symmetric eigenvalue problems, depending
on whether you need all eigenvectors or only some of them or eigenvalues
only, whether the matrixA is positive-definite or not, and so on.
These routines are based on three primary algorithms for computing
eigenvalues and eigenvectors of symmetric problems: the divide and conquer
algorithm, the QR algorithm, and bisection followed by inverse iteration. The
divide and conquer algorithm is generally more efficient and is
recommended for computing all eigenvalues and eigenvectors.
Furthermore, to solve an eigenvalue problem using the divide and conquer
algorithm, you need to call only one routine. In general, more than one
routine has to be called if the QR algorithm or bisection followed by inverse
iteration is used.

Decision tree inFigure 5-2will help you choose the right routine or sequence
of routines for eigenvalue problems with real symmetric matrices. A similar
decision tree for complex Hermitian matrices is presented inFigure 5-3.

5-102

5 Intel® Math Kernel Library Reference Manual

Figure 5-2 Decision Tree: Real Symmetric Eigenvalue Problems

no

yesAre eigenvalues
only required?

yes

no

Is A tridiagonal?

no

no

no

yes

yes

yes

yes

yes

?STEBZ

?SBTRD
?STEBZ

?SPTRD
?STEBZ

?SYTRD ?STEBZ

Is A a band
matrix?

Is A tridiagonal?

Is one triangle
of A stored as a
linear array?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

?STERF or
?STEVD

(?SBTRD
?STERF) or
?SBEVD

(?SPTRD
?STERF) or
?SPEVD

no

no

Are all
eigenvaluesand
eigenvectors
required?

Is A tridiagonal?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

no

no

(?SYTRD ?ORGTR
?STEQR) or
?SYEVD

?STEQR or
?STEVD

(?SBTRD
?STEQR) or
?SBEVD

yes

yes

yes

no

(?SPTRD
?OPGTR
?STEQR) or
?SPEVD

yes

Is A tridiagonal?

Is one triangle
of A stored as a
linear array?

?STEBZ ?STEIN

?SPTRD ?STEBZ
?STEIN ?OPMTR

?SYTRD ?STEBZ
?STEIN ?ORMTR

yes

yes

no

no

no

no

Are all the
eigenvalues
required?

(?SYTRD
?STERF) or
?SYEVD

yes

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-103

Figure 5-3 Decision Tree: Complex Hermitian Eigenvalue Problems

no

yesAre
eigenvalues
only required?

no

no

yes

yes

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

no

no

Are all
eigenvaluesand
eigenvectors
required?

Is A a band
matrix?

Is one triangle
of A stored as a
linear array?

no

no

yes

yes

Is one triangle
of A stored as a
linear array?

no

no

no

(?HBTRD
?STERF) or
?HBEVD

(?HPTRD
?STERF) or
?HPEVD

(?HETRD
?STERF) or
?HEEVD

?HBTRD
?STEBZ

?HPTRD
?STEBZ

?HETRD ?STEBZ

(?HBTRD
?STEQR) or
?HBEVD

(?HPTRD
?UPGTR
?STEQR) or
?HPEVD

(?HETRD ?UNGTR
?STEQR) or
?HEEVD

?HPTRD ?STEBZ
?STEIN ?UPMTR

?HETRD ?STEBZ
?STEIN ?UNMTR

Are all the
eigenvalues
required?

yes

yes

yes

yes

yes

5-104

5 Intel® Math Kernel Library Reference Manual

Table 5-3 Computational Routines for Solving Symmetric Eigenvalue
Problems

Operation Real symmetric
matrices

Complex Hermitian
matrices

Reduce to tridiagonal form
A = QTQH (full storage)

?sytrd ?hetrd

Reduce to tridiagonal form
A = QTQH (packed storage)

?sptrd ?hptrd

Reduce to tridiagonal form
A = QTQH (band storage).

?sbtrd ?hbtrd

Generate matrix Q
(full storage)

?orgtr ?ungtr

Generate matrix Q
(packed storage)

?opgtr ?upgtr

Apply matrix Q
(full storage)

?ormtr ?unmtr

Apply matrix Q
(packed storage)

?opmtr ?upmtr

Find all eigenvalues of
a tridiagonal matrix T

?sterf

Find all eigenvalues and eigenvectors
of a tridiagonal matrix T

?steqr ?stedc ?steqr ?stedc

Find all eigenvalues and eigenvectors
of a tridiagonal positive-definite
matrix T.

?pteqr ?pteqr

Find selected eigenvalues of a
tridiagonal matrix T

?stebz
?stegr ?stegr

Find selected eigenvectors of a
tridiagonal matrix T

?stein
?stegr

?stein

?stegr

Compute the reciprocal condition
numbers for the eigenvectors

?disna ?disna

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-105

?sytrd
Reduces a real symmetric matrix to
tridiagonal form.

call ssytrd (uplo,n,a,lda,d,e,tau,work,lwork,info)

call dsytrd (uplo,n,a,lda,d,e,tau,work,lwork,info)

Discussion

This routine reduces a real symmetric matrixA to symmetric tridiagonal
form T by an orthogonal similarity transformation:A = QTQT. The
orthogonal matrixQ is not formed explicitly but is represented as a product
of n- 1 elementary reflectors. Routines are provided for working withQ in
this representation. (They are described later in this section.)

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

If uplo = 'U' , a stores the upper triangular part ofA.
If uplo = 'L' , a stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

a, work REALfor ssytrd

DOUBLE PRECISIONfor dsytrd .
a(lda, *) is an array containing either upper or lower
triangular part of the matrixA, as specified byuplo .
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

lwork INTEGER. The size of thework array (lwork ≥ n)
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by the tridiagonal matrixT and details of
the orthogonal matrixQ, as specified byuplo .

5-106

5 Intel® Math Kernel Library Reference Manual

d, e, tau REALfor ssytrd

DOUBLE PRECISIONfor dsytrd .
Arrays:
d(*) contains the diagonal elements of the matrixT.
The dimension ofd must be at least max(1,n).

e(*) contains the off-diagonal elements ofT.
The dimension ofe must be at least max(1,n- 1).

tau (*) stores further details of the orthogonal matrix
Q. The dimension oftau must be at least max(1,n- 1).

work (1) If info =0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =n* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The computed matrixT is exactly similar to a matrixA + E, where
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function ofn, andε is the
machine precision.

The approximate number of floating-point operations is (4/3)n3.

After calling this routine, you can call the following:

?orgtr to form the computed matrixQ explicitly;

?ormtr to multiply a real matrix byQ.

The complex counterpart of this routine is?hetrd.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-107

?orgtr
Generates the real orthogonal matrix Q
determined by?sytrd .

call sorgtr (uplo, n, a, lda, tau, work, lwork, info)

call dorgtr (uplo, n, a, lda, tau, work, lwork, info)

Discussion

The routine explicitly generates then by n orthogonal matrixQ formed by
?sytrd (seepage 5-105) when reducing a real symmetric matrixA to
tridiagonal form:A = QTQT. Use this routine after a call to?sytrd .

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Use the sameuplo as supplied to?sytrd .

n INTEGER. The order of the matrixQ (n ≥ 0).

a, tau, work REALfor sorgtr

DOUBLE PRECISIONfor dorgtr .
Arrays:
a(lda, *) is the arraya as returned by?sytrd .
The second dimension ofa must be at least max(1,n).

tau (*) is the arraytau as returned by?sytrd .
The dimension oftau must be at least max(1,n- 1).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

lwork INTEGER. The size of thework array (lwork ≥ n)
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by the orthogonal matrixQ.

5-108

5 Intel® Math Kernel Library Reference Manual

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = (n-1)* blocksize, whereblocksize
is a machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

The computed matrixQ differs from an exactly orthogonal matrix by a
matrix E such that||E||2 = O(ε), whereε is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

The complex counterpart of this routine is?ungtr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-109

?ormtr
Multiplies a real matrix by the real
orthogonal matrix Q determined by
?sytrd .

call sormtr (side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info)

call dormtr (side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a real matrixC by Q or QT, whereQ is the orthogonal
matrix Q formed by?sytrd (seepage 5-105) when reducing a real
symmetric matrixA to tridiagonal form:A = QTQT. Use this routine after a
call to ?sytrd .

Depending on the parametersside andtrans , the routine can form one of
the matrix productsQC, QTC, CQ, or CQT (overwriting the result onC).

Input Parameters

In the descriptions below,r denotes the order ofQ:
If side ='L' , r = m; if side ='R' , r = n.

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QT is applied toC from the left.
If side ='R' , Q or QT is applied toC from the right.

uplo CHARACTER*1. Must be'U' or 'L' .
Use the sameuplo as supplied to?sytrd .

trans CHARACTER*1. Must be either'N' or 'T' .
If trans ='N' , the routine multipliesC by Q.
If trans ='T' , the routine multipliesC by QT.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

a,work,tau,c REALfor sormtr

DOUBLE PRECISIONfor dormtr .
a(lda, *) andtau are the arrays returned by?sytrd .

5-110

5 Intel® Math Kernel Library Reference Manual

The second dimension ofa must be at least max(1,r).
The dimension oftau must be at least max(1,r - 1).

c(ldc, *) contains the matrixC.
The second dimension ofc must be at least max(1,n)

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; lda ≥ max(1,r).

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,n).

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QTC, CQ, or CQT

(as specified byside andtrans).

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = n* blocksizefor side ='L' , or
lwork = m* blocksizefor side ='R' , whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrixE such
that ||E||2 = O(ε) ||C||2.

The total number of floating-point operations is approximately 2* m2* n if
side ='L' or 2* n2* m if side ='R' .

The complex counterpart of this routine is?unmtr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-111

?hetrd
Reduces a complex Hermitian matrix to
tridiagonal form.

call chetrd (uplo,n,a,lda,d,e,tau,work,lwork,info)

call zhetrd (uplo,n,a,lda,d,e,tau,work,lwork,info)

Discussion

This routine reduces a complex Hermitian matrixA to symmetric
tridiagonal formT by a unitary similarity transformation:A = QTQH. The
unitary matrixQ is not formed explicitly but is represented as a product of
n- 1 elementary reflectors. Routines are provided to work withQ in this
representation. (They are described later in this section.)

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

If uplo = 'U' , a stores the upper triangular part ofA.
If uplo = 'L' , a stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

a, work COMPLEXfor chetrd

DOUBLE COMPLEXfor zhetrd .
a(lda, *) is an array containing either upper or lower
triangular part of the matrixA, as specified byuplo .
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

lwork INTEGER. The size of thework array (lwork ≥ n)
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by the tridiagonal matrixT and details of
the unitary matrixQ, as specified byuplo .

5-112

5 Intel® Math Kernel Library Reference Manual

d, e REALfor chetrd

DOUBLE PRECISIONfor zhetrd .
Arrays:
d(*) contains the diagonal elements of the matrixT.
The dimension ofd must be at least max(1,n).

e(*) contains the off-diagonal elements ofT.
The dimension ofe must be at least max(1,n- 1).

tau COMPLEXfor chetrd

DOUBLE COMPLEXfor zhetrd .
Array, DIMENSIONat least max(1,n- 1).
Stores further details of the unitary matrixQ.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =n* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The computed matrixT is exactly similar to a matrixA + E, where
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function ofn, andε is the
machine precision.

The approximate number of floating-point operations is (16/3)n3.

After calling this routine, you can call the following:

?ungtr to form the computed matrixQ explicitly;

?unmtr to multiply a complex matrix byQ.

The real counterpart of this routine is?sytrd.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-113

?ungtr
Generates the complex unitary matrix Q
determined by?hetrd .

call cungtr (uplo, n, a, lda, tau, work, lwork, info)

call zungtr (uplo, n, a, lda, tau, work, lwork, info)

Discussion

The routine explicitly generates then by n unitary matrixQ formed by
?hetrd (seepage 5-111) when reducing a complex Hermitian matrixA to
tridiagonal form:A = QTQH. Use this routine after a call to?hetrd .

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Use the sameuplo as supplied to?hetrd .

n INTEGER. The order of the matrixQ (n ≥ 0).

a, tau, work COMPLEXfor cungtr

DOUBLE COMPLEXfor zungtr .
Arrays:
a(lda, *) is the arraya as returned by?hetrd .
The second dimension ofa must be at least max(1,n).

tau (*) is the arraytau as returned by?hetrd .
The dimension oftau must be at least max(1,n- 1).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

lwork INTEGER. The size of thework array (lwork ≥ n)
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by the unitary matrixQ.

5-114

5 Intel® Math Kernel Library Reference Manual

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = (n-1)* blocksize, where
blocksizeis a machine-dependent value (typically, 16 to 64) required for
optimum performance of theblocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

The computed matrixQ differs from an exactly unitary matrix by a matrixE
such that||E||2 = O(ε), whereε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

The real counterpart of this routine is?orgtr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-115

?unmtr
Multiplies a complex matrix by the complex
unitary matrix Q determined by?hetrd .

call cunmtr (side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info)

call zunmtr (side,uplo,trans,m,n,a,lda,tau,c,ldc,work,lwork,info)

Discussion

The routine multiplies a complex matrixC by Q or QH, whereQ is the
unitary matrixQ formed by?hetrd (seepage 5-111) when reducing a
complex Hermitian matrixA to tridiagonal form:A = QTQH. Use this
routine after a call to?hetrd .

Depending on the parametersside andtrans , the routine can form one of
the matrix productsQC, QHC, CQ, or CQH (overwriting the result onC).

Input Parameters

In the descriptions below,r denotes the order ofQ:
If side ='L' , r = m; if side ='R' , r = n.

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QH is applied toC from the left.
If side ='R' , Q or QH is applied toC from the right.

uplo CHARACTER*1. Must be'U' or 'L' .
Use the sameuplo as supplied to?hetrd .

trans CHARACTER*1. Must be either'N' or 'T' .
If trans ='N' , the routine multipliesC by Q.
If trans ='T' , the routine multipliesC by QH.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

a,work,tau,c COMPLEXfor cunmtr

DOUBLE COMPLEXfor zunmtr .
a(lda, *) andtau are the arrays returned by?hetrd .

5-116

5 Intel® Math Kernel Library Reference Manual

The second dimension ofa must be at least max(1,r).
The dimension oftau must be at least max(1,r - 1).

c(ldc, *) contains the matrixC.
The second dimension ofc must be at least max(1,n)

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; lda ≥ max(1,r).

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,n).

lwork INTEGER. The size of thework array. Constraints:
lwork ≥ max(1,n) if side ='L' ;
lwork ≥ max(1,m) if side ='R' .
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c Overwritten by the productQC, QHC, CQ, or CQH

(as specified byside andtrans).

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = n* blocksize(for side ='L') or
lwork = m* blocksize(for side ='R') whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The computed product differs from the exact product by a matrixE such
that ||E||2 = O(ε) ||C||2, whereε is the machine precision.

The total number of floating-point operations is approximately 8* m2* n if
side ='L' or 8* n2* m if side ='R' .

The real counterpart of this routine is?ormtr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-117

?sptrd
Reduces a real symmetric matrix to
tridiagonal form using packed storage.

call ssptrd (uplo,n,ap,d,e,tau,info)

call dsptrd (uplo,n,ap,d,e,tau,info)

Discussion

This routine reduces a packed real symmetric matrixA to symmetric
tridiagonal formT by an orthogonal similarity transformation:A = QTQT.
The orthogonal matrixQ is not formed explicitly but is represented as a
product ofn- 1 elementary reflectors. Routines are provided for working
with Q in this representation. (They are described later in this section.)

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

If uplo ='U' , ap stores the packed upper triangle ofA.
If uplo ='L' , ap stores the packed lower triangle ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

ap REALfor ssptrd

DOUBLE PRECISIONfor dsptrd .
Array, DIMENSIONat least max(1,n(n+1)/2).
Contains either upper or lower triangle ofA (as specified
by uplo) in packed form.

Output Parameters

ap Overwritten by the tridiagonal matrixT and details of
the orthogonal matrixQ, as specified byuplo .

d, e, tau REALfor ssptrd

DOUBLE PRECISIONfor dsptrd .
Arrays:
d(*) contains the diagonal elements of the matrixT.
The dimension ofd must be at least max(1,n).

5-118

5 Intel® Math Kernel Library Reference Manual

e(*) contains the off-diagonal elements ofT.
The dimension ofe must be at least max(1,n- 1).

tau (*) stores further details of the matrixQ.
The dimension oftau must be at least max(1,n- 1).

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed matrixT is exactly similar to a matrixA + E, where
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function ofn, andε is the
machine precision.

The approximate number of floating-point operations is (4/3)n3.

After calling this routine, you can call the following:

?opgtr to form the computed matrixQ explicitly;

?opmtr to multiply a real matrix byQ.

The complex counterpart of this routine is?hptrd.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-119

?opgtr
Generates the real orthogonal matrix Q
determined by?sptrd .

call sopgtr (uplo, n, ap, tau, q, ldq, work, info)
call dopgtr (uplo, n, ap, tau, q, ldq, work, info)

Discussion

The routine explicitly generates then by n orthogonal matrixQ formed by
?sptrd (seepage 5-117) when reducing a packed real symmetric matrixA
to tridiagonal form:A = QTQT. Use this routine after a call to?sptrd .

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Use the sameuplo as supplied to?sptrd .

n INTEGER. The order of the matrixQ (n ≥ 0).

ap, tau REALfor sopgtr

DOUBLE PRECISIONfor dopgtr .
Arraysap andtau , as returned by?sptrd .
The dimension ofap must be at least max(1,n(n+1)/2).
The dimension oftau must be at least max(1,n- 1).

ldq INTEGER. The first dimension of the output arrayq;
at least max(1,n).

work REALfor sopgtr

DOUBLE PRECISIONfor dopgtr .
Workspace array,DIMENSIONat least max(1,n- 1).

Output Parameters

q REALfor sopgtr

DOUBLE PRECISIONfor dopgtr .
Array, DIMENSION (ldq ,*).
Contains the computed matrixQ.
The second dimension ofq must be at least max(1,n).

5-120

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed matrixQ differs from an exactly orthogonal matrix by a
matrix E such that||E||2 = O(ε), whereε is the machine precision.

The approximate number of floating-point operations is (4/3)n3.

The complex counterpart of this routine is?upgtr.

?opmtr
Multiplies a real matrix by the real
orthogonal matrix Q determined by
?sptrd .

call sopmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

call dopmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

Discussion

The routine multiplies a real matrixC by Q or QT, whereQ is the orthogonal
matrix Q formed by?sptrd (seepage 5-117) when reducing a packed real
symmetric matrixA to tridiagonal form:A = QTQT. Use this routine after a
call to ?sptrd .

Depending on the parametersside andtrans , the routine can form one of
the matrix productsQC, QTC, CQ, or CQT (overwriting the result onC).

Input Parameters

In the descriptions below,r denotes the order ofQ:
If side ='L' , r = m; if side ='R' , r = n.

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QT is applied toC from the left.
If side ='R' , Q or QT is applied toC from the right.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-121

uplo CHARACTER*1. Must be'U' or 'L' .
Use the sameuplo as supplied to?sptrd .

trans CHARACTER*1. Must be either'N' or 'T' .
If trans ='N' , the routine multipliesC by Q.
If trans ='T' , the routine multipliesC by QT.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

ap,work,tau,c REALfor sopmtr

DOUBLE PRECISIONfor dopmtr .
ap andtau are the arrays returned by?sptrd .
The dimension ofap must be at least max(1,r (r +1)/2).
The dimension oftau must be at least max(1,r - 1).

c(ldc, *) contains the matrixC.
The second dimension ofc must be at least max(1,n)

work (*) is a workspace array.
The dimension ofwork must be at least
max(1,n) if side ='L' ;
max(1,m) if side ='R' .

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,n).

Output Parameters

c Overwritten by the productQC, QTC, CQ, or CQT

(as specified byside andtrans).

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed product differs from the exact product by a matrixE such that
||E||2 = O(ε) ||C||2, whereε is the machine precision.

The total number of floating-point operations is approximately 2* m2* n if
side ='L' or 2* n2* m if side ='R' .

The complex counterpart of this routine is?upmtr.

5-122

5 Intel® Math Kernel Library Reference Manual

?hptrd
Reduces a complex Hermitian matrix to
tridiagonal form using packed storage.

call chptrd (uplo,n,ap,d,e,tau,info)

call zhptrd (uplo,n,ap,d,e,tau,info)

Discussion

This routine reduces a packed complex Hermitian matrixA to symmetric
tridiagonal formT by a unitary similarity transformation:A = QTQH. The
unitary matrixQ is not formed explicitly but is represented as a product of
n- 1 elementary reflectors. Routines are provided for working withQ in this
representation. (They are described later in this section.)

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

If uplo ='U' , ap stores the packed upper triangle ofA.
If uplo ='L' , ap stores the packed lower triangle ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

ap COMPLEXfor chptrd

DOUBLE COMPLEXfor zhptrd .
Array, DIMENSIONat least max(1,n(n+1)/2).
Contains either upper or lower triangle ofA (as specified
by uplo) in packed form.

Output Parameters

ap Overwritten by the tridiagonal matrixT and details of
the orthogonal matrixQ, as specified byuplo .

d, e REALfor chptrd

DOUBLE PRECISIONfor zhptrd .
Arrays:
d(*) contains the diagonal elements of the matrixT.
The dimension ofd must be at least max(1,n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-123

e(*) contains the off-diagonal elements ofT.
The dimension ofe must be at least max(1,n- 1).

tau COMPLEXfor chptrd

DOUBLE COMPLEXfor zhptrd .
Arrays, DIMENSION at least max(1,n- 1).
Contains further details of the orthogonal matrixQ.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed matrixT is exactly similar to a matrixA + E, where
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function ofn, andε is the
machine precision.

The approximate number of floating-point operations is (16/3)n3.

After calling this routine, you can call the following:

?upgtr to form the computed matrixQ explicitly;

?upmtr to multiply a complex matrix byQ.

The real counterpart of this routine is?sptrd.

5-124

5 Intel® Math Kernel Library Reference Manual

?upgtr
Generates the complex unitary matrix Q
determined by?hptrd .

call cupgtr (uplo, n, ap, tau, q, ldq, work, info)
call zupgtr (uplo, n, ap, tau, q, ldq, work, info)

Discussion

The routine explicitly generates then by n unitary matrixQ formed by
?hptrd (seepage 5-122) when reducing a packed complex Hermitian
matrix A to tridiagonal form:A = QTQH. Use this routine after a call to
?hptrd .

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

Use the sameuplo as supplied to?sptrd .

n INTEGER. The order of the matrixQ (n ≥ 0).

ap, tau COMPLEXfor cupgtr

DOUBLE COMPLEXfor zupgtr .
Arraysap andtau , as returned by?hptrd .
The dimension ofap must be at least max(1,n(n+1)/2).
The dimension oftau must be at least max(1,n- 1).

ldq INTEGER. The first dimension of the output arrayq;
at least max(1,n).

work COMPLEXfor cupgtr

DOUBLE COMPLEXfor zupgtr .
Workspace array,DIMENSIONat least max(1,n- 1).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-125

Output Parameters

q COMPLEXfor cupgtr

DOUBLE COMPLEXfor zupgtr .
Array, DIMENSION (ldq ,*).
Contains the computed matrixQ.
The second dimension ofq must be at least max(1,n).

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed matrixQ differs from an exactly orthogonal matrix by a
matrix E such that||E||2 = O(ε), whereε is the machine precision.

The approximate number of floating-point operations is (16/3)n3.

The real counterpart of this routine is?opgtr.

?upmtr
Multiplies a complex matrix by the unitary
matrix Q determined by?hptrd .

call cupmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

call zupmtr (side,uplo,trans,m,n,ap,tau,c,ldc,work,info)

Discussion

The routine multiplies a complex matrixC by Q or QH, whereQ is the
unitary matrixQ formed by?hptrd (seepage 5-122) when reducing a
packed complex Hermitian matrixA to tridiagonal form:A = QTQH. Use
this routine after a call to?hptrd .

Depending on the parametersside andtrans , the routine can form one of
the matrix productsQC, QHC, CQ, or CQH (overwriting the result onC).

5-126

5 Intel® Math Kernel Library Reference Manual

Input Parameters

In the descriptions below,r denotes the order ofQ:
If side ='L' , r = m; if side ='R' , r = n.

side CHARACTER*1. Must be either'L' or 'R' .
If side ='L' , Q or QH is applied toC from the left.
If side ='R' , Q or QH is applied toC from the right.

uplo CHARACTER*1. Must be'U' or 'L' .
Use the sameuplo as supplied to?hptrd .

trans CHARACTER*1. Must be either'N' or 'T' .
If trans ='N' , the routine multipliesC by Q.
If trans ='T' , the routine multipliesC by QH.

m INTEGER. The number of rows in the matrixC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

ap,tau,c,work COMPLEXfor cupmtr

DOUBLE COMPLEXfor zupmtr .
ap andtau are the arrays returned by?hptrd .

The dimension ofap must be at least max(1,r (r +1)/2).
The dimension oftau must be at least max(1,r - 1).

c(ldc, *) contains the matrixC.
The second dimension ofc must be at least max(1,n)

work (*) is a workspace array.
The dimension ofwork must be at least
max(1,n) if side ='L' ;
max(1,m) if side ='R' .

ldc INTEGER. The first dimension ofc ; ldc ≥ max(1,n).

Output Parameters

c Overwritten by the productQC, QHC, CQ, or CQH

(as specified byside andtrans).

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-127

Application Notes

The computed product differs from the exact product by a matrixE such that
||E||2 = O(ε) ||C||2, whereε is the machine precision.

The total number of floating-point operations is approximately 8* m2* n if
side ='L' or 8* n2* m if side ='R' .

The real counterpart of this routine is?opmtr.

5-128

5 Intel® Math Kernel Library Reference Manual

?sbtrd
Reduces a real symmetric band matrix to
tridiagonal form.

call ssbtrd (vect, uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

call dsbtrd (vect, uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

Discussion

This routine reduces a real symmetric band matrixA to symmetric
tridiagonal formT by an orthogonal similarity transformation:A = QTQT.
The orthogonal matrixQ is determined as a product of Givens rotations. If
required, the routine can also form the matrixQ explicitly.

Input Parameters
vect CHARACTER*1. Must be'V' or 'N' .

If vect = 'V' , the routine returns the explicit matrixQ.
If vect = 'N' , the routine does not returnQ.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ab stores the upper triangular part ofA.
If uplo = 'L' , ab stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals inA
(kd ≥ 0).

ab, work REALfor ssbtrd

DOUBLE PRECISIONfor dsbtrd .
ab (ldab, *) is an array containing either upper or
lower triangular part of the matrixA (as specified by
uplo) in band storage format.
The second dimension ofab must be at least max(1,n).

work (*) is a workspace array.
The dimension ofwork must be at least max(1,n).

ldab INTEGER. The first dimension ofab ; at leastkd +1.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-129

ldq INTEGER. The first dimension ofq. Constraints:
ldq ≥ max(1,n) if vect = 'V' ;

ldq ≥ 1 if vect = 'N' .

Output Parameters

ab On exit, the arrayab is overwritten.

d, e, q REALfor ssbtrd

DOUBLE PRECISIONfor dsbtrd .
Arrays:
d(*) contains the diagonal elements of the matrixT.
The dimension ofd must be at least max(1,n).

e(*) contains the off-diagonal elements ofT.
The dimension ofe must be at least max(1,n- 1).

q(ldq ,*) is not referenced ifvect = 'N' .
If vect ='V' , q contains then by n matrix Q.
The second dimension ofq must be:
at least max(1,n) if vect = 'V' ;
at least 1 ifvect = 'N' .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed matrixT is exactly similar to a matrixA + E, where
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function ofn, andε is the
machine precision. The computed matrixQ differs from an exactly
orthogonal matrix by a matrixE such that||E||2 = O(ε).

The total number of floating-point operations is approximately 6n2* kd if
vect ='N' , with 3n3*(kd - 1)/ kd additional operations ifvect ='V' .

The complex counterpart of this routine is?hbtrd.

5-130

5 Intel® Math Kernel Library Reference Manual

?hbtrd
Reduces a complex Hermitian band matrix
to tridiagonal form.

call chbtrd (vect, uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

call zhbtrd (vect, uplo,n,kd,ab,ldab,d,e,q,ldq,work,info)

Discussion

This routine reduces a complex Hermitian band matrixA to symmetric
tridiagonal formT by a unitary similarity transformation:A = QTQH. The
unitary matrixQ is determined as a product of Givens rotations. If required,
the routine can also form the matrixQ explicitly.

Input Parameters
vect CHARACTER*1. Must be'V' or 'N' .

If vect = 'V' , the routine returns the explicit matrixQ.
If vect = 'N' , the routine does not returnQ.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ab stores the upper triangular part ofA.
If uplo = 'L' , ab stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals inA
(kd ≥ 0).

ab, work COMPLEXfor chbtrd

DOUBLE COMPLEXfor zhbtrd .
ab (ldab, *) is an array containing either upper or
lower triangular part of the matrixA (as specified by
uplo) in band storage format.
The second dimension ofab must be at least max(1,n).

work (*) is a workspace array.
The dimension ofwork must be at least max(1,n).

ldab INTEGER. The first dimension ofab ; at leastkd +1.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-131

ldq INTEGER. The first dimension ofq. Constraints:
ldq ≥ max(1,n) if vect = 'V' ;

ldq ≥ 1 if vect = 'N' .

Output Parameters

ab On exit, the arrayab is overwritten.

d, e REALfor chbtrd

DOUBLE PRECISIONfor zhbtrd .
Arrays:
d(*) contains the diagonal elements of the matrixT.
The dimension ofd must be at least max(1,n).

e(*) contains the off-diagonal elements ofT.
The dimension ofe must be at least max(1,n- 1).

q COMPLEXfor chbtrd

DOUBLE COMPLEXfor zhbtrd .
Array, DIMENSION (ldq ,*).
If vect ='N' , q is not referenced.
If vect ='V' , q contains then by n matrix Q.
The second dimension ofq must be:
at least max(1,n) if vect = 'V' ;
at least 1 ifvect = 'N' .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed matrixT is exactly similar to a matrixA + E, where
||E||2 = c(n)ε ||A||2, c(n) is a modestly increasing function ofn, andε is the
machine precision. The computed matrixQ differs from an exactly unitary
matrix by a matrixE such that||E||2 = O(ε).

The total number of floating-point operations is approximately 20n2* kd if
vect ='N' , with 10n3*(kd - 1)/ kd additional operations ifvect ='V' .

The real counterpart of this routine is?sbtrd.

5-132

5 Intel® Math Kernel Library Reference Manual

?sterf
Computes all eigenvalues of a real
symmetric tridiagonal matrix using QR
algorithm.

call ssterf (n, d, e, info)

call dsterf (n, d, e, info)

Discussion

This routine computes all the eigenvalues of a real symmetric tridiagonal
matrix T (which can be obtained by reducing a symmetric or Hermitian
matrix to tridiagonal form). The routine uses a square-root-free variant of
theQRalgorithm.

If you need not only the eigenvalues but also the eigenvectors, call?steqr

(page 5-134).

Input Parameters

n INTEGER. The order of the matrixT (n ≥ 0).

d, e REALfor ssterf

DOUBLE PRECISIONfor dsterf .
Arrays:
d(*) contains the diagonal elements ofT.
The dimension ofd must be at least max(1,n).

e(*) contains the off-diagonal elements ofT.
The dimension ofe must be at least max(1,n- 1).

Output Parameters

d Then eigenvalues in ascending order, unlessinfo > 0.
See alsoinfo .

e On exit, the array is overwritten; seeinfo .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-133

info INTEGER.
If info = 0, the execution is successful.
If info = i , the algorithm failed to find all the
eigenvalues after 30n iterations:i off-diagonal elements
have not converged to zero. On exit,d ande contain,
respectively, the diagonal and off-diagonal elements of a
tridiagonal matrix orthogonally similar toT.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrixT + E
such that||E||2 = O(ε) ||T||2, whereε is the machine precision.

If λi is an exact eigenvalue, andµi is the corresponding computed value,
then

 |µi - λi| ≤ c(n)ε ||T||2
wherec(n) is a modestly increasing function ofn.

The total number of floating-point operations depends on how rapidly the
algorithm converges. Typically, it is about 14n2.

5-134

5 Intel® Math Kernel Library Reference Manual

?steqr
Computes all eigenvalues and
eigenvectors of a symmetric or Hermitian
matrix reduced to tridiagonal form
(QR algorithm).

call ssteqr (compz, n, d, e, z, ldz, work, info)
call dsteqr (compz, n, d, e, z, ldz, work, info)
call csteqr (compz, n, d, e, z, ldz, work, info)
call zsteqr (compz, n, d, e, z, ldz, work, info)

Discussion

This routine computes all the eigenvalues and (optionally) all the
eigenvectors of a real symmetric tridiagonal matrixT. In other words, the
routine can compute the spectral factorization:T = ZΛZT.
HereΛ is a diagonal matrix whose diagonal elements are the eigenvaluesλi;
Z is an orthogonal matrix whose columns are eigenvectors. Thus,

Tzi = λizi for i = 1, 2,... , n.
(The routine normalizes the eigenvectors so that||zi||2 = 1.)

You can also use the routine for computing the eigenvalues and eigenvectors
of an arbitrary real symmetric (or complex Hermitian) matrixA reduced to
tridiagonal formT: A = QTQH. In this case, the spectral factorization is as
follows: A = QTQH = (QZ)Λ(QZ)H. Before calling?steqr , you must
reduceA to tridiagonal form and generate the explicit matrixQ by calling
the following routines:

for real matrices: for complex matrices:
full storage ?sytrd,?orgtr ?hetrd,?ungtr

packed storage ?sptrd,?opgtr ?hptrd,?upgtr

band storage ?sbtrd (vect ='V') ?hbtrd (vect ='V')

If you need eigenvalues only, it’s more efficient to call?sterf (page
5-132). If T is positive-definite,?pteqr (page 5-146) can compute small
eigenvalues more accurately than?steqr .

To solve the problem by a single call, use one of the divide and conquer
routines?stevd , ?syevd , ?spevd , or ?sbevd for real symmetric
matrices or?heevd , ?hpevd , or ?hbevd for complex Hermitian matrices.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-135

Input Parameters
compz CHARACTER*1. Must be'N' or 'I' or 'V' .

If compz ='N' , the routine computes eigenvalues only.
If compz ='I' , the routine computes the eigenvalues
and eigenvectors of the tridiagonal matrixT.
If compz ='V' , the routine computes the eigenvalues
and eigenvectors ofA (and the arrayz must contain the
matrix Q on entry).

n INTEGER. The order of the matrixT (n ≥ 0).

d,e,work REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Arrays:
d(*) contains the diagonal elements ofT.
The dimension ofd must be at least max(1,n).

e(*) contains the off-diagonal elements ofT.
The dimension ofe must be at least max(1,n- 1).

work (*) is a workspace array.
The dimension ofwork must be:
at least 1 ifcompz = 'N' ;
at least max(1, 2* n- 2) if compz ='V' or 'I' .

z REALfor ssteqr

DOUBLE PRECISIONfor dsteqr

COMPLEXfor csteqr

DOUBLE COMPLEXfor zsteqr .
Array, DIMENSION(ldz , *)
If compz ='N' or 'I' , z need not be set.
If vect ='V' , z must contain then by n matrix Q.
The second dimension ofz must be:
at least 1 ifcompz = 'N' ;
at least max(1,n) if compz ='V' or 'I' .

work (lwork) is a workspace array.

ldz INTEGER. The first dimension ofz . Constraints:
ldz ≥ 1 if compz = 'N' ;
ldz ≥ max(1,n) if compz ='V' or 'I' .

5-136

5 Intel® Math Kernel Library Reference Manual

Output Parameters

d Then eigenvalues in ascending order, unlessinfo > 0.
See alsoinfo .

e On exit, the array is overwritten; seeinfo .

z If info = 0, contains then orthonormal eigenvectors,
stored by columns. (Thei th column corresponds to the
i th eigenvalue.)

info INTEGER.
If info = 0, the execution is successful.
If info = i , the algorithm failed to find all the
eigenvalues after 30n iterations:i off-diagonal elements
have not converged to zero. On exit,d ande contain,
respectively, the diagonal and off-diagonal elements of a
tridiagonal matrix orthogonally similar toT.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrixT + E
such that||E||2 = O(ε) ||T||2, whereε is the machine precision.

If λi is an exact eigenvalue, andµi is the corresponding computed value,
then

 |µi - λi| ≤ c(n)ε ||T||2
wherec(n) is a modestly increasing function ofn.

If zi is the corresponding exact eigenvector, andwi is the corresponding
computed vector, then the angleθ(zi, wi) between them is bounded as
follows:
 θ(zi, wi) ≤ c(n)ε ||T||2 / mini≠j|λi - λj|.
The total number of floating-point operations depends on how rapidly the
algorithm converges. Typically, it is about

24n2 if compz = 'N' ;
7n3 (for complex flavors, 14n3) if compz ='V' or 'I' .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-137

?stedc
Computes all eigenvalues and
eigenvectors of a symmetric tridiagonal
matrix using the divide and conquer
method.

call sstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork,info)

call dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork,info)

call cstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork,info)

call zstedc(compz, n, d, e, z, ldz, work, lwork, rwork, lrwork,
iwork, liwork,info)

Discussion

This routine computes all the eigenvalues and (optionally) all the
eigenvectors of a symmetric tridiagonal matrix using the divide and conquer
method.
The eigenvectors of a full or band real symmetric or complex Hermitian
matrix can also be found if?sytrd/?hetrd or ?sptrd/?hptrd or
?sbtrd/?hbtrd has been used to reduce this matrix to tridiagonal form.

Input Parameters
compz CHARACTER*1. Must be'N' or 'I' or 'V' .

If compz ='N' , the routine computes eigenvalues only.
If compz ='I' , the routine computes the eigenvalues
and eigenvectors of the tridiagonal matrix.
If compz ='V' , the routine computes the eigenvalues
and eigenvectors of original symmetric/Hermitian
matrix. On entry, the arrayz must contain the
orthogonal/unitary matrix used to reduce the original
matrix to tridiagonal form.

n INTEGER. The order of the symmetric tridiagonal
matrix (n ≥ 0).

5-138

5 Intel® Math Kernel Library Reference Manual

d, e, rwork REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Arrays:
d(*) contains the diagonal elements of the tridiagonal
matrix. The dimension ofd must be at least max(1,n).

e(*) contains the subdiagonal elements of the
tridiagonal matrix. The dimension ofe must be at least
max(1,n- 1).

rwork (lrwork) is a workspace array used in complex
flavors only.

z, work REALfor sstedc

DOUBLE PRECISIONfor dstedc

COMPLEXfor cstedc

DOUBLE COMPLEXfor zstedc .
Arrays:z(ldz, *), work (*) .
If compz ='V' , then, on entry,z must contain the
orthogonal/unitary matrix used to reduce the original
matrix to tridiagonal form.
The second dimension ofz must be at least max(1,n).

work (lwork) is a workspace array.

ldz INTEGER. The first dimension ofz . Constraints:
ldz ≥ 1 if compz = 'N' ;
ldz ≥ max(1,n) if compz ='V' or 'I' .

lwork INTEGER. The dimension of the arraywork .
SeeApplication Notesfor the required value oflwork .

lrwork INTEGER. The dimension of the arrayrwork (used for
complex flavors only).
SeeApplication Notesfor the required value oflrwork .

iwork INTEGER. Workspace array,DIMENSION (liwork).

liwork INTEGER. The dimension of the arrayiwork .
SeeApplication Notesfor the required value ofliwork .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-139

Output Parameters

d Then eigenvalues in ascending order, unlessinfo ≠ 0.
See alsoinfo .

e On exit, the array is overwritten; seeinfo .

z If info = 0, then ifcompz ='V' , z contains the
orthonormal eigenvectors of the original
symmetric/Hermitian matrix, and ifcompz ='I' , z

contains the orthonormal eigenvectors of the symmetric
tridiagonal matrix. Ifcompz ='N' , z is not referenced.

work(1) On exit, if info = 0, thenwork(1) returns the optimal
lwork .

rwork(1) On exit, if info = 0, thenrwork(1) returns the
optimal lrwork (for complex flavors only).

iwork(1) On exit, if info = 0, theniwork(1) returns the
optimal liwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.If
info = i , the algorithm failed to compute an eigenvalue
while working on the submatrix lying in rows and
columnsi /(n+1) through mod(i , n+1).

Application Notes

The required size of workspace arrays must be as follows.

For sstedc/dstedc :

If compz ='N' or n ≤ 1 thenlwork must be at least 1.
If compz ='V' andn > 1 thenlwork must be at least
(1 + 3n + 2n⋅lgn + 3n2), where lg(n) = smallest integerk such that 2k≥ n.

If compz ='I' andn > 1 thenlwork must be at least (1 + 4n + n2).

If compz ='N' or n ≤ 1 thenliwork must be at least 1.
If compz ='V' andn > 1 thenliwork must be at least (6 + 6n + 5n⋅lgn).
If compz ='I' andn > 1 thenliwork must be at least (3 + 5n).

For cstedc/zstedc :

5-140

5 Intel® Math Kernel Library Reference Manual

If compz ='N' or'I' , or n ≤ 1, lwork must be at least 1.
If compz ='V' andn > 1, lwork must be at leastn2.

If compz ='N' or n ≤ 1, lrwork must be at least 1.
If compz ='V' andn > 1, lrwork must be at least

(1 + 3n + 2n⋅lgn + 3n2), where lg(n) = smallest integerk such that 2k≥
n.

If compz ='I' andn > 1, lrwork must be at least(1 + 4n + 2n2).

The required value ofliwork for complex flavors is the same as for real
flavors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-141

?stegr
Computes selected eigenvalues and
eigenvectors of a real symmetric
tridiagonal matrix.

call sstegr (jobz , range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

call dstegr (jobz , range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

call cstegr (jobz , range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

call zstegr (jobz , range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric tridiagonal matrixT. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues. The eigenvalues are computed by thedqdsalgorithm,
while orthogonal eigenvectors are computed from various “good''LDLT

representations (also known as Relatively Robust Representations).
Gram-Schmidt orthogonalization is avoided as far as possible. More
specifically, the various steps of the algorithm are as follows. For the i-th
unreduced block ofT,

(a) ComputeT - σi = Li Di Li
T, such thatLi Di Li

T is a relatively
robust representation;
(b) Compute the eigenvalues,λj, of Li Di Li

T to high relative accuracy
by thedqdsalgorithm;
(c) If there is a cluster of close eigenvalues, "choose"σi close to the
cluster, and go to step (a);
(d) Given the approximate eigenvalueλj of Li Di Li

T, compute the
corresponding eigenvector by forming a rank-revealing twisted
factorization.

5-142

5 Intel® Math Kernel Library Reference Manual

The desired accuracy of the output can be specified by the input parameter
abstol .

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be'A' or 'V' or 'I' .
If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

n INTEGER. The order of the matrixT (n ≥ 0).

d, e, work REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
Arrays:
d(*) contains the diagonal elements ofT.
The dimension ofd must be at least max(1,n).

e(*) contains the subdiagonal elements ofT in
elements 1 ton-1; e(n) need not be set.
The dimension ofe must be at least max(1,n).

work (lwork) is a workspace array.

vl, vu REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .

If range ='A' or 'I' , vl andvu are not referenced.

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-143

If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
The absolute tolerance to which each
eigenvalue/eigenvector is required.
If jobz = 'V' , the eigenvalues and eigenvectors output
have residual norms bounded byabstol , and the dot
products between different eigenvectors are bounded by
abstol . If abstol < nε||T||1, thennε||T||1 will be used
in its place, whereε is the machine precision. The
eigenvalues are computed to an accuracy ofε||T||1
irrespective ofabstol . If high relative accuracy is
important, setabstol to ?lamch ('Safe minimum').

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
ldz ≥ 1 if jobz ='N' ;
ldz ≥ max(1,n) if jobz ='V' .

lwork INTEGER. The dimension of the arraywork ,
lwork ≥ max(1, 18n).

iwork INTEGER.
Workspace array,DIMENSION (liwork).

liwork INTEGER. The dimension of the arrayiwork ,
lwork ≥ max(1, 10n).

Output Parameters

d, e On exit,d ande are overwritten.

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
Array, DIMENSIONat least max(1,n).
The selected eigenvalues in ascending order, stored in
w(1) to w(m) .

5-144

5 Intel® Math Kernel Library Reference Manual

z REALfor sstegr

DOUBLE PRECISIONfor dstegr

COMPLEXfor cstegr

DOUBLE COMPLEXfor zstegr .
Array z(ldz, *), the second dimension ofz must be at
least max(1,m).

If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixT
corresponding to the selected eigenvalues, with thei -th
column ofz holding the eigenvector associated with
w(i). If jobz ='N' , thenz is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

isuppz INTEGER.
Array, DIMENSION at least 2* max(1,m).

The support of the eigenvectors inz , i.e., the indices
indicating the nonzero elements inz . Thei -th
eigenvector is nonzero only in elementsisuppz (2i -1)
throughisuppz (2i).

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

iwork(1) On exit, if info = 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

If info = 1, internal error inslarre occurred,
If info = 2, internal error in?larrv occurred.

Application Notes

Currently?stegr is only set up to findall then eigenvalues and
eigenvectors ofT in O(n2) time, that is, only range ='A' is supported.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-145

Currently the routine?stein is called when an appropriateσi cannot be
chosen in step (c) above.?stein invokes modified Gram-Schmidt when
eigenvalues are close.

?stegr works only on machines which follow IEEE-754 floating-point
standard in their handling of infinities and NaNs. Normal execution of
?stegr may create NaNs and infinities and hence may abort due to a
floating point exception in environments which do not conform to the
IEEE-754 standard.

5-146

5 Intel® Math Kernel Library Reference Manual

?pteqr
Computes all eigenvalues and (optionally)
all eigenvectors of a real symmetric
positive-definite tridiagonal matrix.

call spteqr (compz, n, d, e, z, ldz, work, info)

call dpteqr (compz, n, d, e, z, ldz, work, info)

call cpteqr (compz, n, d, e, z, ldz, work, info)

call zpteqr (compz, n, d, e, z, ldz, work, info)

Discussion

This routine computes all the eigenvalues and (optionally) all the
eigenvectors of a real symmetric positive-definite tridiagonal matrixT. In
other words, the routine can compute the spectral factorization:T = ZΛZT.
HereΛ is a diagonal matrix whose diagonal elements are the eigenvaluesλi;
Z is an orthogonal matrix whose columns are eigenvectors. Thus,

Tzi = λizi for i = 1, 2,... , n.

(The routine normalizes the eigenvectors so that||zi||2 = 1.)

You can also use the routine for computing the eigenvalues and eigenvectors
of real symmetric (or complex Hermitian) positive-definite matricesA
reduced to tridiagonal formT: A = QTQH. In this case, the spectral
factorization is as follows:A = QTQH = (QZ)Λ(QZ)H. Before calling
?pteqr , you must reduceA to tridiagonal form and generate the explicit
matrix Q by calling the following routines:

for real matrices: for complex matrices:
full storage ?sytrd,?orgtr ?hetrd,?ungtr

packed storage ?sptrd,?opgtr ?hptrd,?upgtr

band storage ?sbtrd (vect ='V') ?hbtrd (vect ='V')

The routine first factorizesT asLDLH whereL is a unit lower bidiagonal
matrix, andD is a diagonal matrix. Then it forms the bidiagonal matrix
B = LD1/2 and calls?bdsqr to compute the singular values ofB, which are
the same as the eigenvalues ofT.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-147

Input Parameters
compz CHARACTER*1. Must be'N' or 'I' or 'V' .

If compz ='N' , the routine computes eigenvalues only.
If compz ='I' , the routine computes the eigenvalues
and eigenvectors of the tridiagonal matrixT.
If compz ='V' , the routine computes the eigenvalues
and eigenvectors ofA (and the arrayz must contain the
matrix Q on entry).

n INTEGER. The order of the matrixT (n ≥ 0).

d,e,work REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Arrays:
d(*) contains the diagonal elements ofT.
The dimension ofd must be at least max(1,n).

e(*) contains the off-diagonal elements ofT.
The dimension ofe must be at least max(1,n- 1).

work (*) is a workspace array.
The dimension ofwork must be:
at least 1 ifcompz = 'N' ;
at least max(1, 4* n- 4) if compz ='V' or 'I' .

z REALfor spteqr

DOUBLE PRECISIONfor dpteqr

COMPLEXfor cpteqr

DOUBLE COMPLEXfor zpteqr .
Array, DIMENSION(ldz ,*)
If compz ='N' or 'I' , z need not be set.
If vect ='V' , z must contains then by n matrix Q.
The second dimension ofz must be:
at least 1 ifcompz = 'N' ;
at least max(1,n) if compz ='V' or 'I' .

ldz INTEGER. The first dimension ofz . Constraints:
ldz ≥ 1 if compz = 'N' ;
ldz ≥ max(1,n) if compz ='V' or 'I' .

5-148

5 Intel® Math Kernel Library Reference Manual

Output Parameters

d Then eigenvalues in descending order, unlessinfo > 0.
See alsoinfo .

e On exit, the array is overwritten.

z If info = 0, contains then orthonormal eigenvectors,
stored by columns. (Thei th column corresponds to the
i th eigenvalue.)

info INTEGER.
If info = 0, the execution is successful.
If info = i , the leading minor of orderi (and henceT
itself) is not positive-definite.
If info = n + i , the algorithm for computing singular
values failed to converge;i off-diagonal elements have
not converged to zero.
If info = -i , thei th parameter had an illegal value.

Application Notes

If λi is an exact eigenvalue, andµi is the corresponding computed value,
then

 |µi - λi| ≤ c(n)εKλi

wherec(n) is a modestly increasing function ofn, ε is the machine
precision, andK = ||DTD||2 ||(DTD)−1||2, D is diagonal withdii = tii

- 1/2.

If zi is the corresponding exact eigenvector, andwi is the corresponding
computed vector, then the angleθ(zi, wi) between them is bounded as
follows:
 θ(ui, wi) ≤ c(n)εK / mini≠j(|λi - λj|/|λi + λj|).

Here mini≠j(|λi - λj|/|λi + λj|) is therelative gapbetweenλi and the other
eigenvalues.

The total number of floating-point operations depends on how rapidly the
algorithm converges. Typically, it is about

30n2 if compz = 'N' ;
6n3 (for complex flavors, 12n3) if compz ='V' or 'I' .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-149

?stebz
Computes selected eigenvalues of a real
symmetric tridiagonal matrix by
bisection.

call sstebz (range, order, n, vl, vu, il, iu, abstol,
d, e, m, nsplit, w, iblock, isplit, work, iwork, info)

call dstebz (range, order, n, vl, vu, il, iu, abstol,
d, e, m, nsplit, w, iblock, isplit, work, iwork, info)

Discussion

This routine computes some (or all) of the eigenvalues of a real symmetric
tridiagonal matrixT by bisection. The routine searches for zero or negligible
off-diagonal elements to see ifT splits into block-diagonal form
T = diag(T1, T2, ...). Then it performs bisection on each of the blocksTi and
returns the block index of each computed eigenvalue, so that a subsequent
call to ?stein can also take advantage of the block structure.

Input Parameters
range CHARACTER*1. Must be'A' or 'V' or 'I' .

If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

order CHARACTER*1. Must be'B' or 'E' .
If order ='B' , the eigenvalues are to be ordered from
smallest to largest within each split-off block.
If order ='E' , the eigenvalues for the entire matrix are
to be ordered from smallest to largest.

n INTEGER. The order of the matrixT (n ≥ 0).

5-150

5 Intel® Math Kernel Library Reference Manual

vl, vu REALfor sstebz

DOUBLE PRECISIONfor dstebz .
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .

If range ='A' or 'I' , vl andvu are not referenced.

il, iu INTEGER. Constraint: 1≤ il ≤ iu ≤ n.
If range ='I' , the routine computes eigenvaluesλi
such thatil ≤ i ≤ iu (assuming that the eigenvaluesλi
are in ascending order).

If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor sstebz

DOUBLE PRECISIONfor dstebz .
The absolute tolerance to which each eigenvalue is
required. An eigenvalue (or cluster) is considered to
have converged if it lies in an interval of width abstol .
If abstol ≤ 0.0, then the tolerance is taken asε||T||1,
whereε is the machine precision.

d, e REALfor sstebz

DOUBLE PRECISIONfor dstebz .
Arrays:
d(*) contains the diagonal elements ofT.
The dimension ofd must be at least max(1,n).

e(*) contains the off-diagonal elements ofT.
The dimension ofe must be at least max(1,n- 1).

iwork INTEGER. Workspace.
Array, DIMENSIONat least max(1, 3n).

Output Parameters

m INTEGER. The actual number of eigenvalues found.

nsplit INTEGER. The number of diagonal blocks detected inT.

w REALfor sstebz

DOUBLE PRECISIONfor dstebz .
Array, DIMENSIONat least max(1,n).
The computed eigenvalues, stored inw(1) to w(m) .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-151

iblock,isplit INTEGER.
Arrays,DIMENSIONat least max(1,n).
A positive valueiblock (i) is the block number of the
eigenvalue stored inw(i) (see alsoinfo).
The leadingnsplit elements ofisplit contain points
at whichT splits into blocksTi as follows: the block
T1 contains rows/columns 1 toisplit (1) ; the block
T2 contains rows/columnsisplit (1) +1 to
isplit (2) , and so on.

info INTEGER.
If info = 0, the execution is successful.
If info = 1, for range ='A' or 'V' , the algorithm
failed to compute some of the required eigenvalues to
the desired accuracy;iblock (i) < 0 indicates that the
eigenvalue stored inw(i) failed to converge.
If info = 2, for range ='I' , the algorithm failed to
compute some of the required eigenvalues. Try calling
the routine again withrange ='A' .
If info = 3:

for range ='A' or 'V' , same asinfo = 1;
for range ='I' , same asinfo = 2.

If info = 4, no eigenvalues have been computed. The
floating-point arithmetic on the computer is not
behaving as expected.
If info = -i , thei th parameter had an illegal value.

Application Notes

The eigenvalues ofT are computed to high relative accuracy which means
that if they vary widely in magnitude, then any small eigenvalues will be
computed more accurately than, for example, with the standardQR
method. However, the reduction to tridiagonal form (prior to calling the
routine) may exclude the possibility of obtaining high relative accuracy in
the small eigenvalues of the original matrix if its eigenvalues vary widely in
magnitude.

5-152

5 Intel® Math Kernel Library Reference Manual

?stein
Computes the eigenvectors corresponding
to specified eigenvalues of a real symmetric
tridiagonal matrix.

call sstein (n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info)

call dstein (n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info)

call cstein (n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info)

call zstein (n, d, e, m, w, iblock, isplit, z, ldz,
work, iwork, ifailv, info)

Discussion

This routine computes the eigenvectors of a real symmetric tridiagonal
matrix T corresponding to specified eigenvalues, by inverse iteration. It is
designed to be used in particular after the specified eigenvalues have been
computed by?stebz with order ='B' , but may also be used when the
eigenvalues have been computed by other routines. If you use this routine
after?stebz , it can take advantage of the block structure by performing
inverse iteration on each blockTi separately, which is more efficient than
using the whole matrixT.

If T has been formed by reduction of a full symmetric or Hermitian matrixA
to tridiagonal form, you can transform eigenvectors ofT to eigenvectors of
A by calling?ormtr or ?opmtr (for real flavors) or by calling?unmtr or
?upmtr (for complex flavors).

Input Parameters

n INTEGER. The order of the matrixT (n ≥ 0).

m INTEGER. The number of eigenvectors to be returned.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-153

d, e, w REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Arrays:
d(*) contains the diagonal elements ofT.
The dimension ofd must be at least max(1,n).

e(*) contains the off-diagonal elements ofT.
The dimension ofe must be at least max(1,n- 1).

w(*) contains the eigenvalues ofT, stored inw(1)

to w(m) (as returned by?stebz , seepage 5-149).
Eigenvalues ofT1 must be supplied first, in
non-decreasing order; then those ofT2, again in
non-decreasing order, and so on. Constraint:
if iblock (i) = iblock (i +1) , w(i) ≤ w(i +1) .

The dimension ofw must be at least max(1,n).

iblock,isplit INTEGER.
Arrays,DIMENSIONat least max(1,n).
The arraysiblock andisplit , as returned by?stebz

with order ='B' .

If you did not call?stebz with order ='B' , set all
elements ofiblock to 1, andisplit (1) to n.)

ldz INTEGER. The first dimension of the output arrayz ;
ldz ≥ max(1,n).

work REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Workspace array,DIMENSIONat least max(1, 5n).

iwork INTEGER.
Workspace array,DIMENSIONat least max(1,n).

Output Parameters

z REALfor sstein

DOUBLE PRECISIONfor dstein

COMPLEXfor cstein

DOUBLE COMPLEXfor zstein .
Array, DIMENSION(ldz , *).

5-154

5 Intel® Math Kernel Library Reference Manual

If info = 0, z contains themorthonormal eigenvectors,
stored by columns. (Thei th column corresponds to the
i th specified eigenvalue.)

ifailv INTEGER. Array, DIMENSIONat least max(1,m).
If info = i > 0, the firsti elements ofifailv contain
the indices of any eigenvectors that failed to converge.

info INTEGER.
If info = 0, the execution is successful.
If info = i , theni eigenvectors (as indicated by the
parameterifailv) each failed to converge in 5
iterations. The current iterates are stored in the
corresponding columns of the arrayz .
If info = -i , thei th parameter had an illegal value.

Application Notes

Each computed eigenvectorzi is an exact eigenvector of a matrixT + Ei,
where||Ei||2 = O(ε) ||T||2. However, a set of eigenvectors computed by this
routine may not be orthogonal to so high a degree of accuracy as those
computed by?steqr .

?disna
Computes the reciprocal condition numbers for
the eigenvectors of a symmetric/ Hermitian
matrix or for the left or right singular vectors of
a general matrix.

call sdisna (job, m, n, d, sep, info)

call ddisna (job, m, n, d, sep, info)

Discussion

This routine computes the reciprocal condition numbers for the eigenvectors
of a real symmetric or complex Hermitian matrix or for the left or right
singular vectors of a generalm-by-n matrix.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-155

The reciprocal condition number is the 'gap' between the corresponding
eigenvalue or singular value and the nearest other one.

The bound on the error, measured by angle in radians, in thei -th computed
vector is given by

slamch ('E') * (anorm / sep (i))

whereanorm = ||A||2 = max(|d(j)|). sep (i) is not allowed to be smaller
thanslamch ('E')* anorm in order to limit the size of the error bound.

?disna may also be used to compute error bounds for eigenvectors of the
generalized symmetric definite eigenproblem.

Input Parameters

job CHARACTER*1. Must be'E' ,'L' , or 'R' .
Specifies for which problem the reciprocal condition
numbers should be computed:
job ='E' : for the eigenvectors of a
symmetric/Hermitian matrix ;
job ='L' : for the left singular vectors of a general
matrix;
job ='R' : for the right singular vectors of a general
matrix .

m INTEGER. The number of rows of the matrix (m≥ 0).

n INTEGER. If job ='L' , or 'R' , the number of columns
of the matrix (n ≥ 0). Ignored ifjob ='E' .

d REALfor sdisna

DOUBLE PRECISIONfor ddisna .
Array, dimension at least max(1,m) if job ='E' , and at
least max(1, min(m,n)) if job ='L' or 'R' .
This array must contain the eigenvalues (ifjob ='E') or
singular values (ifjob ='L' or 'R') of the matrix, in
either increasing or decreasing order. If singular values,
they must be non-negative.

5-156

5 Intel® Math Kernel Library Reference Manual

Output Parameters

sep REALfor sdisna

DOUBLE PRECISIONfor ddisna .
Array, dimension at least max(1,m) if job ='E' , and at
least max(1, min(m,n)) if job ='L' or 'R' .
The reciprocal condition numbers of the vectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-157

Generalized Symmetric-Definite Eigenvalue Problems

Generalized symmetric-definite eigenvalue problemsare as follows: find the
eigenvaluesλ and the corresponding eigenvectorsz that satisfy one of these
equations:

Az= λBz, ABz= λz, or BAz= λz

whereA is ann by n symmetric or Hermitian matrix, andB is ann by n
symmetric positive-definite or Hermitian positive-definite matrix.

In these problems, there existn real eigenvectors corresponding to real
eigenvalues (even for complex Hermitian matricesA andB).

Routines described in this section allow you to reduce the above generalized
problems to standard symmetric eigenvalue problemCy = λy ,
which you can solve by calling LAPACK routines described earlier in this
chapter (seepage 5-101).

Different routines allow the matrices to be stored either conventionally or in
packed storage. Prior to reduction, the positive-definite matrixB must first
be factorized using either?potrf or ?pptrf .
The reduction routine for the banded matricesA andB uses a split Cholesky
factorization for which a specific routine?pbstf is provided. This
refinement halves the amount of work required to form matrixC.

Table 5-4 Computational Routines for Reducing Generalized Eigenproblems
to Standard Problems

Matrix
type

Reduce to standard
problems
(full storage)

Reduce to standard
problems
(packed storage)

Reduce to standard
problems
(band matrices)

Factorize
band
matrix

real
symmetric
matrices

?sygst ?spgst ?sbgst ?pbstf

complex
Hermitian
matrices

?hegst / ?hpgst ?hbgst ?pbstf

5-158

5 Intel® Math Kernel Library Reference Manual

?sygst
Reduces a real symmetric-definite
generalized eigenvalue problem to the
standard form.

call ssygst (itype, uplo, n, a, lda, b, ldb, info)

call dsygst (itype, uplo, n, a, lda, b, ldb, info)

Discussion

This routine reduces real symmetric-definite generalized eigenproblems

Az= λBz, ABz= λz, or BAz= λz

to the standard formCy = λy. HereA is a real symmetric matrix, andB is a
real symmetric positive-definite matrix. Before calling this routine, call
?potrf to compute the Cholesky factorization:B = UTU or B = LLT

(seepage 4-14).

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem isAz= λBz;

for uplo = 'U' : C = U- TAU- 1, z = U- 1y;
for uplo = 'L' : C = L- 1AL- T, z = L- Ty.

If itype = 2, the generalized eigenproblem isABz= λz;
for uplo = 'U' : C = UAUT, z = U- 1y;
for uplo = 'L' : C = LTAL, z = L- Ty.

If itype = 3, the generalized eigenproblem isBAz= λz;
for uplo = 'U' : C = UAUT, z = UTy;
for uplo = 'L' : C = LTAL, z = Ly.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , the arraya stores the upper triangle ofA;
you must supplyB in the factored formB = UTU.
If uplo = 'L' , the arraya stores the lower triangle ofA;
you must supplyB in the factored formB = LLT.

n INTEGER. The order of the matricesA andB (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-159

a, b REALfor ssygst

DOUBLE PRECISIONfor dsygst .
Arrays:
a(lda, *) contains the upper or lower triangle ofA.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains the Cholesky-factored matrixB:
B = UTU or B = LLT (as returned by?potrf).
The second dimension ofb must be at least max(1,n).

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

Output Parameters

a The upper or lower triangle ofA is overwritten by the
upper or lower triangle ofC, as specified by the
argumentsitype anduplo .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

Forming the reduced matrixC is a stable procedure. However, it involves
implicit multiplication byB- 1 (if itype = 1) or B (if itype = 2 or 3).
When the routine is used as a step in the computation of eigenvalues and
eigenvectors of the original problem, there may be a significant loss of
accuracy ifB is ill-conditioned with respect to inversion.

The approximate number of floating-point operations isn3.

5-160

5 Intel® Math Kernel Library Reference Manual

?hegst
Reduces a complex Hermitian-definite
generalized eigenvalue problem to the
standard form.

call chegst (itype, uplo, n, a, lda, b, ldb, info)

call zhegst (itype, uplo, n, a, lda, b, ldb, info)

Discussion

This routine reduces complex Hermitian-definite generalized eigenvalue
problems

Az= λBz, ABz= λz, or BAz= λz

to the standard formCy = λy. Here the matrixA is complex Hermitian, and
B is complex Hermitian positive-definite. Before calling this routine, you
must call?potrf to compute the Cholesky factorization:B = UHU or B =
LLH (seepage 4-14).

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem isAz= λBz;

for uplo = 'U' : C = U- HAU- 1, z = U- 1y;
for uplo = 'L' : C = L- 1AL- H, z = L- Hy.

If itype = 2, the generalized eigenproblem isABz= λz;
for uplo = 'U' : C = UAUH, z = U- 1y;
for uplo = 'L' : C = LHAL, z = L- Hy.

If itype = 3, the generalized eigenproblem isBAz= λz;
for uplo = 'U' : C = UAUH, z = UHy;
for uplo = 'L' : C = LHAL, z = Ly.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , the arraya stores the upper triangle ofA;
you must supplyB in the factored formB = UHU.
If uplo = 'L' , the arraya stores the lower triangle ofA;
you must supplyB in the factored formB = LLH.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-161

n INTEGER. The order of the matricesA andB (n ≥ 0).

a, b COMPLEXfor chegst

DOUBLE COMPLEXfor zhegst .
Arrays:
a(lda, *) contains the upper or lower triangle ofA.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains the Cholesky-factored matrixB:
B = UHU or B = LLH (as returned by?potrf).
The second dimension ofb must be at least max(1,n).

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

Output Parameters

a The upper or lower triangle ofA is overwritten by the
upper or lower triangle ofC, as specified by the
argumentsitype anduplo .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

Forming the reduced matrixC is a stable procedure. However, it involves
implicit multiplication byB- 1 (if itype = 1) or B (if itype = 2 or 3).
When the routine is used as a step in the computation of eigenvalues and
eigenvectors of the original problem, there may be a significant loss of
accuracy ifB is ill-conditioned with respect to inversion.

The approximate number of floating-point operations isn3.

5-162

5 Intel® Math Kernel Library Reference Manual

?spgst
Reduces a real symmetric-definite
generalized eigenvalue problem to the
standard form using packed storage.

call sspgst (itype, uplo, n, ap, bp, info)

call dspgst (itype, uplo, n, ap, bp, info)

Discussion

This routine reduces real symmetric-definite generalized eigenproblems

Az= λBz, ABz= λz, or BAz= λz

to the standard formCy = λy, using packed matrix storage. HereA is a real
symmetric matrix, andB is a real symmetric positive-definite matrix.
Before calling this routine, call?pptrf to compute the Cholesky
factorization:B = UTU or B = LLT (seepage 4-16).

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem isAz= λBz;

for uplo = 'U' : C = U- TAU- 1, z = U- 1y;
for uplo = 'L' : C = L- 1AL- T, z = L- Ty.

If itype = 2, the generalized eigenproblem isABz= λz;
for uplo = 'U' : C = UAUT, z = U- 1y;
for uplo = 'L' : C = LTAL, z = L- Ty.

If itype = 3, the generalized eigenproblem isBAz= λz;
for uplo = 'U' : C = UAUT, z = UTy;
for uplo = 'L' : C = LTAL, z = Ly.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ap stores the packed upper triangle ofA;
you must supplyB in the factored formB = UTU.
If uplo = 'L' , ap stores the packed lower triangle ofA;
you must supplyB in the factored formB = LLT.

n INTEGER. The order of the matricesA andB (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-163

ap, bp REALfor sspgst

DOUBLE PRECISIONfor dspgst .
Arrays:
ap(*) contains the packed upper or lower triangle ofA.
The dimension ofap must be at least max(1,
n* (n+1)/2).

bp(*) contains the packed Cholesky factor ofB
(as returned by?pptrf with the sameuplo value).
The dimension ofbp must be at least max(1,
n* (n+1)/2).

Output Parameters

ap The upper or lower triangle ofA is overwritten by the
upper or lower triangle ofC, as specified by the
argumentsitype anduplo .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

Forming the reduced matrixC is a stable procedure. However, it involves
implicit multiplication byB- 1 (if itype = 1) or B (if itype = 2 or 3).
When the routine is used as a step in the computation of eigenvalues and
eigenvectors of the original problem, there may be a significant loss of
accuracy ifB is ill-conditioned with respect to inversion.

The approximate number of floating-point operations isn3.

5-164

5 Intel® Math Kernel Library Reference Manual

?hpgst
Reduces a complex Hermitian-definite
generalized eigenvalue problem to the
standard form using packed storage.

call chpgst (itype, uplo, n, ap, bp, info)

call zhpgst (itype, uplo, n, ap, bp, info)

Discussion

This routine reduces real symmetric-definite generalized eigenproblems

Az= λBz, ABz= λz, or BAz= λz

to the standard formCy = λy, using packed matrix storage. HereA is a real
symmetric matrix, andB is a real symmetric positive-definite matrix.
Before calling this routine, you must call?pptrf to compute the Cholesky
factorization:B = UHU or B = LLH (seepage 4-16).

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
If itype = 1, the generalized eigenproblem isAz= λBz;

for uplo = 'U' : C = U- HAU- 1, z = U- 1y;
for uplo = 'L' : C = L- 1AL- H, z = L- Hy.

If itype = 2, the generalized eigenproblem isABz= λz;
for uplo = 'U' : C = UAUH, z = U- 1y;
for uplo = 'L' : C = LHAL, z = L- Hy.

If itype = 3, the generalized eigenproblem isBAz= λz;
for uplo = 'U' : C = UAUH, z = UHy;
for uplo = 'L' : C = LHAL, z = Ly.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ap stores the packed upper triangle ofA;
you must supplyB in the factored formB = UHU.
If uplo = 'L' , ap stores the packed lower triangle ofA;
you must supplyB in the factored formB = LLH.

n INTEGER. The order of the matricesA andB (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-165

ap, bp COMPLEXfor chpgst

DOUBLE COMPLEXfor zhpgst .
Arrays:
ap(*) contains the packed upper or lower triangle ofA.
The dimension ofa must be at least max(1,n* (n+1)/2).

bp(*) contains the packed Cholesky factor ofB
(as returned by?pptrf with the sameuplo value).
The dimension ofb must be at least max(1,n* (n+1)/2).

Output Parameters

ap The upper or lower triangle ofA is overwritten by the
upper or lower triangle ofC, as specified by the
argumentsitype anduplo .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

Forming the reduced matrixC is a stable procedure. However, it involves
implicit multiplication byB- 1 (if itype = 1) or B (if itype = 2 or 3).
When the routine is used as a step in the computation of eigenvalues and
eigenvectors of the original problem, there may be a significant loss of
accuracy ifB is ill-conditioned with respect to inversion.

The approximate number of floating-point operations isn3.

5-166

5 Intel® Math Kernel Library Reference Manual

?sbgst
Reduces a real symmetric-definite
generalized eigenproblem for banded
matrices to the standard form using the
factorization performed by?pbstf .

call ssbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, info)

call dsbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, info)

Discussion

To reduce the real symmetric-definite generalized eigenproblemAz= λBz
to the standard formCy = λy , whereA, BandC are banded, this routine
must be preceded by a call tospbstf/dpbstf , which computes the split
Cholesky factorization of the positive-definite matrixB: B = STS. The split
Cholesky factorization, compared with the ordinary Cholesky factorization,
allows the work to be approximately halved.

This routine overwritesA with C = XTAX, whereX = S-1Q andQ is an
orthogonal matrix chosen (implicitly) to preserve the bandwidth ofA.
The routine also has an option to allow the accumulation ofX, and then, ifz
is an eigenvector ofC, Xz is an eigenvector of the original system.

Input Parameters
vect CHARACTER*1. Must be'N' or 'V' .

If vect = 'N' , then matrixX is not returned;
If vect = 'V' , then matrixX is returned.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ab stores the upper triangular part ofA.
If uplo = 'L' , ab stores the lower triangular part ofA.

n INTEGER. The order of the matricesA andB (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals inA
(ka ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-167

kb INTEGER. The number of super- or sub-diagonals inB
(ka ≥ kb ≥ 0).

ab,bb,work REALfor ssbgst

DOUBLE PRECISIONfor dsbgst

ab (ldab, *) is an array containing either upper or
lower triangular part of the symmetric matrixA (as
specified byuplo) in band storage format. The second
dimension of the arrayab must be at least max(1,n).
bb (ldbb, *) is an array containing the banded split
Cholesky factor ofB as specified byuplo , n andkb and
returned byspbstf/dpbstf . The second dimension of
the arraybb must be at least max(1,n).
work(*) is a workspace array,DIMENSIONat least
max(1, 2*n)

ldab INTEGER. The first dimension of the arrayab ; must be
at leastka +1.

ldbb INTEGER. The first dimension of the arraybb ; must be
at leastkb +1.

ldx The first dimension of the output array x. Constraints:
if vect ='N' , then ldx ≥ 1;
if vect ='V' , thenldx ≥ max(1,n).

Output Parameters

ab On exit, this array is overwritten by the upper or lower
triangle ofC as specified byuplo .

x REALfor ssbgst

DOUBLE PRECISIONfor dsbgst

Array.
If vect ='V' , then x (ldx, *) contains then by n

matrix X = S-1Q.
If vect ='N' , then x is not referenced.
The second dimension of x must be:
at least max(1,n), if vect ='V' ;
at least 1, ifvect ='N' .

5-168

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

Forming the reduced matrixC involves implicit multiplication byB-1. When
the routine is used as a step in the computation of eigenvalues and
eigenvectors of the original problem, there may be a significant loss of
accuracy ifB is ill-conditioned with respect to inversion.
The total number of floating-point operations is approximately 6n2* kb ,
whenvect ='N' . Additional (3/2)n3* (kb / ka) operations are required
whenvect ='V' . All these estimates assume that bothka andkb are much
less thann.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-169

?hbgst
Reduces a complex Hermitian-definite
generalized eigenproblem for banded
matrices to the standard form using the
factorization performed by?pbstf .

call chbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, rwork, info)

call zhbgst (vect, uplo, n, ka, kb, ab, ldab, bb, ldbb, x, ldx,
work, rwork, info)

Discussion

To reduce the complex Hermitian-definite generalized eigenproblemAz=
λBz to the standard formCy = λy , whereA, BandC are banded, this
routine must be preceded by a call tocpbstf/zpbstf , which computes the
split Cholesky factorization of the positive-definite matrixB: B = SHS. The
split Cholesky factorization, compared with the ordinary Cholesky
factorization, allows the work to be approximately halved.

This routine overwritesA with C = XHAX, whereX = S-1Q andQ is a
unitary matrix chosen (implicitly) to preserve the bandwidth ofA.
The routine also has an option to allow the accumulation ofX, and then, ifz
is an eigenvector ofC, Xz is an eigenvector of the original system.

Input Parameters
vect CHARACTER*1. Must be'N' or 'V' .

If vect = 'N' , then matrixX is not returned;
If vect = 'V' , then matrixX is returned.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ab stores the upper triangular part ofA.
If uplo = 'L' , ab stores the lower triangular part ofA.

n INTEGER. The order of the matricesA andB (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals inA
(ka ≥ 0).

5-170

5 Intel® Math Kernel Library Reference Manual

kb INTEGER. The number of super- or sub-diagonals inB
(ka ≥ kb ≥ 0).

ab,bb,work COMPLEXfor chbgst

DOUBLE COMPLEXfor zhbgst

ab (ldab, *) is an array containing either upper or
lower triangular part of the Hermitian matrixA (as
specified byuplo) in band storage format. The second
dimension of the arrayab must be at least max(1,n).
bb (ldbb, *) is an array containing the banded split
Cholesky factor ofB as specified byuplo , n andkb and
returned bycpbstf/zpbstf . The second dimension of
the arraybb must be at least max(1,n).
work(*) is a workspace array,DIMENSIONat least
max(1,n)

ldab INTEGER. The first dimension of the arrayab ; must be
at leastka +1.

ldbb INTEGER. The first dimension of the arraybb ; must be
at leastkb +1.

ldx The first dimension of the output array x. Constraints:
if vect ='N' , then ldx ≥ 1;
if vect ='V' , thenldx ≥ max(1,n).

rwork REALfor chbgst

DOUBLE PRECISIONfor zhbgst

Workspace array,DIMENSIONat least max(1,n)

Output Parameters

ab On exit, this array is overwritten by the upper or lower
triangle ofC as specified byuplo .

x COMPLEXfor chbgst

DOUBLE COMPLEXfor zhbgst

Array.
If vect ='V' , then x (ldx, *) contains then by n

matrix X = S-1Q.
If vect ='N' , then x is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-171

The second dimension of x must be:
at least max(1,n), if vect ='V' ;
at least 1, ifvect ='N' .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

Forming the reduced matrixC involves implicit multiplication byB-1. When
the routine is used as a step in the computation of eigenvalues and
eigenvectors of the original problem, there may be a significant loss of
accuracy ifB is ill-conditioned with respect to inversion.
The total number of floating-point operations is approximately 20n2* kb ,
whenvect ='N' . Additional 5n3* (kb / ka) operations are required when
vect ='V' . All these estimates assume that bothka andkb are much less
thann.

5-172

5 Intel® Math Kernel Library Reference Manual

?pbstf
Computes a split Cholesky factorization
of a real symmetric or complex
Hermitian positive-definite banded
matrix used in?sbgst/?hbgst .

call spbstf (uplo, n, kb, bb, ldbb, info)
call dpbstf (uplo, n, kb, bb, ldbb, info)
call cpbstf (uplo, n, kb, bb, ldbb, info)
call zpbstf (uplo, n, kb, bb, ldbb, info)

Discussion

This routine computes a split Cholesky factorization of a real symmetric or
complex Hermitian positive-definite band matrixB. It is to be used in
conjunction with?sbgst/?hbgst .

The factorization has the formB = STS(or B = SHS for complex flavors),
whereS is a band matrix of the same bandwidth asB and the following
structure: S is upper triangular in the first (n+kb)/2 rows and lower
triangular in the remaining rows.

Input Parameters
uplo CHARACTER*1. Must be'U' or 'L' .

If uplo = 'U' , bb stores the upper triangular part ofB.
If uplo = 'L' , bb stores the lower triangular part ofB.

n INTEGER. The order of the matrixB (n ≥ 0).

kb INTEGER. The number of super- or sub-diagonals inB
(kb ≥ 0).

bb REALfor spbstf

DOUBLE PRECISIONfor dpbstf

COMPLEXfor cpbstf

DOUBLE COMPLEXfor zpbstf .
bb (ldbb, *) is an array containing either upper or
lower triangular part of the matrixB (as specified by

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-173

uplo) in band storage format.
The second dimension of the arraybb must be at least
max(1,n).

ldbb INTEGER. The first dimension ofbb ; must be at least
kb +1.

Output Parameters

bb On exit, this array is overwritten by the elements of the
split Cholesky factorS.

info INTEGER.
If info = 0, the execution is successful.
If info = i , then the factorization could not be
completed, because the updated elementbii would be
the square root of a negative number; hence the matrixB
is not positive-definite.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed factorS is the exact factor of a perturbed matrixB + E,
where

c(n) is a modest linear function ofn, andε is the machine precision.

The total number of floating-point operations for real flavors is
approximatelyn(kb +1)2. The number of operations for complex flavors is 4
times greater. All these estimates assume thatkb is much less thann.

After calling this routine, you can call?sbgst /?hbgst to solve the
generalized eigenproblemAz= λBz , whereA andB are banded andB is
positive-definite.

E c kb 1+()ε SH S eij c kb 1+()ε biibjj≤,≤

5-174

5 Intel® Math Kernel Library Reference Manual

Nonsymmetric Eigenvalue Problems

This section describes LAPACK routines for solving nonsymmetric
eigenvalue problems, computing the Schur factorization of general
matrices, as well as performing a number of related computational tasks.

A nonsymmetric eigenvalue problemis as follows: given a nonsymmetric
(or non-Hermitian) matrixA, find theeigenvaluesλ and the corresponding
eigenvectors zthat satisfy the equation

Az= λz (right eigenvectorsz)

or the equation

zHA = λzH (left eigenvectorsz).

Nonsymmetric eigenvalue problems have the following properties:

• The number of eigenvectors may be less than the matrix order (but is
not less than the number ofdistinct eigenvaluesof A).

• Eigenvalues may be complex even for a real matrixA.
• If a real nonsymmetric matrix has a complex eigenvaluea+bi

corresponding to an eigenvectorz, thena- bi is also an eigenvalue.
The eigenvaluea- bi corresponds to the eigenvector whose elements
are complex conjugate to the elements ofz.

To solve a nonsymmetric eigenvalue problem with LAPACK, you usually
need to reduce the matrix to the upper Hessenberg form and then solve the
eigenvalue problem with the Hessenberg matrix obtained.Table 5-5lists
LAPACK routines for reducing the matrix to the upper Hessenberg form by
an orthogonal (or unitary) similarity transformationA = QHQH as well as
routines for solving eigenvalue problems with Hessenberg matrices,
forming the Schur factorization of such matrices and computing the
corresponding condition numbers.

Decision tree inFigure 5-4helps you choose the right routine or sequence
of routines for an eigenvalue problem with a real nonsymmetric matrix.
If you need to solve an eigenvalue problem with a complex non-Hermitian
matrix, use the decision tree shown inFigure 5-5.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-175

Table 5-5 Computational Routines for Solving Nonsymmetric Eigenvalue
Problems

Operation performed Routines for real matrices Routines for complex matrices

Reduce to Hessenberg
form A = QHQH

?gehrd , ?gehrd

Generate the matrix Q ?orghr ?unghr

Apply the matrix Q ?ormhr ?unmhr

Balance matrix ?gebal ?gebal

Transform eigenvectors of
balanced matrix to those
of the original matrix

?gebak ?gebak

Find eigenvalues and
Schur factorization
(QR algorithm)

?hseqr ?hseqr

Find eigenvectors from
Hessenberg form (inverse
iteration)

?hsein ?hsein

Find eigenvectors from
Schur factorization

?trevc ?trevc

Estimate sensitivities of
eigenvalues and
eigenvectors

?trsna ?trsna

Reorder Schur
factorization

?trexc ?trexc

Reorder Schur
factorization, find the
invariant subspace and
estimate sensitivities

?trsen ?trsen

Solves Sylvester’s
equation.

?trsyl ?trsyl

5-176

5 Intel® Math Kernel Library Reference Manual

Figure 5-4 Decision Tree: Real Nonsymmetric Eigenvalue Problems

Are eigenvalues
only required?

Is A an upper
Hessenberg matrix?

Is the Schur
factorization ofA
required?

Are all eigenvectors
required?

Is A an upper
Hessenberg matrix?

?GEBAL ?GEHRD

?HSEQR ?HSEIN

?ORMHR ?GEBAK

?HSEQR

?HSEQR
Is A an upper
Hessenberg matrix?

Is A an upper
Hessenberg matrix?

?GEBAL ?GEHRD

?ORGHR ?HSEQR

?TREVC ?GEBAK

?HSEQR ?HSEIN

?HSEQR ?TREVC

yes

no

yes

yes

yes

no

no

no

no

no

no

?GEBAL

?GEHRD ?ORGHR

?HSEQR ?GEBAK

?GEBAL ?GEHRD

?HSEQR

yes

yes

yes

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-177

Figure 5-5 Decision Tree: Complex Non-Hermitian Eigenvalue Problems

yes

yes

yes

yes

yes

yes

?GEBAL ?GEHRD

?HSEQR ?HSEIN

?UNMHR ?GEBAK

?HSEQR ?HSEIN

?GEBAL ?GEHRD ?UNGHR

?HSEQR ?TREVC ?GEBAK

?HSEQR ?TREVC

?GEBAL ?GEHRD ?UNGHR

?HSEQR ?GEBAK

?HSEQR

?GEBAL ?GEHRD ?HSEQR

?HSEQR

no

no

no

no

no

no

yes

no

Is A an upper Hessenberg
matrix?

Is A an upper Hessenberg
matrix?

Is A an upper
Hessenberg matrix?

Are all eigenvectors
required?

Is the Schur
factorization ofA
required?

Is A an upper Hessenberg
matrix?

Are eigenvalues only
required?

5-178

5 Intel® Math Kernel Library Reference Manual

?gehrd
Reduces a general matrix to upper
Hessenberg form.

call sgehrd (n, ilo, ihi, a, lda, tau, work, lwork, info)

call dgehrd (n, ilo, ihi, a, lda, tau, work, lwork, info)

call cgehrd (n, ilo, ihi, a, lda, tau, work, lwork, info)

call zgehrd (n, ilo, ihi, a, lda, tau, work, lwork, info)

Discussion

The routine reduces a general matrixA to upper Hessenberg formH by an
orthogonal or unitary similarity transformationA = QHQH. HereH has real
subdiagonal elements.

The routine does not form the matrixQ explicitly. Instead,Q is represented
as a product ofelementary reflectors. Routines are provided to work withQ
in this representation.

Input Parameters

n INTEGER. The order of the matrixA (n ≥ 0).

ilo, ihi INTEGER. If A has been output by?gebal , then
ilo andihi must contain the values returned by that
routine. Otherwiseilo = 1 andihi = n. (If n > 0, then 1
≤ ilo ≤ ihi ≤ n; if n = 0, ilo = 1 andihi = 0.)

a, work REALfor sgehrd

DOUBLE PRECISIONfor dgehrd

COMPLEXfor cgehrd

DOUBLE COMPLEXfor zgehrd .
Arrays:
a (lda, *) contains the matrixA.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-179

lwork INTEGER. The size of thework array; at least max(1,n).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by the upper Hessenberg matrixH and
details of the matrixQ. The subdiagonal elements ofH
are real.

tau REALfor sgehrd

DOUBLE PRECISIONfor dgehrd

COMPLEXfor cgehrd

DOUBLE COMPLEXfor zgehrd .
Array, DIMENSIONat least max (1,n- 1).
Contains additional information on the matrixQ.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = n* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The computed Hessenberg matrixH is exactly similar to a nearby matrix
A + E, where||E||2 < c(n)ε||A||2, c(n) is a modestly increasing function ofn,
andε is the machine precision.

The approximate number of floating-point operations for real flavors is
(2/3)(ihi - ilo)2(2ihi + 2ilo + 3n); for complex flavors it is 4 times
greater.

5-180

5 Intel® Math Kernel Library Reference Manual

?orghr
Generates the real orthogonal matrix Q
determined by?gehrd .

call sorghr (n, ilo, ihi, a, lda, tau, work, lwork, info)

call dorghr (n, ilo, ihi, a, lda, tau, work, lwork, info)

Discussion

This routine explicitly generates the orthogonal matrixQ that has been
determined by a preceding call tosgehrd /dgehrd . (The routine?gehrd

reduces a real general matrixA to upper Hessenberg formH by an
orthogonal similarity transformation,A = QHQT, and represents the matrix
Q as a product ofihi - ilo elementary reflectors. Hereilo andihi are
values determined bysgebal /dgebal when balancing the matrix; if the
matrix has not been balanced,ilo = 1 andihi = n.)

The matrixQ generated by?orghr has the structure:

whereQ22 occupies rows and columnsilo to ihi .

Input Parameters

n INTEGER. The order of the matrixQ (n ≥ 0).

ilo, ihi INTEGER. These must be the same parametersilo and
ihi , respectively, as supplied to?gehrd . (If n > 0, then
1 ≤ ilo ≤ ihi ≤ n; if n = 0, ilo = 1 andihi = 0.)

a, tau, work REALfor sorghr

DOUBLE PRECISIONfor dorghr

Arrays:

Q
I 0 0
0 Q22 0
0 0 I

=

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-181

a(lda, *) contains details of the vectors which define
the elementary reflectors, as returned by?gehrd .
The second dimension ofa must be at least max(1,n).

tau (*) contains further details of the elementary
reflectors, as returned by?gehrd .
The dimension oftau must be at least max (1,n- 1).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

lwork INTEGER. The size of thework array;
lwork ≥ max(1,ihi −ilo).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by then by n orthogonal matrixQ.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork =(ihi −ilo)* blocksize, where
blocksizeis a machine-dependent value (typically, 16 to 64) required for
optimum performance of theblocked algorithm. If you are in doubt how
much workspace to supply, use a generous value oflwork for the first run.
On exit, examinework (1) and use this value for subsequent runs.

The computed matrixQ differs from the exact result by a matrixE such that
||E||2 = O(ε), whereε is the machine precision.

The approximate number of floating-point operations is (4/3)(ihi −ilo)3.

The complex counterpart of this routine is?unghr.

5-182

5 Intel® Math Kernel Library Reference Manual

?ormhr
Multiplies an arbitrary real matrix C by
the real orthogonal matrix Q
determined by?gehrd .

call sormhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info)

call dormhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info)

Discussion

This routine multiplies a matrixC by the orthogonal matrixQ that has been
determined by a preceding call tosgehrd /dgehrd . (The routine?gehrd

reduces a real general matrixA to upper Hessenberg formH by an
orthogonal similarity transformation,A = QHQT, and represents the matrix
Q as a product ofihi - ilo elementary reflectors. Hereilo andihi are
values determined bysgebal /dgebal when balancing the matrix; if the
matrix has not been balanced,ilo = 1 andihi = n.)

With ?ormhr , you can form one of the matrix productsQC, QTC, CQ, or
CQT, overwriting the result onC (which may be any real rectangular
matrix).

A common application of?ormhr is to transform a matrixV of eigenvectors
of H to the matrixQV of eigenvectors ofA.

Input Parameters

side CHARACTER*1. Must be'L' or 'R' .
If side = 'L' , then the routine formsQC or QTC.
If side = 'R' , then the routine formsCQ or CQT.

trans CHARACTER*1. Must be'N' or 'T' .
If trans = 'N' , thenQ is applied toC.
If trans = 'T' , thenQT is applied toC.

m INTEGER. The number of rows inC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-183

ilo, ihi INTEGER. These must be the same parametersilo and
ihi , respectively, as supplied to?gehrd .
If m> 0 andside ='L' , then 1≤ ilo ≤ ihi ≤ m.
If m= 0 andside ='L' , thenilo = 1 andihi = 0.
If n > 0 andside ='R' , then 1 ≤ ilo ≤ ihi ≤ n.
If n = 0 andside ='R' , thenilo = 1 andihi = 0.

a,tau,c,work REALfor sormhr

DOUBLE PRECISIONfor dormhr

Arrays:
a(lda, *) contains details of the vectors which define
theelementary reflectors, as returned by?gehrd .
The second dimension ofa must be at least max(1,m) if
side = 'L' and at least max(1,n) if side = 'R' .

tau (*) contains further details of theelementary
reflectors, as returned by?gehrd .
The dimension oftau must be at least max (1,m- 1)
if side ='L' and at least max (1,n- 1) if side ='R' .

c(ldc ,*) contains themby n matrix C.
The second dimension ofc must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m)
if side ='L' and at least max (1,n) if side ='R' .

ldc INTEGER. The first dimension ofc ; at least max(1,m).

lwork INTEGER. The size of thework array.
If side ='L' , lwork ≥ max(1,n).
If side ='R' , lwork ≥ max(1,m).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c C is overwritten byQC or QTC or CQT or CQ as
specified byside andtrans .

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

5-184

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance,lwork should be at leastn* blocksizeif side ='L'

and at leastm* blocksizeif side ='R' , whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The computed matrixQ differs from the exact result by a matrixE such that
||E||2 = O(ε)||C||2, whereε is the machine precision.

The approximate number of floating-point operations is
2n(ihi −ilo)2 if side ='L' ;
2m(ihi −ilo)2 if side ='R' .

The complex counterpart of this routine is?unmhr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-185

?unghr
Generates the complex unitary matrix Q
determined by?gehrd .

call cunghr (n, ilo, ihi, a, lda, tau, work, lwork, info)

call zunghr (n, ilo, ihi, a, lda, tau, work, lwork, info)

Discussion

This routine is intended to be used following a call tocgehrd /zgehrd ,
which reduces a complex matrixA to upper Hessenberg formH by a unitary
similarity transformation:A = QHQH. ?gehrd represents the matrixQ as a
product ofihi −ilo elementary reflectors. Hereilo andihi are values
determined bycgebal /zgebal when balancing the matrix; if the matrix
has not been balanced,ilo = 1 andihi = n.

Use the routine?unghr to generateQ explicitly as a square matrix. The
matrix Q has the structure:

whereQ22 occupies rows and columnsilo to ihi .

Input Parameters

n INTEGER. The order of the matrixQ (n ≥ 0).

ilo, ihi INTEGER. These must be the same parametersilo and
ihi , respectively, as supplied to?gehrd . (If n > 0, then
1 ≤ ilo ≤ ihi ≤ n. If n = 0, thenilo = 1 andihi = 0.)

a, tau, work COMPLEXfor cunghr

DOUBLE COMPLEXfor zunghr .
Arrays:

Q
I 0 0
0 Q22 0
0 0 I

=

5-186

5 Intel® Math Kernel Library Reference Manual

a(lda, *) contains details of the vectors which define
theelementary reflectors, as returned by?gehrd .
The second dimension ofa must be at least max(1,n).

tau (*) contains further details of theelementary
reflectors, as returned by?gehrd .
The dimension oftau must be at least max (1,n- 1).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

lwork INTEGER. The size of thework array;
lwork ≥ max(1,ihi −ilo).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

a Overwritten by then by n unitary matrixQ.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try usinglwork = (ihi −ilo)* blocksize, where
blocksizeis a machine-dependent value (typically, 16 to 64) required for
optimum performance of theblocked algorithm. If you are in doubt how
much workspace to supply, use a generous value oflwork for the first run.
On exit, examinework (1) and use this value for subsequent runs.

The computed matrixQ differs from the exact result by a matrixE such that
||E||2 = O(ε), whereε is the machine precision.

The approximate number of real floating-point operations is
(16/3)(ihi −ilo)3.

The real counterpart of this routine is?orghr.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-187

?unmhr
Multiplies an arbitrary complex matrix
C by the complex unitary matrix Q
determined by?gehrd .

call cunmhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info)

call zunmhr (side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc,
work, lwork, info)

Discussion

This routine multiplies a matrixC by the unitary matrixQ that has been
determined by a preceding call tocgehrd /zgehrd . (The routine?gehrd

reduces a real general matrixA to upper Hessenberg formH by an
orthogonal similarity transformation,A = QHQH, and represents the matrix
Q as a product ofihi - ilo elementary reflectors. Hereilo andihi are
values determined bycgebal /zgebal when balancing the matrix; if the
matrix has not been balanced,ilo = 1 andihi = n.)

With ?unmhr , you can form one of the matrix productsQC, QHC, CQ, or
CQH, overwriting the result onC (which may be any complex rectangular
matrix). A common application of this routine is to transform a matrixV of
eigenvectors ofH to the matrixQV of eigenvectors ofA.

Input Parameters

side CHARACTER*1. Must be'L' or 'R' .
If side = 'L' , then the routine formsQC or QHC.
If side = 'R' , then the routine formsCQ or CQH.

trans CHARACTER*1. Must be'N' or 'C' .
If trans = 'N' , thenQ is applied toC.
If trans = 'T' , thenQH is applied toC.

m INTEGER. The number of rows inC (m≥ 0).

n INTEGER. The number of columns inC (n ≥ 0).

5-188

5 Intel® Math Kernel Library Reference Manual

ilo, ihi INTEGER. These must be the same parametersilo and
ihi , respectively, as supplied to?gehrd .
If m> 0 andside ='L' , then 1≤ ilo ≤ ihi ≤ m.
If m= 0 andside ='L' , thenilo = 1 andihi = 0.
If n > 0 andside ='R' , then 1 ≤ ilo ≤ ihi ≤ n.
If n = 0 andside ='R' , thenilo =1 andihi = 0.

a,tau,c,work COMPLEXfor cunmhr

DOUBLE COMPLEXfor zunmhr .
Arrays:
a (lda, *) contains details of the vectors which define
the elementary reflectors, as returned by?gehrd .
The second dimension ofa must be at least max(1,m) if
side = 'L' and at least max(1,n) if side = 'R' .

tau (*) contains further details of the elementary
reflectors, as returned by?gehrd .
The dimension oftau must be at least max (1,m- 1)
if side ='L' and at least max (1,n- 1) if side ='R' .

c (ldc ,*) contains themby n matrix C.
The second dimension ofc must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m)
if side ='L' and at least max (1,n) if side = 'R' .

ldc INTEGER. The first dimension ofc ; at least max(1,m).

lwork INTEGER. The size of thework array.
If side = 'L' , lwork ≥ max(1,n).
If side = 'R' , lwork ≥ max(1,m).
SeeApplication notesfor the suggested value oflwork .

Output Parameters

c C is overwritten byQC or QHC or CQH or CQ as
specified byside andtrans .

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-189

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance,lwork should be at leastn* blocksizeif side ='L'

and at leastm* blocksizeif side = 'R' , whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm. If you are in doubt how much
workspace to supply, use a generous value oflwork for the first run. On
exit, examinework (1) and use this value for subsequent runs.

The computed matrixQ differs from the exact result by a matrixE such that
||E||2 = O(ε) ||C||2, whereε is the machine precision.

The approximate number of floating-point operations is
8n(ihi −ilo)2 if side = 'L' ;
8m(ihi −ilo)2 if side = 'R' .

The real counterpart of this routine is?ormhr.

5-190

5 Intel® Math Kernel Library Reference Manual

?gebal
Balances a general matrix to improve
the accuracy of computed eigenvalues
and eigenvectors.

call sgebal (job, n, a, lda, ilo, ihi, scale, info)
call dgebal (job, n, a, lda, ilo, ihi, scale, info)
call cgebal (job, n, a, lda, ilo, ihi, scale, info)
call zgebal (job, n, a, lda, ilo, ihi, scale, info)

Discussion

This routinebalancesa matrixA by performing either or both of the
following two similarity transformations:

(1) The routine first attempts to permuteA to block upper triangular form:

whereP is a permutation matrix, andA′11 andA′33 are upper triangular. The
diagonal elements ofA′11andA′33 are eigenvalues ofA. The rest of the
eigenvalues ofA are the eigenvalues of the central diagonal blockA′22, in
rows and columnsilo to ihi . Subsequent operations to compute the
eigenvalues ofA (or its Schur factorization) need only be applied to these
rows and columns; this can save a significant amount of work ifilo > 1 and
ihi < n. If no suitable permutation exists (as is often the case), the routine
setsilo = 1 andihi = n, andA′22 is the whole ofA.

(2) The routine applies a diagonal similarity transformation toA′, to make
the rows and columns ofA′22 as close in norm as possible:

PAPT A′
A′

11 A′
12 A′

13

0 A′
22 A′

23

0 0 A′
33

= =

A″ DA′D 1–
I 0 0
0 D22 0
0 0 I

A′
11 A′

12 A′
13

0 A′
22 A′

23

0 0 A′
33

×
I 0 0

0 D22
1– 0

0 0 I

×= =

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-191

This scaling can reduce the norm of the matrix (that is,||A′′22|| < ||A′22||), and
hence reduce the effect of rounding errors on the accuracy of computed
eigenvalues and eigenvectors.

Input Parameters

job CHARACTER*1. Must be'N' or 'P' or 'S' or 'B' .
If job ='N' , thenA is neither permuted nor scaled (but
ilo , ihi , andscale get their values).
If job ='P' , thenA is permuted but not scaled.
If job ='S' , thenA is scaled but not permuted.
If job ='B' , thenA is both scaled and permuted.

n INTEGER. The order of the matrixA (n ≥ 0).

a REALfor sgebal

DOUBLE PRECISIONfor dgebal

COMPLEXfor cgebal

DOUBLE COMPLEXfor zgebal .
Arrays:
a (lda, *) contains the matrixA.
The second dimension ofa must be at least max(1,n).
a is not referenced ifjob ='N' .

lda INTEGER. The first dimension ofa; at least max(1,n).

Output Parameters

a Overwritten by the balanced matrix (a is not referenced
if job = 'N').

ilo, ihi INTEGER. The valuesilo andihi such that on exit
a(i,j) is zero if i > j and 1≤ j < ilo or ihi < i ≤ n.
If job ='N' or 'S' , thenilo = 1 andihi = n.

scale REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors
Array, DIMENSIONat least max(1,n).

Contains details of the permutations and scaling factors.

5-192

5 Intel® Math Kernel Library Reference Manual

More precisely, ifpj is the index of the row and column
interchanged with row and columnj, anddj is the
scaling factor used to balance row and columnj, then
scale (j) = pj for j = 1, 2,... , ilo - 1, ihi +1,... , n;
scale (j) = dj for j = ilo , ilo + 1,... , ihi .
The order in which the interchanges are made is
n to ihi +1, then 1 toilo - 1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The errors are negligible, compared with those in subsequent computations.

If the matrixA is balanced by this routine, then any eigenvectors computed
subsequently are eigenvectors of the matrixA′′ and hence you must call
?gebak (seepage 5-193) to transform them back to eigenvectors ofA.

If the Schur vectors ofA are required, do not call this routine with
job = 'S' or 'B' , because then the balancing transformation is not
orthogonal (not unitary for complex flavors). If you call this routine with
job = 'P' , then any Schur vectors computed subsequently are Schur
vectors of the matrixA′′, and you’ll need to call?gebak (with side ='R')
to transform them back to Schur vectors ofA.

The total number of floating-point operations is proportional ton2.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-193

?gebak
Transforms eigenvectors of a balanced
matrix to those of the original
nonsymmetric matrix.

call sgebak (job,side,n,ilo,ihi,scale,m,v,ldv,info)

call dgebak (job,side,n,ilo,ihi,scale,m,v,ldv,info)

call cgebak (job,side,n,ilo,ihi,scale,m,v,ldv,info)

call zgebak (job,side,n,ilo,ihi,scale,m,v,ldv,info)

Discussion

This routine is intended to be used after a matrixA has been balanced by
a call to?gebal , and eigenvectors of the balanced matrixA′′22 have
subsequently been computed.
For a description of balancing, see?gebal (page 5-190). The balanced
matrix A′′ is obtained asA′′= DPAPTD- 1, whereP is a permutation matrix
andD is a diagonal scaling matrix. This routine transforms the eigenvectors
as follows:
if x is a right eigenvector ofA′′, thenPTD- 1x is a right eigenvector ofA;
if x is a left eigenvector ofA′′, thenPTDy is a left eigenvector ofA.

Input Parameters

job CHARACTER*1. Must be'N' or 'P' or 'S' or 'B' .
The same parameterjob as supplied to?gebal .

side CHARACTER*1. Must be'L' or 'R' .
If side = 'L' , then left eigenvectors are transformed.
If side = 'R' , then right eigenvectors are transformed.

n INTEGER. The number of rows of the matrix of
eigenvectors (n ≥ 0).

ilo, ihi INTEGER. The valuesilo andihi , as returned by
?gebal . (If n > 0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, thenilo = 1 andihi = 0.)

5-194

5 Intel® Math Kernel Library Reference Manual

scale REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors
Array, DIMENSIONat least max(1,n).

Contains details of the permutations and/or the scaling
factors used to balance the original general matrix, as
returned by?gebal .

m INTEGER. The number of columns of the matrix of
eigenvectors (m≥ 0).

v REALfor sgebak

DOUBLE PRECISIONfor dgebak

COMPLEXfor cgebak

DOUBLE COMPLEXfor zgebak .
Arrays:
v (ldv, *) contains the matrix of left or right
eigenvectors to be transformed.
The second dimension ofv must be at least max(1,m).

ldv INTEGER. The first dimension ofv ; at least max(1,n).

Output Parameters

v Overwritten by the transformed eigenvectors.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The errors in this routine are negligible.

The approximate number of floating-point operations is approximately
proportional tom* n.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-195

?hseqr
Computes all eigenvalues and
(optionally) the Schur factorization of a
matrix reduced to Hessenberg form.

call shseqr (job,compz,n,ilo,ihi,h,ldh,wr,wi,z,ldz,work,lwork,info)

call dhseqr (job,compz,n,ilo,ihi,h,ldh,wr,wi,z,ldz,work,lwork,info)

call chseqr (job,compz,n,ilo,ihi,h,ldh,w,z,ldz,work,lwork,info)

call zhseqr (job,compz,n,ilo,ihi,h,ldh,w,z,ldz,work,lwork,info)

Discussion

This routine computes all the eigenvalues, and optionally the Schur
factorization, of an upper Hessenberg matrixH: H = ZTZH, whereT is an
upper triangular (or, for real flavors, quasi-triangular) matrix (the Schur
form of H), andZ is the unitary or orthogonal matrix whose columns are the
Schur vectorszi.

You can also use this routine to compute the Schur factorization of a general
matrix A which has been reduced to upper Hessenberg formH:
A = QHQH, whereQ is unitary (orthogonal for real flavors);
A = (QZ)T(QZ)H.

In this case, after reducingA to Hessenberg form by?gehrd (page 5-178),
call ?orghr to form Q explicitly (page 5-180) and then passQ to ?hseqr

with compz ='V' .

You can also call?gebal (page 5-190) to balance the original matrix before
reducing it to Hessenberg form by?hseqr , so that the Hessenberg matrixH
will have the structure:

whereH11 andH33 are upper triangular.

H11 H12 H13

0 H22 H23

0 0 H33

5-196

5 Intel® Math Kernel Library Reference Manual

If so, only the central diagonal blockH22 (in rows and columnsilo to ihi)
needs to be further reduced to Schur form (the blocksH12 andH23 are also
affected). Therefore the values ofilo andihi can be supplied to?hseqr

directly. Also, after calling this routine you must call?gebak (page 5-193)
to permute the Schur vectors of the balanced matrix to those of the original
matrix.

If ?gebal has not been called, however, thenilo must be set to 1 andihi

to n. Note that if the Schur factorization ofA is required,?gebal must not
be called withjob ='S' or 'B' , because the balancing transformation is
not unitary (for real flavors, it is not orthogonal).

?hseqr uses a multishift form of the upper HessenbergQRalgorithm. The
Schur vectors are normalized so that||zi||2 = 1, but are determined only to
within a complex factor of absolute value 1 (for the real flavors, to within a
factor±1).

Input Parameters

job CHARACTER*1. Must be'E' or 'S' .
If job ='E' , then eigenvalues only are required.
If job ='S' , then the Schur formT is required.

compz CHARACTER*1. Must be'N' or 'I' or 'V' .
If compz ='N' , then no Schur vectors are computed
(and the arrayz is not referenced).
If compz ='I' , then the Schur vectors ofH are
computed (and the arrayz is initialized by the routine).
If compz ='V' , then the Schur vectors ofA are
computed (and the arrayz must contain the matrixQ on
entry).

n INTEGER. The order of the matrixH (n ≥ 0).

ilo, ihi INTEGER. If A has been balanced by?gebal , thenilo

andihi must contain the values returned by?gebal .
Otherwise,ilo must be set to 1 andihi to n.

h, z, work REALfor shseqr

DOUBLE PRECISIONfor dhseqr

COMPLEXfor chseqr

DOUBLE COMPLEXfor zhseqr .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-197

Arrays:
h(ldh, *) Then by n upper Hessenberg matrixH.
The second dimension ofh must be at least max(1,n).

z(ldz, *)

If compz ='V' , thenz must contain the matrixQ from
the reduction to Hessenberg form.
If compz ='I' , thenz need not be set.
If compz ='N' , thenz is not referenced.
The second dimension ofz must be
at least max(1,n) if compz ='V' or 'I' ;
at least 1 ifcompz ='N' .

work (lwork) is a workspace array.
The dimension ofwork must be at least max (1,n).

ldh INTEGER. The first dimension ofh; at least max(1,n).

ldz INTEGER. The first dimension ofz ;
If compz ='N' , thenldz ≥ 1.
If compz ='V' or 'I' , thenldz ≥ max(1,n).

lwork This parameter is currently redundant.

Output Parameters

w COMPLEXfor chseqr

DOUBLE COMPLEXfor zhseqr .
Array, DIMENSIONat least max (1,n).
Contains the computed eigenvalues, unlessinfo >0. The
eigenvalues are stored in the same order as on the
diagonal of the Schur formT (if computed).

wr, wi REALfor shseqr

DOUBLE PRECISIONfor dhseqr

Arrays,DIMENSIONat least max (1,n) each.
Contain the real and imaginary parts, respectively, of the
computed eigenvalues, unlessinfo > 0. Complex
conjugate pairs of eigenvalues appear consecutively
with the eigenvalue having positive imaginary part first.
The eigenvalues are stored in the same order as on the
diagonal of the Schur formT (if computed).

5-198

5 Intel® Math Kernel Library Reference Manual

z If compz ='V' or 'I' , thenz contains the unitary
(orthogonal) matrix of the required Schur vectors, unless
info > 0.
If compz ='N' , thenz is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info > 0, the algorithm has failed to find all the
eigenvalues after a total 30(ihi −ilo +1) iterations. If
info = i , elements 1,2, ...,ilo −1 andi+1, i+2, ...,n of
wr andwi contain the real and imaginary parts of the
eigenvalues which have been found.

Application Notes

The computed Schur factorization is the exact factorization of a nearby
matrix H + E, where||E||2 < O(ε) ||H||2/si, andε is the machine precision.
If λi is an exact eigenvalue, andµi is the corresponding computed value,
then|λi − µi| ≤ c(n)ε ||H||2/si wherec(n) is a modestly increasing function of
n, andsi is the reciprocal condition number ofλi. You can compute the
condition numberssi by calling?trsna (seepage 5-210).

The total number of floating-point operations depends on how rapidly the
algorithm converges; typical numbers are as follows.

If only eigenvalues are computed: 7n3 for real flavors
25n3 for complex flavors.

If the Schur form is computed: 10n3 for real flavors
35n3 for complex flavors.

If the full Schur factorization is computed:20n3 for real flavors
70n3 for complex flavors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-199

?hsein
Computes selected eigenvectors of an
upper Hessenberg matrix that
correspond to specified eigenvalues.

call shsein (job, eigsrc, initv, select, n, h, ldh, wr, wi, vl,
ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info)

call dhsein (job, eigsrc, initv, select, n, h, ldh, wr, wi, vl,
ldvl, vr, ldvr, mm, m, work, ifaill, ifailr, info)

call chsein (job, eigsrc, initv, select, n, h, ldh, w, vl,
ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info)

call zhsein (job, eigsrc, initv, select, n, h, ldh, w, vl,
ldvl, vr, ldvr, mm, m, work, rwork, ifaill, ifailr, info)

Discussion

This routine computes left and/or right eigenvectors of an upper Hessenberg
matrix H, corresponding to selected eigenvalues.

The right eigenvectorx and the left eigenvectory, corresponding to an
eigenvalueλ, are defined by:Hx = λx andyHH = λyH (or HHy = λ∗y).
Hereλ∗ denotes the conjugate ofλ.

The eigenvectors are computed by inverse iteration. They are scaled so that,
for a real eigenvectorx, max|xi| = 1, and for a complex eigenvector,
max(|Rexi| + |Imxi|) = 1.

If H has been formed by reduction of a general matrix A to upper
Hessenberg form, then eigenvectors ofH may be transformed to
eigenvectors ofA by ?ormhr (page 5-182) or ?unmhr (page 5-187).

Input Parameters

job CHARACTER*1. Must be'R' or 'L' or 'B' .
If job ='R' , then only right eigenvectors are computed.
If job ='L' , then only left eigenvectors are computed.
If job ='B' , then all eigenvectors are computed.

5-200

5 Intel® Math Kernel Library Reference Manual

eigsrc CHARACTER*1. Must be'Q' or 'N' .
If eigsrc ='Q' , then the eigenvalues ofH were found
using?hseqr (seepage 5-195); thus if H has any zero
sub-diagonal elements (and so is block triangular), then
thejth eigenvalue can be assumed to be an eigenvalue of
the block containing thejth row/column. This property
allows the routine to perform inverse iteration on just
one diagonal block.
If eigsrc ='N' , then no such assumption is made and
the routine performs inverse iteration using the whole
matrix.

initv CHARACTER*1. Must be'N' or 'U' .
If initv ='N' , then no initial estimates for the selected
eigenvectors are supplied.
If initv ='U' , then initial estimates for the selected
eigenvectors are supplied invl and/orvr .

select LOGICAL.
Array, DIMENSIONat least max (1,n).
Specifies which eigenvectors are to be computed.
For real flavors:
To obtain the real eigenvector corresponding to the real
eigenvaluewr (j) , setselect (j) to .TRUE.

To select the complex eigenvector corresponding to the
complex eigenvalue(wr (j), wi (j)) with complex
conjugate(wr (j +1), wi (j +1)) , setselect (j) and/or
select (j+1) to .TRUE. ; the eigenvector corresponding
to the first eigenvalue in the pair is computed.
For complex flavors:
To select the eigenvector corresponding to the
eigenvaluew(j) , setselect (j) to .TRUE.

n INTEGER. The order of the matrixH (n ≥ 0).

h,vl,vr,work REALfor shsein

DOUBLE PRECISIONfor dhsein

COMPLEXfor chsein

DOUBLE COMPLEXfor zhsein .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-201

Arrays:
h(ldh, *) Then by n upper Hessenberg matrixH.
The second dimension ofh must be at least max(1,n).

vl (ldvl, *)

If initv ='V' andjob ='L' or 'B' , thenvl must
contain starting vectors for inverse iteration for the left
eigenvectors. Each starting vector must be stored in the
same column or columns as will be used to store the
corresponding eigenvector.
If initv ='N' , thenvl need not be set.
The second dimension ofvl must be at least max(1,mm)
if job ='L' or 'B' and at least 1 ifjob ='R' .
The arrayvl is not referenced ifjob ='R' .

vr (ldvr, *)

If initv ='V' andjob ='R' or 'B' , thenvr must
contain starting vectors for inverse iteration for the right
eigenvectors. Each starting vector must be stored in the
same column or columns as will be used to store the
corresponding eigenvector.
If initv ='N' , thenvr need not be set.
The second dimension ofvr must be at least max(1,mm)
if job ='R' or 'B' and at least 1 ifjob ='L' .
The arrayvr is not referenced ifjob ='L' .

work (*) is a workspace array.
DIMENSIONat least max (1,n* (n+2)) for real flavors
and at least max (1,n* n) for complex flavors.

ldh INTEGER. The first dimension ofh; at least max(1,n).

w COMPLEXfor chsein

DOUBLE COMPLEXfor zhsein .
Array, DIMENSIONat least max (1,n).
Contains the eigenvalues of the matrixH.
If eigsrc ='Q' , the array must be exactly as returned
by ?hseqr .

5-202

5 Intel® Math Kernel Library Reference Manual

wr, wi REALfor shsein

DOUBLE PRECISIONfor dhsein

Arrays,DIMENSIONat least max (1,n) each.
Contain the real and imaginary parts, respectively, of the
eigenvalues of the matrixH. Complex conjugate pairs of
values must be stored in consecutive elements of the
arrays. Ifeigsrc ='Q' , the arrays must be exactly as
returned by?hseqr .

ldvl INTEGER. The first dimension ofvl .
If job ='L' or 'B' , ldvl ≥ max(1,n).
If job ='R' , ldvl ≥ 1.

ldvr INTEGER. The first dimension ofvr .
If job ='R' or 'B' , ldvr ≥ max(1,n).
If job ='L' , ldvr ≥ 1.

mm INTEGER. The number of columns invl and/orvr .
Must be at leastm, the actual number of columns
required (seeOutput Parametersbelow).
For real flavors, mis obtained by counting 1 for each
selected real eigenvector and 2 for each selected
complex eigenvector (seeselect).
For complex flavors,mis the number of selected
eigenvectors (seeselect). Constraint: 0 ≤ mm ≤ n.

rwork REALfor chsein

DOUBLE PRECISIONfor zhsein .
Array, DIMENSIONat least max (1,n).

Output Parameters

select Overwritten for real flavors only. If a complex
eigenvector was selected as specified above, then
select (j) is set to.TRUE. andselect (j+1)
to .FALSE.

w The real parts of some elements ofw may be modified,
as close eigenvalues are perturbed slightly in searching
for independent eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-203

wr Some elements ofwr may be modified, as close
eigenvalues are perturbed slightly in searching for
independent eigenvectors.

vl, vr If job ='L' or 'B' , vl contains the computed left
eigenvectors (as specified byselect).
If job ='R' or 'B' , vr contains the computed right
eigenvectors (as specified byselect).

The eigenvectors are stored consecutively in the
columns of the array, in the same order as their
eigenvalues.
For real flavors: a real eigenvector corresponding to a
selected real eigenvalue occupies one column;
a complex eigenvector corresponding to a selected
complex eigenvalue occupies two columns: the first
column holds the real part and the second column holds
the imaginary part.

m INTEGER. For real flavors: the number of columns ofvl

and/orvr required to store the selected eigenvectors.
For complex flavors: the number of selected
eigenvectors.

ifaill,ifailr INTEGER.
Arrays,DIMENSIONat least max(1,mm) each.
ifaill (i) = 0 if the i th column ofvl converged;
ifaill (i) = j > 0 if the eigenvector stored in thei th
column ofvl (corresponding to thej th eigenvalue)
failed to converge.
ifailr (i) = 0 if the i th column ofvr converged;
ifailr (i) = j > 0 if the eigenvector stored in thei th
column ofvr (corresponding to thej th eigenvalue)
failed to converge.
For real flavors: if the i th and (i +1)th columns ofvl

contain a selected complex eigenvector, then
ifaill (i) andifaill (i +1) are set to the same
value. A similar rule holds forvr andifailr .

The arrayifaill is not referenced ifjob ='R' .
The arrayifailr is not referenced ifjob ='L' .

5-204

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info > 0, theni eigenvectors (as indicated by the
parametersifaill and/orifailr above) failed to
converge. The corresponding columns ofvl and/orvr

contain no useful information.

Application Notes

Each computed right eigenvectorxi is the exact eigenvector of a nearby
matrix A + Ei, such that||Ei|| < O(ε)||A||. Hence the residual is small:
||Axi − λixi|| = O(ε)||A||.

However, eigenvectors corresponding to close or coincident eigenvalues
may not accurately span the relevant subspaces.

Similar remarks apply to computed left eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-205

?trevc
Computes selected eigenvectors of an
upper (quasi-) triangular matrix
computed by?hseqr .

call strevc (side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, info)

call dtrevc (side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, info)

call ctrevc (side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, rwork, info)

call ztrevc (side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
mm, m, work, rwork, info)

Discussion

This routine computes some or all of the right and/or left eigenvectors of an
upper triangular matrixT (or, for real flavors, an upper quasi-triangular
matrix T). Matrices of this type are produced by the Schur factorization of a
general matrix:A = Q T QH, as computed by?hseqr (seepage 5-195).

The right eigenvectorx and the left eigenvectory of T corresponding to an
eigenvaluew, are defined by:

T x = w x , yHT = w yH

whereyH denotes the conjugate transpose ofy.

The eigenvalues are not input to this routine, but are read directly from the
diagonal blocks ofT.

This routine returns the matricesX and/orY of right and left eigenvectors of
T, or the productsQ X and/orQ Y, whereQ is an input matrix.
If Q is the orthogonal/unitary factor that reduces a matrixA to Schur formT,
thenQ X andQ Yare the matrices of right and left eigenvectors ofA.

5-206

5 Intel® Math Kernel Library Reference Manual

Input Parameters

side CHARACTER*1. Must be'R' or 'L' or 'B' .
If side ='R' , then only right eigenvectors are
computed.
If side ='L' , then only left eigenvectors are computed.
If side ='B' , then all eigenvectors are computed.

howmny CHARACTER*1. Must be'A' or 'B' or 'S' .
If howmny ='A' , then all eigenvectors (as specified by
side) are computed.
If howmny ='B' , then all eigenvectors (as specified by
side) are computed and backtransformed by the
matrices supplied invl andvr .
If howmny ='S' , then selected eigenvectors (as
specified byside andselect) are computed.

select LOGICAL.
Array, DIMENSIONat least max (1,n).
If howmny='S' , select specifies which eigenvectors
are to be computed.
If howmny= 'A' or 'B' , select is not referenced.
For real flavors:
If ωj is a real eigenvalue, the corresponding real
eigenvector is computed ifselect (j) is .TRUE. .
If ωj andωj+1 are the real and imaginary parts of a
complex eigenvalue, the corresponding complex
eigenvector is computed if eitherselect (j) or
select (j+1) is .TRUE. , and on exitselect (j) is set to
.TRUE. and select (j+1) is set to.FALSE. .
For complex flavors:
The eigenvector corresponding to thej-th eigenvalue is
computed ifselect (j) is .TRUE. .

n INTEGER. The order of the matrixT (n ≥ 0).

t,vl,vr,work REALfor strevc

DOUBLE PRECISIONfor dtrevc

COMPLEXfor ctrevc

DOUBLE COMPLEXfor ztrevc .
Arrays:

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-207

t (ldt, *) contains then by n matrix T in Shur
canonical form.
The second dimension oft must be at least max(1,n).

vl (ldvl, *)

If howmny ='B' andside ='L' or 'B' , thenvl must
contain an n by n matrixQ (usually the matrix of Schur
vectors returned by?hseqr).
If howmny ='A' or 'S' , thenvl need not be set.
The second dimension ofvl must be at least max(1,mm)
if side ='L' or 'B' and at least 1 ifside ='R' .
The arrayvl is not referenced ifside ='R' .

vr (ldvr, *)
If howmny ='B' andside ='R' or 'B' , thenvr must
contain an n by n matrixQ (usually the matrix of Schur
vectors returned by?hseqr). .
If howmny ='A' or 'S' , thenvr need not be set.
The second dimension ofvr must be at least max(1,mm)
if side ='R' or 'B' and at least 1 ifside ='L' .
The arrayvr is not referenced ifside ='L' .

work (*) is a workspace array.
DIMENSIONat least max (1, 3* n) for real flavors and
at least max (1, 2* n) for complex flavors.

ldt INTEGER. The first dimension oft ; at least max(1,n).

ldvl INTEGER. The first dimension ofvl .
If side ='L' or 'B' , ldvl ≥ max(1,n).
If side ='R' , ldvl ≥ 1.

ldvr INTEGER. The first dimension ofvr .
If side ='R' or 'B' , ldvr ≥ max(1,n).
If side ='L' , ldvr ≥ 1.

mm INTEGER. The number of columns in the arraysvl

and/orvr . Must be at leastm(the precise number of
columns required). Ifhowmny ='A' or 'B' , m= n.
If howmny ='S' : for real flavors, mis obtained by
counting 1 for each selected real eigenvector and 2 for
each selected complex eigenvector;

5-208

5 Intel® Math Kernel Library Reference Manual

for complex flavors, mis the number of selected
eigenvectors (seeselect). Constraint: 0≤ m ≤ n.

rwork REALfor ctrevc

DOUBLE PRECISIONfor ztrevc .
Workspace array,DIMENSIONat least max (1,n).

Output Parameters

select If a complex eigenvector of a real matrix was selected as
specified above, thenselect (j) is set to.TRUE. and
select (j+1) to .FALSE.

vl,vr If side ='L' or 'B' , vl contains the computed left
eigenvectors (as specified byhowmny andselect).
If side ='R' or 'B' , vr contains the computed right
eigenvectors (as specified byhowmny andselect).

The eigenvectors are stored consecutively in the
columns of the array, in the same order as their
eigenvalues.
For real flavors: corresponding to each real eigenvalue
is a real eigenvector, occupying one column;
corresponding to each complex conjugate pair of
eigenvalues is a complex eigenvector, occupying two
columns; the first column holds the real part and the
second column holds the imaginary part.

m INTEGER.
For complex flavors: the number of selected
eigenvectors. Ifhowmny ='A' or 'B' , mis set ton.
For real flavors: the number of columns ofvl and/orvr

actually used to store the selected eigenvectors.
If howmny ='A' or 'B' , mis set ton.

info INTEGER. If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-209

Application Notes

If xi is an exact right eigenvector andyi is the corresponding computed
eigenvector, then the angleθ(yi,xi) between them is bounded as follows:
θ(yi,xi) ≤ (c(n)ε||T||2)/sepi where sepi is the reciprocal condition number
of xi. The condition number sepi may be computed by calling?trsna .

5-210

5 Intel® Math Kernel Library Reference Manual

?trsna
Estimates condition numbers for specified
eigenvalues and right eigenvectors of an
upper (quasi-) triangular matrix.

call strsna (job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, iwork, info)

call dtrsna (job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, iwork, info)

call ctrsna (job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, rwork, info)

call ztrsna (job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr,
s, sep, mm, m, work, ldwork, rwork, info)

Discussion

This routine estimates condition numbers for specified eigenvalues and/or
right eigenvectors of an upper triangular matrixT (or, for real flavors, upper
quasi-triangular matrixT in canonical Schur form). These are the same as
the condition numbers of the eigenvalues and right eigenvectors of an
original matrixA = ZTZH (with unitary or, for real flavors, orthogonalZ),
from whichT may have been derived.

The routine computes the reciprocal of the condition number of an
eigenvalueλi as si = |vHu|/(||u||E||v||E), whereu andv are the right and left
eigenvectors ofT, respectively, corresponding toλi. This reciprocal
condition number always lies between zero (ill-conditioned) and one
(well-conditioned).

An approximate error estimate for a computed eigenvalueλi is then given
by ε||T||/si, whereε is themachine precision.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-211

To estimate the reciprocal of the condition number of the right eigenvector
corresponding toλi, the routine first calls?trexc (seepage 5-215) to
reorder the eigenvalues so thatλi is in the leading position:

The reciprocal condition number of the eigenvector is then estimated as
sepi, the smallest singular value of the matrixT22 − λiI. This number ranges
from zero (ill-conditioned) to very large (well-conditioned).

An approximate error estimate for a computed right eigenvector u
corresponding toλi is then given byε ||T||/sepi.

Input Parameters

job CHARACTER*1. Must be'E' or 'V' or 'B' .
If job ='E' , then condition numbers for eigenvalues
only are computed.
If job ='V' , then condition numbers for eigenvectors
only are computed.
If job ='B' , then condition numbers for both
eigenvalues and eigenvectors are computed.

howmny CHARACTER*1. Must be'A' or 'S' .
If howmny ='A' , then the condition numbers for all
eigenpairs are computed.
If howmny ='S' , then condition numbers for selected
eigenpairs (as specified byselect) are computed.

select LOGICAL.
Array, DIMENSIONat least max (1,n) if howmny ='S'

and at least 1 otherwise.
Specifies the eigenpairs for which condition numbers
are to be computed ifhowmny= 'S' .
For real flavors:
To select condition numbers for the eigenpair
corresponding to the real eigenvalueλj, select (j) must
be set.TRUE. ; to select condition numbers for the

T Q λi CH

0 T22

QH
=

5-212

5 Intel® Math Kernel Library Reference Manual

eigenpair corresponding to a complex conjugate pair of
eigenvaluesλj andλj+1, select (j) and/orselect (j+1)
must be set.TRUE.

For complex flavors:
To select condition numbers for the eigenpair
corresponding to the eigenvalueλj, select (j) must be
set.TRUE.

select is not referenced ifhowmny ='A' .

n INTEGER. The order of the matrixT (n ≥ 0).

t,vl,vr,work REALfor strsna

DOUBLE PRECISIONfor dtrsna

COMPLEXfor ctrsna

DOUBLE COMPLEXfor ztrsna .
Arrays:
t (ldt, *) contains then by n matrix T .
The second dimension oft must be at least max(1,n).

vl (ldvl, *)

If job ='E' or 'B' , thenvl must contain the left
eigenvectors ofT (or of any matrixQTQH with Q
unitary or orthogonal) corresponding to the eigenpairs
specified byhowmny andselect . The eigenvectors
must be stored in consecutive columns ofvl , as returned
by ?trevc or ?hsein .
The second dimension ofvl must be at least max(1,mm)
if job ='E' or 'B' and at least 1 ifjob ='V' .
The arrayvl is not referenced ifjob ='V' .

vr (ldvr, *)

If job ='E' or 'B' , thenvr must contain the right
eigenvectors ofT (or of any matrixQTQH with Q
unitary or orthogonal) corresponding to the eigenpairs
specified byhowmny andselect . The eigenvectors
must be stored in consecutive columns ofvr , as returned
by ?trevc or ?hsein .
The second dimension ofvr must be at least max(1,mm)
if job ='E' or 'B' and at least 1 ifjob ='V' .
The arrayvr is not referenced ifjob ='V' .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-213

work (ldwork ,*) is a workspace array.
The second dimension ofwork must be
at least max(1,n+1) for complex flavors and
at least max(1,n+6) for real flavors ifjob ='V' or 'B' ;
at least 1 ifjob ='E' .
The arraywork is not referenced ifjob ='E' .

ldt INTEGER. The first dimension oft ; at least max(1,n).

ldvl INTEGER. The first dimension ofvl .
If job ='E' or 'B' , ldvl ≥max(1,n).
If job ='V' , ldvl ≥1.

ldvr INTEGER. The first dimension ofvr .
If job ='E' or'B' , ldvr ≥max(1,n).
If job ='R' , ldvr ≥1.

mm INTEGER. The number of elements in the arrayss and
sep , and the number of columns invl andvr (if used).
Must be at leastm(the precise number required).
If howmny ='A' , m= n;
if howmny ='S' , for real flavorsmis obtained by
counting 1 for each selected real eigenvalue and 2 for
each selected complex conjugate pair of eigenvalues.
for complex flavorsmis the number of selected
eigenpairs (seeselect). Constraint: 0≤ m ≤ n.

ldwork INTEGER. The first dimension ofwork .
If job ='V' or 'B' , ldwork ≥ max(1,n).
If job ='E' , ldwork ≥ 1.

rwork REALfor ctrsna , ztrsna .
Array, DIMENSIONat least max (1,n).

iwork INTEGERfor strsna , dtrsna .
Array, DIMENSIONat least max (1,n).

Output Parameters

s REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Array, DIMENSIONat least max(1,mm) if job ='E' or
'B' and at least 1 ifjob ='V' .

5-214

5 Intel® Math Kernel Library Reference Manual

Contains the reciprocal condition numbers of the
selected eigenvalues ifjob ='E' or 'B' , stored in
consecutive elements of the array. Thuss(j), sep (j) and
the jth columns ofvl andvr all correspond to the same
eigenpair (but not in general thejth eigenpair unless all
eigenpairs have been selected).For real flavors: For a
complex conjugate pair of eigenvalues, two consecutive
elements of S are set to the same value.
The arrays is not referenced ifjob ='V' .

sep REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Array, DIMENSIONat least max(1,mm)
if job ='V' or 'B' and at least 1 ifjob ='E' .
Contains the estimated reciprocal condition numbers of
the selected right eigenvectors ifjob ='V' or 'B' ,
stored in consecutive elements of the array.
For real flavors: for a complex eigenvector, two
consecutive elements ofsep are set to the same value; if
the eigenvalues cannot be reordered to computesep (j),
thensep (j) is set to zero; this can only occur when the
true value would be very small anyway.
The arraysep is not referenced ifjob ='E' .

m INTEGER.
For complex flavors: the number of selected eigenpairs.
If howmny ='A' , mis set ton.
For real flavors: the number of elements ofs and/orsep

actually used to store the estimated condition numbers.
If howmny ='A' , mis set ton.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed valuessepi may overestimate the true value, but seldom by a
factor of more than 3.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-215

?trexc
Reorders the Schur factorization of a
general matrix.

call strexc (compq, n, t, ldt, q, ldq, ifst, ilst, work, info)

call dtrexc (compq, n, t, ldt, q, ldq, ifst, ilst, work, info)

call ctrexc (compq, n, t, ldt, q, ldq, ifst, ilst, info)

call ztrexc (compq, n, t, ldt, q, ldq, ifst, ilst, info)

Discussion

This routine reorders the Schur factorization of a general matrixA= QTQH,
so that the diagonal element or block ofT with row indexifst is moved to
row ilst .

The reordered Schur formS is computed by an unitary (or, for real flavors,
orthogonal) similarity transformation:S= ZHTZ. Optionally the updated
matrix P of Schur vectors is computed asP = QZ, giving A=PSPH.

Input Parameters

compq CHARACTER*1. Must be'V' or 'N' .
If compq ='V' , then the Schur vectors (Q) are updated.
If compq ='N' , then no Schur vectors are updated.

n INTEGER. The order of the matrixT (n ≥ 0).

t, q REALfor strexc

DOUBLE PRECISIONfor dtrexc

COMPLEXfor ctrexc

DOUBLE COMPLEXfor ztrexc .
Arrays:
t (ldt, *) contains then by n matrix T.
The second dimension oft must be at least max(1,n).

q(ldq, *)

If compq ='V' , thenq must containQ (Schur vectors).
If compq ='N' , thenq is not referenced.

5-216

5 Intel® Math Kernel Library Reference Manual

The second dimension ofq must be at least max(1,n)
if compq ='V' and at least 1 ifcompq ='N' .

ldt INTEGER. The first dimension oft ; at least max(1,n).

ldq INTEGER. The first dimension ofq;
If compq ='N' , thenldq ≥1.
If compq ='V' , thenldq ≥max(1,n).

ifst, ilst INTEGER. 1 ≤ ifst ≤ n; 1 ≤ ilst ≤ n.
Must specify the reordering of the diagonal elements (or
blocks, which is possible for real flavors) of the matrix
T. The element (or block) with row indexifst is moved
to row ilst by a sequence of exchanges between
adjacent elements (or blocks).

work REALfor strexc

DOUBLE PRECISIONfor dtrexc .
Array, DIMENSIONat least max (1,n).

Output Parameters

t Overwritten by the updated matrixS.

q If compq ='V' , q contains the updated matrix of Schur
vectors.

ifst, ilst Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on
entry, it is changed to point to the first row;ilst always
points to the first row of the block in its final position
(which may differ from its input value by±1).

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed matrixS is exactly similar to a matrixT + E, where
||E||2 = O(ε) ||T||2, andε is the machine precision.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-217

Note that if a 2 by 2 diagonal block is involved in the re-ordering, its
off-diagonal elements are in general changed; the diagonal elements and the
eigenvalues of the block are unchanged unless the block is sufficiently
ill-conditioned, in which case they may be noticeably altered. It is possible
for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of
complex eigenvalues to become purely real.

The values of eigenvalues however are never changed by the re-ordering.

The approximate number of floating-point operations is

for real flavors: 6n(ifst −ilst) if compq ='N' ;
12n(ifst −ilst) if compq ='V' ;

for complex flavors: 20n(ifst −ilst) if compq ='N' ;
40n(ifst −ilst) if compq ='V' .

?trsen
Reorders the Schur factorization of a matrix
and (optionally) computes the reciprocal
condition numbers and invariant subspace for
the selected cluster of eigenvalues.

call strsen (job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s,
sep, work, lwork, iwork, liwork, info)

call dtrsen (job, compq, select, n, t, ldt, q, ldq, wr, wi, m, s,
sep, work, lwork, iwork, liwork, info)

call ctrsen (job, compq, select, n, t, ldt, q, ldq, w, m, s,
sep, work, lwork, info)

call ztrsen (job, compq, select, n, t, ldt, q, ldq, w, m, s,
sep, work, lwork, info)

Discussion

This routine reorders the Schur factorization of a general matrixA = QTQH

so that a selected cluster of eigenvalues appears in the leading diagonal
elements (or, for real flavors, diagonal blocks) of the Schur form.

5-218

5 Intel® Math Kernel Library Reference Manual

The reordered Schur formR is computed by an unitary(orthogonal)
similarity transformation:R = ZHTZ. Optionally the updated matrixP of
Schur vectors is computed asP = QZ, giving A =PRPH.

Let

where the selected eigenvalues are precisely the eigenvalues of the leadingm

by msubmatrixT11. Let P be correspondingly partitioned as (Q1 Q2) where
Q1 consists of the firstmcolumns ofQ. ThenAQ1 = Q1T11, and so them
columns ofQ1 form an orthonormal basis for the invariant subspace
corresponding to the selected cluster of eigenvalues.

Optionally the routine also computes estimates of the reciprocal condition
numbers of the average of the cluster of eigenvalues and of the invariant
subspace.

Input Parameters

job CHARACTER*1. Must be'N' or 'E' or 'V' or 'B' .
If job ='N' , then no condition numbers are required.
If job ='E' , then only the condition number for the
cluster of eigenvalues is computed.
If job ='V' , then only the condition number for the
invariant subspace is computed.
If job ='B' , then condition numbers for both the cluster
and the invariant subspace are computed.

compq CHARACTER*1. Must be'V' or 'N' .
If compq ='V' , thenQ of the Schur vectors is updated.
If compq ='N' , then no Schur vectors are updated.

select LOGICAL.
Array, DIMENSIONat least max (1,n).
Specifies the eigenvalues in the selected cluster.
To select an eigenvalueλj, select (j) must be.TRUE.

For real flavors: to select a complex conjugate pair of
eigenvaluesλj andλj+1(corresponding 2 by 2 diagonal

R
T11 T12

0 T13

=

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-219

block),select (j) and/orselect (j+1) must be
.TRUE. ; the complex conjugateλj andλj+1 must be
either both included in the cluster or both excluded.

n INTEGER. The order of the matrixT (n ≥ 0).

t, q, work REALfor strsen

DOUBLE PRECISIONfor dtrsen

COMPLEXfor ctrsen

DOUBLE COMPLEXfor ztrsen .
Arrays:
t (ldt, *) Then by n T.
The second dimension oft must be at least max(1,n).

q (ldq, *)
If compq ='V' , thenq must containQ of Schur vectors.
If compq ='N' , thenq is not referenced.
The second dimension ofq must be at least max(1,n) if
compq ='V' and at least 1 ifcompq ='N' .

work (lwork) is a workspace array.
For complex flavors: the arraywork is not referenced if
job ='N' .
The actual amount of workspace required cannot exceed
n2/4 if job ='E' or n2/2 if job ='V' or 'B' .

ldt INTEGER. The first dimension oft ; at least max(1,n).

ldq INTEGER. The first dimension ofq;
If compq ='N' , thenldq ≥ 1.
If compq ='V' , thenldq ≥ max(1,n).

lwork INTEGER. The dimension of the arraywork .
If job ='V' or 'B' , lwork ≥ max(1,2m(n−m)).
If job ='E' , thenlwork ≥ max(1,m(n−m))
If job ='N' , thenlwork ≥ 1 for complex flavors and
lwork ≥ max(1,n) for real flavors.

iwork INTEGER.
iwork (liwork) is a workspace array.
The arrayiwork is not referenced ifjob ='N' or 'E' .
The actual amount of workspace required cannot exceed
n2/2 if job ='V' or 'B' .

5-220

5 Intel® Math Kernel Library Reference Manual

liwork INTEGER.
The dimension of the arrayiwork .
If job ='V' or 'B' , liwork ≥ max(1,2m(n−m)).
If job ='E' or 'E' , liwork ≥ 1.

Output Parameters

t Overwritten by the updated matrixR.

q If compq ='V' , q contains the updated matrix of Schur
vectors; the first m columns of theQ form an orthogonal
basis for the specified invariant subspace.

w COMPLEXfor ctrsen

DOUBLE COMPLEXfor ztrsen .
Array, DIMENSIONat least max(1,n).
The recorded eigenvalues ofR. The eigenvalues are
stored in the same order as on the diagonal ofR.

wr, wi REALfor strsen

DOUBLE PRECISIONfor dtrsen

Arrays,DIMENSIONat least max(1,n).
Contain the real and imaginary parts, respectively, of the
reordered eigenvalues ofR. The eigenvalues are stored
in the same order as on the diagonal ofR. Note that if a
complex eigenvalue is sufficiently ill-conditioned, then
its value may differ significantly from its value before
reordering.

m INTEGER.
For complex flavors: the number of the specified
invariant subspaces, which is the same as the number of
selected eigenvalues (seeselect).
For real flavors: the dimension of the specified invariant
subspace. The value ofmis obtained by counting 1 for
each selected real eigenvalue and 2 for each selected
complex conjugate pair of eigenvalues (seeselect).

Constraint: 0≤ m ≤ n.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-221

s REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
If job ='E' or 'B' , s is a lower bound on the reciprocal
condition number of the average of the selected cluster
of eigenvalues. Ifm= 0 or n, thens = 1.
For real flavors: if info = 1, thens is set to zero.
s is not referenced ifjob ='N' or 'V' .

sep REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
If job ='V' or 'B' , sep is the estimated reciprocal
condition number of the specified invariant subspace.
If m= 0 orn, thensep = ||T||.
For real flavors: if info = 1, thensep is set to zero.
sep is not referenced ifjob ='N' or 'E' .

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

iwork(1) On exit, if info = 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed matrixR is exactly similar to a matrixT + E, where
||E||2 = O(ε)||T||2, andε is the machine precision.
The computeds cannot underestimate the true reciprocal condition number
by more than a factor of (min(m, n- m))1/2; sep may differ from the true
value by (m*n- m2)1/2. The angle between the computed invariant subspace
and the true subspace isO(ε) ||A||2/sep .
Note that if a 2 by 2 diagonal block is involved in the re-ordering, its
off-diagonal elements are in general changed; the diagonal elements and the
eigenvalues of the block are unchanged unless the block is sufficiently
ill-conditioned, in which case they may be noticeably altered. It is possible
for a 2 by 2 block to break into two 1 by 1 blocks, that is, for a pair of
complex eigenvalues to become purely real. The values of eigenvalues
however are never changed by the re-ordering.

5-222

5 Intel® Math Kernel Library Reference Manual

?trsyl
Solves Sylvester’s equation for real
quasi-triangular or complex triangular
matrices.

call strsyl (trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info)

call dtrsyl (trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info)

call ctrsyl (trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info)

call ztrsyl (trana,tranb,isgn,m,n,a,lda,b,ldb,c,ldc,scale,info)

Discussion

This routine solves the Sylvester matrix equation op(A)X ± Xop(B) = αC,
where op(A) = A or AH, and the matricesA andB are upper triangular (or,
for real flavors, upper quasi-triangular in canonical Schur form);α ≤ 1 is a
scale factor determined by the routine to avoid overflow inX; A is mby m, B
is n by n, andC andX are bothmby n. The matrixX is obtained by a
straightforward process of back substitution.

The equation has a unique solution if and only ifαi ± βi ≠ 0, where{αi} and
{βi} are the eigenvalues ofA andB, respectively, and the sign (+ or−) is the
same as that used in the equation to be solved.

Input Parameters

trana CHARACTER*1. Must be'N' or 'T' or 'C' .
If trana = 'N' , then op(A) = A.
If trana = 'T' , then op(A) = AT (real flavors only).
If trana = 'C' then op(A) = AH.

tranb CHARACTER*1. Must be'N' or 'T' or 'C' .
If tranb = 'N' , then op(B) = B.
If tranb = 'T' , then op(B) = BT (real flavors only).
If tranb = 'C' , then op(B) = BH.

isgn INTEGER. Indicates the form of the Sylvester equation.
If isgn = +1, op(A)X + Xop(B) = αC.
If isgn = −1, op(A)X − Xop(B) = αC.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-223

m INTEGER. The order ofA, and the number of rows inX
andC (m≥ 0).

n INTEGER. The order ofB, and the number of columns
in X andC (n ≥ 0).

a, b, c REALfor strsyl

DOUBLE PRECISIONfor dtrsyl

COMPLEXfor ctrsyl

DOUBLE COMPLEXfor ztrsyl .
Arrays:
a(lda, *) contains the matrixA.
The second dimension ofa must be at least max(1,m).

b(ldb, *) contains the matrixB.
The second dimension ofb must be at least max(1,n).

c(ldc, *) contains the matrixC.
The second dimension ofc must be at least max(1,n).

lda INTEGER. The first dimension ofa; at least max(1,m).

ldb INTEGER. The first dimension ofb; at least max(1,n).

ldc INTEGER. The first dimension ofc ; at least max(1,n).

Output Parameters

c Overwritten by the solution matrixX.

scale REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
The value of the scale factorα.

info INTEGER.
If info = 0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

If info = 1, A andB have common or close eigenvalues
perturbed values were used to solve the equation.

Application Notes

Let X be the exact,Y the corresponding computed solution, andR the
residual matrix:R = C − (AY± YB). Then the residual is always small:

5-224

5 Intel® Math Kernel Library Reference Manual

||R||F = O(ε) (||A||F + ||B||F) ||Y||F .

However,Y is not necessarily the exact solution of a slightly perturbed
equation; in other words, the solution is not backwards stable.

For the forward error, the following bound holds:

 ||Y − X||F ≤ ||R||F/sep(A, B)
but this may be a considerable overestimate. See [Golub96] for a definition
of sep(A, B).

The approximate number of floating-point operations for real flavors is
m* n* (m+ n). For complex flavors it is 4 times greater.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-225

Generalized Nonsymmetric Eigenvalue Problems

This section describes LAPACK routines for solving generalized
nonsymmetric eigenvalue problems, reordering the generalized Schur
factorization of a pair of matrices, as well as performing a number of related
computational tasks.

A generalized nonsymmetric eigenvalue problemis as follows: given a pair
of nonsymmetric (or non-Hermitian) n-by-n matricesA andB, find the
generalized eigenvaluesλ and the correspondinggeneralized eigenvectors x
andy that satisfy the equations

Ax = λBx (right generalized eigenvectorsx)

and

yHA = λyHB (left generalized eigenvectorsy).

Table 5-6lists LAPACK routines used to solve the generalized
nonsymmetric eigenvalue problems and the generalized Sylvester
equation.

Table 5-6 Computational Routines for Solving Generalized Nonsymmetric
Eigenvalue Problems

Routine
name

Operation performed

?gghrd Reduces a pair of matrices to generalized upper Hessenberg form using
orthogonal/unitary transformations.

?ggbal Balances a pair of general real or complex matrices.

?ggbak Forms the right or left eigenvectors of a generalized eigenvalue problem.

?hgeqz Implements the QZ method for finding the generalized eigenvalues of the matrix
pair (H,T).

?tgevc Computes some or all of the right and/or left generalized eigenvectors of a pair
of upper triangular matrices

?tgexc Reorders the generalized Shur decomposition of a pair of matrices (A,B) so that
one diagonal block of (A,B) moves to another row index.

?tgsen Reorders the generalized Shur decomposition of a pair of matrices (A,B) so that
a selected cluster of eigenvalues appears in the leading diagonal blocks of (A,B).

?tgsyl Solves the generalized Sylvester equation.

?tgsna Estimates reciprocal condition numbers for specified eigenvalues and/or
eigenvectors of a pair of matrices in generalized real Shur canonical form.

5-226

5 Intel® Math Kernel Library Reference Manual

?gghrd
Reduces a pair of matrices to generalized
upper Hessenberg form using
orthogonal/unitary transformations.

call sgghrd (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info)

call dgghrd (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info)

call cgghrd (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info)

call zgghrd (compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq,
z, ldz, info)

Discussion

This routine reduces a pair of real/complex matrices (A,B) to generalized
upper Hessenberg form using orthogonal/unitary transformations, where A
is a general matrix and B is upper triangular. The form of the generalized
eigenvalue problem isAx = λBx, andB is typically made upper triangular
by computing itsQR factorization and moving the orthogonal matrixQ to
the left side of the equation.
This routine simultaneously reducesA to a Hessenberg matrixH:

QH A Z = H
and transformsB to another upper triangular matrixT:

QH B Z = T
in order to reduce the problem to its standard formHy = λTy where
y = ZH x .

The orthogonal/unitary matricesQ andZ are determined as products of
Givens rotations. They may either be formed explicitly, or they may be
postmultiplied into input matricesQ1 andZ1, so that

Q1 A Z1
H = (Q1Q) H (Z1Z)H

Q1 B Z1
H = (Q1Q) T (Z1Z)H

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-227

If Q1 is the orthogonal matrix from theQRfactorization ofB in the original
equationAx = λBx , then?gghrd reduces the original problem to
generalized Hessenberg form.

Input Parameters
compq CHARACTER*1. Must be'N' , 'I' , or 'V' .

If compq = 'N' , matrix Q is not computed.
If compq = 'I' , Q is initialized to the unit matrix, and
the orthogonal/unitary matrixQ is returned;
If compq = 'V' , Q must contain an orthogonal/unitary
matrix Q1 on entry, and the productQ1Q is returned.

compz CHARACTER*1. Must be'N' , 'I' , or 'V' .
If compz = 'N' , matrix Z is not computed.
If compz = 'I' , Z is initialized to the unit matrix, and
the orthogonal/unitary matrixZ is returned;
If compz = 'V' , Z must contain an orthogonal/unitary
matrix Z1 on entry, and the productZ1Z is returned.

n INTEGER. The order of the matricesA andB (n ≥ 0).

ilo, ihi INTEGER. ilo andihi mark the rows and columns of
A which are to be reduced. It is assumed thatA is already
upper triangular in rows and columns 1:ilo -1 and
ihi +1:n. Values ofilo andihi are normally set by a
previous call to?ggbal ; otherwise they should be set to
1 andn respectively. Constraint:
If n > 0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, thenilo = 1 andihi = 0.

a, b, q, z REALfor sgghrd

DOUBLE PRECISIONfor dgghrd

COMPLEXfor cgghrd

DOUBLE COMPLEXfor zgghrd .
Arrays:
a(lda, *) contains then-by-n general matrixA.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains then-by-n upper triangular matrix
B.
The second dimension ofb must be at least max(1,n).

5-228

5 Intel® Math Kernel Library Reference Manual

q (ldq, *)
If compq ='N' , thenq is not referenced.
If compq ='I' , then, on entry,q need not be set.
If compq ='V' , thenq must contain the
orthogonal/unitary matrixQ1, typically from theQR
factorization ofB.
The second dimension ofq must be at least max(1,n).

z (ldz, *)
If compq ='N' , thenz is not referenced.
If compq ='I' , then, on entry,z need not be set.
If compq ='V' , thenz must contain the
orthogonal/unitary matrixZ1.
The second dimension ofz must be at least max(1,n).

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

ldq INTEGER. The first dimension ofq;
If compq ='N' , thenldq ≥ 1.
If compq ='I' or 'V' , thenldq ≥ max(1,n).

ldz INTEGER. The first dimension ofz ;
If compq ='N' , thenldz ≥ 1.
If compq ='I' or 'V' , thenldz ≥ max(1,n).

Output Parameters

a On exit, the upper triangle and the first subdiagonal ofA
are overwritten with the upper Hessenberg matrixH, and
the rest is set to zero.

b On exit, overwritten by the upper triangular matrix
T = QH B Z. The elements below the diagonal are set to
zero.

q If compq ='I' , thenq contains the orthogonal/unitary
matrix Q, whereQH is the product of the Givens
transformations which are applied toA andB on the
left;
If compq ='V' , thenq is overwritten by the
productQ1Q.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-229

z If compq ='I' , thenz contains the orthogonal/unitary
matrix Z, which is the product of the Givens
transformations which are applied toA andB on the
right;
If compq ='V' , thenz is overwritten by the
productZ1Z.

info INTEGER.
If info = 0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

5-230

5 Intel® Math Kernel Library Reference Manual

?ggbal
Balances a pair of general real or
complex matrices.

call sggbal (job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info)

call dggbal (job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info)

call cggbal (job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info)

call zggbal (job, n, a, lda, b, ldb, ilo, ihi, lscale, rscale,
work, info)

Discussion

This routine balances a pair of general real/complex matrices (A,B). This
involves, first, permutingA andB by similarity transformations to isolate
eigenvalues in the first 1 toilo - 1 and lastihi +1 to n elements on the
diagonal; and second, applying a diagonal similarity transformation to rows
and columnsilo to ihi to make the rows and columns as close in norm as
possible. Both steps are optional.
Balancing may reduce the 1-norm of the matrices, and improve the accuracy
of the computed eigenvalues and/or eigenvectors in the generalized
eigenvalue problemAx = λBx.

Input Parameters

job CHARACTER*1. Specifies the operations to be performed
on A andB. Must be'N' or 'P' or 'S' or 'B' .
If job ='N' , then no operations are done; simply set
ilo =1, ihi =n, lscale (i) =1.0 andrscale (i)=1.0 for
i = 1,...,n.
If job ='P' , then permute only.
If job ='S' , then scale only.
If job ='B' , then both permute and scale.

n INTEGER. The order of the matricesA andB (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-231

a, b REALfor sggbal

DOUBLE PRECISIONfor dggbal

COMPLEXfor cggbal

DOUBLE COMPLEXfor zggbal .
Arrays:
a(lda, *) contains the matrixA.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains the matrixB.
The second dimension ofb must be at least max(1,n).

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

work REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
Workspace array,DIMENSIONat least max(1, 6n).

Output Parameters

a, b Overwritten by the balanced matricesA andB,
respectively. Ifjob ='N' , a and b are not referenced.

ilo, ihi INTEGER. ilo andihi are set to integers such that on
exit a(i,j)=0 andb(i,j) =0 if i >j andj =1,...,ilo -1
or i =ihi +1,...,n.

If job ='N' or 'S' , thenilo = 1 andihi = n.

lscale,rscale REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,n).

lscale contains details of the permutations and
scaling factors applied to the left side ofA andB.
If Pj is the index of the row interchanged with rowj ,
andDj is the scaling factor applied to rowj , then

lscale (j) = Pj , for j = 1,...,ilo -1
= Dj , for j = ilo ,...,ihi

= Pj , for j = ihi +1,...,n.
rscale contains details of the permutations and
scaling factors applied to the right side ofA andB.

5-232

5 Intel® Math Kernel Library Reference Manual

If Pj is the index of the column interchanged with
columnj , andDj is the scaling factor applied to
columnj , then

rscale (j) = Pj , for j = 1,...,ilo -1
= Dj , for j = ilo ,...,ihi

= Pj , for j = ihi +1,...,n
The order in which the interchanges are made isn to
ihi +1, then 1 toilo -1.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-233

?ggbak
Forms the right or left eigenvectors of a
generalized eigenvalue problem.

call sggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call dggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call cggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

call zggbak(job, side, n, ilo, ihi, lscale, rscale, m, v, ldv, info)

Discussion

This routineforms the right or left eigenvectors of a real/complex generalized
eigenvalue problem

Ax = λBx
by backward transformation on the computed eigenvectors of the balanced
pair of matrices output by?ggbal .

Input Parameters

job CHARACTER*1. Specifies the type of backward
transformation required. Must be'N' , 'P' , 'S' , or
'B' .
If job ='N' , then no operations are done; return.
If job ='P' , then do backward transformation for
permutation only.
If job ='S' , then do backward transformation for
scaling only.
If job ='B' , then do backward transformation for both
permutation and scaling.
This argument must be the same as the argumentjob

supplied to?ggbal .

side CHARACTER*1. Must be'L' or 'R' .
If side = 'L' , thenv contains left eigenvectors .
If side = 'R' , thenv contains right eigenvectors .

n INTEGER. The number of rows of the matrixV (n ≥ 0).

5-234

5 Intel® Math Kernel Library Reference Manual

ilo, ihi INTEGER. The integersilo andihi determined by
?gebal . Constraint:
If n > 0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, thenilo = 1 andihi = 0.

lscale,rscale REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,n).

The arraylscale contains details of the permutations
and/or scaling factors applied to the left side ofA andB,
as returned by?ggbal .

The arrayrscale contains details of the permutations
and/or scaling factors applied to the right side ofA and
B, as returned by?ggbal .

m INTEGER. The number of columns of the matrixV
(m≥ 0).

v REALfor sggbak

DOUBLE PRECISIONfor dggbak

COMPLEXfor cggbak

DOUBLE COMPLEXfor zggbak .
Array v(ldv, *) . Contains the matrix of right or left
eigenvectors to be transformed, as returned by?tgevc .
The second dimension ofv must be at least max(1,m).

ldv INTEGER. The first dimension ofv ; at least max(1,n).

Output Parameters

v Overwritten by the transformed eigenvectors

info INTEGER.
If info = 0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-235

?hgeqz
Implements the QZ method for finding
the generalized eigenvalues of the
matrix pair (H,T).

call shgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar,
alphai, beta, q, ldq, z, ldz, work, lwork, info)

call dhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alphar,
alphai, beta, q, ldq, z, ldz, work, lwork, info)

call chgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha,
beta, q, ldq, z, ldz, work, lwork, rwork, info)

call zhgeqz(job, compq, compz, n, ilo, ihi, h, ldh, t, ldt, alpha,
beta, q, ldq, z, ldz, work, lwork, rwork, info)

Discussion

This routine computes the eigenvalues of a real/complex matrix pair (H,T),
whereH is an upper Hessenberg matrix andT is upper triangular, using the
double-shift version (for real flavors) or single-shift version (for complex
flavors) of theQZ method.
Matrix pairs of this type are produced by the reduction to generalized upper
Hessenberg form of a real/complex matrix pair (A,B):

A = Q1 H Z1
H , B = Q1 T Z1

H ,

as computed by?gghrd .

For real flavors:
If job ='S' , then the Hessenberg-triangular pair (H,T) is also reduced to
generalized Schur form,

H = Q S ZT , T = Q P ZT ,

whereQ andZ are orthogonal matrices,P is an upper triangular matrix, and
S is a quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal blocks.
The 1-by-1 blocks correspond to real eigenvalues of the matrix pair (H,T)
and the 2-by-2 blocks correspond to complex conjugate pairs of
eigenvalues.
Additionally, the 2-by-2 upper triangular diagonal blocks ofP

5-236

5 Intel® Math Kernel Library Reference Manual

corresponding to 2-by-2 blocks ofSare reduced to positive diagonal form,
that is, ifS(j+1,j) is non-zero, thenP(j+1,j) = P(j,j+1) = 0, P(j,j) > 0, and
P(j+1,j+1) > 0.

For complex flavors:
If job ='S' , then the Hessenberg-triangular pair (H,T) is also reduced to
generalized Schur form,

H = Q S ZH , T = Q P ZH ,

whereQ andZ are unitary matrices, andSandP are upper triangular.

For all function flavors:
Optionally, the orthogonal/unitary matrixQ from the generalized Schur
factorization may be postmultiplied into an input matrixQ1, and the
orthogonal/unitary matrixZ may be postmultiplied into an input matrixZ1.
If Q1 andZ1 are the orthogonal/unitary matrices from?gghrd that reduced
the matrix pair (A,B) to generalized upper Hessenberg form, then the output
matricesQ1Q and Z1Z are the orthogonal/unitary factors from the
generalized Schur factorization of (A,B):

A = (Q1Q) S (Z1Z)H , B = (Q1Q) P (Z1Z)H .

To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently, of
(A,B)) are computed as a pair of values (alpha,beta). Forchgeqz / zhgeqz ,
alphaandbetaare complex, and forshgeqz / dhgeqz , alpha is complex
andbetareal. If betais nonzero,λ = alpha/ betais an eigenvalue of the
generalized nonsymmetric eigenvalue problem (GNEP)

Ax = λBx
and if alpha is nonzero,µ = beta/ alpha is an eigenvalue of the alternate
form of the GNEP
 µAy = By .
Real eigenvalues (for real flavors) or the values ofalphaandbetafor the
i-th eigenvalue (for complex flavors) can be read directly from the
generalized Schur form:

alpha= S(i,i), beta= P(i,i).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-237

Input Parameters

job CHARACTER*1. Specifies the operations to be
performed. Must be'E' or 'S' .
If job ='E' , then compute eigenvalues only;
If job ='S' , then compute eigenvalues and the Shur
form.

compq CHARACTER*1. Must be'N' , 'I' , or 'V' .
If compq = 'N' , left Shur vectors (q) are not computed;
If compq = 'I' , q is initialized to the unit matrix and
the matrix of left Shur vectors of (H,T) is returned;
If compq = 'V' , q must contain an orthogonal/unitary
matrix Q1 on entry and the productQ1Q is returned.

compz CHARACTER*1. Must be'N' , 'I' , or 'V' .
If compz = 'N' , left Shur vectors (q) are not computed;
If compz = 'I' , z is initialized to the unit matrix and
the matrix of right Shur vectors of (H,T) is returned;
If compz = 'V' , z must contain an orthogonal/unitary
matrix Z1 on entry and the productZ1Z is returned.

n INTEGER. The order of the matricesH, T, Q,andZ
(n ≥ 0).

ilo, ihi INTEGER. ilo and ihi mark the rows and columns of
H which are in Hessenberg form. It is assumed thatH is
already upper triangular in rows and columns 1:ilo -1
andihi +1:n. Constraint:
If n > 0, then 1 ≤ ilo ≤ ihi ≤ n;
if n = 0, thenilo = 1 andihi = 0.

h,t,q,z,work REALfor shgeqz

DOUBLE PRECISIONfor dhgeqz

COMPLEXfor chgeqz

DOUBLE COMPLEXfor zhgeqz .
Arrays:
On entry, h(ldh, *) contains then-by-n upper
Hessenberg matrixH.
The second dimension ofh must be at least max(1,n).

5-238

5 Intel® Math Kernel Library Reference Manual

On entry,t (ldt, *) contains then-by-n upper
triangular matrixT.
The second dimension oft must be at least max(1,n).

q (ldq, *):
On entry, ifcompq ='V' , this array contains the
orthogonal/unitary matrixQ1 used in the reduction of
(A,B) to generalized Hessenberg form.
If compq ='N' , thenq is not referenced.
The second dimension ofq must be at least max(1,n).

z (ldz, *):
On entry, ifcompz ='V' , this array contains the
orthogonal/unitary matrixZ1 used in the reduction of
(A,B) to generalized Hessenberg form.
If compz ='N' , thenz is not referenced.
The second dimension ofz must be at least max(1,n).

work (lwork) is a workspace array.

ldh INTEGER. The first dimension ofh; at least max(1,n).

ldt INTEGER. The first dimension oft ; at least max(1,n).

ldq INTEGER. The first dimension ofq;
If compq ='N' , thenldq ≥ 1.
If compq ='I' or 'V' , thenldq ≥ max(1,n).

ldz INTEGER. The first dimension ofz ;
If compq ='N' , thenldz ≥ 1.
If compq ='I' or 'V' , thenldz ≥ max(1,n).

lwork INTEGER. The dimension of the arraywork .
lwork ≥ max(1,n).

rwork REALfor chgeqz

DOUBLE PRECISIONfor zhgeqz .
Workspace array,DIMENSIONat least max(1,n). Used
in complex flavors only.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-239

Output Parameters

h For real flavors:
If job ='S' , then, on exit,h contains the upper
quasi-triangular matrixS from the generalized Shur
factorization; 2-by-2 diagonal blocks (corresponding to
complex conjugate pairs of eigenvalues) are returned in
standard form, withh(i,i) = h(i+1, i+1) and
h(i+1, i) * h(i, i+1) < 0.
If job ='E' , then on exit the diagonal blocks ofh match
those ofS, but the rest ofh is unspecified.

For complex flavors:
If job ='S' , then, on exit,h contains the upper
triangular matrixS from the generalized Shur
factorization.
If job ='E' , then on exit the diagonal ofh matches that
of S, but the rest ofh is unspecified.

t If job ='S' , then, on exit,t contains the upper
triangular matrixP from the generalized Shur
factorization.
For real flavors:
2-by-2 diagonal blocks ofP corresponding to 2-by-2
blocks ofS are reduced to positive diagonal form, that
is, if h(j+1,j) is non-zero, thent (j+1,j)=t (j,j+1)=0 and
t (j,j) and t (j+1,j+1) will be positive.

If job ='E' , then on exit the diagonal blocks oft match
those ofP, but the rest oft is unspecified.

For complex flavors:
If job ='E' , then on exit the diagonal oft matches that
of P, but the rest oft is unspecified.

alphar,alphai REALfor shgeqz ;
DOUBLE PRECISIONfor dhgeqz .
Arrays,DIMENSION at least max(1,n).
The real and imaginary parts, respectively, of each scalar
alphadefining an eigenvalue of GNEP.

5-240

5 Intel® Math Kernel Library Reference Manual

If alphai (j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-th eigenvalues are a
complex conjugate pair, with
alphai (j+1) = - alphai (j).

alpha COMPLEXfor chgeqz ;
DOUBLE COMPLEXfor zhgeqz .
Array, DIMENSION at least max(1,n).
The complex scalarsalphathat define the eigenvalues of
GNEP. alphai (i) = S(i,i) in the generalized Shur
factorization.

beta REALfor shgeqz

DOUBLE PRECISIONfor dhgeqz

COMPLEXfor chgeqz

DOUBLE COMPLEXfor zhgeqz .
Array, DIMENSION at least max(1,n).
For real flavors:
The scalarsbetathat define the eigenvalues of GNEP.
Together, the quantitiesalpha = (alphar (j), alphai (j))
andbeta = beta (j) represent the j-th eigenvalue of the
matrix pair (A,B), in one of the formsλ = alpha/ beta
or µ = beta/ alpha. Since eitherλ or µ may overflow,
they should not, in general, be computed.

For complex flavors:
The real non-negative scalarsbetathat define the
eigenvalues of GNEP.beta (i) = P(i,i) in the
generalized Shur factorization.
Together, the quantitiesalpha = alpha (j) andbeta =
beta (j) represent the j-th eigenvalue of the matrix pair
(A,B), in one of the formsλ = alpha/ beta or
µ = beta/ alpha. Since eitherλ or µ may overflow, they
should not, in general, be computed.

q On exit, if compq ='I' , q is overwritten by the
orthogonal/unitary matrix of left Shur vectors of the pair
(H,T), and ifcompq ='V' , q is overwritten by the
orthogonal/unitary matrix of left Shur vectors of (A,B).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-241

z On exit, if compz ='I' , z is overwritten by the
orthogonal/unitary matrix of right Shur vectors of the
pair (H,T), and ifcompz ='V' , z is overwritten by the
orthogonal/unitary matrix of right Shur vectors of (A,B).

work (1) If info ≥ 0, on exit,work (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = 1,...,n, theQZ iteration did not converge.
(H,T) is not in Shur form, butalphar (i), alphai (i) (for
real flavors),alpha (i) (for complex flavors), and
beta (i), i= info +1,...,n should be correct.

If info = n+1,...,2n, the shift calculation failed.
(H,T) is not in Shur form, butalphar (i), alphai (i) (for
real flavors),alpha (i) (for complex flavors), and
beta (i), i = info - n+1,...,n should be correct.

5-242

5 Intel® Math Kernel Library Reference Manual

?tgevc
Computes some or all of the right
and/or left generalized eigenvectors of a
pair of upper triangular matrices.

call stgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, info)

call stgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, info)

call stgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, rwork, info)

call stgevc (side, howmny, select, n, s, lds, p, ldp, vl, ldvl, vr,
ldvr, mm, m, work, rwork, info)

Discussion

This routine computes some or all of the right and/or left eigenvectors of a
pair of real/complex matrices (S,P), whereS is quasi-triangular (for real
flavors) or upper triangular (for complex flavors) andP is upper triangular.

Matrix pairs of this type are produced by the generalized Schur factorization
of a real/complex matrix pair (A,B):

A = Q S ZH , B = Q P ZH

as computed by?gghrd plus?hgeqz .

The right eigenvectorx and the left eigenvectory of (S,P) corresponding to
an eigenvaluew are defined by:

S x= w P x , yH S= w yHP

The eigenvalues are not input to this routine, but are computed directly from
the diagonal blocks or diagonal elements ofSandP.

This routine returns the matricesX and/orYof right and left eigenvectors of
(S,P), or the productsZ X and/orQ Y, whereZ andQ are input matrices.
If Q andZ are the orthogonal/unitary factors from the generalized Shur
factorization of a matrix pair (A,B), thenZ X andQ Yare the matrices of
right and left eigenvectors of (A,B).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-243

Input Parameters

side CHARACTER*1. Must be'R' , 'L' , or 'B' .
If side = 'R' , compute right eigenvectors only.
If side = 'L' , compute left eigenvectors only.
If side = 'B' , compute both right and left eigenvectors.

howmny CHARACTER*1. Must be'A' , 'B' , or 'S' .
If howmny ='A' , compute all right and/or left
eigenvectors.
If howmny ='B' , compute all right and/or left
eigenvectors, backtransformed by the matrices invr

and/orvl .
If howmny ='S' , compute selected right and/or left
eigenvectors, specified by the logical arrayselect .

select LOGICAL.
Array, DIMENSIONat least max (1,n).
If howmny ='S' , select specifies the eigenvectors to
be computed.
If howmny= 'A' or 'B' , select is not referenced.
For real flavors:
If ωj is a real eigenvalue, the corresponding real
eigenvector is computed ifselect (j) is .TRUE. .
If ωj andωj+1 are the real and imaginary parts of a
complex eigenvalue, the corresponding complex
eigenvector is computed if eitherselect (j) or
select (j+1) is .TRUE. , and on exitselect (j) is set to
.TRUE. and select (j+1) is set to.FALSE. .
For complex flavors:
The eigenvector corresponding to thej-th eigenvalue is
computed ifselect (j) is .TRUE. .

n INTEGER. The order of the matricesA andB (n ≥ 0).

s,p,vl,vr,work REALfor stgevc

DOUBLE PRECISIONfor dtgevc

COMPLEXfor ctgevc

DOUBLE COMPLEXfor ztgevc .
Arrays:

5-244

5 Intel® Math Kernel Library Reference Manual

s(lds, *) contains the matrixS from a generalized
Shur factorization as computed by?hgeqz . This matrix
is upper quasi-triangular for real flavors, and upper
triangular for complex flavors.
The second dimension ofs must be at least max(1,n).

p(ldp, *) contains the upper triangular matrixP from a
generalized Shur factorization as computed by?hgeqz .
For real flavors, 2-by-2 diagonal blocks ofP
corresponding to 2-by-2 blocks ofSmust be in positive
diagonal form.
For complex flavors,P must have real diagonal
elements.
The second dimension ofp must be at least max(1,n).

If side ='L' or 'B' andhowmny ='B' ,
vl (ldvl, *) must contain ann-by-n matrix Q (usually
the orthogonal/unitary matrixQ of left Schur vectors
returned by?hgeqz). The second dimension ofvl must
be at least max(1,mm). If side ='R' , vl is not
referenced.

If side ='R' or 'B' andhowmny ='B' ,
vr (ldvr, *) must contain ann-by-n matrix Z (usually
the orthogonal/unitary matrixZ of right Schur vectors
returned by?hgeqz). The second dimension ofvr must
be at least max(1,mm). If side ='L' , vr is not
referenced.

work (*) is a workspace array.
DIMENSIONat least max (1, 6* n) for real flavors and
at least max (1, 2* n) for complex flavors.

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

ldvl INTEGER. The first dimension ofvl ;
If side ='L' or 'B' , thenldvl ≥ max(1,n).
If side ='R' , thenldvl ≥ 1.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-245

ldvr INTEGER. The first dimension ofvr ;
If side ='R' or 'B' , thenldvr ≥ max(1,n).
If side ='L' , thenldvr ≥ 1.

mm INTEGER. The number of columns in the arraysvl

and/orvr (mm≥ m).

rwork REALfor ctgevc

DOUBLE PRECISIONfor ztgevc .
Workspace array,DIMENSIONat least max (1, 2* n).
Used in complex flavors only.

Output Parameters

vl On exit, if side ='L' or 'B' , vl contains:
if howmny ='A' , the matrixY of left eigenvectors of
(S,P);
if howmny ='B' , the matrixQY;
if howmny ='S' , the left eigenvectors of (S,P) specified
by select , stored consecutively in the columns ofvl ,
in the same order as their eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex
eigenvalue is stored in two consecutive columns, the
first holding the real part, and the second the imaginary
part.

vr On exit, if side ='R' or 'B' , vr contains:
if howmny ='A' , the matrixX of right eigenvectors of
(S,P);
if howmny ='B' , the matrixZX;
if howmny ='S' , the right eigenvectors of (S,P)
specified byselect , stored consecutively in the
columns ofvr , in the same order as their eigenvalues.
For real flavors:
A complex eigenvector corresponding to a complex
eigenvalue is stored in two consecutive columns, the
first holding the real part, and the second the imaginary
part.

5-246

5 Intel® Math Kernel Library Reference Manual

m INTEGER. The number of columns in the arraysvl

and/orvr actually used to store the eigenvectors.
If howmny ='A' or 'B' , mis set ton.
For real flavors:
Each selected real eigenvector occupies one column and
each selected complex eigenvector occupies two
columns.
For complex flavors:
Each selected eigenvector occupies one column.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
For real flavors:
If info = i >0, the 2-by-2 block (i :i +1) does not have a
complex eigenvalue.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-247

?tgexc
Reorders the generalized Shur
decomposition of a pair of matrices (A,B)
so that one diagonal block of (A,B) moves
to another row index.

call stgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, work, lwork, info)

call dtgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, work, lwork, info)

call ctgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, info)

call ztgexc (wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz,
ifst, ilst, info)

Discussion

This routine reorders the generalized real-Schur/Shur decomposition of a
real/complex matrix pair (A,B) using an orthogonal/unitary equivalence
transformation

(A, B) = Q (A, B) ZH,

so that the diagonal block of (A, B) with row indexifst is moved to row
ilst .
Matrix pair (A, B) must be in generalized real-Schur/Shur canonical form
(as returned by?gges), i.e.A is block upper triangular with 1-by-1 and
2-by-2 diagonal blocks andB is upper triangular.
Optionally, the matricesQ andZ of generalized Schur vectors are updated.

Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'

Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'.

Input Parameters

wantq, wantz LOGICAL.
If wantq =.TRUE. , update the left transformation
matrix Q;

5-248

5 Intel® Math Kernel Library Reference Manual

If wantq =.FALSE. , do not updateQ;
If wantz =.TRUE. , update the right transformation
matrix Z;
If wantz =.FALSE. , do not updateZ.

n INTEGER. The order of the matricesA andB (n ≥ 0).

a, b, q, z REALfor stgexc

DOUBLE PRECISIONfor dtgexc

COMPLEXfor ctgexc

DOUBLE COMPLEXfor ztgexc .
Arrays:
a(lda, *) contains the matrixA.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains the matrixB.
The second dimension ofb must be at least max(1,n).

q (ldq, *)
If wantq =.FALSE. , thenq is not referenced.
If wantq =.TRUE. , thenq must contain the
orthogonal/unitary matrixQ.
The second dimension ofq must be at least max(1,n).

z (ldz, *)
If wantz =.FALSE. , thenz is not referenced.
If wantz =.TRUE. , thenz must contain the
orthogonal/unitary matrixZ.
The second dimension ofz must be at least max(1,n).

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

ldq INTEGER. The first dimension ofq;
If wantq =.FALSE. , thenldq ≥ 1.
If wantq =.TRUE. , thenldq ≥ max(1,n).

ldz INTEGER. The first dimension ofz ;
If wantz =.FALSE. , thenldz ≥ 1.
If wantz =.TRUE. , thenldz ≥ max(1,n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-249

ifst, ilst INTEGER. Specify the reordering of the diagonal blocks
of (A, B). The block with row indexifst is moved to
row ilst , by a sequence of swapping between adjacent
blocks. Constraint: 1 ≤ ifst , ilst ≤ n.

work REALfor stgexc ;
DOUBLE PRECISIONfor dtgexc .
Workspace array,DIMENSION (lwork). Used in real
flavors only.

lwork INTEGER. The dimension ofwork ; must be at least
4n +16.

Output Parameters

a, b Overwritten by the updated matricesA andB.

ifst, ilst Overwritten for real flavors only.
If ifst pointed to the second row of a 2 by 2 block on
entry, it is changed to point to the first row;ilst always
points to the first row of the block in its final position
(which may differ from its input value by±1).

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = 1, the transformed matrix pair (A, B) would be
too far from generalized Schur form; the problem is
ill-conditioned. (A, B) may have been partially
reordered, andilst points to the first row of the current
position of the block being moved.

5-250

5 Intel® Math Kernel Library Reference Manual

?tgsen
Reorders the generalized Shur
decomposition of a pair of matrices (A,B)
so that a selected cluster of eigenvalues
appears in the leading diagonal blocks
of (A,B).

call stgsen (ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar,
alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work,

lwork, iwork, liwork, info)

call dtgsen (ijob, wantq, wantz, select, n, a, lda, b, ldb, alphar,
alphai, beta, q, ldq, z, ldz, m, pl, pr, dif, work,

lwork, iwork, liwork, info)

call ctgsen (ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha,
beta, q, ldq, z, ldz, m, pl, pr, dif, work,

lwork, iwork, liwork, info)

call ztgsen (ijob, wantq, wantz, select, n, a, lda, b, ldb, alpha,
beta, q, ldq, z, ldz, m, pl, pr, dif, work,

lwork, iwork, liwork, info)

Discussion

This routine reorders the generalized real-Schur/Shur decomposition of a
real/complex matrix pair (A, B) (in terms of an orthogonal/unitary
equivalence transformationQ' * (A, B) * Z), so that a selected cluster of
eigenvalues appears in the leading diagonal blocks of the pair (A, B).
The leading columns ofQ andZ form orthonormal/unitary bases of the
corresponding left and right eigenspaces (deflating subspaces).
(A, B) must be in generalized real-Schur/Shur canonical form (as returned
by ?gges), that is, A andB are both upper triangular.
?tgsen also computes the generalized eigenvalues

ωj = (alphar (j) + alphai (j)* i)/beta (j) (for real flavors)
ωj = alpha (j)/beta (j) (for complex flavors)
of the reordered matrix pair (A, B).

Optionally, the routine computes the estimates of reciprocal condition
numbers for eigenvalues and eigenspaces. These are
Difu[(A11, B11), (A22, B22)] and Difl[(A11, B11), (A22, B22)], that is, the
separation(s) between the matrix pairs (A11, B11) and (A22, B22) that

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-251

correspond to the selected cluster and the eigenvalues outside the cluster,
respectively, and norms of "projections" onto left and right eigenspaces with
respect to the selected cluster in the (1,1)-block.

Input Parameters

ijob INTEGER. Specifies whether condition numbers are
required for the cluster of eigenvalues (pl andpr) or the
deflating subspaces Difu and Difl.
If ijob =0, only reorder with respect toselect ;
If ijob =1, reciprocal of norms of "projections" onto
left and right eigenspaces with respect to the selected
cluster (pl andpr);
If ijob =2, compute upper bounds on Difu and Difl,
using F-norm-based estimate (dif (1:2));
If ijob =3, compute estimate of Difu and Difl, using
1-norm-based estimate (dif (1:2)). This option is
about 5 times as expensive asijob =2;
If ijob =4, computepl , pr anddif (i.e., options 0, 1
and 2 above). This is an economic version to get it all;
If ijob =5, computepl , pr anddif (i.e., options 0, 1
and 3 above).

wantq, wantz LOGICAL.
If wantq =.TRUE. , update the left transformation
matrix Q;
If wantq =.FALSE. , do not updateQ;
If wantz =.TRUE. , update the right transformation
matrix Z;
If wantz =.FALSE. , do not updateZ.

select LOGICAL.
Array, DIMENSIONat least max (1,n).
Specifies the eigenvalues in the selected cluster.
To select an eigenvalueωj, select (j) must be.TRUE.

For real flavors: to select a complex conjugate pair of
eigenvaluesωj andωj+1(corresponding 2 by 2 diagonal

5-252

5 Intel® Math Kernel Library Reference Manual

block),select (j) and/orselect (j+1) must be set to
.TRUE. ; the complex conjugateωj andωj+1 must be
either both included in the cluster or both excluded.

n INTEGER. The order of the matricesA andB (n ≥ 0).

a,b,q,z,work REALfor stgsen

DOUBLE PRECISIONfor dtgsen

COMPLEXfor ctgsen

DOUBLE COMPLEXfor ztgsen .
Arrays:
a(lda, *) contains the matrixA.
For real flavors: A is upper quasi-triangular, with (A, B)
in generalized real Schur canonical form.
For complex flavors: A is upper triangular, in
generalized Schur canonical form.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains the matrixB.
For real flavors: B is upper triangular, with (A, B) in
generalized real Schur canonical form.
For complex flavors: B is upper triangular, in
generalized Schur canonical form.
The second dimension ofb must be at least max(1,n).

q (ldq, *)
If wantq =.TRUE. , thenq is ann-by-n matrix;
If wantq =.FALSE. , thenq is not referenced.
The second dimension ofq must be at least max(1,n).

z (ldz, *)
If wantz =.TRUE. , thenz is ann-by-n matrix;
If wantz =.FALSE. , thenz is not referenced.
The second dimension ofz must be at least max(1,n).

work (lwork) is a workspace array. Ifijob =0,work is
not referenced.

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-253

ldq INTEGER. The first dimension ofq; ldq ≥ 1.
If wantq =.TRUE. , thenldq ≥ max(1,n).

ldz INTEGER. The first dimension ofz ; ldz ≥ 1.
If wantz =.TRUE. , thenldz ≥ max(1,n).

lwork INTEGER. The dimension of the arraywork .
For real flavors:
If ijob = 1, 2, or 4,lwork ≥ max(4n+16, 2m(n−m)).
If ijob = 3 or 5,lwork ≥ max(4n+16, 4m(n−m)).
For complex flavors:
If ijob = 1, 2, or 4,lwork ≥ max(1, 2m(n−m)).
If ijob = 3 or 5,lwork ≥ max(1, 4m(n−m)).

iwork INTEGER. Workspace array,DIMENSION(liwork).
If ijob =0, iwork is not referenced.

liwork INTEGER. The dimension of the arrayiwork .
For real flavors:
If ijob = 1, 2, or 4,liwork ≥ n+6.
If ijob = 3 or 5,liwork ≥ max(n+6, 2m(n−m)).
For complex flavors:
If ijob = 1, 2, or 4,liwork ≥ n+2.
If ijob = 3 or 5,liwork ≥ max(n+2, 2m(n−m)).

Output Parameters

a, b Overwritten by the reordered matricesA andB,
respectively.

alphar,alphai REALfor stgsen ;
DOUBLE PRECISIONfor dtgsen .
Arrays,DIMENSION at least max(1,n). Contain values
that form generalized eigenvalues in real flavors.
Seebeta .

alpha COMPLEXfor ctgsen ;
DOUBLE COMPLEXfor ztgsen .
Array, DIMENSION at least max(1,n). Contain values
that form generalized eigenvalues in complex flavors.
Seebeta .

5-254

5 Intel® Math Kernel Library Reference Manual

beta REALfor stgsen

DOUBLE PRECISIONfor dtgsen

COMPLEXfor ctgsen

DOUBLE COMPLEXfor ztgsen .
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar (j) + alphai (j)* i)/beta (j), j=1,...,n,
will be the generalized eigenvalues.
alphar (j) + alphai (j)* i andbeta (j), j=1,...,n are the
diagonals of the complex Schur form (S,T) that would
result if the 2-by-2 diagonal blocks of the real
generalized Schur form of (A,B) were further reduced to
triangular form using complex unitary transformations.
If alphai (j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, withalphai (j+1) negative.
For complex flavors:
The diagonal elements ofA andB, respectively, when
the pair (A,B) has been reduced to generalized Shur
form. alpha (i)/beta (i), i=1,...,n are the generalized
eigenvalues.

q If wantq =.TRUE. , then, on exit,Q has been
postmultiplied by the left orthogonal transformation
matrix which reorder (A, B). The leadingmcolumns of
Q form orthonormal bases for the specified pair of left
eigenspaces (deflating subspaces).

z If wantz =.TRUE. , then, on exit,Z has been
postmultiplied by the left orthogonal transformation
matrix which reorder (A, B). The leadingmcolumns ofZ
form orthonormal bases for the specified pair of left
eigenspaces (deflating subspaces).

m INTEGER. The dimension of the specified pair of left
and right eigen-spaces (deflating subspaces); 0 ≤ m ≤ n.

pl, pr REALfor single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
If ijob = 1, 4, or 5,pl andpr are lower bounds on the

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-255

reciprocal of the norm of "projections" onto left and
right eigenspaces with respect to the selected cluster.
0 < pl , pr ≤ 1. If m= 0 or m= n, pl = pr = 1.
If ijob = 0, 2 or 3,pl andpr are not referenced

dif REALfor single precision flavors;
DOUBLE PRECISIONfor double precision flavors.
Array, DIMENSION (2).
If ijob ≥ 2, dif (1:2) store the estimates of Difu and
Difl.
If ijob = 2 or 4,dif (1:2) are F-norm-based upper
bounds on Difu and Difl.
If ijob = 3 or 5,dif (1:2) are 1-norm-based estimates
of Difu and Difl. If m= 0 or n,
dif (1:2) = F-norm([A, B]).
If ijob = 0 or 1,dif is not referenced.

work (1) If ijob is not 0 and info = 0, on exit,work (1)

contains the minimum value oflwork required for
optimum performance. Use thislwork for subsequent
runs.

iwork (1) If ijob is not 0 and info = 0, on exit,iwork (1)

contains the minimum value ofliwork required for
optimum performance. Use thisliwork for subsequent
runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = 1, Reordering of (A, B) failed because the
transformed matrix pair (A, B) would be too far from
generalized Schur form; the problem is very
ill-conditioned. (A, B) may have been partially
reordered. If requested, 0 is returned indif (*) , pl and
pr .

5-256

5 Intel® Math Kernel Library Reference Manual

?tgsyl
Solves the generalized Sylvester
equation.

call stgsyl (trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info)

call dtgsyl (trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info)

call ctgsyl (trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info)

call ztgsyl (trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e,
lde, f, ldf, scale, dif, work, lwork, iwork, info)

Discussion

This routine solves the generalized Sylvester equation:

A R - L B= scale* C

D R - L E= scale* F

whereR andL are unknownm-by-n matrices, (A, D), (B, E) and (C, F) are
given matrix pairs of sizem-by-m, n-by-n andm-by-n, respectively, with
real/complex entries. (A, D) and (B, E) must be in generalized
real-Schur/Shur canonical form, that is,A, Bare upper
quasi-triangular/triangular andD, E are upper triangular.

The solution (R, L) overwrites (C, F). The factorscale , 0 ≤ scale ≤ 1,
is an output scaling factor chosen to avoid overflow.

In matrix notation the above equation is equivalent to the following:
solve Zx = scale* b, whereZ is defined as

Z
kron In A,() k– ron B′ Im,()

kron In D,() k– ron E′ Im,()

=

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-257

HereIk is the identity matrix of sizek andX' is the
transpose/conjugate-transpose ofX. kron(X, Y) is the Kronecker product
between the matricesX andY.
If trans = 'T' (for real flavors), ortrans = 'C' (for complex flavors), the
routine?tgsyl solves the transposed/conjugate-transposed system
Z' y = scale* b, which is equivalent to solve forR andL in

A' R + D' L = scale* C

R B' + L E' = scale* (- F)

This case (trans = 'T' for stgsyl/dtgsyl or trans = 'C' for
ctgsyl/ztgsyl) is used to compute an one-norm-based estimate of
Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)and (B,E),
usingslacon/clacon .

If ijob ≥ 1, ?tgsyl computes a Frobenius norm-based estimate of
Dif[(A,D), (B,E)]. That is, the reciprocal of a lower bound on the reciprocal
of the smallest singular value ofZ. This is a level 3 BLAS algorithm.

Input Parameters

trans CHARACTER*1. Must be'N' , 'T' , or 'C' .
If trans = 'N' , solve the generalized Sylvester
equation.
If trans = 'T' , solve the 'transposed' system (for real
flavors only).
If trans = 'C' , solve the ' conjugate transposed' system
(for complex flavors only).

ijob INTEGER. Specifies what kind of functionality to be
performed:
If ijob =0, solve the generalized Sylvester equation
only ;
If ijob =1, perform the functionality ofijob =0
andijob =3;
If ijob =2, perform the functionality ofijob =0
andijob =4;
If ijob =3, only an estimate of Dif[(A,D), (B,E)] is
computed (look ahead strategy is used);

5-258

5 Intel® Math Kernel Library Reference Manual

If ijob =4, only an estimate of Dif[(A,D), (B,E)] is
computed (?gecon on sub-systems is used).
If trans = 'T' or 'C' , ijob is not referenced.

m INTEGER.
The order of the matricesA andD, and the row
dimension of the matricesC, F, RandL.

n INTEGER.
The order of the matricesB andE, and the column
dimension of the matricesC, F, RandL.

a,b,c,d,e,f,work REALfor stgsyl

DOUBLE PRECISIONfor dtgsyl

COMPLEXfor ctgsyl

DOUBLE COMPLEXfor ztgsyl .

Arrays:
a(lda, *) contains the upper quasi-triangular (for real
flavors) or upper triangular (for complex flavors)
matrix A.
The second dimension ofa must be at least max(1,m).

b(ldb, *) contains the upper quasi-triangular (for real
flavors) or upper triangular (for complex flavors)
matrix B.
The second dimension ofb must be at least max(1,n).

c (ldc, *) contains the right-hand-side of the first
matrix equation in the generalized Sylvester equation (as
defined by trans)
The second dimension ofc must be at least max(1,n).

d (ldd, *) contains the upper triangular matrixD.
The second dimension ofd must be at least max(1,m).

e (lde, *) contains the upper triangular matrixE.
The second dimension ofe must be at least max(1,n).

f (ldf, *) contains the right-hand-side of the second
matrix equation in the generalized Sylvester equation (as
defined by trans)
The second dimension off must be at least max(1,n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-259

work (lwork) is a workspace array. Ifijob =0,work is
not referenced.

lda INTEGER. The first dimension ofa; at least max(1,m).

ldb INTEGER. The first dimension ofb; at least max(1,n).

ldc INTEGER. The first dimension ofc ; at least max(1,m).

ldd INTEGER. The first dimension ofd; at least max(1,m).

lde INTEGER. The first dimension ofe; at least max(1,n).

ldf INTEGER. The first dimension off ; at least max(1,m).

lwork INTEGER. The dimension of the arraywork . lwork ≥ 1.
If ijob = 1 or 2 andtrans = 'N' , lwork ≥ 2mn.

iwork INTEGER. Workspace array,DIMENSIONat least
(m+n+6) for real flavors, and at least (m+n+2) for
complex flavors.
If ijob =0, iwork is not referenced.

Output Parameters

c If ijob =0, 1, or 2, overwritten by the solutionR.
If ijob =3 or 4 andtrans = 'N' , c holdsR, the
solution achieved during the computation of the
Dif-estimate.

f If ijob =0, 1, or 2, overwritten by the solutionL.
If ijob =3 or 4 andtrans = 'N' , f holdsL, the
solution achieved during the computation of the
Dif-estimate.

dif REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
On exit,dif is the reciprocal of a lower bound of the
reciprocal of the Dif-function, i.e.dif is an upper
bound of Dif[(A,D), (B,E)] = sigma_min(Z),
whereZ as in (2).
If ijob = 0, ortrans = 'T' (for real flavors), ortrans

= 'C' (for complex flavors),dif is not touched.

5-260

5 Intel® Math Kernel Library Reference Manual

scale REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
On exit,scale is the scaling factor in the generalized
Sylvester equation. If 0 <scale < 1, c andf hold the
solutionsR andL, respectively, to a slightly perturbed
system but the input matricesA, B, DandE have not
been changed. Ifscale = 0, c andf hold the solutions
R andL, respectively, to the homogeneous system with
C = F = 0. Normally,scale = 1.

work (1) If ijob is not 0 and info = 0, on exit,work (1)

contains the minimum value oflwork required for
optimum performance. Use thislwork for subsequent
runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info > 0, (A, D) and (B, E) have common or close
eigenvalues.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-261

?tgsna
Estimates reciprocal condition numbers
for specified eigenvalues and/or
eigenvectors of a pair of matrices in
generalized real Shur canonical form.

call stgsna (job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info)

call dtgsna (job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info)

call ctgsna (job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info)

call ztgsna (job, howmny, select, n, a, lda, b, ldb, vl, ldvl, vr,
ldvr, s, dif, mm, m, work, lwork, iwork, info)

Discussion

The real flavorsstgsna/dtgsna of this routine estimate reciprocal
condition numbers for specified eigenvalues and/or eigenvectors of a matrix
pair (A, B) in generalized real Schur canonical form (or of any matrix pair
(Q A ZT, Q B ZT) with orthogonal matricesQ andZ.
(A, B) must be in generalized real Schur form (as returned by
sgges/dgges), that is,A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.

The complex flavorsctgsna/ztgsna estimate reciprocal condition
numbers for specified eigenvalues and/or eigenvectors of a matrix
pair (A, B). (A, B) must be in generalized Schur canonical form , that is,
A andB are both upper triangular.

Input Parameters

job CHARACTER*1. Specifies whether condition numbers
are required for eigenvalues or eigenvectors .
Must be'E' or 'V' or 'B' .
If job ='E' , for eigenvalues only (computes).

5-262

5 Intel® Math Kernel Library Reference Manual

If job ='V' , for eigenvectors only (computedif).
If job ='B' , for both eigenvalues and eigenvectors
(compute boths anddif).

howmny CHARACTER*1. Must be'A' or 'S' .
If howmny ='A' , compute condition numbers for all
eigenpairs.
If howmny ='S' , compute condition numbers for
selected eigenpairs specified by the logical array
select .

select LOGICAL.
Array, DIMENSIONat least max (1,n).
If howmny ='S' , select specifies the eigenpairs for
which condition numbers are required.
If howmny= 'A' , select is not referenced.
For real flavors:
To select condition numbers for the eigenpair
corresponding to a real eigenvalueωj, select (j) must
be set to.TRUE. ; to select condition numbers
corresponding to a complex conjugate pair of
eigenvaluesωj andωj+1, eitherselect (j) or
select (j+1) must be set to.TRUE.

For complex flavors:
To select condition numbers for the corresponding j-th
eigenvalue and/or eigenvector,select (j) must be set to
.TRUE. .

n INTEGER. The order of the square matrix pair (A, B)
(n ≥ 0).

a,b,vl,vr,work REALfor stgsna

DOUBLE PRECISIONfor dtgsna

COMPLEXfor ctgsna

DOUBLE COMPLEXfor ztgsna .
Arrays:
a(lda, *) contains the upper quasi-triangular (for real
flavors) or upper triangular (for complex flavors)
matrix A in the pair (A, B) .
The second dimension ofa must be at least max(1,n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-263

b(ldb, *) contains the upper triangular matrixB in the
pair (A, B) .
The second dimension ofb must be at least max(1,n).

If job ='E' or 'B' ,
vl (ldvl, *) must contain left eigenvectors of (A, B),
corresponding to the eigenpairs specified byhowmny

andselect . The eigenvectors must be stored in
consecutive columns ofvl , as returned by?tgevc .
If job ='V' , vl is not referenced.
The second dimension ofvl must be at least max(1,m).

If job ='E' or 'B' ,
vr (ldvr, *) must contain right eigenvectors of (A, B),
corresponding to the eigenpairs specified byhowmny

andselect . The eigenvectors must be stored in
consecutive columns ofvr , as returned by?tgevc .
If job ='V' , vr is not referenced.
The second dimension ofvr must be at least max(1,m).

work (lwork) is a workspace array. Ifjob ='E' , work

is not referenced.

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

ldvl INTEGER. The first dimension ofvl ; ldvl ≥ 1.
If job ='E' or 'B' , thenldvl ≥ max(1,n).

ldvr INTEGER. The first dimension ofvr ; ldvr ≥ 1.
If job ='E' or 'B' , thenldvr ≥ max(1,n).

mm INTEGER. The number of elements in the arrayss and
dif (mm≥ m).

lwork INTEGER. The dimension of the arraywork .
For real flavors:
lwork ≥ n.
If job ='V' or 'B' , lwork ≥ 2n(n+2)+16.
For complex flavors:
lwork ≥ 1.
If job ='V' or 'B' , lwork ≥ 2n2.

5-264

5 Intel® Math Kernel Library Reference Manual

iwork INTEGER. Workspace array,DIMENSIONat least (n+6)
for real flavors, and at least (n+2) for complex flavors.
If ijob ='E' , iwork is not referenced.

Output Parameters

s REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Array, DIMENSION (mm).
If job ='E' or 'B' , contains the reciprocal condition
numbers of the selected eigenvalues, stored in
consecutive elements of the array.
If job ='V' , s is not referenced.
For real flavors:
For a complex conjugate pair of eigenvalues two
consecutive elements ofs are set to the same value.
Thus,s(j), dif (j), and the j-th columns ofvl andvr all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).

dif REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Array, DIMENSION (mm).
If job ='V' or 'B' , contains the estimated reciprocal
condition numbers of the selected eigenvectors, stored in
consecutive elements of the array. If the eigenvalues
cannot be reordered to computedif (j), dif (j) is set to
0; this can only occur when the true value would be very
small anyway.
If job ='E' , dif is not referenced.
For real flavors:
For a complex eigenvector, two consecutive elements of
dif are set to the same value.
For complex flavors:
For each eigenvalue/vector specified byselect , dif

stores a Frobenius norm-based estimate of Difl.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-265

m INTEGER. The number of elements in the arrayss and
dif used to store the specified condition numbers; for
each selected eigenvalue one element is used.
If howmny ='A' , mis set ton.

work (1) work (1) If job is not 'E' and info = 0, on exit,
work (1) contains the minimum value oflwork

required for optimum performance. Use thislwork for
subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

5-266

5 Intel® Math Kernel Library Reference Manual

Generalized Singular Value Decomposition

This section describes LAPACK computational routines used for finding
the generalized singular value decomposition (GSVD) of two matricesA
andB as

UHAQ = D1 * (0 R),

VHBQ = D2 * (0 R),

whereU, V, andQ are orthogonal/unitary matrices,R is a nonsingular upper
triangular matrix, andD1 , D2 are “diagonal” matrices of the structure
detailed in the routines description section.

You can use routines listed in the above table as well as the driver routine
?ggsvd to find the GSVD of a pair of general rectangular matrices.

Table 5-7 Computational Routines for Generalized Singular Value
Decomposition

Routine name Operation performed

?ggsvp Computes the preprocessing
decomposition for the generalized SVD

?tgsja Computes the generalized SVD of two
upper triangular or trapezoidal matrices

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-267

?ggsvp
Computes the preprocessing
decomposition for the generalized SVD.

call sggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info)

call dggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, info)

call cggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)

call zggsvp (jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb,
k, l, u, ldu, v, ldv, q, ldq, iwork, rwork, tau, work, info)

Discussion

This routine computes orthogonal matricesU, V andQ such that

, if m- k- l ≥ 0

= , if m- k- l < 0

n k– l– k l

UHA Q
k

l

m k– l–

0 A12 A13

0 0 A23

0 0 0

=

n k– l– k l

k

m k–

0 A12 A13

0 0 A23

n k– l– k l

VHB Q
l

p l–

0 0 B13

0 0 0
 =

5-268

5 Intel® Math Kernel Library Reference Manual

where thek-by-k matrix A12 andl -by-l matrix B13 are nonsingular upper
triangular;A23 is l -by-l upper triangular ifm- k- l ≥ 0, otherwiseA23 is
(m-k)-by-l upper trapezoidal. The sumk+l is equal to the effective
numerical rank of the (m+p)-by-n matrix (AH,BH)H.

This decomposition is the preprocessing step for computing the Generalized
Singular Value Decomposition (GSVD), see subroutine?ggsvd .

Input Parameters

jobu CHARACTER*1. Must be'U' or 'N' .
If jobu ='U' , orthogonal/unitary matrixU is computed.
If jobu ='N' , U is not computed.

jobv CHARACTER*1. Must be'V' or 'N' .
If jobv ='V' , orthogonal/unitary matrixV is computed.
If jobv ='N' , V is not computed.

jobq CHARACTER*1. Must be'Q' or 'N' .
If jobq ='Q' , orthogonal/unitary matrixQ is computed.
If jobq ='N' , Q is not computed.

m INTEGER. The number of rows of the matrixA (m≥ 0).

p INTEGER. The number of rows of the matrixB (p ≥ 0).

n INTEGER. The number of columns of the matricesA
andB (n ≥ 0).

a,b,tau,work REALfor sggsvp

DOUBLE PRECISIONfor dggsvp

COMPLEXfor cggsvp

DOUBLE COMPLEXfor zggsvp .
Arrays:
a(lda, *) contains them-by-n matrix A.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains thep-by-n matrix B.
The second dimension ofb must be at least max(1,n).

tau (*) is a workspace array. The dimension oftau

must be at least max(1,n).

work (*) is a workspace array. The dimension ofwork

must be at least max(1, 3n, m, p).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-269

lda INTEGER. The first dimension ofa; at least max(1,m).

ldb INTEGER. The first dimension ofb; at least max(1,p).

tola, tolb REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
tola andtolb are the thresholds to determine the
effective numerical rank of matrixB and a subblock of
A. Generally, they are set to
tola = max(m, n)* ||A||* MACHEPS,
tolb = max(p, n)* ||B||* MACHEPS.

The size oftola andtolb may affect the size of
backward errors of the decomposition.

ldu INTEGER. The first dimension of the output arrayu.
ldu ≥ max(1,m) if jobu ='U' ; ldu ≥ 1 otherwise.

ldv INTEGER. The first dimension of the output arrayv.
ldv ≥ max(1,p) if jobv ='V' ; ldv ≥ 1 otherwise.

ldq INTEGER. The first dimension of the output arrayq.
ldq ≥ max(1,n) if jobq ='Q' ; ldq ≥ 1 otherwise.

iwork INTEGER. Workspace array,DIMENSIONat least
max(1,n) .

rwork REALfor cggsvp

DOUBLE PRECISIONfor zggsvp .
Workspace array,DIMENSIONat least max(1, 2n). Used
in complex flavors only.

Output Parameters

a Overwritten by the triangular (or trapezoidal) matrix
described in theDiscussionsection.

b Overwritten by the triangular matrix described in the
Discussionsection.

k, l INTEGER.
On exit,k and l specify the dimension of subblocks.
The sumk +l is equal to effective numerical rank of
(AH, BH)H.

5-270

5 Intel® Math Kernel Library Reference Manual

u, v, q REALfor sggsvp

DOUBLE PRECISIONfor dggsvp

COMPLEXfor cggsvp

DOUBLE COMPLEXfor zggsvp .
Arrays:
If jobu ='U' , u(ldu, *) contains the
orthogonal/unitary matrixU.
The second dimension ofu must be at least max(1,m).
If jobu ='N' , u is not referenced.

If jobv ='V' , v(ldv, *) contains the
orthogonal/unitary matrixV.
The second dimension ofv must be at least max(1,m).
If jobv ='N' , v is not referenced.

If jobq ='Q' , q(ldq, *) contains the
orthogonal/unitary matrixQ.
The second dimension ofq must be at least max(1,n).
If jobq ='N' , q is not referenced.

info INTEGER.
If info = 0, the execution is successful.
‘If info = -i , the i th parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-271

?tgsja
Computes the generalized SVD of two
upper triangular or trapezoidal
matrices.

call stgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

call dtgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

call ctgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

call ztgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola,
tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)

Discussion

This routine computes the generalized singular value decomposition
(GSVD) of two real/complex upper triangular (or trapezoidal) matricesA
andB. On entry, it is assumed that matricesA andB have the following
forms, which may be obtained by the preprocessing subroutine?ggsvp

from a generalm-by-n matrix A andp-by-n matrix B:

, if m- k- l ≥ 0

= , if m- k- l < 0

n k– l– k l

A
k

l

m k– l–

0 A12 A13

0 0 A23

0 0 0

=

n k– l– k l

k

m k–

0 A12 A13

0 0 A23

5-272

5 Intel® Math Kernel Library Reference Manual

where thek-by-k matrix A12 andl -by-l matrix B13 are nonsingular upper
triangular;A23 is l -by-l upper triangular ifm- k- l ≥ 0, otherwiseA23 is
(m-k)-by-l upper trapezoidal.

On exit,

UH A Q = D1* (0 R), VH B Q = D2* (0 R),
whereU, V andQ are orthogonal/unitary matrices,R is a nonsingular upper
triangular matrix, andD1 andD2 are “diagonal'' matrices, which are of the
following structures:

If m- k- l ≥ 0,

where

C = diag (alpha (k+1),...,alpha (k+l))
S= diag (beta (k+1),...,beta (k+l))
C2 + S2 = I
R is stored ina(1:k+l , n-k-l +1:n) on exit.

n k– l– k l

B
l

p l–

0 0 B13

0 0 0
 =

D1

k

l

m k– l–

I
k

0
l

0 C

0 0

=

D2
l

p l–

0
k

S
l

0 0
 =

n k– l– k l

0 R()
k

l

0 R11 R12

0 0 R22

=

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-273

If m- k- l < 0,

where

C = diag (alpha (k+1),...,alpha (m)),
S= diag (beta (k+1),...,beta (m)),
C2 + S2 = I

On exit, is stored ina(1:m, n-k-l +1:n) andR33 is stored

in b(m-k+1:l , n+m-k-l +1:n).

The computation of the orthogonal/unitary transformation matricesU, V or
Q is optional. These matrices may either be formed explicitly, or theymay
be postmultiplied into input matricesU1, V1, or Q1.

k m k– k l m–+

D1
k

m k–

I 0 0

0 C 0
 =

k m k– k l m–+

D2

m k–

k l m–+

p l–

0 S 0

0 0 I

0 0 0

=

n k– l– k m k– k l m–+

0 R)
k

m k–

k l m–+

0 R11 R12 R13

0 0 R22 R23

0 0 0 R33

=

R11

0

R12

R22

R13

R23

5-274

5 Intel® Math Kernel Library Reference Manual

Input Parameters

jobu CHARACTER*1. Must be'U' , 'I' , or 'N' .
If jobu ='U' , u must contain an orthogonal/unitary
matrix U1 on entry.
If jobu ='I' , u is initialized to the unit matrix.
If jobu ='N' , u is not computed.

jobv CHARACTER*1. Must be'V' , 'I' , or 'N' .
If jobv ='V' , v must contain an orthogonal/unitary
matrix V1 on entry.
If jobv ='I' , v is initialized to the unit matrix.
If jobv ='N' , v is not computed.

jobq CHARACTER*1. Must be'Q' , 'I' , or 'N' .
If jobq ='Q' , q must contain an orthogonal/unitary
matrix Q1 on entry.
If jobq ='I' , q is initialized to the unit matrix.
If jobq ='N' , q is not computed.

m INTEGER. The number of rows of the matrixA (m≥ 0).

p INTEGER. The number of rows of the matrixB (p ≥ 0).

n INTEGER. The number of columns of the matricesA
andB (n ≥ 0).

k, l INTEGER. Specify the subblocks in the input matrices
A andB, whose GSVD is going to be computed by
?tgsja .

a,b,u,v,q,work REALfor stgsja

DOUBLE PRECISIONfor dtgsja

COMPLEXfor ctgsja

DOUBLE COMPLEXfor ztgsja .
Arrays:
a(lda, *) contains them-by-n matrix A.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains thep-by-n matrix B.
The second dimension ofb must be at least max(1,n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-275

If jobu ='U' , u(ldu, *) must contain a matrixU1
(usually the orthogonal/unitary matrix returned by
?ggsvp).
The second dimension ofu must be at least max(1,m).

If jobv ='V' , v(ldv, *) must contain a matrixV1
(usually the orthogonal/unitary matrix returned by
?ggsvp).
The second dimension ofv must be at least max(1,p).

If jobq ='Q' , q(ldq, *) must contain a matrixQ1
(usually the orthogonal/unitary matrix returned by
?ggsvp).
The second dimension ofq must be at least max(1,n).

work (*) is a workspace array. The dimension ofwork

must be at least max(1, 2n).

lda INTEGER. The first dimension ofa; at least max(1,m).

ldb INTEGER. The first dimension ofb; at least max(1,p).

ldu INTEGER. The first dimension of the arrayu.
ldu ≥ max(1,m) if jobu ='U' ; ldu ≥ 1 otherwise.

ldv INTEGER. The first dimension of the arrayv.
ldv ≥ max(1,p) if jobv ='V' ; ldv ≥ 1 otherwise.

ldq INTEGER. The first dimension of the arrayq.
ldq ≥ max(1,n) if jobq ='Q' ; ldq ≥ 1 otherwise.

tola, tolb REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
tola andtolb are the convergence criteria for the
Jacobi-Kogbetliantz iteration procedure. Generally, they
are the same as used in?ggsvp :
tola = max(m, n)* ||A||* MACHEPS,
tolb = max(p, n)* ||B||* MACHEPS.

Output Parameters

a On exit,a(n-k+1:n, 1:min(k+l , m)) contains the
triangular matrixR or part ofR.

5-276

5 Intel® Math Kernel Library Reference Manual

b On exit, if necessary,b(m-k+1: l , n+m-k-l +1: n))
contains a part ofR.

alpha, beta REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Arrays,DIMENSIONat least max(1,n).
Contain the generalized singular value pairs ofA andB:

alpha (1:k) = 1,
beta (1:k) = 0,

and if m-k-l ≥ 0,
alpha (k+1:k+l) = diag(C),
beta (k+1:k+l) = diag(S),

or if m-k-l < 0,
alpha (k+1:m)= C, alpha (m+1:k+l)= 0
beta (k+1:m) = S, beta (m+1:k+l) = 1.

Furthermore, ifk+l < n,
alpha (k+l +1:n) = 0 and
beta (k+l +1:n) = 0.

u If jobu ='I' , u contains the orthogonal/unitary
matrix U.
If jobu ='U' , u contains the productU1U.
If jobu ='N' , u is not referenced.

v If jobv ='I' , v contains the orthogonal/unitary
matrix U.
If jobv ='V' , v contains the productV1V.
If jobv ='N' , v is not referenced.

q If jobq ='I' , q contains the orthogonal/unitary
matrix U.
If jobq ='Q' , q contains the productQ1Q.
If jobq ='N' , q is not referenced.

ncycle INTEGER. The number of cycles required for
convergence.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-277

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = 1, the procedure does not converge after
MAXIT cycles.

5-278

5 Intel® Math Kernel Library Reference Manual

Driver Routines
Each of the LAPACK driver routines solves a complete problem.
To arrive at the solution, driver routines typically call a sequence of
appropriatecomputational routines.
Driver routines are described in the following sections:

Linear Least Squares (LLS) Problems
Generalized LLS Problems
Symmetric Eigenproblems
Nonsymmetric Eigenproblems
Singular Value Decomposition
Generalized Symmetric Definite Eigenproblems
Generalized Nonsymmetric Eigenproblems

Linear Least Squares (LLS) Problems

This section describes LAPACK driver routines used for solving linear
least-squares problems.Table 5-8lists routines described in more detail
below.

Table 5-8 Driver Routines for Solving LLS Problems

Routine Name Operation performed

?gels Uses QR or LQ factorization to solve a overdetermined or underdetermined
linear system with full rank matrix.

?gelsy Computes the minimum-norm solution to a linear least squares problem
using a complete orthogonal factorization of A.

?gelss Computes the minimum-norm solution to a linear least squares problem
using the singular value decomposition of A.

?gelsd Computes the minimum-norm solution to a linear least squares problem
using the singular value decomposition of A and a divide and conquer
method.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-279

?gels
Uses QR or LQ factorization to solve a
overdetermined or underdetermined
linear system with full rank matrix.

call sgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

call dgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

call cgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

call zgels (trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

Discussion

This routine solves overdetermined or underdetermined real/ complex linear
systems involving anm-by-n matrixA, or its transpose/ conjugate-transpose,
using aQRor LQ factorization ofA. It is assumed thatA has full rank.

The following options are provided:

1. If trans = 'N' andm≥ n: find the least squares solution of an
overdetermined system, that is, solve the least squares problem

minimize ||b - A x ||2
2. If trans = 'N' andm< n: find the minimum norm solution of an
underdetermined systemA X = B.

3. If trans = 'T' or 'C' andm≥ n: find the minimum norm solution of an
undetermined systemAH X = B.

4. If trans = 'T' or 'C' andm< n: find the least squares solution of an
overdetermined system, that is, solve the least squares problem

minimize ||b - AH x ||2
Several right hand side vectorsb and solution vectorsx can be handled in a
single call; they are stored as the columns of them-by-nrhs right hand side
matrix B and then-by-nrh solution matrixX.

5-280

5 Intel® Math Kernel Library Reference Manual

Input Parameters

trans CHARACTER*1. Must be'N' , 'T' , or 'C' .
If trans = 'N' , the linear system involves matrixA;
If trans = 'T' , the linear system involves the
transposed matrixAT (for real flavors only);
If trans = 'C' , the linear system involves the
conjugate-transposed matrixAH (for complex flavors
only).

m INTEGER. The number of rows of the matrixA (m≥ 0).

n INTEGER. The number of columns of the matrixA
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

a, b, work REALfor sgels

DOUBLE PRECISIONfor dgels

COMPLEXfor cgels

DOUBLE COMPLEXfor zgels .
Arrays:
a(lda, *) contains them-by-n matrix A.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains the matrixB of right hand side
vectors, stored columnwise;B is m-by-nrhs if trans =
'N' , or n-by-nrhs if trans = 'T' or 'C' .
The second dimension ofb must be at least
max(1,nrhs).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

ldb INTEGER. The first dimension ofb; must be at least
max(1,m, n).

lwork INTEGER. The size of thework array; must be at least
min (m, n) +max(1,m, n, nrhs).
SeeApplication notesfor the suggested value oflwork .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-281

Output Parameters

a On exit, overwritten by the factorization data as follows:

if m≥ n, arraya contains the details of theQR
factorization of the matrixA as returned by?geqrf ;
if m< n, arraya contains the details of theLQ
factorization of the matrixA as returned by?gelqf .

b Overwritten by the solution vectors, stored columnwise:
If trans = 'N' andm≥ n, rows 1 ton of b contain the
least squares solution vectors; the residual sum of
squares for the solution in each column is given by the
sum of squares of elementsn+1 tomin that column;
If trans = 'N' andm< n, rows 1 ton of b contain the
minimum norm solution vectors;
if trans = 'T' or 'C' andm≥ n, rows 1 tomof b

contain the minimum norm solution vectors;
if trans = 'T' or 'C' andm< n, rows 1 tomof b

contain the least squares solution vectors; the residual
sum of squares for the solution in each column is given
by the sum of squares of elementsm+1 ton in that
column.

work (1) If info = 0, on exitwork (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

Application Notes

For better performance, try using
lwork =min (m, n) +max(1,m, n, nrhs)* blocksize, whereblocksizeis a
machine-dependent value (typically, 16 to 64) required for optimum
performance of theblocked algorithm.

If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

5-282

5 Intel® Math Kernel Library Reference Manual

?gelsy
Computes the minimum-norm solution to
a linear least squares problem using a
complete orthogonal factorization of A.

call sgelsy (m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, info)

call dgelsy (m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, info)

call cgelsy (m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, rwork, info)

call zgelsy (m, n, nrhs, a, lda, b, ldb, jpvt, rcond, rank, work,
lwork, rwork, info)

Discussion

This routine computes the minimum-norm solution to a real/complex linear
least squares problem:

minimize ||b - A x ||2
using a complete orthogonal factorization ofA. A is anm-by-n matrix
which may be rank-deficient.
Several right hand side vectorsb and solution vectorsx can be handled in a
single call; they are stored as the columns of them-by-nrhs right hand side
matrix B and then-by-nrhs solution matrixX.

The routine first computes aQR factorization with column pivoting:

with R11 defined as the largest leading submatrix whose estimated
condition number is less than 1/rcond . The order ofR11, rank , is the
effective rank ofA.

AP Q
R11R12
0 R22

 =

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-283

Then,R22 is considered to be negligible, andR12 is annihilated by
orthogonal/unitary transformations from the right, arriving at the complete
orthogonal factorization:

The minimum-norm solution is then

whereQ1 consists of the firstrank columns ofQ. This routine is basically
identical to the original?gelsx except three differences:

• The call to the subroutine?geqpf has been substituted by the call to
the subroutine?geqp3 . This subroutine is a BLAS-3 version of theQR
factorization with column pivoting.

• Matrix B (the right hand side) is updated with BLAS-3.
• The permutation of matrixB (the right hand side) is faster and more

simple.

Input Parameters

m INTEGER. The number of rows of the matrixA (m≥ 0).

n INTEGER. The number of columns of the matrixA
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

a, b, work REALfor sgelsy

DOUBLE PRECISIONfor dgelsy

COMPLEXfor cgelsy

DOUBLE COMPLEXfor zgelsy .
Arrays:
a(lda, *) contains them-by-n matrix A.
The second dimension ofa must be at least max(1,n).

AP Q
T110
0 0

 Z=

x PZH T11
1– Q1

H b

0

=

5-284

5 Intel® Math Kernel Library Reference Manual

b(ldb, *) contains them-by-nrhs right hand side
matrix B .
The second dimension ofb must be at least
max(1,nrhs).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

ldb INTEGER. The first dimension ofb; must be at least
max(1,m, n).

jpvt INTEGER. Array, DIMENSION at least max(1, n).

On entry, ifjpvt (i) ≠ 0, thei th column ofA is
permuted to the front ofAP, otherwise thei th column of
A is a free column.

rcond REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.

rcond is used to determine the effective rank ofA,
which is defined as the order of the largest leading
triangular submatrixR11 in theQR factorization with
pivoting of A, whose estimated condition number <
1/rcond .

lwork INTEGER. The size of thework array. SeeApplication
notesfor the suggested value oflwork .

rwork REALfor cgelsy

DOUBLE PRECISIONfor zgelsy .
Workspace array,DIMENSIONat least max(1, 2n). Used
in complex flavors only.

Output Parameters

a On exit, overwritten by the details of the complete
orthogonal factorization ofA.

b Overwritten by then-by-nrhs solution matrixX.

jpvt On exit, if jpvt (i) = k , then thei th column ofAP
was thek th column ofA.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-285

rank INTEGER.
The effective rank ofA, that is, the order of the
submatrixR11. This is the same as the order of the
submatrixT11 in the complete orthogonal factorization
of A.

info INTEGER.
If info = 0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

Application Notes

For real flavors:

The unblocked strategy requires that:
lwork ≥ max(mn+3n+1, 2* mn + nrhs),

wheremn= min(m, n).

The block algorithm requires that:
lwork ≥ max(mn+2n+nb* (n+1), 2* mn+nb* nrhs),

wherenb is an upper bound on the blocksize returned byilaenv for the
routinessgeqp3/dgeqp3 , stzrzf/dtzrzf , stzrqf/dtzrqf ,
sormqr/dormqr , andsormrz/dormrz .

For complex flavors:

The unblocked strategy requires that:
lwork ≥ mn+ max(2* mn, n+1, mn+ nrhs),

wheremn= min(m, n).

The block algorithm requires that:
lwork ≥ mn+ max(2* mn, nb* (n+1), mn+mn* nb, mn+nb* nrhs),
wherenb is an upper bound on the blocksize returned byilaenv for the
routinescgeqp3/zgeqp3 , ctzrzf/ztzrzf , ctzrqf/ztzrqf ,
cunmqr/zunmqr , andcunmrz/zunmrz .

5-286

5 Intel® Math Kernel Library Reference Manual

?gelss
Computes the minimum-norm solution to
a linear least squares problem using the
singular value decomposition of A.

call sgelss (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, info)

call dgelss (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, info)

call cgelss (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, info)

call zgelss (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, info)

Discussion

This routine computes the minimum norm solution to a real linear least
squares problem:

minimize ||b - A x ||2
using the singular value decomposition (SVD) ofA. A is anm-by-n matrix
which may be rank-deficient.
Several right hand side vectorsb and solution vectorsx can be handled in a
single call; they are stored as the columns of them-by-nrhs right hand side
matrix B and then-by-nrhs solution matrixX.
The effective rank ofA is determined by treating as zero those singular
values which are less thanrcond times the largest singular value.

Input Parameters

m INTEGER. The number of rows of the matrixA (m≥ 0).

n INTEGER. The number of columns of the matrixA
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-287

a, b, work REALfor sgelss

DOUBLE PRECISIONfor dgelss

COMPLEXfor cgelss

DOUBLE COMPLEXfor zgelss .
Arrays:
a(lda, *) contains them-by-n matrix A.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains them-by-nrhs right hand side
matrix B .
The second dimension ofb must be at least
max(1,nrhs).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

ldb INTEGER. The first dimension ofb; must be at least
max(1,m, n).

rcond REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.

rcond is used to determine the effective rank ofA.
Singular valuess(i) ≤ rcond * s(1) are treated as zero.
If rcond < 0, machine precision is used instead.

lwork INTEGER. The size of thework array;lwork ≥ 1. See
Application notesfor the suggested value oflwork .

rwork REALfor cgelss

DOUBLE PRECISIONfor zgelss .
Workspace array used in complex flavors only.
DIMENSIONat least max(1, 5* min(m, n)).

Output Parameters

a On exit, the first min(m, n) rows ofA are overwritten
with its right singular vectors, stored row-wise.

b Overwritten by then-by-nrhs solution matrixX.

If m≥ n and rank = n, the residual sum-of-squares for
the solution in thei -th column is given by the sum of
squares of elementsn+1:min that column.

5-288

5 Intel® Math Kernel Library Reference Manual

s REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
Array, DIMENSIONat least max(1, min(m, n)). The
singular values ofA in decreasing order. The condition
number ofA in the 2-norm is

k2(A) = s(1) / s(min(m, n)) .

rank INTEGER.
The effective rank ofA, that is, the number of singular
values which are greater thanrcond * s(1).

work (1) If info = 0, on exit,work (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , then the algorithm for computing the SVD
failed to converge;i indicates the number of
off-diagonal elements of an intermediate bidiagonal
form which did not converge to zero.

Application Notes

For real flavors:

lwork ≥ 3* min(m, n) + max(2* min(m, n), max(m, n), nrhs)

For complex flavors:

lwork ≥ 2* min(m, n) + max(m, n , nrhs)

For good performance,lwork should generally be larger. If you are in
doubt how much workspace to supply, use a generous value oflwork for
the first run. On exit, examinework (1) and use this value for subsequent
runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-289

?gelsd
Computes the minimum-norm solution to
a linear least squares problem using the
singular value decomposition of A and a
divide and conquer method.

call sgelsd (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, iwork, info)

call dgelsd (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, iwork, info)

call cgelsd (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, iwork, info)

call zgelsd (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work,
lwork, rwork, iwork, info)

Discussion

This routine computes the minimum-norm solution to a real linear least
squares problem:

minimize ||b - A x ||2
using the singular value decomposition (SVD) ofA. A is anm-by-n matrix
which may be rank-deficient.

Several right hand side vectorsb and solution vectorsx can be handled in a
single call; they are stored as the columns of them-by-nrhs right hand side
matrix B and then-by-nrhs solution matrixX.

The problem is solved in three steps:

1. Reduce the coefficient matrix A to bidiagonal form with
Householder transformations, reducing the original problem into a
"bidiagonal least squares problem" (BLS).

2. Solve the BLS using a divide and conquer approach.
3. Apply back all the Householder transformations to solve the

original least squares problem.

The effective rank ofA is determined by treating as zero those singular
values which are less thanrcond times the largest singular value.

5-290

5 Intel® Math Kernel Library Reference Manual

Input Parameters

m INTEGER. The number of rows of the matrixA (m≥ 0).

n INTEGER. The number of columns of the matrixA
(n ≥ 0).

nrhs INTEGER. The number of right-hand sides; the number
of columns inB (nrhs ≥ 0).

a, b, work REALfor sgelsd

DOUBLE PRECISIONfor dgelsd

COMPLEXfor cgelsd

DOUBLE COMPLEXfor zgelsd .
Arrays:
a(lda, *) contains them-by-n matrix A.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains them-by-nrhs right hand side
matrix B .
The second dimension ofb must be at least
max(1,nrhs).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

ldb INTEGER. The first dimension ofb; must be at least
max(1,m, n).

rcond REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.

rcond is used to determine the effective rank ofA.
Singular valuess(i) ≤ rcond * s(1) are treated as zero.
If rcond < 0, machine precision is used instead.

lwork INTEGER. The size of thework array;lwork ≥ 1. See
Application notesfor the suggested value oflwork .

iwork INTEGER. Workspace array. SeeApplication notesfor
the suggested dimension ofiwork .

rwork REALfor cgelsd

DOUBLE PRECISIONfor zgelsd .

Workspace array, used in complex flavors only. See

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-291

Application notesfor the suggested dimension of
rwork .

Output Parameters

a On exit, A has been overwritten.

b Overwritten by then-by-nrhs solution matrixX.

If m≥ n and rank = n, the residual sum-of-squares for
the solution in thei -th column is given by the sum of
squares of elementsn+1:min that column.

s REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
Array, DIMENSIONat least max(1, min(m, n)). The
singular values ofA in decreasing order. The condition
number ofA in the 2-norm is

k2(A) = s(1) / s(min(m, n)) .

rank INTEGER.
The effective rank ofA, that is, the number of singular
values which are greater thanrcond * s(1).

work (1) If info = 0, on exit,work (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , then the algorithm for computing the SVD
failed to converge;i indicates the number of
off-diagonal elements of an intermediate bidiagonal
form which did not converge to zero.

Application Notes

The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard digit in
add/subtract. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.

5-292

5 Intel® Math Kernel Library Reference Manual

The exact minimum amount of workspace needed depends onm, n and
nrhs . The sizelwork of the workspace arraywork must be as given
below.

For real flavors:

If m≥ n,
lwork ≥ 12n + 2n* smlsiz+ 8n* nlvl + n* nrhs + (smlsiz+1)2;

If m< n,
lwork ≥ 12m+ 2m* smlsiz+ 8m* nlvl + m* nrhs + (smlsiz+1)2;

For complex flavors:

If m≥ n,
lwork ≥ 2n + n* nrhs ;

If m< n,
lwork ≥ 2m+ m* nrhs ;

wheresmlsizis returned byilaenv and is equal to the maximum size of the
subproblems at the bottom of the computation tree (usually about 25), and
nlvl = INT(log2(min(m, n)/(smlsiz+1))) + 1 .

For good performance,lwork should generally be larger. If you are in
doubt how much workspace to supply, use a generous value oflwork for
the first run. On exit, examinework (1) and use this value for subsequent
runs.

The dimension of the workspace arrayiwork must be at least
3* min(m, n)* nlvl + 11* min(m, n).

The dimensionlrwork of the workspace arrayrwork (for complex
flavors) must be at least:
If m≥ n,
lrwork ≥ 10n + 2n* smlsiz+ 8n* nlvl + 3* smlsiz* nrhs + (smlsiz+1)2;

If m< n,
lrwork ≥ 10m+ 2m* smlsiz+ 8m* nlvl + 3* smlsiz* nrhs + (smlsiz+1)2.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-293

Generalized LLS Problems

This section describes LAPACK driver routines used for solving
generalized linear least-squares problems.Table 5-9lists routines described
in more detail below.

?gglse
Solves the linear equality-constrained
least squares problem using a
generalized RQ factorization.

call sgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

call dgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

call cgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

call zgglse (m, n, p, a, lda, b, ldb, c, d, x, work, lwork, info)

Discussion

This routine solves the linear equality-constrained least squares (LSE)
problem:

minimize ||c - A x ||2 subject to B x = d

whereA is anm-by-n matrix,B is ap-by-n matrix,c is a givenm-vector, and
d is a givenp-vector.
It is assumed thatp ≤ n ≤ m+p, and

rank(B) = p and rank =n .

Table 5-9 Driver Routines for Solving Generalized LLS Problems

Routine Name Operation performed

?gglse Solves the linear equality-constrained least squares problem using a
generalized RQ factorization.

?ggglm Solves a general Gauss-Markov linear model problem using a generalized
QR factorization.

A
B

5-294

5 Intel® Math Kernel Library Reference Manual

These conditions ensure that the LSE problem has a unique solution, which
is obtained using a generalizedRQ factorization of the matricesB andA.

Input Parameters

m INTEGER. The number of rows of the matrixA (m≥ 0).

n INTEGER. The number of columns of the matricesA
andB (n ≥ 0).

p INTEGER. The number of rows of the matrixB
(0 ≤ p ≤ n ≤ m+p).

a,b,c,d,work REALfor sgglse

DOUBLE PRECISIONfor dgglse

COMPLEXfor cgglse

DOUBLE COMPLEXfor zgglse .

Arrays:
a(lda, *) contains them-by-n matrix A.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains thep-by-n matrix B .
The second dimension ofb must be at least max(1,n).

c(*) , dimension at least max(1,m), contains the right
hand side vector for the least squares part of the LSE
problem.
d(*) , dimension at least max(1,p), contains the right
hand side vector for the constrained equation.
work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,m).

ldb INTEGER. The first dimension ofb; at least max(1,p).

lwork INTEGER. The size of thework array;
lwork ≥ max(1,m+n+p). SeeApplication notesfor the
suggested value oflwork .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-295

Output Parameters

x REALfor sgglse

DOUBLE PRECISIONfor dgglse

COMPLEXfor cgglse

DOUBLE COMPLEXfor zgglse .
Array, DIMENSIONat least max(1,n).
On exit, contains the solution of the LSE problem.

a,b,d On exit, these arrays are overwritten.

c On exit, the residual sum-of-squares for the solution is
given by the sum of squares of elementsn- p+1 to mof
vectorc .

work (1) If info = 0, on exit,work (1) contains the minimum
value oflwork required for optimum performance. Use
this lwork for subsequent runs.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For optimum performance use
lwork ≥ p+min(m, n)+max(m, n)* nb,

wherenb is an upper bound for the optimal blocksizes for?geqrf ,
?gerqf , ?ormqr/?unmqr and?ormrq/?unmrq .

5-296

5 Intel® Math Kernel Library Reference Manual

?ggglm
Solves a general Gauss-Markov linear
model problem using a generalized QR
factorization.

call sggglm (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

call dggglm (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

call cggglm (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

call zggglm (n, m, p, a, lda, b, ldb, d, x, y, work, lwork, info)

Discussion

This routine solves a general Gauss-Markov linear model (GLM) problem:
minimizex || y ||2 subject to d = Ax + By

whereA is ann-by-mmatrix,B is ann-by-p matrix, andd is a given
n-vector.
It is assumed thatm≤ n ≤ m+p, and

rank(A) = m and rank(A B) = n .
Under these assumptions, the constrained equation is always consistent, and
there is a unique solutionx and a minimal 2-norm solutiony, which is
obtained using a generalizedQR factorization ofA andB.
In particular, if matrixB is square nonsingular, then the problem GLM is
equivalent to the following weighted linear least squares problem

minimizex || B- 1(d- Ax) ||2 .

Input Parameters

n INTEGER. The number of rows of the matricesA andB
(n ≥ 0).

m INTEGER. The number of columns inA (m≥ 0).

p INTEGER. The number of columns inB (p ≥ n - m).

a,b,d,work REALfor sggglm

DOUBLE PRECISIONfor dggglm

COMPLEXfor cggglm

DOUBLE COMPLEXfor zggglm .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-297

Arrays:
a(lda, *) contains then-by-mmatrix A.
The second dimension ofa must be at least max(1,m).

b(ldb, *) contains then-by-p matrix B .
The second dimension ofb must be at least max(1,p).

d(*) , dimension at least max(1,n), contains the left
hand side of the GLM equation.
work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

lwork INTEGER. The size of thework array;
lwork ≥ max(1,n+m+p). SeeApplication notesfor the
suggested value oflwork .

Output Parameters

x, y REALfor sggglm

DOUBLE PRECISIONfor dggglm

COMPLEXfor cggglm

DOUBLE COMPLEXfor zggglm .
Arraysx(*), y(*). DIMENSIONat least max(1,m) for x

and at least max(1,p) for y.
On exit,x andy are the solutions of the GLM problem.

a,b,d On exit, these arrays are overwritten.

work (1) If info = 0, on exit,work (1) contains the minimum
value oflwork required for optimum performance.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.

Application Notes

For optimum performance use
lwork ≥ m+min(n, p)+max(n, p)* nb,

wherenb is an upper bound for the optimal blocksizes for?geqrf ,
?gerqf , ?ormqr/?unmqr and?ormrq/?unmrq .

5-298

5 Intel® Math Kernel Library Reference Manual

Symmetric Eigenproblems

This section describes LAPACK driver routines used for solving symmetric
eigenvalue problems. See alsocomputational routinesthat can be called to
solve these problems.
Table 5-10lists routines described in more detail below.

Table 5-10 Driver Routines for Solving Symmetric Eigenproblems

Routine Name Operation performed

?syev/?heev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric /
Hermitian matrix.

?syevd /?heevd Computes all eigenvalues and (optionally) all eigenvectors of a real
symmetric / Hermitian matrix using divide and conquer algorithm.

?syevx /?heevx Computes selected eigenvalues and, optionally, eigenvectors of a
symmetric / Hermitian matrix.

?syevr /?heevr Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric / Hermitian matrix using the Relatively Robust Representations.

?spev/?hpev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric /
Hermitian matrix in packed storage.

?spevd/?hpevd Uses divide and conquer algorithm to compute all eigenvalues and
(optionally) all eigenvectors of a real symmetric / Hermitian matrix held in
packed storage.

?spevx /?hpevx Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric / Hermitian matrix in packed storage.

?sbev /?hbev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
/ Hermitian band matrix.

?sbevd/?hbevd Computes all eigenvalues and (optionally) all eigenvectors of a real
symmetric / Hermitian band matrix using divide and conquer algorithm.

?sbevx /?hbevx Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric / Hermitian band matrix.

?stev Computes all eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix.

?stevd Computes all eigenvalues and (optionally) all eigenvectors of a real
symmetric tridiagonal matrix using divide and conquer algorithm.

?stevx Computes selected eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix.

?stevr Computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix using the Relatively Robust Representations.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-299

?syev
Computes all eigenvalues and,
optionally, eigenvectors of a real
symmetric matrix.

call ssyev (jobz, uplo, n, a, lda, w, work, lwork, info)

call dsyev (jobz, uplo, n, a, lda, w, work, lwork, info)

Discussion

This routine computes all eigenvalues and, optionally, eigenvectors of a real
symmetric matrixA.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then only eigenvalues are computed.
If jobz ='V' , then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , a stores the upper triangular part ofA.
If uplo = 'L' , a stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

a, work REALfor ssyev

DOUBLE PRECISIONfor dsyev

Arrays:
a(lda, *) is an array containing either upper or lower
triangular part of the symmetric matrixA, as specified
by uplo .
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

5-300

5 Intel® Math Kernel Library Reference Manual

lwork INTEGER. The dimension of the arraywork .
Constraint:lwork ≥ max(1, 3n- 1). SeeApplication
notesfor the suggested value oflwork .

Output Parameters

a On exit, if jobz ='V' , then if info = 0, arraya

contains the orthonormal eigenvectors of the matrixA.
If jobz ='N' , then on exit the lower triangle
(if uplo = 'L') or the upper triangle (ifuplo = 'U') of
A, including the diagonal, is overwritten.

w REALfor ssyev

DOUBLE PRECISIONfor dsyev

Array, DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues of the matrixA in
ascending order.

work(1) On exit, if lwork > 0, thenwork(1) returns the
required minimal size oflwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , then the algorithm failed to converge;i

indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

Application Notes

For optimum performance use
lwork ≥ (nb+2)* n,

wherenb is the blocksize for?sytrd returned byilaenv .
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-301

?heev
Computes all eigenvalues and,
optionally, eigenvectors of a Hermitian
matrix.

call cheev (jobz, uplo, n, a, lda, w, work, lwork, rwork, info)

call zheev (jobz, uplo, n, a, lda, w, work, lwork, rwork, info)

Discussion

This routine computes all eigenvalues and, optionally, eigenvectors of a
complex Hermitian matrixA.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then only eigenvalues are computed.
If jobz ='V' , then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , a stores the upper triangular part ofA.
If uplo = 'L' , a stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

a, work COMPLEXfor cheev

DOUBLE COMPLEXfor zheev

Arrays:
a(lda, *) is an array containing either upper or lower
triangular part of the Hermitian matrixA, as specified by
uplo .
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

5-302

5 Intel® Math Kernel Library Reference Manual

lwork INTEGER. The dimension of the arraywork .
Constraint:lwork ≥ max(1, 2n- 1). SeeApplication
notesfor the suggested value oflwork .

rwork REALfor cheev

DOUBLE PRECISIONfor zheev .
Workspace array,DIMENSION at least max(1, 3n- 2).

Output Parameters

a On exit, if jobz ='V' , then if info = 0, arraya

contains the orthonormal eigenvectors of the matrixA.
If jobz ='N' , then on exit the lower triangle
(if uplo = 'L') or the upper triangle (ifuplo = 'U') of
A, including the diagonal, is overwritten.

w REALfor cheev

DOUBLE PRECISIONfor zheev

Array, DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues of the matrixA in
ascending order.

work(1) On exit, if lwork > 0, thenwork(1) returns the
required minimal size oflwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , then the algorithm failed to converge;i

indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

Application Notes

For optimum performance use
lwork ≥ (nb+1)* n,

wherenb is the blocksize for?hetrd returned byilaenv .
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-303

?syevd
Computes all eigenvalues and
(optionally) all eigenvectors of a real
symmetric matrix using divide and
conquer algorithm.

call ssyevd (job , uplo , n,a,lda,w,work,lwork,iwork,liwork,info)

call dsyevd (job , uplo , n,a,lda,w,work,lwork,iwork,liwork,info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a real symmetric matrixA. In other words, it can compute
the spectral factorization ofA as: A = ZΛZT.
HereΛ is a diagonal matrix whose diagonal elements are the eigenvaluesλi,
andZ is the orthogonal matrix whose columns are the eigenvectorszi. Thus,

Azi = λizi for i = 1, 2,... , n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QRalgorithm.

Input Parameters

job CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , a stores the upper triangular part ofA.
If uplo = 'L' , a stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

a REALfor ssyevd

DOUBLE PRECISIONfor dsyevd

Array, DIMENSION(lda , *) .

5-304

5 Intel® Math Kernel Library Reference Manual

a(lda, *) is an array containing either upper or lower
triangular part of the symmetric matrixA, as specified
by uplo .
The second dimension ofa must be at least max(1,n).

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

work REALfor ssyevd

DOUBLE PRECISIONfor dsyevd .
Workspace array,DIMENSIONat leastlwork .

lwork INTEGER. The dimension of the arraywork .
Constraints:
if n ≤ 1, thenlwork ≥ 1;
if job ='N' andn > 1, thenlwork ≥ 2n+1;
if job ='V' and n > 1, then

lwork ≥ 3n2+(5+2k)* n+1, wherek is the smallest
integer which satisfies 2k ≥ n.

iwork INTEGER.
Workspace array,DIMENSION at leastliwork .

liwork INTEGER. The dimension of the arrayiwork .
Constraints:
if n ≤ 1, thenliwork ≥ 1;
if job ='N' andn > 1, thenliwork ≥ 1;
if job ='V' and n > 1, thenliwork ≥ 5n+2.

Output Parameters

w REALfor ssyevd

DOUBLE PRECISIONfor dsyevd

Array, DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues of the matrixA in
ascending order.
See alsoinfo .

a If job ='V' , then on exit this array is overwritten by
the orthogonal matrixZ which contains the eigenvectors
of A.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-305

work(1) On exit, if lwork > 0, thenwork(1) returns the
required minimal size oflwork .

iwork(1) On exit, if liwork > 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = i , then the algorithm failed to converge;i

indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrixT + E
such that||E||2 = O(ε) ||T||2, whereε is the machine precision.

The complex analogue of this routine is?heevd .

5-306

5 Intel® Math Kernel Library Reference Manual

?heevd
Computes all eigenvalues and
(optionally) all eigenvectors of a
complex Hermitian matrix using divide
and conquer algorithm.

call cheevd (job , uplo , n, a, lda, w, work, lwork, rwork, lrwork,
iwork, liwork, info)

call zheevd (job , uplo , n, a, lda, w, work, lwork, rwork, lrwork,
iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a complex Hermitian matrixA. In other words, it can
compute the spectral factorization ofA as: A = ZΛZH .
HereΛ is a real diagonal matrix whose diagonal elements are the
eigenvaluesλi, andZ is the (complex) unitary matrix whose columns are the
eigenvectorszi. Thus,

Azi = λizi for i = 1, 2,... , n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QRalgorithm.

Input Parameters

job CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , a stores the upper triangular part ofA.
If uplo = 'L' , a stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-307

a COMPLEXfor cheevd

DOUBLE COMPLEXfor zheevd

Array, DIMENSION(lda , *) .
a(lda, *) is an array containing either upper or lower
triangular part of the Hermitian matrixA, as specified by
uplo .
The second dimension ofa must be at least max(1,n).

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

work COMPLEXfor cheevd

DOUBLE COMPLEXfor zheevd .
Workspace array,DIMENSIONat leastlwork .

lwork INTEGER. The dimension of the arraywork .
Constraints:
if n ≤ 1, thenlwork ≥ 1;
if job ='N' andn > 1, thenlwork ≥ n+1;
if job ='V' and n > 1, thenlwork ≥ n2+2n

rwork REALfor cheevd

DOUBLE PRECISIONfor zheevd

Workspace array,DIMENSIONat leastlrwork .

lrwork INTEGER. The dimension of the arrayrwork .
Constraints:
if n ≤ 1, thenlrwork ≥ 1;
if job ='N' andn > 1, thenlrwork ≥ n;
if job ='V' and n > 1, then

lrwork ≥ 3n2+(4+2k)* n+1, wherek is the smallest
integer which satisfies 2k ≥ n.

iwork INTEGER.
Workspace array,DIMENSION at leastliwork .

liwork INTEGER. The dimension of the arrayiwork .
Constraints:
if n ≤ 1, thenliwork ≥ 1;
if job ='N' andn > 1, thenliwork ≥ 1;
if job ='V' and n > 1, thenliwork ≥ 5n+2.

5-308

5 Intel® Math Kernel Library Reference Manual

Output Parameters

w REALfor cheevd

DOUBLE PRECISIONfor zheevd

Array, DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues of the matrixA in
ascending order.
See alsoinfo .

a If job ='V' , then on exit this array is overwritten by
the unitary matrixZ which contains the eigenvectors
of A.

work(1) On exit, if lwork > 0, then the real part ofwork(1)

returns the required minimal size oflwork .

rwork(1) On exit, if lrwork > 0, thenrwork(1) returns the
required minimal size oflrwork .

iwork(1) On exit, if liwork > 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = i , then the algorithm failed to converge;i

indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrixA + E
such that||E||2 = O(ε) ||A||2, whereε is the machine precision.

The real analogue of this routine is?syevd .
See also?hpevdfor matrices held in packed storage, and?hbevdfor banded
matrices.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-309

?syevx
Computes selected eigenvalues and,
optionally, eigenvectors of a symmetric
matrix.

call ssyevx (jobz , range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, iwork, ifail, info)

call dsyevx (jobz , range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric matrixA. Eigenvalues and eigenvectors can be selected by
specifying either a range of values or a range of indices for the desired
eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then only eigenvalues are computed.
If jobz ='V' , then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be'A' , 'V' , or 'I' .
If range ='A' , all eigenvalues will be found.
If range ='V' , all eigenvalues in the half-open interval

(vl , vu] will be found.
If range ='I' , the eigenvalues with indicesil
throughiu will be found.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , a stores the upper triangular part ofA.
If uplo = 'L' , a stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

5-310

5 Intel® Math Kernel Library Reference Manual

a, work REALfor ssyevx

DOUBLE PRECISIONfor dsyevx .
Arrays:
a(lda, *) is an array containing either upper or lower
triangular part of the symmetric matrixA, as specified
by uplo .
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

vl, vu REALfor ssyevx

DOUBLE PRECISIONfor dsyevx .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues;vl ≤ vu .
Not referenced ifrange ='A' or 'I' .

il, iu INTEGER. If range ='I' , the indices of the smallest
and largest eigenvalues to be returned.
Constraints: 1≤ il ≤ iu ≤ n , if n > 0;
il = 1 and iu = 0 , if n = 0.
Not referenced ifrange ='A' or 'V' .

abstol REALfor ssyevx

DOUBLE PRECISIONfor dsyevx .
The absolute error tolerance for the eigenvalues .
SeeApplication notesfor more information.

ldz INTEGER. The first dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' , thenldz ≥ max(1,n).

lwork INTEGER. The dimension of the arraywork .
Constraint:lwork ≥ max(1, 8n). SeeApplication notes
for the suggested value oflwork .

iwork INTEGER. Workspace array,DIMENSION at least
max(1, 5n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-311

Output Parameters

a On exit, the lower triangle (ifuplo = 'L') or the upper
triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

m INTEGER. The total number of eigenvalues found;
0 ≤ m ≤ n . If range ='A' , m = n , and if
range ='I' , m = iu - il +1 .

w REALfor ssyevx

DOUBLE PRECISIONfor dsyevx

Array, DIMENSION at least max(1,n) .
The firstmelements contain the selected eigenvalues of
the matrixA in ascending order.

z REALfor ssyevx

DOUBLE PRECISIONfor dsyevx .
Array z(ldz, *) contains eigenvectors.
The second dimension ofz must be at least max(1,m).

If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixA
corresponding to the selected eigenvalues, with the i-th
column ofz holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that column
of z contains the latest approximation to the eigenvector,
and the index of the eigenvector is returned inifail .
If jobz ='N' , thenz is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

work(1) On exit, if lwork > 0, thenwork(1) returns the
required minimal size oflwork .

ifail INTEGER. Array, DIMENSIONat least max(1,n).
If jobz ='V' , then if info = 0, the firstmelements of
ifail are zero; ifinfo > 0, thenifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='V' , thenifail is not referenced.

5-312

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , theni eigenvectors failed to converge;
their indices are stored in the arrayifail .

Application Notes

For optimum performance uselwork ≥ (nb+3)* n, wherenb is the
maximum of the blocksize for?sytrd and?ormtr returned byilaenv .
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , whereε is the machine precision. Ifabstol

is less than or equal to zero, thenε* |T| will be used in its place, where |T| is
the 1-norm of the tridiagonal matrix obtained by reducingA to tridiagonal
form.
Eigenvalues will be computed most accurately whenabstol is set to twice
the underflow threshold 2* slamch ('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2* slamch ('S').

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-313

?heevx
Computes selected eigenvalues and,
optionally, eigenvectors of a Hermitian
matrix.

call cheevx (jobz , range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

call zheevx (jobz , range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a complex Hermitian matrixA. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then only eigenvalues are computed.
If jobz ='V' , then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be'A' , 'V' , or 'I' .
If range ='A' , all eigenvalues will be found.
If range ='V' , all eigenvalues in the half-open interval

(vl , vu] will be found.
If range ='I' , the eigenvalues with indicesil
throughiu will be found.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , a stores the upper triangular part ofA.
If uplo = 'L' , a stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

5-314

5 Intel® Math Kernel Library Reference Manual

a, work COMPLEXfor cheevx

DOUBLE COMPLEXfor zheevx .
Arrays:
a(lda, *) is an array containing either upper or lower
triangular part of the Hermitian matrixA, as specified by
uplo .
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

vl, vu REALfor cheevx

DOUBLE PRECISIONfor zheevx .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues;vl ≤ vu .
Not referenced ifrange ='A' or 'I' .

il, iu INTEGER. If range ='I' , the indices of the smallest
and largest eigenvalues to be returned.
Constraints: 1≤ il ≤ iu ≤ n , if n > 0;
il = 1 and iu = 0 , if n = 0.
Not referenced ifrange ='A' or 'V' .

abstol REALfor cheevx

DOUBLE PRECISIONfor zheevx .
The absolute error tolerance for the eigenvalues .
SeeApplication notesfor more information.

ldz INTEGER. The first dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' , thenldz ≥ max(1,n).

lwork INTEGER. The dimension of the arraywork .
Constraint:lwork ≥ max(1, 2n- 1). SeeApplication
notesfor the suggested value oflwork .

rwork REALfor cheevx

DOUBLE PRECISIONfor zheevx .
Workspace array,DIMENSION at least max(1, 7n).

iwork INTEGER. Workspace array,DIMENSION at least
max(1, 5n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-315

Output Parameters

a On exit, the lower triangle (ifuplo = 'L') or the upper
triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

m INTEGER. The total number of eigenvalues found;
0 ≤ m ≤ n . If range ='A' , m = n , and if
range ='I' , m = iu - il +1 .

w REALfor cheevx

DOUBLE PRECISIONfor zheevx

Array, DIMENSION at least max(1,n) .
The firstmelements contain the selected eigenvalues of
the matrixA in ascending order.

z COMPLEXfor cheevx

DOUBLE COMPLEXfor zheevx .
Array z(ldz, *) contains eigenvectors.
The second dimension ofz must be at least max(1,m).

If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixA
corresponding to the selected eigenvalues, with the i-th
column ofz holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that column
of z contains the latest approximation to the eigenvector,
and the index of the eigenvector is returned inifail .
If jobz ='N' , thenz is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

work(1) On exit, if lwork > 0, thenwork(1) returns the
required minimal size oflwork .

ifail INTEGER. Array, DIMENSIONat least max(1,n).
If jobz ='V' , then if info = 0, the firstmelements of
ifail are zero; ifinfo > 0, thenifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='V' , thenifail is not referenced.

5-316

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , theni eigenvectors failed to converge;
their indices are stored in the arrayifail .

Application Notes

For optimum performance uselwork ≥ (nb+1)* n, wherenb is the
maximum of the blocksize for?hetrd and?unmtr returned byilaenv .
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , whereε is the machine precision. Ifabstol

is less than or equal to zero, thenε* |T| will be used in its place, where |T| is
the 1-norm of the tridiagonal matrix obtained by reducingA to tridiagonal
form.
Eigenvalues will be computed most accurately whenabstol is set to twice
the underflow threshold 2* slamch ('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2* slamch ('S').

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-317

?syevr
Computes selected eigenvalues and,
optionally, eigenvectors of a real
symmetric matrix using the Relatively
Robust Representations.

call ssyevr (jobz , range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)

call dsyevr (jobz , range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric matrixT. Eigenvalues and eigenvectors can be selected by
specifying either a range of values or a range of indices for the desired
eigenvalues.

Whenever possible,?syevr callssstegr/dstegr to compute the
eigenspectrum using Relatively Robust Representations.?stegr computes
eigenvalues by thedqdsalgorithm, while orthogonal eigenvectors are
computed from various “good''LDLT representations (also known as
Relatively Robust Representations). Gram-Schmidt orthogonalization is
avoided as far as possible. More specifically, the various steps of the
algorithm are as follows. For the i-th unreduced block ofT,

(a) ComputeT - σi = Li Di Li
T, such thatLi Di Li

T is a relatively
robust representation;
(b) Compute the eigenvalues,λj, of Li Di Li

T to high relative accuracy
by thedqdsalgorithm;
(c) If there is a cluster of close eigenvalues, "choose"σi close to the
cluster, and go to step (a);
(d) Given the approximate eigenvalueλj of Li Di Li

T, compute the
corresponding eigenvector by forming a rank-revealing twisted
factorization.

5-318

5 Intel® Math Kernel Library Reference Manual

The desired accuracy of the output can be specified by the input parameter
abstol .

The routine?syevr callssstegr/dstegr when the full spectrum is
requested on machines which conform to the IEEE-754 floating point
standard.?syevr callssstebz/dstebz andsstein/dstein on
non-IEEE machines and when partial spectrum requests are made.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then only eigenvalues are computed.
If jobz ='V' , then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be'A' or 'V' or 'I' .
If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

For range ='V' or 'I' andiu - il < n- 1,
sstebz/dstebz andsstein/dstein are called.

n INTEGER. The order of the matrixA (n ≥ 0).

a, work REALfor ssyevr

DOUBLE PRECISIONfor dsyevr .
Arrays:
a(lda, *) is an array containing either upper or lower
triangular part of the symmetric matrixA, as specified
by uplo .
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-319

vl, vu REALfor ssyevr

DOUBLE PRECISIONfor dsyevr .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .

If range ='A' or 'I' , vl andvu are not referenced.

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.

If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor ssyevr

DOUBLE PRECISIONfor dsyevr .
The absolute error tolerance to which each
eigenvalue/eigenvector is required.
If jobz = 'V' , the eigenvalues and eigenvectors output
have residual norms bounded byabstol , and the dot
products between different eigenvectors are bounded by
abstol . If abstol < nε||T||1, thennε||T||1 will be used
in its place, whereε is the machine precision. The
eigenvalues are computed to an accuracy ofε||T||1
irrespective ofabstol . If high relative accuracy is
important, setabstol to ?lamch ('S').

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
ldz ≥ 1 if jobz ='N' ;
ldz ≥ max(1,n) if jobz ='V' .

lwork INTEGER. The dimension of the arraywork .
Constraint:lwork ≥ max(1, 26n). SeeApplication notes
for the suggested value oflwork .

iwork INTEGER.
Workspace array,DIMENSION (liwork).

liwork INTEGER. The dimension of the arrayiwork ,
lwork ≥ max(1, 10n).

5-320

5 Intel® Math Kernel Library Reference Manual

Output Parameters

a On exit, the lower triangle (ifuplo = 'L') or the upper
triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w, z REALfor ssyevr

DOUBLE PRECISIONfor dsyevr .
Arrays:
w(*), DIMENSIONat least max(1,n), contains the
selected eigenvalues in ascending order, stored inw(1)

to w(m) ;

z(ldz, *), the second dimension ofz must be at least
max(1,m).
If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixT
corresponding to the selected eigenvalues, with thei -th
column ofz holding the eigenvector associated with
w(i).
If jobz ='N' , thenz is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

isuppz INTEGER.
Array, DIMENSION at least 2* max(1,m).

The support of the eigenvectors inz , i.e., the indices
indicating the nonzero elements inz . Thei -th
eigenvector is nonzero only in elementsisuppz (2i -1)
throughisuppz (2i).
Implemented only forrange ='A' or 'I' and
iu - il = n- 1.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-321

iwork(1) On exit, if info = 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , an internal error has occurred.

Application Notes

For optimum performance uselwork ≥ (nb+6)* n, wherenb is the
maximum of the blocksize for?sytrd and?ormtr returned byilaenv .
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

Normal execution of?stegr may create NaNs and infinities and hence
may abort due to a floating point exception in environments which do not
handle NaNs and infinities in the IEEE standard default manner.

5-322

5 Intel® Math Kernel Library Reference Manual

?heevr
Computes selected eigenvalues and,
optionally, eigenvectors of a Hermitian
matrix using the Relatively Robust
Representations.

call cheevr (jobz , range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, rwork, lrwork,

iwork, liwork, info)

call zheevr (jobz , range, uplo, n, a, lda, vl, vu, il, iu, abstol,
m, w, z, ldz, isuppz, work, lwork, rwork, lrwork,

iwork, liwork, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a complex Hermitian matrixT. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Whenever possible,?heevr callscstegr/zstegr to compute the
eigenspectrum using Relatively Robust Representations.?stegr computes
eigenvalues by thedqdsalgorithm, while orthogonal eigenvectors are
computed from various “good''LDLT representations (also known as
Relatively Robust Representations). Gram-Schmidt orthogonalization is
avoided as far as possible. More specifically, the various steps of the
algorithm are as follows. For the i-th unreduced block ofT,

(a) ComputeT - σi = Li Di Li
T, such thatLi Di Li

T is a relatively
robust representation;
(b) Compute the eigenvalues,λj, of Li Di Li

T to high relative accuracy
by thedqdsalgorithm;
(c) If there is a cluster of close eigenvalues, "choose"σi close to the
cluster, and go to step (a);
(d) Given the approximate eigenvalueλj of Li Di Li

T, compute the
corresponding eigenvector by forming a rank-revealing twisted
factorization.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-323

The desired accuracy of the output can be specified by the input parameter
abstol .

The routine?heevr callscstegr/zstegr when the full spectrum is
requested on machines which conform to the IEEE-754 floating point
standard.?heevr callssstebz/dstebz andcstein/zstein on
non-IEEE machines and when partial spectrum requests are made.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be'A' or 'V' or 'I' .
If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

For range ='V' or 'I' , sstebz/dstebz and
cstein/zstein are called.

n INTEGER. The order of the matrixA (n ≥ 0).

a, work COMPLEXfor cheevr

DOUBLE COMPLEXfor zheevr .
Arrays:
a(lda, *) is an array containing either upper or lower
triangular part of the Hermitian matrixA, as specified by
uplo .
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

5-324

5 Intel® Math Kernel Library Reference Manual

vl, vu REALfor cheevr

DOUBLE PRECISIONfor zheevr .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .

If range ='A' or 'I' , vl andvu are not referenced.

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.

If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor cheevr

DOUBLE PRECISIONfor zheevr .
The absolute error tolerance to which each
eigenvalue/eigenvector is required.
If jobz = 'V' , the eigenvalues and eigenvectors output
have residual norms bounded byabstol , and the dot
products between different eigenvectors are bounded by
abstol . If abstol < nε||T||1, thennε||T||1 will be used
in its place, whereε is the machine precision. The
eigenvalues are computed to an accuracy ofε||T||1
irrespective ofabstol . If high relative accuracy is
important, setabstol to ?lamch ('S').

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
ldz ≥ 1 if jobz ='N' ;
ldz ≥ max(1,n) if jobz ='V' .

lwork INTEGER. The dimension of the arraywork .
Constraint:lwork ≥ max(1, 2n). SeeApplication notes
for the suggested value oflwork .

rwork REALfor cheevr

DOUBLE PRECISIONfor zheevr .
Workspace array,DIMENSION (lrwork).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-325

lrwork INTEGER. The dimension of the arrayrwork ;
lwork ≥ max(1, 24n). .

iwork INTEGER.
Workspace array,DIMENSION (liwork).

liwork INTEGER. The dimension of the arrayiwork ,
lwork ≥ max(1, 10n).

Output Parameters

a On exit, the lower triangle (ifuplo = 'L') or the upper
triangle (if uplo = 'U') of A, including the diagonal, is
overwritten.

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w REALfor cheevr

DOUBLE PRECISIONfor zheevr .
Array, DIMENSIONat least max(1,n), contains the
selected eigenvalues in ascending order, stored inw(1)

to w(m) .

z COMPLEXfor cheevr

DOUBLE COMPLEXfor zheevr .
Array z(ldz, *); the second dimension ofz must be at
least max(1,m).
If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixT
corresponding to the selected eigenvalues, with thei -th
column ofz holding the eigenvector associated with
w(i).
If jobz ='N' , thenz is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

isuppz INTEGER.
Array, DIMENSION at least 2* max(1,m).

5-326

5 Intel® Math Kernel Library Reference Manual

The support of the eigenvectors inz , i.e., the indices
indicating the nonzero elements inz . Thei -th
eigenvector is nonzero only in elementsisuppz (2i -1)
throughisuppz (2i).

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

rwork(1) On exit, if info = 0, thenrwork(1) returns the
required minimal size oflrwork .

iwork(1) On exit, if info = 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , an internal error has occurred.

Application Notes

For optimum performance uselwork ≥ (nb+1)* n, wherenb is the
maximum of the blocksize for?hetrd and?unmtr returned byilaenv .
If you are in doubt how much workspace to supply, use a generous value of
lwork for the first run. On exit, examinework (1) and use this value for
subsequent runs.

Normal execution of?stegr may create NaNs and infinities and hence
may abort due to a floating point exception in environments which do not
handle NaNs and infinities in the IEEE standard default manner.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-327

?spev
Computes all eigenvalues and,
optionally, eigenvectors of a real
symmetric matrix in packed storage.

call sspev (jobz , uplo, n, ap, w, z, ldz, work, info)

call dspev (jobz , uplo, n, ap, w, z, ldz, work, info)

Discussion

This routine computes all the eigenvalues and, optionally, eigenvectors of a
real symmetric matrixA in packed storage.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ap stores the packed upper triangular
part ofA.
If uplo = 'L' , ap stores the packed lower triangular
part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

ap,work REALfor sspev

DOUBLE PRECISIONfor dspev

Arrays:
ap(*) contains the packed upper or lower triangle of
symmetric matrix A, as specified byuplo . The
dimension ofap must be at least max(1,n* (n+1)/2).

work (*) is a workspace array,DIMENSIONat least
max(1, 3n).

5-328

5 Intel® Math Kernel Library Reference Manual

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
if jobz ='N' , thenldz ≥ 1;
if jobz ='V' , thenldz ≥ max(1,n) .

Output Parameters

w,z REALfor sspev

DOUBLE PRECISIONfor dspev

Arrays:
w(*) , DIMENSION at least max(1,n) .
If info = 0, w contains the eigenvalues of the matrixA
in ascending order.
z(ldz,*) . The second dimension ofz must be at least
max(1,n) .
If jobz ='V' , then if info = 0, z contains the
orthonormal eigenvectors of the matrixA, with thei -th
column ofz holding the eigenvector associated with
w(i).
If jobz ='N' , thenz is not referenced.

ap On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements
of the diagonal and the off-diagonal of the tridiagonal
matrix overwrite the corresponding elements of A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , then the algorithm failed to converge;i

indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-329

?hpev
Computes all eigenvalues and,
optionally, eigenvectors of a Hermitian
matrix in packed storage.

call chpev (jobz , uplo, n, ap, w, z, ldz, work, rwork, info)

call zhpev (jobz , uplo, n, ap, w, z, ldz, work, rwork, info)

Discussion

This routine computes all the eigenvalues and, optionally, eigenvectors of a
complex Hermitian matrixA in packed storage.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ap stores the packed upper triangular
part ofA.
If uplo = 'L' , ap stores the packed lower triangular
part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

ap,work COMPLEXfor chpev

DOUBLE COMPLEXfor zhpev .
Arrays:
ap(*) contains the packed upper or lower triangle of
Hermitian matrix A, as specified byuplo . The
dimension ofap must be at least max(1,n* (n+1)/2).

work (*) is a workspace array,DIMENSIONat least
max(1, 2n- 1).

5-330

5 Intel® Math Kernel Library Reference Manual

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
if jobz ='N' , thenldz ≥ 1;
if jobz ='V' , thenldz ≥ max(1,n) .

rwork REALfor chpev

DOUBLE PRECISIONfor zhpev .
Workspace array,DIMENSION at least max(1, 3n- 2).

Output Parameters

w REALfor chpev

DOUBLE PRECISIONfor zhpev .
Array, DIMENSION at least max(1,n).
If info = 0, w contains the eigenvalues of the matrixA
in ascending order.

z COMPLEXfor chpev

DOUBLE COMPLEXfor zhpev .
Array z(ldz,*) . The second dimension ofz must be at
least max(1,n) .
If jobz ='V' , then if info = 0, z contains the
orthonormal eigenvectors of the matrixA, with thei -th
column ofz holding the eigenvector associated with
w(i).
If jobz ='N' , thenz is not referenced.

ap On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements
of the diagonal and the off-diagonal of the tridiagonal
matrix overwrite the corresponding elements of A.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , then the algorithm failed to converge;i

indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-331

?spevd
Uses divide and conquer algorithm to
compute all eigenvalues and (optionally)
all eigenvectors of a real symmetric
matrix held in packed storage.

call sspevd (job , uplo , n,ap,w,z,ldz,work,lwork,iwork,liwork,info)

call dspevd (job , uplo , n,ap,w,z,ldz,work,lwork,iwork,liwork,info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a real symmetric matrixA (held in packed storage). In other
words, it can compute the spectral factorization ofA as: A = ZΛZT.
HereΛ is a diagonal matrix whose diagonal elements are the eigenvaluesλi,
andZ is the orthogonal matrix whose columns are the eigenvectorszi. Thus,

Azi = λizi for i = 1, 2,... , n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QRalgorithm.

Input Parameters

job CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ap stores the packed upper triangular
part ofA.
If uplo = 'L' , ap stores the packed lower triangular
part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

5-332

5 Intel® Math Kernel Library Reference Manual

ap,work REALfor sspevd

DOUBLE PRECISIONfor dspevd

Arrays:
ap(*) contains the packed upper or lower triangle of
symmetric matrix A, as specified byuplo . The
dimension ofap must be at least max(1,n* (n+1)/2)
work(*) is a workspace array,DIMENSIONat least
lwork .

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
if job ='N' , thenldz ≥ 1;
if job ='V' , thenldz ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork .
Constraints:
if n ≤ 1, thenlwork ≥ 1;
if job ='N' andn > 1, thenlwork ≥ 2n;
if job ='V' and n > 1, then

lwork ≥ 2n2+(5+2k)* n+1, wherek is the smallest
integer which satisfies 2k ≥ n.

iwork INTEGER.
Workspace array,DIMENSION at leastliwork .

liwork INTEGER. The dimension of the arrayiwork .
Constraints:
if n ≤ 1, thenliwork ≥ 1;
if job ='N' andn > 1, thenliwork ≥ 1;
if job ='V' and n > 1, thenliwork ≥ 5n+2.

Output Parameters

w,z REALfor sspevd

DOUBLE PRECISIONfor dspevd

Arrays:
w(*) , DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues of the matrixA in
ascending order. See alsoinfo .
z(ldz,*) . The second dimension ofz must be:
at least 1 ifjob ='N' ;

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-333

at least max(1,n) if job ='V' .
If job ='V' , then this array is overwritten by the
orthogonal matrixZ which contains the eigenvectors of
A. If job ='N' , thenz is not referenced.

ap On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements
of the diagonal and the off-diagonal of the tridiagonal
matrix overwrite the corresponding elements of A.

work(1) On exit, if lwork > 0, then work(1) returns the
required minimal size oflwork .

iwork(1) On exit, if liwork > 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = i , then the algorithm failed to converge;i

indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrixT + E
such that||E||2 = O(ε) ||T||2, whereε is the machine precision.

The complex analogue of this routine is?hpevd .

See also?syevdfor matrices held in full storage, and?sbevdfor banded
matrices.

5-334

5 Intel® Math Kernel Library Reference Manual

?hpevd
Uses divide and conquer algorithm to
compute all eigenvalues and (optionally)
all eigenvectors of a complex Hermitian
matrix held in packed storage.

call chpevd (job , uplo , n, ap, w, z, ldz, work, lwork, rwork,
lrwork, iwork, liwork, info)

call zhpevd (job , uplo , n, ap, w, z, ldz, work, lwork, rwork,
lrwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a complex Hermitian matrixA (held in packed storage). In
other words, it can compute the spectral factorization ofA as: A = ZΛZH.
HereΛ is a real diagonal matrix whose diagonal elements are the
eigenvaluesλi, andZ is the (complex) unitary matrix whose columns are the
eigenvectorszi. Thus,

Azi = λizi for i = 1, 2,... , n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QRalgorithm.

Input Parameters

job CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be'U' or 'L' .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-335

If uplo = 'U' , ap stores the packed upper triangular
part ofA.
If uplo = 'L' , ap stores the packed lower triangular
part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

ap,work COMPLEXfor chpevd

DOUBLE COMPLEXfor zhpevd

Arrays:
ap(*) contains the packed upper or lower triangle of
Hermitian matrix A, as specified byuplo . The
dimension ofap must be at least max(1,n* (n+1)/2)
work(*) is a workspace array,DIMENSIONat least
lwork .

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
if job ='N' , thenldz ≥ 1;
if job ='V' , thenldz ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork .
Constraints:
if n ≤ 1, thenlwork ≥ 1;
if job ='N' andn > 1, thenlwork ≥ n;
if job ='V' and n > 1, thenlwork ≥ 2n

rwork REALfor chpevd

DOUBLE PRECISIONfor zhpevd

Workspace array,DIMENSIONat leastlrwork .

lrwork INTEGER. The dimension of the arrayrwork .
Constraints:
if n ≤ 1, thenlrwork ≥ 1;
if job ='N' andn > 1, thenlrwork ≥ n;
if job ='V' and n > 1, then

lrwork ≥ 3n2+(4+2k)* n+1, wherek is the smallest
integer which satisfies 2k ≥ n.

iwork INTEGER.
Workspace array,DIMENSION at leastliwork .

5-336

5 Intel® Math Kernel Library Reference Manual

liwork INTEGER. The dimension of the arrayiwork .
Constraints:
if n ≤ 1, thenliwork ≥ 1;
if job ='N' andn > 1, thenliwork ≥ 1;
if job ='V' and n > 1, thenliwork ≥ 5n+2.

Output Parameters

w REALfor chpevd

DOUBLE PRECISIONfor zhpevd

Array, DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues of the matrixA in
ascending order. See alsoinfo .

z COMPLEXfor chpevd

DOUBLE COMPLEXfor zhpevd

Array, DIMENSION (ldz,*) . The second dimension
of z must be:
at least 1 ifjob ='N' ;
at least max(1,n) if job ='V' .
If job ='V' , then this array is overwritten by the
unitary matrixZ which contains the eigenvectors ofA. If
job ='N' , thenz is not referenced.

ap On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements
of the diagonal and the off-diagonal of the tridiagonal
matrix overwrite the corresponding elements of A.

work(1) On exit, if lwork > 0, then the real part ofwork(1)

returns the required minimal size oflwork .

rwork(1) On exit, if lrwork > 0, thenrwork(1) returns the
required minimal size oflrwork .

iwork(1) On exit, if liwork > 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = i , then the algorithm failed to converge;i

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-337

indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrixT + E
such that||E||2 = O(ε) ||T||2, whereε is the machine precision.

The real analogue of this routine is?spevd .

See also?heevdfor matrices held in full storage, and?hbevdfor banded
matrices.

5-338

5 Intel® Math Kernel Library Reference Manual

?spevx
Computes selected eigenvalues and,
optionally, eigenvectors of a real
symmetric matrix in packed storage.

call sspevx (jobz , range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, iwork, ifail, info)

call dspevx (jobz , range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric matrixA in packed storage. Eigenvalues and eigenvectors
can be selected by specifying either a range of values or a range of indices
for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be'A' or 'V' or 'I' .
If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ap stores the packed upper triangular
part ofA.
If uplo = 'L' , ap stores the packed lower triangular
part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-339

ap, work REALfor sspevx

DOUBLE PRECISIONfor dspevx

Arrays:
ap(*) contains the packed upper or lower triangle of
the symmetric matrixA, as specified byuplo . The
dimension ofap must be at least max(1,n* (n+1)/2).

work(*) is a workspace array,DIMENSIONat least
max(1, 8n).

vl, vu REALfor sspevx

DOUBLE PRECISIONfor dspevx

If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .
If range ='A' or 'I' , vl andvu are not referenced.

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.
If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor sspevx

DOUBLE PRECISIONfor dspevx

The absolute error tolerance to which each eigenvalue is
required. SeeApplication notesfor details on error
tolerance.

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
if jobz ='N' , thenldz ≥ 1;
if jobz ='V' , thenldz ≥ max(1,n) .

iwork INTEGER.
Workspace array,DIMENSION at least max(1, 5n).

5-340

5 Intel® Math Kernel Library Reference Manual

Output Parameters

ap On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements
of the diagonal and the off-diagonal of the tridiagonal
matrix overwrite the corresponding elements ofA.

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w,z REALfor sspevx

DOUBLE PRECISIONfor dspevx

Arrays:
w(*) , DIMENSION at least max(1,n) .
If info = 0, contains the selected eigenvalues of the
matrix A in ascending order.
z(ldz,*) . The second dimension ofz must be at least
max(1,m) .
If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixA
corresponding to the selected eigenvalues, with thei -th
column ofz holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that
column ofz contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in ifail .
If jobz ='N' , thenz is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

ifail INTEGER. Array, DIMENSIONat least max(1,n).
If jobz ='V' , then if info = 0, the firstmelements of
ifail are zero; ifinfo > 0, theifail contains the
indices the eigenvectors that failed to converge.
If jobz ='N' , thenifail is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-341

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , theni eigenvectors failed to converge;
their indices are stored in the arrayifail .

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , whereε is the machine precision. Ifabstol

is less than or equal to zero, thenε* ||T||1 will be used in its place, whereT
is the tridiagonal matrix obtained by reducingA to tridiagonal form.
Eigenvalues will be computed most accurately whenabstol is set to twice
the underflow threshold 2* ?lamch ('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2* ?lamch ('S').

5-342

5 Intel® Math Kernel Library Reference Manual

?hpevx
Computes selected eigenvalues and,
optionally, eigenvectors of a Hermitian
matrix in packed storage.

call chpevx (jobz , range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, rwork, iwork, ifail, info)

call zhpevx (jobz , range, uplo, n, ap, vl, vu, il, iu, abstol,
m, w, z, ldz, work, rwork, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a complex Hermitian matrixA in packed storage. Eigenvalues and
eigenvectors can be selected by specifying either a range of values or a
range of indices for the desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be'A' or 'V' or 'I' .
If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ap stores the packed upper triangular
part ofA.
If uplo = 'L' , ap stores the packed lower triangular
part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-343

ap, work COMPLEXfor chpevx

DOUBLE COMPLEXfor zhpevx

Arrays:
ap(*) contains the packed upper or lower triangle of
the Hermitian matrixA, as specified byuplo . The
dimension ofap must be at least max(1,n* (n+1)/2).

work(*) is a workspace array,DIMENSIONat least
max(1, 2n).

vl, vu REALfor chpevx

DOUBLE PRECISIONfor zhpevx

If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .
If range ='A' or 'I' , vl andvu are not referenced.

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.
If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor chpevx

DOUBLE PRECISIONfor zhpevx

The absolute error tolerance to which each eigenvalue is
required. SeeApplication notesfor details on error
tolerance.

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
if jobz ='N' , thenldz ≥ 1;
if jobz ='V' , thenldz ≥ max(1,n) .

rwork REALfor chpevx

DOUBLE PRECISIONfor zhpevx

Workspace array,DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1, 5n).

5-344

5 Intel® Math Kernel Library Reference Manual

Output Parameters

ap On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. The elements
of the diagonal and the off-diagonal of the tridiagonal
matrix overwrite the corresponding elements ofA.

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w REALfor chpevx

DOUBLE PRECISIONfor zhpevx

Array, DIMENSION at least max(1,n). If info = 0,
contains the selected eigenvalues of the matrixA in
ascending order.

z COMPLEXfor chpevx

DOUBLE COMPLEXfor zhpevx

Array z(ldz,*) . The second dimension ofz must be
at least max(1,m) .
If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixA
corresponding to the selected eigenvalues, with thei -th
column ofz holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that
column ofz contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in ifail .
If jobz ='N' , thenz is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

ifail INTEGER. Array, DIMENSIONat least max(1,n).
If jobz ='V' , then if info = 0, the firstmelements of
ifail are zero; ifinfo > 0, theifail contains the
indices the eigenvectors that failed to converge.
If jobz ='N' , thenifail is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-345

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , theni eigenvectors failed to converge;
their indices are stored in the arrayifail .

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , whereε is the machine precision. Ifabstol

is less than or equal to zero, thenε* ||T||1 will be used in its place, whereT
is the tridiagonal matrix obtained by reducingA to tridiagonal form.
Eigenvalues will be computed most accurately whenabstol is set to twice
the underflow threshold 2* ?lamch ('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2* ?lamch ('S').

5-346

5 Intel® Math Kernel Library Reference Manual

?sbev
Computes all eigenvalues and,
optionally, eigenvectors of a real
symmetric band matrix.

call ssbev (jobz , uplo, n, kd, ab, ldab, w, z, ldz, work, info)

call dsbev (jobz , uplo, n, kd, ab, ldab, w, z, ldz, work, info)

Discussion

This routine computes all eigenvalues and, optionally, eigenvectors of a real
symmetric band matrixA.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then only eigenvalues are computed.
If jobz ='V' , then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ab stores the upper triangular part ofA.
If uplo = 'L' , ab stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals inA
(kd ≥ 0).

ab, work REALfor ssbev

DOUBLE PRECISIONfor dsbev .
Arrays:
ab (ldab, *) is an array containing either upper or
lower triangular part of the symmetric matrixA (as
specified byuplo) in band storage format.
The second dimension ofab must be at least max(1,n).

work (*) is a workspace array.
The dimension ofwork must be at least max(1, 3n-2).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-347

ldab INTEGER. The leading dimension ofab; must be at
leastkd +1.

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
if jobz ='N' , thenldz ≥ 1;
if jobz ='V' , thenldz ≥ max(1,n) .

Output Parameters

w,z REALfor ssbev

DOUBLE PRECISIONfor dsbev

Arrays:
w(*) , DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues of the matrixA in
ascending order.

z(ldz,*) . The second dimension ofz must be at least
max(1,n).
If jobz ='V' , then if info = 0, z contains the
orthonormal eigenvectors of the matrixA, with thei -th
column ofz holding the eigenvector associated with
w(i).
If jobz ='N' , thenz is not referenced.

ab On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. Ifuplo = 'U' ,
the first superdiagonal and the diagonal of the
tridiagonal matrixT are returned in rowskd andkd+1 of
ab , and ifuplo = 'L' , the diagonal and first
subdiagonal ofT are returned in the first two rows ofab.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , then the algorithm failed to converge;
i indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

5-348

5 Intel® Math Kernel Library Reference Manual

?hbev
Computes all eigenvalues and,
optionally, eigenvectors of a Hermitian
band matrix.

call chbev(jobz , uplo, n, kd, ab, ldab, w, z, ldz, work, rwork,info)

call zhbev(jobz , uplo, n, kd, ab, ldab, w, z, ldz, work, rwork,info)

Discussion

This routine computes all eigenvalues and, optionally, eigenvectors of a
complex Hermitian band matrixA.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then only eigenvalues are computed.
If jobz ='V' , then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ab stores the upper triangular part ofA.
If uplo = 'L' , ab stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals inA
(kd ≥ 0).

ab, work COMPLEXfor chbev

DOUBLE COMPLEXfor zhbev .
Arrays:
ab (ldab, *) is an array containing either upper or
lower triangular part of the Hermitian matrixA (as
specified byuplo) in band storage format.
The second dimension ofab must be at least max(1,n).

work (*) is a workspace array.
The dimension ofwork must be at least max(1,n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-349

ldab INTEGER. The leading dimension ofab; must be at
leastkd +1.

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
if jobz ='N' , thenldz ≥ 1;
if jobz ='V' , thenldz ≥ max(1,n) .

rwork REALfor chbev

DOUBLE PRECISIONfor zhbev

Workspace array,DIMENSION at least max(1, 3n-2).

Output Parameters

w REALfor chbev

DOUBLE PRECISIONfor zhbev

Array, DIMENSION at least max(1,n). If info = 0,
contains the eigenvalues in ascending order.

z COMPLEXfor chbev

DOUBLE COMPLEXfor zhbev .
Array z(ldz,*) . The second dimension ofz must be at
least max(1,n). If jobz ='V' , then if info = 0, z

contains the orthonormal eigenvectors of the matrixA,
with the i -th column ofz holding the eigenvector
associated withw(i). If jobz ='N' , thenz is not
referenced.

ab On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. Ifuplo = 'U' ,
the first superdiagonal and the diagonal of the
tridiagonal matrixT are returned in rowskd andkd+1 of
ab , and ifuplo = 'L' , the diagonal and first
subdiagonal ofT are returned in the first two rows ofab.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , then the algorithm failed to converge;
i indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.

5-350

5 Intel® Math Kernel Library Reference Manual

?sbevd
Computes all eigenvalues and
(optionally) all eigenvectors of a real
symmetric band matrix using divide and
conquer algorithm.

call ssbevd (job , uplo , n, kd, ab, ldab, w, z, ldz, work, lwork,
iwork, liwork, info)

call dsbevd (job , uplo , n, kd, ab, ldab, w, z, ldz, work, lwork,
iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a real symmetric band matrixA . In other words, it can
compute the spectral factorization ofA as:

A = ZΛZT

HereΛ is a diagonal matrix whose diagonal elements are the eigenvaluesλi,
andZ is the orthogonal matrix whose columns are the eigenvectorszi.
Thus,

Azi = λizi for i = 1, 2,... , n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QRalgorithm.

Input Parameters

job CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ab stores the upper triangular part ofA.
If uplo = 'L' , ab stores the lower triangular part ofA.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-351

n INTEGER. The order of the matrixA (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals inA
(kd ≥ 0).

ab, work REALfor ssbevd

DOUBLE PRECISIONfor dsbevd .
Arrays:
ab (ldab, *) is an array containing either upper or
lower triangular part of the symmetric matrixA (as
specified byuplo) in band storage format.
The second dimension ofab must be at least max(1,n).

work (*) is a workspace array.
The dimension ofwork must be at leastlwork .

ldab INTEGER. The leading dimension ofab; must be at
leastkd +1.

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
if job ='N' , thenldz ≥ 1;
if job ='V' , thenldz ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork .
Constraints:
if n ≤ 1, thenlwork ≥ 1;
if job ='N' andn > 1, thenlwork ≥ 2n;
if job ='V' and n > 1, then

lwork ≥ 3n2+(4+2k)* n+1, wherek is the smallest
integer which satisfies 2k ≥ n.

iwork INTEGER.
Workspace array,DIMENSION at leastliwork .

liwork INTEGER. The dimension of the arrayiwork .
Constraints:
if n ≤ 1, thenliwork ≥ 1;
if job ='N' andn > 1, thenliwork ≥ 1;
if job ='V' and n > 1, thenliwork ≥ 5n+2.

5-352

5 Intel® Math Kernel Library Reference Manual

Output Parameters

w,z REALfor ssbevd

DOUBLE PRECISIONfor dsbevd

Arrays:
w(*) , DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues of the matrixA in
ascending order. See alsoinfo .
z(ldz,*) . The second dimension ofz must be:
at least 1 ifjob ='N' ;
at least max(1,n) if job ='V' .
If job ='V' , then this array is overwritten by the
orthogonal matrixZ which contains the eigenvectors of
A. The i th column ofZ contains the eigenvector which
corresponds to the eigenvaluew(i) .
If job ='N' , thenz is not referenced.

ab On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form.

work(1) On exit, if lwork > 0, then work(1) returns the
required minimal size oflwork .

iwork(1) On exit, if liwork > 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = i , then the algorithm failed to converge;i

indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrixT + E
such that||E||2 = O(ε) ||T||2, whereε is the machine precision.

The complex analogue of this routine is?hbevd .

See also?syevdfor matrices held in full storage, and?spevdfor matrices
held in packed storage.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-353

?hbevd
Computes all eigenvalues and
(optionally) all eigenvectors of a
complex Hermitian band matrix using
divide and conquer algorithm.

call chbevd (job , uplo , n, kd, ab, ldab, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

call zhbevd (job , uplo , n, kd, ab, ldab, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a complex Hermitian band matrixA . In other words, it can
compute the spectral factorization ofA as: A = ZΛZH.
HereΛ is a real diagonal matrix whose diagonal elements are the
eigenvaluesλi, andZ is the (complex) unitary matrix whose columns are the
eigenvectorszi. Thus,

Azi = λizi for i = 1, 2,... , n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QRalgorithm.

Input Parameters

job CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ab stores the upper triangular part ofA.
If uplo = 'L' , ab stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

5-354

5 Intel® Math Kernel Library Reference Manual

kd INTEGER. The number of super- or sub-diagonals inA
(kd ≥ 0).

ab, work COMPLEXfor chbevd

DOUBLE COMPLEXfor zhbevd .
Arrays:
ab (ldab, *) is an array containing either upper or
lower triangular part of the Hermitian matrixA (as
specified byuplo) in band storage format.
The second dimension ofab must be at least max(1,n).

work (*) is a workspace array.
The dimension ofwork must be at leastlwork .

ldab INTEGER. The leading dimension ofab; must be at
leastkd +1.

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
if job ='N' , thenldz ≥ 1;
if job ='V' , thenldz ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork .
Constraints:
if n ≤ 1, thenlwork ≥ 1;
if job ='N' andn > 1, thenlwork ≥ n;
if job ='V' and n > 1, then lwork ≥ 2n2

rwork REALfor chbevd

DOUBLE PRECISIONfor zhbevd

Workspace array,DIMENSIONat leastlrwork .

lrwork INTEGER. The dimension of the arrayrwork .
Constraints:
if n ≤ 1, thenlrwork ≥ 1;
if job ='N' andn > 1, thenlrwork ≥ n;
if job ='V' and n > 1, then

lrwork ≥ 3n2+(4+2k)* n+1, wherek is the smallest
integer which satisfies 2k ≥ n.

iwork INTEGER.
Workspace array,DIMENSION at leastliwork .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-355

liwork INTEGER. The dimension of the arrayiwork .
Constraints:
if job ='N' or n ≤ 1, thenliwork ≥ 1;
if job ='V' and n > 1, thenliwork ≥ 5n+2.

Output Parameters

w REALfor chbevd

DOUBLE PRECISIONfor zhbevd

Array, DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues of the matrixA in
ascending order. See alsoinfo .

z COMPLEXfor chbevd

DOUBLE COMPLEXfor zhbevd

Array, DIMENSION (ldz,*) . The second dimension
of z must be:
at least 1 ifjob ='N' ;
at least max(1,n) if job ='V' .
If job ='V' , then this array is overwritten by the
unitary matrixZ which contains the eigenvectors ofA.
The i th column ofZ contains the eigenvector which
corresponds to the eigenvaluew(i) .
If job ='N' , thenz is not referenced.

ab On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form.

work(1) On exit, if lwork > 0, then the real part ofwork(1)

returns the required minimal size oflwork .

rwork(1) On exit, if lrwork > 0, thenrwork(1) returns the
required minimal size oflrwork .

iwork(1) On exit, if liwork > 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = i , then the algorithm failed to converge;i

5-356

5 Intel® Math Kernel Library Reference Manual

indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrixT + E
such that||E||2 = O(ε) ||T||2, whereε is the machine precision.

The real analogue of this routine is?sbevd .

See also?heevdfor matrices held in full storage, and?hpevdfor matrices
held in packed storage.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-357

?sbevx
Computes selected eigenvalues and,
optionally, eigenvectors of a real
symmetric band matrix.

call ssbevx (jobz , range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, iwork, ifail, info)

call dsbevx (jobz , range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric band matrixA. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be'A' or 'V' or 'I' .
If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ab stores the upper triangular part ofA.
If uplo = 'L' , ab stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals inA
(kd ≥ 0).

5-358

5 Intel® Math Kernel Library Reference Manual

ab, work REALfor ssbevx

DOUBLE PRECISIONfor dsbevx .
Arrays:
ab (ldab, *) is an array containing either upper or
lower triangular part of the symmetric matrixA (as
specified byuplo) in band storage format.
The second dimension ofab must be at least max(1,n).

work (*) is a workspace array.
The dimension ofwork must be at least max(1, 7n).

ldab INTEGER. The leading dimension ofab; must be at
leastkd +1.

vl, vu REALfor ssbevx

DOUBLE PRECISIONfor dsbevx .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .
If range ='A' or 'I' , vl andvu are not referenced.

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.
If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor chpevx

DOUBLE PRECISIONfor zhpevx

The absolute error tolerance to which each eigenvalue is
required. SeeApplication notesfor details on error
tolerance.

ldq, ldz INTEGER. The leading dimensions of the output arraysq

andz , respectively. Constraints:
ldq ≥ 1, ldz ≥ 1;
If jobz ='V' , thenldq ≥ max(1,n) andldz ≥ max(1,
n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1, 5n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-359

Output Parameters

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w,z REALfor ssbevx

DOUBLE PRECISIONfor dsbevx

Arrays:
w(*) , DIMENSION at least max(1,n) .
The firstmelements ofw contain the selected
eigenvalues of the matrixA in ascending order.

z(ldz,*) . The second dimension ofz must be at least
max(1,m).
If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixA
corresponding to the selected eigenvalues, with thei -th
column ofz holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that
column ofz contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in ifail .
If jobz ='N' , thenz is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

ab On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. Ifuplo = 'U' ,
the first superdiagonal and the diagonal of the
tridiagonal matrixT are returned in rowskd andkd+1 of
ab , and ifuplo = 'L' , the diagonal and first
subdiagonal ofT are returned in the first two rows ofab.

ifail INTEGER.
Array, DIMENSIONat least max(1,n).

If jobz ='V' , then if info = 0, the firstmelements of

5-360

5 Intel® Math Kernel Library Reference Manual

ifail are zero; ifinfo > 0, theifail contains the
indices the eigenvectors that failed to converge.
If jobz ='N' , thenifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , theni eigenvectors failed to converge;
their indices are stored in the arrayifail .

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , whereε is the machine precision. Ifabstol

is less than or equal to zero, thenε* ||T||1 will be used in its place, whereT
is the tridiagonal matrix obtained by reducingA to tridiagonal form.
Eigenvalues will be computed most accurately whenabstol is set to twice
the underflow threshold 2* ?lamch ('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2* ?lamch ('S').

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-361

?hbevx
Computes selected eigenvalues and,
optionally, eigenvectors of a Hermitian
band matrix.

call chbevx (jobz , range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

call zhbevx (jobz , range, uplo, n, kd, ab, ldab, q, ldq, vl, vu, il,
iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a complex Hermitian band matrixA. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be'A' or 'V' or 'I' .
If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , ab stores the upper triangular part ofA.
If uplo = 'L' , ab stores the lower triangular part ofA.

n INTEGER. The order of the matrixA (n ≥ 0).

kd INTEGER. The number of super- or sub-diagonals inA
(kd ≥ 0).

5-362

5 Intel® Math Kernel Library Reference Manual

ab, work COMPLEXfor chbevx

DOUBLE COMPLEXfor zhbevx .
Arrays:
ab (ldab, *) is an array containing either upper or
lower triangular part of the Hermitian matrixA (as
specified byuplo) in band storage format.
The second dimension ofab must be at least max(1,n).

work (*) is a workspace array.
The dimension ofwork must be at least max(1,n).

ldab INTEGER. The leading dimension ofab; must be at
leastkd +1.

vl, vu REALfor chbevx

DOUBLE PRECISIONfor zhbevx .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .
If range ='A' or 'I' , vl andvu are not referenced.

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.
If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor chbevx

DOUBLE PRECISIONfor zhbevx .
The absolute error tolerance to which each eigenvalue is
required. SeeApplication notesfor details on error
tolerance.

ldq, ldz INTEGER. The leading dimensions of the output arraysq

andz , respectively. Constraints:
ldq ≥ 1, ldz ≥ 1;
If jobz ='V' , thenldq ≥ max(1,n) andldz ≥ max(1,
n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-363

rwork REALfor chbevx

DOUBLE PRECISIONfor zhbevx

Workspace array,DIMENSIONat least max(1, 7n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1, 5n).

Output Parameters

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w REALfor chbevx

DOUBLE PRECISIONfor zhbevx

Array, DIMENSION at least max(1,n) .
The firstmelements contain the selected eigenvalues of
the matrixA in ascending order.

z COMPLEXfor chbevx

DOUBLE COMPLEXfor zhbevx .
Array z(ldz,*) . The second dimension ofz must be
at least max(1,m).
If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixA
corresponding to the selected eigenvalues, with thei -th
column ofz holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that
column ofz contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in ifail .
If jobz ='N' , thenz is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

ab On exit, this array is overwritten by the values generated
during the reduction to tridiagonal form. Ifuplo = 'U' ,
the first superdiagonal and the diagonal of the

5-364

5 Intel® Math Kernel Library Reference Manual

tridiagonal matrixT are returned in rowskd andkd+1 of
ab , and ifuplo = 'L' , the diagonal and first
subdiagonal ofT are returned in the first two rows ofab.

ifail INTEGER.
Array, DIMENSIONat least max(1,n).

If jobz ='V' , then if info = 0, the firstmelements of
ifail are zero; ifinfo > 0, theifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N' , thenifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , theni eigenvectors failed to converge;
their indices are stored in the arrayifail .

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , whereε is the machine precision. Ifabstol

is less than or equal to zero, thenε* ||T||1 will be used in its place, whereT
is the tridiagonal matrix obtained by reducingA to tridiagonal form.
Eigenvalues will be computed most accurately whenabstol is set to twice
the underflow threshold 2* ?lamch ('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2* ?lamch ('S').

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-365

?stev
Computes all eigenvalues and,
optionally, eigenvectors of a real
symmetric tridiagonal matrix.

call sstev (jobz , n, d, e, z, ldz, work, info)

call dstev (jobz , n, d, e, z, ldz, work, info)

Discussion

This routine computes all eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrixA.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then only eigenvalues are computed.
If jobz ='V' , then eigenvalues and eigenvectors are
computed.

n INTEGER. The order of the matrixA (n ≥ 0).

d, e, work REALfor sstev

DOUBLE PRECISIONfor dstev .
Arrays:
d(*) contains then diagonal elements of the
tridiagonal matrixA.
The dimension ofd must be at least max(1,n).

e(*) contains then-1 subdiagonal elements of the
tridiagonal matrixA.
The dimension ofe must be at least max(1,n). Thenth
element of this array is used as workspace.

work (*) is a workspace array.
The dimension ofwork must be at least max(1, 2n-2).
If jobz ='N' , work is not referenced.

5-366

5 Intel® Math Kernel Library Reference Manual

ldz INTEGER. The leading dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' thenldz ≥ max(1,n).

Output Parameters

d On exit, if info = 0, contains the eigenvalues of the
matrix A in ascending order.

z REALfor sstev

DOUBLE PRECISIONfor dstev

Array, DIMENSION(ldz , *) .
The second dimension ofz must be at least max(1,n).
If jobz ='V' , then if info = 0, z contains the
orthonormal eigenvectors of the matrixA, with thei -th
column ofz holding the eigenvector associated with the
eigenvalue returned ind(i).
If job ='N' , thenz is not referenced.

e On exit, this array is overwritten with intermediate
results.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , then the algorithm failed to converge;
i elements ofe did not converge to zero.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-367

?stevd
Computes all eigenvalues and
(optionally) all eigenvectors of a real
symmetric tridiagonal matrix using
divide and conquer algorithm.

call sstevd (job , n, d, e, z, ldz, work, lwork, iwork, liwork, info)

call dstevd (job , n, d, e, z, ldz, work, lwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally all the
eigenvectors, of a real symmetric tridiagonal matrixT. In other words, the
routine can compute the spectral factorization ofT as: T = ZΛZT.
HereΛ is a diagonal matrix whose diagonal elements are the eigenvaluesλi,
andZ is the orthogonal matrix whose columns are the eigenvectorszi. Thus,

Tzi = λizi for i = 1, 2,... , n.

If the eigenvectors are requested, then this routine uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only
eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the
QL or QRalgorithm.

There is no complex analogue of this routine.

Input Parameters

job CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

n INTEGER. The order of the matrixT (n ≥ 0).

d, e, work REALfor sstevd

DOUBLE PRECISIONfor dstevd .
Arrays:

5-368

5 Intel® Math Kernel Library Reference Manual

d(*) contains then diagonal elements of the
tridiagonal matrixT.
The dimension ofd must be at least max(1,n).

e(*) contains then-1 off-diagonal elements ofT.
The dimension ofe must be at least max(1,n). Thenth
element of this array is used as workspace.

work (*) is a workspace array.
The dimension ofwork must be at leastlwork .

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
ldz ≥ 1 if job ='N' ;
ldz ≥ max(1,n) if job ='V' .

lwork INTEGER. The dimension of the arraywork .
Constraints:
if job ='N' or n ≤ 1, thenlwork ≥ 1;
if job ='V' andn > 1, then

lwork ≥ 2n2+(3+2k)* n+1, wherek is the smallest
integer which satisfies 2k ≥ n.

iwork INTEGER.
Workspace array,DIMENSIONat leastliwork .

liwork INTEGER. The dimension of the arrayiwork .
Constraints:
if job ='N' or n ≤ 1, thenliwork ≥ 1;
if job ='V' andn > 1, thenliwork ≥ 5n+2.

Output Parameters

d On exit, if info = 0, contains the eigenvalues of the
matrix T in ascending order.
See alsoinfo .

z REALfor sstevd

DOUBLE PRECISIONfor dstevd

Array, DIMENSION(ldz , *) .
The second dimension ofz must be:
at least 1 ifjob ='N' ;
at least max(1,n) if job ='V' .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-369

If job ='V' , then this array is overwritten by the
orthogonal matrixZ which contains the eigenvectors
of T. If job ='N' , thenz is not referenced.

e On exit, this array is overwritten with intermediate
results.

work(1) On exit, if lwork > 0, thenwork(1) returns the
required minimal size oflwork .

iwork(1) On exit, if liwork > 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = i , then the algorithm failed to converge;i

indicates the number of elements of an intermediate
tridiagonal form which did not converge to zero.
If info = -i , thei th parameter had an illegal value.

Application Notes

The computed eigenvalues and eigenvectors are exact for a matrixT + E
such that||E||2 = O(ε) ||T||2, whereε is the machine precision.

If λi is an exact eigenvalue, andµi is the corresponding computed value,
then

 |µi - λi| ≤ c(n)ε ||T||2
wherec(n) is a modestly increasing function ofn.

If zi is the corresponding exact eigenvector, andwi is the corresponding
computed vector, then the angleθ(zi, wi) between them is bounded as
follows:
 θ(zi, wi) ≤ c(n)ε ||T||2 / mini≠j|λi - λj|.
Thus the accuracy of a computed eigenvector depends on the gap between
its eigenvalue and all the other eigenvalues.

5-370

5 Intel® Math Kernel Library Reference Manual

?stevx
Computes selected eigenvalues and
eigenvectors of a real symmetric
tridiagonal matrix.

call sstevx (jobz , range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info)

call dstevx (jobz , range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, work, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric tridiagonal matrixA. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If job ='N' , then only eigenvalues are computed.
If job ='V' , then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be'A' or 'V' or 'I' .
If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

n INTEGER. The order of the matrixA (n ≥ 0).

d, e, work REALfor sstevx

DOUBLE PRECISIONfor dstevx .
Arrays:

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-371

d(*) contains then diagonal elements of the
tridiagonal matrixA.
The dimension ofd must be at least max(1,n).

e(*) contains then-1 subdiagonal elements ofA.
The dimension ofe must be at least max(1,n). Thenth
element of this array is used as workspace.

work (*) is a workspace array.
The dimension ofwork must be at least max(1, 5n).

vl, vu REALfor sstevx

DOUBLE PRECISIONfor dstevx .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .
If range ='A' or 'I' , vl andvu are not referenced.

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.
If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor sstevx

DOUBLE PRECISIONfor dstevx .
The absolute error tolerance to which each eigenvalue is
required. SeeApplication notesfor details on error
tolerance.

ldz INTEGER. The leading dimensions of the output arrayz ;
ldz ≥ 1. If jobz ='V' , thenldz ≥ max(1,n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1, 5n).

5-372

5 Intel® Math Kernel Library Reference Manual

Output Parameters

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w, z REALfor sstevx

DOUBLE PRECISIONfor dstevx .
Arrays:
w(*) , DIMENSION at least max(1,n) .
The firstmelements ofw contain the selected
eigenvalues of the matrixA in ascending order.

z(ldz,*) . The second dimension ofz must be at least
max(1,m).
If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixA
corresponding to the selected eigenvalues, with thei -th
column ofz holding the eigenvector associated with
w(i). If an eigenvector fails to converge, then that
column ofz contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in ifail .
If jobz ='N' , thenz is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

d, e On exit, these arrays may be multiplied by a constant
factor chosen to avoid overflow or underflow in
computing the eigenvalues.

ifail INTEGER.
Array, DIMENSIONat least max(1,n).

If jobz ='V' , then if info = 0, the firstmelements of
ifail are zero; ifinfo > 0, theifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N' , thenifail is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-373

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , theni eigenvectors failed to converge;
their indices are stored in the arrayifail .

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , whereε is the machine precision. Ifabstol

is less than or equal to zero, thenε* ||A||1 will be used in its place.
Eigenvalues will be computed most accurately whenabstol is set to twice
the underflow threshold 2* ?lamch ('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2* ?lamch ('S').

5-374

5 Intel® Math Kernel Library Reference Manual

?stevr
Computes selected eigenvalues and,
optionally, eigenvectors of a real
symmetric tridiagonal matrix using the
Relatively Robust Representations.

call sstevr (jobz , range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

call dstevr (jobz , range, n, d, e, vl, vu, il, iu, abstol, m, w, z,
ldz, isuppz, work, lwork, iwork, liwork, info)

Discussion

This routine computes selected eigenvalues and, optionally, eigenvectors of
a real symmetric tridiagonal matrixT. Eigenvalues and eigenvectors can be
selected by specifying either a range of values or a range of indices for the
desired eigenvalues.

Whenever possible,?stevr callssstegr/dstegr to compute the
eigenspectrum using Relatively Robust Representations.?stegr computes
eigenvalues by thedqdsalgorithm, while orthogonal eigenvectors are
computed from various “good''LDLT representations (also known as
Relatively Robust Representations). Gram-Schmidt orthogonalization is
avoided as far as possible. More specifically, the various steps of the
algorithm are as follows. For the i-th unreduced block ofT,

(a) ComputeT - σi = Li Di Li
T, such thatLi Di Li

T is a relatively
robust representation;
(b) Compute the eigenvalues,λj, of Li Di Li

T to high relative accuracy
by thedqdsalgorithm;
(c) If there is a cluster of close eigenvalues, "choose"σi close to the
cluster, and go to step (a);
(d) Given the approximate eigenvalueλj of Li Di Li

T, compute the
corresponding eigenvector by forming a rank-revealing twisted
factorization.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-375

The desired accuracy of the output can be specified by the input parameter
abstol .

The routine?stevr callssstegr/dstegr when the full spectrum is
requested on machines which conform to the IEEE-754 floating point
standard.?stevr callssstebz/dstebz andsstein/dstein on
non-IEEE machines and when partial spectrum requests are made.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then only eigenvalues are computed.
If jobz ='V' , then eigenvalues and eigenvectors are
computed.

range CHARACTER*1. Must be'A' or 'V' or 'I' .
If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

For range ='V' or 'I' andiu - il < n- 1,
sstebz/dstebz andsstein/dstein are called.

n INTEGER. The order of the matrixT (n ≥ 0).

d, e, work REALfor sstevr

DOUBLE PRECISIONfor dstevr .
Arrays:
d(*) contains then diagonal elements of the
tridiagonal matrixT.
The dimension ofd must be at least max(1,n).

e(*) contains then-1 subdiagonal elements ofA.
The dimension ofe must be at least max(1,n). Thenth
element of this array is used as workspace.

work (lwork) is a workspace array.

5-376

5 Intel® Math Kernel Library Reference Manual

vl, vu REALfor sstevr

DOUBLE PRECISIONfor dstevr .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .

If range ='A' or 'I' , vl andvu are not referenced.

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.

If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor ssyevr

DOUBLE PRECISIONfor dsyevr .
The absolute error tolerance to which each
eigenvalue/eigenvector is required.
If jobz = 'V' , the eigenvalues and eigenvectors output
have residual norms bounded byabstol , and the dot
products between different eigenvectors are bounded by
abstol . If abstol < nε||T||1, thennε||T||1 will be used
in its place, whereε is the machine precision. The
eigenvalues are computed to an accuracy ofε||T||1
irrespective ofabstol . If high relative accuracy is
important, setabstol to ?lamch ('S').

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
ldz ≥ 1 if jobz ='N' ;
ldz ≥ max(1,n) if jobz ='V' .

lwork INTEGER. The dimension of the arraywork .
Constraint:lwork ≥ max(1, 20n).

iwork INTEGER.
Workspace array,DIMENSION (liwork).

liwork INTEGER. The dimension of the arrayiwork ,
lwork ≥ max(1, 10n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-377

Output Parameters

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w, z REALfor sstevr

DOUBLE PRECISIONfor dstevr .
Arrays:
w(*) , DIMENSION at least max(1,n) .
The firstmelements ofw contain the selected
eigenvalues of the matrixT in ascending order.

z(ldz,*) . The second dimension ofz must be at least
max(1,m).
If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixT
corresponding to the selected eigenvalues, with thei -th
column ofz holding the eigenvector associated with
w(i).
If jobz ='N' , thenz is not referenced.
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

d, e On exit, these arrays may be multiplied by a constant
factor chosen to avoid overflow or underflow in
computing the eigenvalues.

isuppz INTEGER.
Array, DIMENSION at least 2* max(1,m).

The support of the eigenvectors inz , i.e., the indices
indicating the nonzero elements inz . Thei -th
eigenvector is nonzero only in elementsisuppz (2i -1)
throughisuppz (2i).
Implemented only forrange ='A' or 'I' and
iu - il = n- 1.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

5-378

5 Intel® Math Kernel Library Reference Manual

iwork(1) On exit, if info = 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , an internal error has occurred.

Application Notes

Normal execution of the routine?stegr may create NaNs and infinities
and hence may abort due to a floating point exception in environments
which do not handle NaNs and infinities in the IEEE standard default
manner.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-379

Nonsymmetric Eigenproblems

This section describes LAPACK driver routines used for solving
nonsymmetric eigenproblems. See alsocomputational routinesthat can be
called to solve these problems.
Table 5-12lists routines described in more detail below.

?gees
Computes the eigenvalues and Shur
factorization of a general matrix, and orders
the factorization so that selected eigenvalues
are at the top left of the Shur form.

call sgees (jobvs , sort, select, n, a, lda, sdim, wr, wi, vs, ldvs,
work, lwork, bwork, info)

call dgees (jobvs , sort, select, n, a, lda, sdim, wr, wi, vs, ldvs,
work, lwork, bwork, info)

call cgees (jobvs , sort, select, n, a, lda, sdim, w, vs, ldvs,
work, lwork, rwork, bwork, info)

call zgees (jobvs , sort, select, n, a, lda, sdim, w, vs, ldvs,
work, lwork, rwork, bwork, info)

Table 5-11 Driver Routines for Solving Nonsymmetric Eigenproblems

Routine Name Operation performed

?gees Computes the eigenvalues and Shur factorization of a general matrix, and
orders the factorization so that selected eigenvalues are at the top left of the
Shur form.

?geesx Computes the eigenvalues and Shur factorization of a general matrix,
orders the factorization and computes reciprocal condition numbers.

?geev Computes the eigenvalues and left and right eigenvectors of a general
matrix.

?geevx Computes the eigenvalues and left and right eigenvectors of a general
matrix, with preliminary matrix balancing, and computes reciprocal condition
numbers for the eigenvalues and right eigenvectors.

5-380

5 Intel® Math Kernel Library Reference Manual

Discussion

This routine computes for ann-by-n real/complex nonsymmetric matrixA,
the eigenvalues, the real Schur formT, and, optionally, the matrix of Schur
vectorsZ. This gives the Schur factorizationA = Z T ZH.

Optionally, it also orders the eigenvalues on the diagonal of the
real-Schur/Shur form so that selected eigenvalues are at the top left. The
leading columns ofZ then form an orthonormal basis for the invariant
subspace corresponding to the selected eigenvalues.

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1
and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form

whereb* c < 0. The eigenvalues of such a block are .

A complex matrix is in Schur form if it is upper triangular.

Input Parameters

jobvs CHARACTER*1. Must be'N' or 'V' .
If jobvs ='N' , then Shur vectors are not computed.
If jobvs ='V' , then Shur vectors are computed.

sort CHARACTER*1. Must be'N' or 'S' .
Specifies whether or not to order the eigenvalues on the
diagonal of the Schur form.

If sort ='N' , then eigenvalues are not ordered.
If sort ='S' , eigenvalues are ordered (seeselect).

select LOGICAL FUNCTIONof two REALarguments
for real flavors.
LOGICAL FUNCTIONof oneCOMPLEXargument
for complex flavors.

select must be declaredEXTERNALin the calling
subroutine.
If sort ='S' , select is used to select eigenvalues to
sort to the top left of the Shur form.
If sort ='N' , select is not referenced.

a
c

b
a

a bc±

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-381

For real flavors:
An eigenvaluewr (j)+ * wi (j) is selected if
select (wr (j), wi (j)) is true; that is, if either one of a
complex conjugate pair of eigenvalues is selected, then
both complex eigenvalues are selected. Note that a
selected complex eigenvalue may no longer satisfy
select (wr (j), wi (j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
caseinfo may be set ton+2 (seeinfo below).
For complex flavors:
An eigenvaluew(j) is selected ifselect (w(j)) is true.

n INTEGER. The order of the matrixA (n ≥ 0).

a, work REALfor sgees

DOUBLE PRECISIONfor dgees

COMPLEXfor cgees

DOUBLE COMPLEXfor zgees .
Arrays:
a(lda, *) is an array containing then-by-n matrix A.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

ldvs INTEGER. The leading dimension of the output arrayvs .
Constraints:
ldvs ≥ 1 ;
ldvs ≥ max(1,n) if jobvs ='V' .

lwork INTEGER. The dimension of the arraywork .
Constraint:
lwork ≥ max(1, 3n) for real flavors;
lwork ≥ max(1, 2n) for complex flavors.

rwork REALfor cgees

DOUBLE PRECISIONfor zgees

Workspace array,DIMENSIONat least max(1,n). Used
in complex flavors only.

1–

5-382

5 Intel® Math Kernel Library Reference Manual

bwork LOGICAL.
Workspace array,DIMENSIONat least max(1,n). Not
referenced ifsort ='N' .

Output Parameters

a On exit, this array is overwritten by the real-Shur/Shur
form T .

sdim INTEGER.
If sort ='N' , sdim = 0.
If sort ='S' , sdim is equal to the number of
eigenvalues (after sorting) for whichselect is true.
Note that for real flavors complex conjugate pairs for
which select is true for either eigenvalue count as 2.

wr, wi REALfor sgees

DOUBLE PRECISIONfor dgees

Arrays,DIMENSIONat least max (1,n) each.
Contain the real and imaginary parts, respectively, of the
computed eigenvalues, in the same order that they
appear on the diagonal of the output real-Shur formT.
Complex conjugate pairs of eigenvalues appear
consecutively with the eigenvalue having positive
imaginary part first.

w COMPLEXfor cgees

DOUBLE COMPLEXfor zgees .
Array, DIMENSIONat least max(1,n).
Contains the computed eigenvalues. The eigenvalues are
stored in the same order as they appear on the diagonal
of the output Shur formT.

vs REALfor sgees

DOUBLE PRECISIONfor dgees

COMPLEXfor cgees

DOUBLE COMPLEXfor zgees .
Array vs (ldvs, *) ; the second dimension ofvs must
be at least max(1,n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-383

If jobvs ='V' , vs contains the orthogonal/unitary
matrix Z of Shur vectors.
If jobvs ='N' , vs is not referenced.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

info INTEGER.
If info = 0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

If info = i , and
i ≤ n :

theQRalgorithm failed to compute all the
eigenvalues; elements 1:ilo -1 andi +1:n of wr and
wi (for real flavors) orw (for complex flavors)
contain those eigenvalues which have converged; if
jobvs ='V' , vs contains the matrix which reduces
A to its partially converged Schur form;

i = n+1 :

the eigenvalues could not be reordered because
some eigenvalues were too close to separate (the
problem is very ill-conditioned);

i = n+2 :

after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in
the Schur form no longer satisfyselect = .TRUE. .
This could also be caused by underflow due to
scaling.

Application Notes

If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

5-384

5 Intel® Math Kernel Library Reference Manual

?geesx
Computes the eigenvalues and Shur
factorization of a general matrix, orders the
factorization and computes reciprocal
condition numbers.

call sgeesx(jobvs , sort, select, sense, n, a, lda, sdim, wr, wi, vs,
ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call dgeesx(jobvs , sort, select, sense, n, a, lda, sdim, wr, wi, vs,
ldvs, rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call cgeesx(jobvs , sort, select, sense, n, a, lda, sdim, w, vs,
ldvs, rconde, rcondv, work, lwork, rwork, bwork, info)

call zgeesx(jobvs , sort, select, sense, n, a, lda, sdim, w, vs,
ldvs, rconde, rcondv, work, lwork, rwork, bwork, info)

Discussion

This routine computes for ann-by-n real/complex nonsymmetric matrixA,
the eigenvalues, the real-Schur/Shur formT, and, optionally, the matrix of
Schur vectorsZ. This gives the Schur factorizationA = Z T ZH.

Optionally, it also orders the eigenvalues on the diagonal of the
real-Schur/Shur form so that selected eigenvalues are at the top left;
computes a reciprocal condition number for the average of the selected
eigenvalues (rconde); and computes a reciprocal condition number for the
right invariant subspace corresponding to the selected eigenvalues
(rcondv). The leading columns ofZ form an orthonormal basis for this
invariant subspace.

For further explanation of the reciprocal condition numbersrconde and
rcondv , see [LUG], Section 4.10 (where these quantities are calleds and
seprespectively).

A real matrix is in real-Schur form if it is upper quasi-triangular with 1-by-1
and 2-by-2 blocks. 2-by-2 blocks will be standardized in the form

a
c

b
a

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-385

whereb* c < 0. The eigenvalues of such a block are .

A complex matrix is in Schur form if it is upper triangular.

Input Parameters

jobvs CHARACTER*1. Must be'N' or 'V' .
If jobvs ='N' , then Shur vectors are not computed.
If jobvs ='V' , then Shur vectors are computed.

sort CHARACTER*1. Must be'N' or 'S' .
Specifies whether or not to order the eigenvalues on the
diagonal of the Schur form.

If sort ='N' , then eigenvalues are not ordered.
If sort ='S' , eigenvalues are ordered (seeselect).

select LOGICAL FUNCTIONof two REALarguments
for real flavors.
LOGICAL FUNCTIONof oneCOMPLEXargument
for complex flavors.

select must be declaredEXTERNALin the calling
subroutine.
If sort ='S' , select is used to select eigenvalues to
sort to the top left of the Shur form.
If sort ='N' , select is not referenced.
For real flavors:
An eigenvaluewr (j)+ * wi (j) is selected if
select (wr (j), wi (j)) is true; that is, if either one of a
complex conjugate pair of eigenvalues is selected, then
both complex eigenvalues are selected. Note that a
selected complex eigenvalue may no longer satisfy
select (wr (j), wi (j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned); in this
caseinfo may be set ton+2 (seeinfo below).
For complex flavors:
An eigenvaluew(j) is selected ifselect (w(j)) is true.

a bc±

1–

5-386

5 Intel® Math Kernel Library Reference Manual

sense CHARACTER*1. Must be'N' , 'E' , 'V' , or 'B' .
Determines which reciprocal condition number are
computed.

If sense ='N' , none are computed;
If sense ='E' , computed for average of selected
eigenvalues only;
If sense ='V' , computed for selected right invariant
subspace only;
If sense ='B' , computed for both.

If sense is 'E' , 'V' , or 'B' , thensort must equal
'S' .

n INTEGER. The order of the matrixA (n ≥ 0).

a, work REALfor sgeesx

DOUBLE PRECISIONfor dgeesx

COMPLEXfor cgeesx

DOUBLE COMPLEXfor zgeesx .
Arrays:
a(lda, *) is an array containing then-by-n matrix A.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

ldvs INTEGER. The leading dimension of the output arrayvs .
Constraints:
ldvs ≥ 1 ;
ldvs ≥ max(1,n) if jobvs ='V' .

lwork INTEGER. The dimension of the arraywork .
Constraint:
lwork ≥ max(1, 3n) for real flavors;
lwork ≥ max(1, 2n) for complex flavors.

Also, if sense = 'E' , 'V' , or 'B' , then
lwork ≥ n+2* sdim * (n- sdim) for real flavors;
lwork ≥ 2* sdim * (n- sdim) for complex flavors;

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-387

wheresdim is the number of selected eigenvalues
computed by this routine. Note that
2* sdim * (n- sdim) ≤ n* n/2 .

For good performance,lwork must generally be larger.

iwork INTEGER.
Workspace array,DIMENSION (liwork). Used in real
flavors only. Not referenced ifsense = 'N' or 'E' .

liwork INTEGER. The dimension of the arrayiwork . Used in
real flavors only. Constraint:
liwork ≥ 1;
if sense = 'V' or 'B' , liwork ≥ sdim * (n- sdim).

rwork REALfor cgeesx

DOUBLE PRECISIONfor zgeesx

Workspace array,DIMENSIONat least max(1,n). Used
in complex flavors only.

bwork LOGICAL.
Workspace array,DIMENSIONat least max(1,n). Not
referenced ifsort ='N' .

Output Parameters

a On exit, this array is overwritten by the real-Shur/Shur
form T .

sdim INTEGER.
If sort ='N' , sdim = 0.
If sort ='S' , sdim is equal to the number of
eigenvalues (after sorting) for whichselect is true.
Note that for real flavors complex conjugate pairs for
which select is true for either eigenvalue count as 2.

wr, wi REALfor sgeesx

DOUBLE PRECISIONfor dgeesx

Arrays,DIMENSIONat least max (1,n) each.
Contain the real and imaginary parts, respectively, of the
computed eigenvalues, in the same order that they
appear on the diagonal of the output real-Shur formT.

5-388

5 Intel® Math Kernel Library Reference Manual

Complex conjugate pairs of eigenvalues appear
consecutively with the eigenvalue having positive
imaginary part first.

w COMPLEXfor cgeesx

DOUBLE COMPLEXfor zgeesx .
Array, DIMENSIONat least max(1,n).
Contains the computed eigenvalues. The eigenvalues are
stored in the same order as they appear on the diagonal
of the output Shur formT.

vs REALfor sgeesx

DOUBLE PRECISIONfor dgeesx

COMPLEXfor cgeesx

DOUBLE COMPLEXfor zgeesx .
Array vs (ldvs, *) ; the second dimension ofvs must
be at least max(1,n).

If jobvs ='V' , vs contains the orthogonal/unitary
matrix Z of Shur vectors.
If jobvs ='N' , vs is not referenced.

rconde,rcondv REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
If sense = 'E' or 'B' , rconde contains the
reciprocal condition number for the average of the
selected eigenvalues. Ifsense = 'N' or 'V' , rconde

is not referenced.

If sense = 'V' or 'B' , rcondv contains the
reciprocal condition number for the selected right
invariant subspace. Ifsense = 'N' or 'E' , rcondv is
not referenced.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

info INTEGER.
If info = 0, the execution is successful.

If info = -i , thei th parameter had an illegal value.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-389

If info = i , and
i ≤ n :

theQRalgorithm failed to compute all the
eigenvalues; elements 1:ilo -1 andi +1:n of wr and
wi (for real flavors) orw (for complex flavors)
contain those eigenvalues which have converged; if
jobvs ='V' , vs contains the transformation which
reducesA to its partially converged Schur form;

i = n+1 :

the eigenvalues could not be reordered because
some eigenvalues were too close to separate (the
problem is very ill-conditioned);

i = n+2 :

after reordering, roundoff changed values of some
complex eigenvalues so that leading eigenvalues in
the Schur form no longer satisfyselect = .TRUE. .
This could also be caused by underflow due to
scaling.

Application Notes

If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

5-390

5 Intel® Math Kernel Library Reference Manual

?geev
Computes the eigenvalues and left and
right eigenvectors of a general matrix.

call sgeev (jobvl , jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
work, lwork, info)

call dgeev (jobvl , jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr,
work, lwork, info)

call cgeev (jobvl , jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)

call zgeev (jobvl , jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work,
lwork, rwork, info)

Discussion

This routine computes for ann-by-n real/complex nonsymmetric matrixA,
the eigenvalues and, optionally, the left and/or right eigenvectors. The right
eigenvectorv(j) of A satisfies

A* v(j) = λ(j)* v(j)

whereλ(j) is its eigenvalue.

The left eigenvectoru(j) of A satisfies

u(j)H* A = λ(j)* u(j)H

whereu(j)H denotes the conjugate transpose ofu(j).
The computed eigenvectors are normalized to have Euclidean norm equal
to 1 and largest component real.

Input Parameters

jobvl CHARACTER*1. Must be'N' or 'V' .
If jobvl ='N' , then left eigenvectors ofA are not
computed.
If jobvl ='V' , then left eigenvectors ofA are
computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-391

jobvr CHARACTER*1. Must be'N' or 'V' .
If jobvr ='N' , then right eigenvectors ofA are not
computed.
If jobvr ='V' , then right eigenvectors ofA are
computed.

n INTEGER. The order of the matrixA (n ≥ 0).

a, work REALfor sgeev

DOUBLE PRECISIONfor dgeev

COMPLEXfor cgeev

DOUBLE COMPLEXfor zgeev .
Arrays:
a(lda, *) is an array containing then-by-n matrix A.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

ldvl, ldvr INTEGER. The leading dimensions of the output arrays
vl andvr , respectively. Constraints:
ldvl ≥ 1 ; ldvr ≥ 1.
If jobvl ='V' , ldvl ≥ max(1,n) ;
If jobvr ='V' , ldvr ≥ max(1,n).

lwork INTEGER. The dimension of the arraywork .
Constraint:
lwork ≥ max(1, 3n) , and if jobvl ='V' or
jobvr ='V' , lwork ≥ max(1, 4n) (for real flavors);
lwork ≥ max(1, 2n) (for complex flavors).
For good performance,lwork must generally be larger.

rwork REALfor cgeev

DOUBLE PRECISIONfor zgeev

Workspace array,DIMENSIONat least max(1, 2n). Used
in complex flavors only.

5-392

5 Intel® Math Kernel Library Reference Manual

Output Parameters

a On exit, this array is overwritten by intermediate results.

wr, wi REALfor sgeev

DOUBLE PRECISIONfor dgeev

Arrays,DIMENSIONat least max (1,n) each.
Contain the real and imaginary parts, respectively, of the
computed eigenvalues. Complex conjugate pairs of
eigenvalues appear consecutively with the eigenvalue
having positive imaginary part first.

w COMPLEXfor cgeev

DOUBLE COMPLEXfor zgeev .
Array, DIMENSIONat least max(1,n).
Contains the computed eigenvalues.

vl, vr REALfor sgeev

DOUBLE PRECISIONfor dgeev

COMPLEXfor cgeev

DOUBLE COMPLEXfor zgeev .
Arrays:
vl (ldvl, *) ; the second dimension ofvl must be at
least max(1,n).

If jobvl ='V' , the left eigenvectorsu(j) are stored one
after another in the columns ofvl , in the same order as
their eigenvalues. Ifjobvl ='N' , vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, thenu(j) = vl (:,j), the j-th
column ofvl . If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, thenu(j) = vl (:,j) + i* vl (:,j+1)
andu(j+1) = vl (:,j) - i* vl (:,j+1), wherei= .

For complex flavors:
u(j) = vl (:,j), the j-th column ofvl .

vr (ldvr, *) ; the second dimension ofvr must be at
least max(1,n).

If jobvr ='V' , the right eigenvectorsv(j) are stored one
after another in the columns ofvr , in the same order as
their eigenvalues. Ifjobvr ='N' , vr is not referenced.

1–

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-393

For real flavors:
If the j-th eigenvalue is real, thenv(j) = vr (:,j), the j-th
column ofvr . If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, thenv(j) = vr (:,j) + i* vr (:,j+1)
andv(j+1) = vr (:,j) - i* vr (:,j+1), wherei= .

For complex flavors:
v(j) = vr (:,j), the j-th column ofvr .

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , theQRalgorithm failed to compute all the
eigenvalues, and no eigenvectors have been computed;
elementsi +1:n of wr andwi (for real flavors) orw (for
complex flavors) contain those eigenvalues which have
converged.

Application Notes

If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

1–

5-394

5 Intel® Math Kernel Library Reference Manual

?geevx
Computes the eigenvalues and left and right
eigenvectors of a general matrix, with
preliminary matrix balancing, and
computes reciprocal condition numbers for
the eigenvalues and right eigenvectors.

call sgeevx (balanc, jobvl , jobvr, sense, n, a, lda, wr, wi, vl,
ldvl, vr, ldvr, ilo, ihi, scale, abnrm, rconde,

rcondv, work, lwork, iwork, info)

call dgeevx (balanc, jobvl , jobvr, sense, n, a, lda, wr, wi, vl,
ldvl, vr, ldvr, ilo, ihi, scale, abnrm, rconde,

rcondv, work, lwork, iwork, info)

call cgeevx (balanc, jobvl , jobvr, sense, n, a, lda, w, vl, ldvl,
vr, ldvr, ilo, ihi, scale, abnrm, rconde, rcondv,

work, lwork, rwork, info)

call zgeevx (balanc, jobvl , jobvr, sense, n, a, lda, w, vl, ldvl,
vr, ldvr, ilo, ihi, scale, abnrm, rconde, rcondv,

work, lwork, rwork, info)

Discussion

This routine computes for ann-by-n real/complex nonsymmetric matrixA,
the eigenvalues and, optionally, the left and/or right eigenvectors.

Optionally also, it computes a balancing transformation to improve the
conditioning of the eigenvalues and eigenvectors (ilo , ihi , scale , and
abnrm), reciprocal condition numbers for the eigenvalues (rconde), and
reciprocal condition numbers for the right eigenvectors (rcondv).

The right eigenvectorv(j) of A satisfies

A* v(j) = λ(j)* v(j)

whereλ(j) is its eigenvalue.

The left eigenvectoru(j) of A satisfies

u(j)H* A = λ(j)* u(j)H

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-395

whereu(j)H denotes the conjugate transpose ofu(j).
The computed eigenvectors are normalized to have Euclidean norm equal
to 1 and largest component real.

Balancing a matrix means permuting the rows and columns to make it more
nearly upper triangular, and applying a diagonal similarity transformation
D A D-1, whereD is a diagonal matrix, to make its rows and columns closer
in norm and the condition numbers of its eigenvalues and eigenvectors
smaller. The computed reciprocal condition numbers correspond to the
balanced matrix.
Permuting rows and columns will not change the condition numbers in
exact arithmetic) but diagonal scaling will. For further explanation of
balancing, see [LUG], Section 4.10.

Input Parameters

balanc CHARACTER*1. Must be'N' , 'P' , 'S' , or 'B' .
Indicates how the input matrix should be diagonally
scaled and/or permuted to improve the conditioning of
its eigenvalues.

If balanc ='N' , do not diagonally scale or permute;
If balanc ='P' , perform permutations to make the
matrix more nearly upper triangular. Do not diagonally
scale;
If balanc ='S' , Diagonally scale the matrix, i.e.
replaceA by D A D-1, whereD is a diagonal matrix
chosen to make the rows and columns ofA more equal
in norm. Do not permute;
If balanc ='B' , both diagonally scale and permuteA.

Computed reciprocal condition numbers will be for the
matrix after balancing and/or permuting. Permuting
does not change condition numbers (in exact
arithmetic), but balancing does.

jobvl CHARACTER*1. Must be'N' or 'V' .
If jobvl ='N' , left eigenvectors ofA are not computed;
If jobvl ='V' , left eigenvectors ofA are computed.
If sense ='E' or 'B' , thenjobvl must be'V' .

5-396

5 Intel® Math Kernel Library Reference Manual

jobvr CHARACTER*1. Must be'N' or 'V' .
If jobvr ='N' , right eigenvectors ofA are not
computed;
If jobvr ='V' , right eigenvectors ofA are computed.
If sense ='E' or 'B' , thenjobvr must be'V' .

sense CHARACTER*1. Must be'N' , 'E' , 'V' , or 'B' .
Determines which reciprocal condition number are
computed.

If sense ='N' , none are computed;
If sense ='E' , computed for eigenvalues only;
If sense ='V' , computed for right eigenvectors only;
If sense ='B' , computed for eigenvalues and right
eigenvectors.

If sense is 'E' or 'B' , both left and right eigenvectors
must also be computed (jobvl ='V' andjobvr ='V').

n INTEGER. The order of the matrixA (n ≥ 0).

a, work REALfor sgeevx

DOUBLE PRECISIONfor dgeevx

COMPLEXfor cgeevx

DOUBLE COMPLEXfor zgeevx .
Arrays:
a(lda, *) is an array containing then-by-n matrix A.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

ldvl, ldvr INTEGER. The leading dimensions of the output arrays
vl andvr , respectively. Constraints:
ldvl ≥ 1 ; ldvr ≥ 1.
If jobvl ='V' , ldvl ≥ max(1,n) ;
If jobvr ='V' , ldvr ≥ max(1,n).

lwork INTEGER. The dimension of the arraywork .
For real flavors:
If sense ='N' or 'E' , lwork ≥ max(1, 2n) , and

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-397

if jobvl ='V' or jobvr ='V' , lwork ≥ 3n ;
If sense ='V' or 'B' , lwork ≥ n(n+6).
For good performance,lwork must generally be larger.

For complex flavors:
If sense ='N' or 'E' , lwork ≥ max(1, 2n) ;
If sense ='V' or 'B' , lwork ≥ n2+2n.
For good performance,lwork must generally be larger.

rwork REALfor cgeevx

DOUBLE PRECISIONfor zgeevx

Workspace array,DIMENSIONat least max(1, 2n). Used
in complex flavors only.

iwork INTEGER.
Workspace array,DIMENSION at least max(1, 2n- 2).
Used in real flavors only. Not referenced ifsense =
'N' or 'E' .

Output Parameters

a On exit, this array is overwritten. Ifjobvl ='V' or
jobvr ='V' , it contains the real-Shur/Shur form of the
balanced version of the input matrixA.

wr, wi REALfor sgeevx

DOUBLE PRECISIONfor dgeevx

Arrays,DIMENSIONat least max (1,n) each.
Contain the real and imaginary parts, respectively, of the
computed eigenvalues. Complex conjugate pairs of
eigenvalues appear consecutively with the eigenvalue
having positive imaginary part first.

w COMPLEXfor cgeevx

DOUBLE COMPLEXfor zgeevx .
Array, DIMENSIONat least max(1,n).
Contains the computed eigenvalues.

vl, vr REALfor sgeevx

DOUBLE PRECISIONfor dgeevx

COMPLEXfor cgeevx

DOUBLE COMPLEXfor zgeevx .

5-398

5 Intel® Math Kernel Library Reference Manual

Arrays:
vl (ldvl, *) ; the second dimension ofvl must be at
least max(1,n).

If jobvl ='V' , the left eigenvectorsu(j) are stored one
after another in the columns ofvl , in the same order as
their eigenvalues. Ifjobvl ='N' , vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, thenu(j) = vl (:,j), the j-th
column ofvl . If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, thenu(j) = vl (:,j) + i* vl (:,j+1)
andu(j+1) = vl (:,j) - i* vl (:,j+1), wherei= .

For complex flavors:
u(j) = vl (:,j), the j-th column ofvl .

vr (ldvr, *) ; the second dimension ofvr must be at
least max(1,n).

If jobvr ='V' , the right eigenvectorsv(j) are stored one
after another in the columns ofvr , in the same order as
their eigenvalues. Ifjobvr ='N' , vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, thenv(j) = vr (:,j), the j-th
column ofvr . If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, thenv(j) = vr (:,j) + i* vr (:,j+1)
andv(j+1) = vr (:,j) - i* vr (:,j+1), wherei= .

For complex flavors:
v(j) = vr (:,j), the j-th column ofvr .

ilo, ihi INTEGER.
ilo andihi are integer values determined whenA was
balanced.
The balancedA(i,j) = 0 if i > j and j = 1,..., ilo -1 or
i = ihi +1,...,n.
If balanc ='N' or 'S' , ilo = 1 andihi = n.

scale REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Array, DIMENSIONat least max(1,n) .
Details of the permutations and scaling factors applied

1–

1–

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-399

when balancingA. If P(j) is the index of the row and
column interchanged with row and column j, andD(j) is
the scaling factor applied to row and column j, then

scale (j) = P(j), for j = 1,...,ilo -1

= D(j), for j = ilo ,...,ihi

= P(j) for j = ihi +1,...,n.

The order in which the interchanges are made isn to
ihi +1, then 1 toilo -1.

abnrm REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.

The one-norm of the balanced matrix (the maximum of
the sum of absolute values of elements of any column).

rconde,rcondv REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,n) each.
rconde (j) is the reciprocal condition number of the
j-th eigenvalue.

rcondv (j) is the reciprocal condition number of the
j-th right eigenvector.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , theQRalgorithm failed to compute all the
eigenvalues, and no eigenvectors or condition numbers
have been computed; elements 1:ilo -1 andi +1:n of wr

andwi (for real flavors) orw (for complex flavors)
contain eigenvalues which have converged.

Application Notes

If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

5-400

5 Intel® Math Kernel Library Reference Manual

Singular Value Decomposition

This section describes LAPACK driver routines used for solving singular
value problems. See alsocomputational routinesthat can be called to solve
these problems.
Table 5-12lists routines described in more detail below.

?gesvd
Computes the singular value
decomposition of a general rectangular
matrix.

call sgesvd (jobu , jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, info)

call dgesvd (jobu , jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, info)

call cgesvd (jobu , jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, info)

call zgesvd (jobu , jobvt, m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, info)

Discussion

This routine computes the singular value decomposition (SVD) of a
real/complexm-by-n matrix A, optionally computing the left and/or right
singular vectors. The SVD is written

A = U Σ VH

Table 5-12 Driver Routines for Singular Value Decomposition

Routine Name Operation performed

?gesvd Computes the singular value decomposition of a general rectangular matrix.

?gesdd Computes the singular value decomposition of a general rectangular matrix
using a divide and conquer method.

?ggsvd Computes the generalized singular value decomposition of a pair of general
rectangular matrices.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-401

whereΣ is anm-by-n matrix which is zero except for its min(m,n) diagonal
elements,U is anm-by-morthogonal/unitary matrix, andV is ann-by-n
orthogonal/unitary matrix. The diagonal elements ofΣ are the singular
values ofA; they are real and non-negative, and are returned in descending
order. The first min(m,n) columns ofU andV are the left and right singular
vectors ofA.
Note that the routine returnsVH, notV.

Input Parameters

jobu CHARACTER*1. Must be'A' , 'S' , 'O' , or 'N' .
Specifies options for computing all or part of the
matrix U.

If jobu ='A' , all mcolumns ofU are returned in the
arrayu;
if jobu ='S' , the first min(m,n) columns ofU (the left
singular vectors) are returned in the arrayu;
if jobu ='O' , the first min(m,n) columns ofU (the left
singular vectors) are overwritten on the arraya;
if jobu ='N' , no columns ofU (no left singular vectors)
are computed.

jobvt CHARACTER*1. Must be'A' , 'S' , 'O' , or 'N' .
Specifies options for computing all or part of the
matrix VH.

If jobvt ='A' , all n rows ofVH are returned in the
arrayvt ;
if jobvt ='S' , the first min(m,n) rows ofVH (the right
singular vectors) are returned in the arrayvt ;
if jobvt ='O' , the first min(m,n) rows ofVH (the right
singular vectors) are overwritten on the arraya;
if jobvt ='N' , no rows ofVH (no right singular vectors)
are computed.

jobvt andjobu cannot both be'O' .

m INTEGER. The number of rows of the matrixA (m≥ 0).

n INTEGER. The number of columns inA (n ≥ 0).

5-402

5 Intel® Math Kernel Library Reference Manual

a, work REALfor sgesvd

DOUBLE PRECISIONfor dgesvd

COMPLEXfor cgesvd

DOUBLE COMPLEXfor zgesvd .
Arrays:
a(lda, *) is an array containing them-by-n matrix A.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,m) .

ldu, ldvt INTEGER. The leading dimensions of the output arraysu

andvt , respectively. Constraints:
ldu ≥ 1 ; ldvt ≥ 1.
If jobu ='S' or 'A' , ldu ≥ m;
If jobvt ='A' , ldvt ≥ n;
If jobvt ='S' , ldvt ≥ min(m, n).

lwork INTEGER. The dimension of the arraywork ; lwork ≥ 1.
Constraints:
lwork ≥ max(3* min(m,n)+max(m,n), 5* min(m,n)) (for
real flavors);
lwork ≥ 2* min(m,n)+max(m,n) (for complex flavors).
For good performance,lwork must generally be larger.

rwork REALfor cgesvd

DOUBLE PRECISIONfor zgesvd

Workspace array,DIMENSIONat least
max(1, 5* min(m,n)). Used in complex flavors only.

Output Parameters

a On exit,
If jobu ='O' , a is overwritten with the first min(m,n)
columns ofU (the left singular vectors, stored
columnwise);
If jobvt ='O' , a is overwritten with the first min(m,n)

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-403

rows ofVH (the right singular vectors, stored rowwise);
If jobu ≠'O' andjobvt ≠'O' , the contents ofa are
destroyed.

s REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
Array, DIMENSIONat least max(1, min(m,n)).
Contains the singular values ofA sorted so that
s(i) ≥ s(i+1).

u, vt REALfor sgesvd

DOUBLE PRECISIONfor dgesvd

COMPLEXfor cgesvd

DOUBLE COMPLEXfor zgesvd .
Arrays:
u(ldu, *) ; the second dimension ofu must be at least
max(1,m) if jobu ='A' , and at least max(1, min(m,n)) if
jobu ='S' .

If jobu ='A' , u contains them-by-morthogonal/unitary
matrix U.
If jobu ='S' , u contains the first min(m,n) columns of
U (the left singular vectors, stored columnwise).
If jobu ='N' or 'O' , u is not referenced.

vt (ldvt, *) ; the second dimension ofvt must be at
least max(1,n).

If jobvt ='A' , vt contains then-by-n
orthogonal/unitary matrixVH.
If jobvt ='S' , vt contains the first min(m,n) rows of
VH (the right singular vectors, stored rowwise).
If jobvt ='N' or 'O' , vt is not referenced.

work On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .
For real flavors:
If info > 0, work (2:min(m,n)) contains the
unconverged superdiagonal elements of an upper
bidiagonal matrixB whose diagonal is ins (not

5-404

5 Intel® Math Kernel Library Reference Manual

necessarily sorted).B satisfiesA = u * B * vt , so it has
the same singular values asA, and singular vectors
related byu andvt .

rwork On exit (for complex flavors), ifinfo > 0,
rwork (1:min(m,n)-1) contains the unconverged
superdiagonal elements of an upper bidiagonal matrixB
whose diagonal is ins (not necessarily sorted).B
satisfiesA = u * B * vt , so it has the same singular
values asA, and singular vectors related byu andvt .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , then if?bdsqr did not converge,i
specifies how many superdiagonals of the intermediate
bidiagonal formB did not converge to zero.

Application Notes

If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-405

?gesdd
Computes the singular value
decomposition of a general rectangular
matrix using a divide and conquer
method.

call sgesdd (jobz , m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, iwork, info)

call dgesdd (jobz , m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, iwork, info)

call cgesdd (jobz , m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, iwork, info)

call zgesdd (jobz , m, n, a, lda, s, u, ldu, vt, ldvt,
work, lwork, rwork, iwork, info)

Discussion

This routine computes the singular value decomposition (SVD) of a
real/complexm-by-n matrix A, optionally computing the left and/or right
singular vectors. If singular vectors are desired, it uses a divide and conquer
algorithm.
The SVD is written

A = U Σ VH

whereΣ is anm-by-n matrix which is zero except for its min(m,n) diagonal
elements,U is anm-by-morthogonal/unitary matrix, andV is ann-by-n
orthogonal/unitary matrix. The diagonal elements ofΣ are the singular
values ofA; they are real and non-negative, and are returned in descending
order. The first min(m,n) columns ofU andV are the left and right singular
vectors ofA.
Note that the routine returnsVH, notV.

Input Parameters

jobz CHARACTER*1. Must be'A' , 'S' , 'O' , or 'N' .
Specifies options for computing all or part of the
matrix U.

5-406

5 Intel® Math Kernel Library Reference Manual

If jobz ='A' , all mcolumns ofU and alln rows ofVT

are returned in the arraysu andvt ;
if jobz ='S' , the first min(m,n) columns ofU and the
first min(m,n) rows ofVT are returned in the arraysu and
vt ;
if jobz ='O' , then

if m≥ n, the firstn columns ofU are overwritten
on the arraya and all rows ofVT are returned in the
arrayvt ;
if m< n, all columns ofU are returned in the arrayu
and the firstmrows ofVT are overwritten in the array
vt ;

if jobz ='N' , no columns ofU or rows ofVTare
computed.

m INTEGER. The number of rows of the matrixA (m≥ 0).

n INTEGER. The number of columns inA (n ≥ 0).

a, work REALfor sgesdd

DOUBLE PRECISIONfor dgesdd

COMPLEXfor cgesdd

DOUBLE COMPLEXfor zgesdd .
Arrays:
a(lda, *) is an array containing them-by-n matrix A.
The second dimension ofa must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,m) .

ldu, ldvt INTEGER. The leading dimensions of the output arraysu

andvt , respectively. Constraints:
ldu ≥ 1 ; ldvt ≥ 1.
If jobz ='S' or 'A' , or jobz ='O' and m< n,
thenldu ≥ m;
If jobz ='A' or jobz ='O' and m≥ n,
then ldvt ≥ n;
If jobz ='S' , ldvt ≥ min(m, n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-407

lwork INTEGER. The dimension of the arraywork ; lwork ≥ 1.
SeeApplication Notesfor the suggested value oflwork .

rwork REALfor cgesdd

DOUBLE PRECISIONfor zgesdd

Workspace array,DIMENSIONat least
max(1, 5* min(m,n)) if jobz ='N' . Otherwise, the
dimension ofrwork must be at least 5*(min(m,n))2 +
7* min(m,n). This array is used in complex flavors only.

iwork INTEGER. Workspace array,DIMENSION at least
max(1, 8* min(m,n)).

Output Parameters

a On exit:
If jobz ='O' , then ifm≥ n, a is overwritten with the
first n columns ofU (the left singular vectors, stored
columnwise). Ifm< n, a is overwritten with the firstm
rows ofVT (the right singular vectors, stored rowwise);
If jobz ≠'O' , the contents ofa are destroyed.

s REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
Array, DIMENSIONat least max(1, min(m,n)).
Contains the singular values ofA sorted so that
s(i) ≥ s(i+1).

u, vt REALfor sgesdd

DOUBLE PRECISIONfor dgesdd

COMPLEXfor cgesdd

DOUBLE COMPLEXfor zgesdd .
Arrays:
u(ldu, *) ; the second dimension ofu must be at least
max(1,m) if jobz ='A' or jobz ='O' and m< n.
If jobz ='S' , the second dimension ofu must be at
least max(1, min(m,n)) .

If jobz ='A' or jobz ='O' and m< n, u contains the
m-by-morthogonal/unitary matrixU.
If jobz ='S' , u contains the first min(m,n) columns of

5-408

5 Intel® Math Kernel Library Reference Manual

U (the left singular vectors, stored columnwise).
If jobz ='O' and m≥ n, or jobz ='N' , u is not
referenced.

vt (ldvt, *) ; the second dimension ofvt must be at
least max(1,n).

If jobz ='A' or jobz ='O' and m≥ n, vt contains the
n-by-n orthogonal/unitary matrixVT.
If jobz ='S' , vt contains the first min(m,n) rows ofVT

(the right singular vectors, stored rowwise).
If jobz ='O' and m< n, or jobz ='N' , vt is not
referenced.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , then?bdsdc did not converge, updating
process failed.

Application Notes

For real flavors:
If jobz = 'N' , lwork ≥ 3* min(m,n) + max (max(m,n), 6* min(m,n));
If jobz = 'O' , lwork ≥ 3*(min(m,n))2 +

max(max(m,n), 5*(min(m,n))2 + 4* min(m,n));
If jobz = 'S' or 'A' , lwork ≥ 3*(min(m,n))2 +

max(max(m,n), 4*(min(m,n))2 + 4* min(m,n)).

For complex flavors:
If jobz = 'N' , lwork ≥ 2* min(m,n) + max(m,n) ;
If jobz = 'O' , lwork ≥ 2*(min(m,n))2 + max(m,n) + 2* min(m,n);
If jobz = 'S' or 'A' , lwork ≥ (min(m,n))2 + max(m,n) + 2* min(m,n);

For good performance,lwork should generally be larger.
If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-409

?ggsvd
Computes the generalized singular
value decomposition of a pair of general
rectangular matrices.

call sggsvd (jobu , jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, iwork, info)

call dggsvd (jobu , jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, iwork, info)

call cggsvd (jobu , jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)

call zggsvd (jobu , jobv, jobq, m, n, p, k, l, a, lda, b, ldb, alpha,
beta, u, ldu, v, ldv, q, ldq, work, rwork, iwork, info)

Discussion

This routine computes the generalized singular value decomposition
(GSVD) of anm-by-n real/complex matrixA andp-by-n real/complex
matrix B:

UH A Q = D1* (0 R), VH B Q = D2* (0 R),
whereU, V andQ are orthogonal/unitary matrices.

Let k+l = the effective numerical rank of the matrix (AH, BH)H, thenR is a
(k+l)-by-(k+l) nonsingular upper triangular matrix,D1 andD2 are
m-by-(k+l) andp-by-(k+l) "diagonal" matrices and of the following
structures, respectively:

If m- k- l ≥ 0,

D1

k

l

m k– l–

I
k

0
l

0 C

0 0

=

D2
l

p l–

0
k

S
l

0 0
 =

5-410

5 Intel® Math Kernel Library Reference Manual

where

C = diag (alpha (k+1),...,alpha (k+l))
S= diag (beta (k+1),...,beta (k+l))
C2 + S2 = I

R is stored ina(1:k+l , n-k-l +1:n) on exit.

If m- k- l < 0,

where

C = diag (alpha (k+1),...,alpha (m)),
S= diag (beta (k+1),...,beta (m)),
C2 + S2 = I

n k– l– k l

0 R()
k

l

0 R11 R12

0 0 R22

=

k m k– k l m–+

D1
k

m k–

I 0 0

0 C 0
 =

k m k– k l m–+

D2

m k–

k l m–+

p l–

0 S 0

0 0 I

0 0 0

=

n k– l– k m k– k l m–+

0 R)
k

m k–

k l m–+

0 R11 R12 R13

0 0 R22 R23

0 0 0 R33

=

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-411

On exit, is stored ina(1:m, n-k-l +1:n) andR33 is stored

in b(m-k+1:l , n+m-k-l +1:n).

The routine computesC, S, R, and optionally the orthogonal/unitary
transformation matricesU, V andQ.
In particular, ifB is ann-by-n nonsingular matrix, then the GSVD ofA and
B implicitly gives the SVD ofAB -1:

AB -1 = U (D1 D2
-1) VH.

If (AH, BH)H has orthonormal columns, then the GSVD ofA andB is also
equal to the CS decomposition ofA andB. Furthermore, the GSVD can be
used to derive the solution of the eigenvalue problem:

AHA x = λ BHB x.

Input Parameters

jobu CHARACTER*1. Must be'U' or 'N' .
If jobu ='U' , orthogonal/unitary matrixU is computed.
If jobu ='N' , U is not computed.

jobv CHARACTER*1. Must be'V' or 'N' .
If jobv ='V' , orthogonal/unitary matrixV is computed.
If jobv ='N' , V is not computed.

jobq CHARACTER*1. Must be'Q' or 'N' .
If jobq ='Q' , orthogonal/unitary matrixQ is computed.
If jobq ='N' , Q is not computed.

m INTEGER. The number of rows of the matrixA (m≥ 0).

n INTEGER. The number of columns of the matricesA
andB (n ≥ 0).

p INTEGER. The number of rows of the matrixB (p ≥ 0).

a, b, work REALfor sggsvd

DOUBLE PRECISIONfor dggsvd

COMPLEXfor cggsvd

DOUBLE COMPLEXfor zggsvd .

R11

0

R12

R22

R13

R23

5-412

5 Intel® Math Kernel Library Reference Manual

Arrays:
a(lda, *) contains them-by-n matrix A.
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains thep-by-n matrix B.
The second dimension ofb must be at least max(1,n).

work (*) is a workspace array. The dimension ofwork

must be at least max(3n, m, p)+n.

lda INTEGER. The first dimension ofa; at least max(1,m).

ldb INTEGER. The first dimension ofb; at least max(1,p).

ldu INTEGER. The first dimension of the arrayu.
ldu ≥ max(1,m) if jobu ='U' ; ldu ≥ 1 otherwise.

ldv INTEGER. The first dimension of the arrayv.
ldv ≥ max(1,p) if jobv ='V' ; ldv ≥ 1 otherwise.

ldq INTEGER. The first dimension of the arrayq.
ldq ≥ max(1,n) if jobq ='Q' ; ldq ≥ 1 otherwise.

iwork INTEGER.
Workspace array,DIMENSION at least max(1,n).

rwork REALfor cggsvd

DOUBLE PRECISIONfor zggsvd .
Workspace array,DIMENSION at least max(1, 2n).
Used in complex flavors only.

Output Parameters

k, l INTEGER. On exit,k and l specify the dimension of
the subblocks. The sumk+l is equal to the effective
numerical rank of (AH, BH)H.

a On exit,a contains the triangular matrixR or part ofR.

b On exit, b contains part of the triangular matrixR
if m- k- l < 0.

alpha, beta REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Arrays,DIMENSIONat least max(1,n) each.
Contain the generalized singular value pairs ofA andB:

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-413

alpha (1:k) = 1,
beta (1:k) = 0,

and if m-k-l ≥ 0,
alpha (k+1:k+l) = C,
beta (k+1:k+l) = S,

or if m-k-l < 0,
alpha (k+1:m)= C, alpha (m+1:k+l)= 0
beta (k+1:m) = S, beta (m+1:k+l) = 1

and
alpha (k+l +1:n) = 0
beta (k+l +1:n) = 0.

u, v, q REALfor sggsvd

DOUBLE PRECISIONfor dggsvd

COMPLEXfor cggsvd

DOUBLE COMPLEXfor zggsvd .
Arrays:
u(ldu, *) ; the second dimension ofu must be at least
max(1,m).
If jobu ='U' , u contains them-by-morthogonal/unitary
matrix U.
If jobu ='N' , u is not referenced.
v(ldv, *) ; the second dimension ofv must be at least
max(1,p).
If jobv ='V' , v contains thep-by-p orthogonal/unitary
matrix V.
If jobv ='N' , v is not referenced.
q(ldq, *) ; the second dimension ofq must be at least
max(1,n).
If jobq ='Q' , q contains then-by-n orthogonal/unitary
matrix Q.
If jobq ='N' , q is not referenced.

iwork On exit,iwork stores the sorting information.

5-414

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = 1, the Jacobi-type procedure failed to
converge. For further details, see subroutine?tgsja .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-415

Generalized Symmetric Definite Eigenproblems

This section describes LAPACK driver routines used for solving
generalized symmetric definite eigenproblems. See alsocomputational
routinesthat can be called to solve these problems.
Table 5-13lists routines described in more detail below.

Table 5-13 Driver Routines for Solving Generalized Symmetric Definite
Eigenproblems

Routine Name Operation performed

?sygv /?hegv Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem.

?sygvd/?hegvd Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem. If eigenvectors are
desired, it uses a divide and conquer method.

?sygvx /?hegvx Computes selected eigenvalues and, optionally, eigenvectors of a real /
complex generalized symmetric /Hermitian definite eigenproblem.

?spgv/?hpgv Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with matrices in
packed storage.

?spgvd /?hpgvd Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with matrices in
packed storage. If eigenvectors are desired, it uses a divide and conquer
method.

?spgvx/?hpgvx Computes selected eigenvalues and, optionally, eigenvectors of a real /
complex generalized symmetric /Hermitian definite eigenproblem with
matrices in packed storage.

?sbgv /?hbgv Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with banded
matrices.

?sbgvd/?hbgvd Computes all eigenvalues and, optionally, eigenvectors of a real / complex
generalized symmetric /Hermitian definite eigenproblem with banded
matrices. If eigenvectors are desired, it uses a divide and conquer method.

?sbgvx/?hbgvx Computes selected eigenvalues and, optionally, eigenvectors of a real /
complex generalized symmetric /Hermitian definite eigenproblem with
banded matrices.

5-416

5 Intel® Math Kernel Library Reference Manual

?sygv
Computes all eigenvalues and,
optionally, eigenvectors of a real
generalized symmetric definite
eigenproblem.

call ssygv (itype , jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, info)

call dsygv (itype , jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx= λ x, or B Ax= λ x .

HereA andB are assumed to be symmetric andB is also positive definite.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type isAx = λ Bx;
if itype = 2, the problem type isABx= λ x;
if itype = 3, the problem type isB Ax= λ x.

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysa andb store the upper triangles
of A andB;
If uplo = 'L' , arraysa andb store the lower triangles
of A andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-417

a, b, work REALfor ssygv

DOUBLE PRECISIONfor dsygv .
Arrays:
a(lda, *) contains the upper or lower triangle of the
symmetric matrixA, as specified byuplo .
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains the upper or lower triangle of the
symmetric positive definite matrixB, as specified by
uplo .
The second dimension ofb must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

lwork INTEGER. The dimension of the arraywork ;
lwork ≥ max(1, 3n-1).
SeeApplication Notesfor the suggested value oflwork .

Output Parameters

a On exit, if jobz ='V' , then if info = 0, a contains the
matrix Z of eigenvectors. The eigenvectors are
normalized as follows:
if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1 Z = I;

If jobz ='N' , then on exit the upper triangle (ifuplo =
'U') or the lower triangle (ifuplo = 'L') of A,
including the diagonal, is destroyed.

b On exit, if info ≤ n, the part ofb containing the matrix
is overwritten by the triangular factorU or L from the
Cholesky factorizationB = UTU or B = L LT.

w REALfor ssygv

DOUBLE PRECISIONfor dsygv .
Array, DIMENSIONat least max(1,n).
If info = 0, contains the eigenvalues in ascending order.

5-418

5 Intel® Math Kernel Library Reference Manual

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, spotrf/dpotrf andssyev/dsyev

returned an error code:

If info = i ≤ n, ssyev/dsyev failed to converge,
andi off-diagonal elements of an intermediate
tridiagonal did not converge to zero;
If info = n + i , for 1 ≤ i ≤ n, then the leading minor
of orderi of B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

For optimum performance uselwork ≥ (nb+2)* n, wherenb is the
blocksize forssytrd/dsytrd returned byilaenv .
If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-419

?hegv
Computes all eigenvalues and,
optionally, eigenvectors of a complex
generalized Hermitian definite
eigenproblem.

call chegv (itype , jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, info)

call zhegv (itype , jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx= λ x, or B Ax= λ x .

HereA andB are assumed to be Hermitian andB is also positive definite.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type isAx = λ Bx;
if itype = 2, the problem type isABx= λ x;
if itype = 3, the problem type isB Ax= λ x.

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysa andb store the upper triangles
of A andB;
If uplo = 'L' , arraysa andb store the lower triangles
of A andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

5-420

5 Intel® Math Kernel Library Reference Manual

a, b, work COMPLEXfor chegv

DOUBLE COMPLEXfor zhegv .
Arrays:
a(lda, *) contains the upper or lower triangle of the
Hermitian matrixA, as specified byuplo .
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains the upper or lower triangle of the
Hermitian positive definite matrixB, as specified by
uplo .
The second dimension ofb must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

lwork INTEGER. The dimension of the arraywork ;
lwork ≥ max(1, 2n-1).
SeeApplication Notesfor the suggested value oflwork .

rwork REALfor chegv

DOUBLE PRECISIONfor zhegv .
Workspace array,DIMENSION at least max(1, 3n-2).

Output Parameters

a On exit, if jobz ='V' , then if info = 0, a contains the
matrix Z of eigenvectors. The eigenvectors are
normalized as follows:
if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1 Z = I;

If jobz ='N' , then on exit the upper triangle (ifuplo =
'U') or the lower triangle (ifuplo = 'L') of A,
including the diagonal, is destroyed.

b On exit, if info ≤ n, the part ofb containing the matrix
is overwritten by the triangular factorU or L from the
Cholesky factorizationB = UHU or B = L LH.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-421

w REALfor chegv

DOUBLE PRECISIONfor zhegv .
Array, DIMENSIONat least max(1,n).
If info = 0, contains the eigenvalues in ascending order.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, cpotrf/zpotrf andcheev/zheev

returned an error code:

If info = i ≤ n, cheev/zheev failed to converge,
andi off-diagonal elements of an intermediate
tridiagonal did not converge to zero;
If info = n + i , for 1 ≤ i ≤ n, then the leading minor
of orderi of B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

For optimum performance uselwork ≥ (nb+1)* n, wherenb is the
blocksize forchetrd/zhetrd returned byilaenv .
If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

5-422

5 Intel® Math Kernel Library Reference Manual

?sygvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized
symmetric definite eigenproblem. If
eigenvectors are desired, it uses a divide
and conquer method.

call ssygvd (itype , jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, iwork, liwork, info)

call dsygvd (itype , jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx= λ x, or B Ax= λ x .

HereA andB are assumed to be symmetric andB is also positive definite.

If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type isAx = λ Bx;
if itype = 2, the problem type isABx= λ x;
if itype = 3, the problem type isB Ax= λ x.

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-423

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysa andb store the upper triangles
of A andB;
If uplo = 'L' , arraysa andb store the lower triangles
of A andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

a, b, work REALfor ssygvd

DOUBLE PRECISIONfor dsygvd .
Arrays:
a(lda, *) contains the upper or lower triangle of the
symmetric matrixA, as specified byuplo .
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains the upper or lower triangle of the
symmetric positive definite matrixB, as specified by
uplo .
The second dimension ofb must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

lwork INTEGER. The dimension of the arraywork .

Constraints:
If n ≤ 1, lwork ≥ 1;
If jobz ='N' andn>1, lwork ≥ 2n+1;
If jobz ='V' andn>1, lwork ≥ 2n2+6n+1 .

iwork INTEGER.
Workspace array,DIMENSION (liwork).

liwork INTEGER. The dimension of the arrayiwork .
Constraints:
If n ≤ 1, liwork ≥ 1;
If jobz ='N' andn>1, liwork ≥ 1;
If jobz ='V' andn>1, liwork ≥ 5n+3 .

5-424

5 Intel® Math Kernel Library Reference Manual

Output Parameters

a On exit, if jobz ='V' , then if info = 0, a contains the
matrix Z of eigenvectors. The eigenvectors are
normalized as follows:
if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1 Z = I;

If jobz ='N' , then on exit the upper triangle (ifuplo =
'U') or the lower triangle (ifuplo = 'L') of A,
including the diagonal, is destroyed.

b On exit, if info ≤ n, the part ofb containing the matrix
is overwritten by the triangular factorU or L from the
Cholesky factorizationB = UTU or B = L LT.

w REALfor ssygvd

DOUBLE PRECISIONfor dsygvd .
Array, DIMENSIONat least max(1,n).
If info = 0, contains the eigenvalues in ascending order.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

iwork(1) On exit, if info = 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, spotrf/dpotrf andssyev/dsyev

returned an error code:

If info = i ≤ n, ssyev/dsyev failed to converge,
andi off-diagonal elements of an intermediate
tridiagonal did not converge to zero;
If info = n + i , for 1 ≤ i ≤ n, then the leading minor
of orderi of B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-425

?hegvd
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized
Hermitian definite eigenproblem. If
eigenvectors are desired, it uses a divide
and conquer method.

call chegvd (itype , jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, lrwork, iwork, liwork, info)

call zhegvd (itype , jobz, uplo, n, a, lda, b, ldb, w, work,
lwork, rwork, lrwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx= λ x, or B Ax= λ x .

HereA andB are assumed to be Hermitian andB is also positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type isAx = λ Bx;
if itype = 2, the problem type isABx= λ x;
if itype = 3, the problem type isB Ax= λ x.

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

5-426

5 Intel® Math Kernel Library Reference Manual

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysa andb store the upper triangles
of A andB;
If uplo = 'L' , arraysa andb store the lower triangles
of A andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

a, b, work COMPLEXfor chegvd

DOUBLE COMPLEXfor zhegvd .
Arrays:
a(lda, *) contains the upper or lower triangle of the
Hermitian matrixA, as specified byuplo .
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains the upper or lower triangle of the
Hermitian positive definite matrixB, as specified by
uplo .
The second dimension ofb must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

lwork INTEGER. The dimension of the arraywork .

Constraints:
If n ≤ 1, lwork ≥ 1;
If jobz ='N' andn>1, lwork ≥ n+1;
If jobz ='V' andn>1, lwork ≥ n2+2n .

rwork REALfor chegvd

DOUBLE PRECISIONfor zhegvd .
Workspace array,DIMENSION (lrwork).

lrwork INTEGER. The dimension of the arrayrwork .
Constraints:
If n ≤ 1, lrwork ≥ 1;
If jobz ='N' andn>1, lrwork ≥ n;
If jobz ='V' andn>1, lrwork ≥ 2n2+5n+1 .

iwork INTEGER.
Workspace array,DIMENSION (liwork). .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-427

liwork INTEGER. The dimension of the arrayiwork .
Constraints:
If n ≤ 1, liwork ≥ 1;
If jobz ='N' andn>1, liwork ≥ 1;
If jobz ='V' andn>1, liwork ≥ 5n+3 .

Output Parameters

a On exit, if jobz ='V' , then if info = 0, a contains the
matrix Z of eigenvectors. The eigenvectors are
normalized as follows:
if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1 Z = I;

If jobz ='N' , then on exit the upper triangle (ifuplo =
'U') or the lower triangle (ifuplo = 'L') of A,
including the diagonal, is destroyed.

b On exit, if info ≤ n, the part ofb containing the matrix
is overwritten by the triangular factorU or L from the
Cholesky factorizationB = UHU or B = L LH.

w REALfor chegvd

DOUBLE PRECISIONfor zhegvd .
Array, DIMENSIONat least max(1,n).
If info = 0, contains the eigenvalues in ascending order.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

rwork(1) On exit, if info = 0, thenrwork(1) returns the
required minimal size oflrwork .

iwork(1) On exit, if info = 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, cpotrf/zpotrf andcheev/zheev

returned an error code:

5-428

5 Intel® Math Kernel Library Reference Manual

If info = i ≤ n, cheev/zheev failed to converge,
andi off-diagonal elements of an intermediate
tridiagonal did not converge to zero;
If info = n + i , for 1 ≤ i ≤ n, then the leading minor
of orderi of B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-429

?sygvx
Computes selected eigenvalues and,
optionally, eigenvectors of a real
generalized symmetric definite
eigenproblem.

call ssygvx(itype, jobz , range, uplo, n, a, lda, b, ldb, vl, vu, il,
iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)

call dsygvx(itype, jobz , range, uplo, n, a, lda, b, ldb, vl, vu, il,
iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx= λ x, or B Ax= λ x .

HereA andB are assumed to be symmetric andB is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type isAx = λ Bx;
if itype = 2, the problem type isABx= λ x;
if itype = 3, the problem type isB Ax= λ x.

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

range CHARACTER*1. Must be'A' or 'V' or 'I' .

5-430

5 Intel® Math Kernel Library Reference Manual

If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysa andb store the upper triangles
of A andB;
If uplo = 'L' , arraysa andb store the lower triangles
of A andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

a, b, work REALfor ssygvx

DOUBLE PRECISIONfor dsygvx .
Arrays:
a(lda, *) contains the upper or lower triangle of the
symmetric matrixA, as specified byuplo .
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains the upper or lower triangle of the
symmetric positive definite matrixB, as specified by
uplo .
The second dimension ofb must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

vl, vu REALfor ssygvx

DOUBLE PRECISIONfor dsygvx .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .

If range ='A' or 'I' , vl andvu are not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-431

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.

If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor ssygvx

DOUBLE PRECISIONfor dsygvx .
The absolute error tolerance for the eigenvalues.
SeeApplication Notesfor more information.

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
ldz ≥ 1; if jobz ='V' , ldz ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork ;
lwork ≥ max(1, 8n).
SeeApplication Notesfor the suggested value oflwork .

iwork INTEGER.
Workspace array,DIMENSION at least max(1, 5n).

Output Parameters

a On exit, the upper triangle (ifuplo = 'U') or the lower
triangle (if uplo = 'L') of A, including the diagonal, is
overwritten.

b On exit, if info ≤ n, the part ofb containing the matrix
is overwritten by the triangular factorU or L from the
Cholesky factorizationB = UTU or B = L LT.

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w, z REALfor ssygvx

DOUBLE PRECISIONfor dsygvx .
Arrays:

5-432

5 Intel® Math Kernel Library Reference Manual

w(*) , DIMENSION at least max(1,n) .
The firstmelements ofw contain the selected
eigenvalues in ascending order.

z(ldz,*) . The second dimension ofz must be at least
max(1,m).
If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixA
corresponding to the selected eigenvalues, with thei -th
column ofz holding the eigenvector associated with
w(i). The eigenvectors are normalized as follows:

if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1 Z = I;

If jobz ='N' , thenz is not referenced.
If an eigenvector fails to converge, then that column ofz

contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned inifail .
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

ifail INTEGER.
Array, DIMENSIONat least max(1,n).

If jobz ='V' , then if info = 0, the firstmelements of
ifail are zero; ifinfo > 0, theifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N' , thenifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, spotrf/dpotrf andssyevx/dsyevx

returned an error code:

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-433

If info = i ≤ n, ssyevx/dsyevx failed to
converge, andi eigenvectors failed to converge. Their
indices are stored in the arrayifail ;
If info = n + i , for 1 ≤ i ≤ n, then the leading minor
of orderi of B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , whereε is the machine precision. Ifabstol

is less than or equal to zero, thenε* ||T||1 will be used in its place, whereT
is the tridiagonal matrix obtained by reducingA to tridiagonal form.
Eigenvalues will be computed most accurately whenabstol is set to twice
the underflow threshold 2* ?lamch ('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2* ?lamch ('S').

For optimum performance uselwork ≥ (nb+3)* n, wherenb is the
blocksize forssytrd/dsytrd returned byilaenv .
If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

5-434

5 Intel® Math Kernel Library Reference Manual

?hegvx
Computes selected eigenvalues and,
optionally, eigenvectors of a complex
generalized Hermitian definite
eigenproblem.

call chegvx (itype, jobz , range, uplo, n, a, lda, b, ldb, vl, vu,
il, iu, abstol, m, w, z, ldz, work, lwork, rwork,

iwork, ifail, info)

call zhegvx (itype, jobz , range, uplo, n, a, lda, b, ldb, vl, vu,
il, iu, abstol, m, w, z, ldz, work, lwork, rwork,

iwork, ifail, info)

Discussion

This routine computes selected eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx= λ x, or B Ax= λ x .

HereA andB are assumed to be Hermitian andB is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type isAx = λ Bx;
if itype = 2, the problem type isABx= λ x;
if itype = 3, the problem type isB Ax= λ x.

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

range CHARACTER*1. Must be'A' or 'V' or 'I' .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-435

If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysa andb store the upper triangles
of A andB;
If uplo = 'L' , arraysa andb store the lower triangles
of A andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

a, b, work COMPLEXfor chegvx

DOUBLE COMPLEXfor zhegvx .
Arrays:
a(lda, *) contains the upper or lower triangle of the
Hermitian matrixA, as specified byuplo .
The second dimension ofa must be at least max(1,n).

b(ldb, *) contains the upper or lower triangle of the
Hermitian positive definite matrixB, as specified by
uplo .
The second dimension ofb must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension ofa; at least max(1,n).

ldb INTEGER. The first dimension ofb; at least max(1,n).

vl, vu REALfor chegvx

DOUBLE PRECISIONfor zhegvx .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .

If range ='A' or 'I' , vl andvu are not referenced.

5-436

5 Intel® Math Kernel Library Reference Manual

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.

If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor chegvx

DOUBLE PRECISIONfor zhegvx .
The absolute error tolerance for the eigenvalues.
SeeApplication Notesfor more information.

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
ldz ≥ 1; if jobz ='V' , ldz ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork ;
lwork ≥ max(1, 2n-1).
SeeApplication Notesfor the suggested value oflwork .

rwork REALfor chegvx

DOUBLE PRECISIONfor zhegvx .
Workspace array,DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1, 5n).

Output Parameters

a On exit, the upper triangle (ifuplo = 'U') or the lower
triangle (if uplo = 'L') of A, including the diagonal, is
overwritten.

b On exit, if info ≤ n, the part ofb containing the matrix
is overwritten by the triangular factorU or L from the
Cholesky factorizationB = UHU or B = L LH.

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-437

w REALfor chegvx

DOUBLE PRECISIONfor zhegvx .
Array, DIMENSION at least max(1,n) .
The firstmelements ofw contain the selected
eigenvalues in ascending order.

z COMPLEXfor chegvx

DOUBLE COMPLEXfor zhegvx .
Array z(ldz,*) . The second dimension ofz must be at
least max(1,m).
If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixA
corresponding to the selected eigenvalues, with thei -th
column ofz holding the eigenvector associated with
w(i). The eigenvectors are normalized as follows:

if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1 Z = I;

If jobz ='N' , thenz is not referenced.
If an eigenvector fails to converge, then that column ofz

contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned inifail .
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

ifail INTEGER.
Array, DIMENSIONat least max(1,n).

If jobz ='V' , then if info = 0, the firstmelements of
ifail are zero; ifinfo > 0, theifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N' , thenifail is not referenced.

5-438

5 Intel® Math Kernel Library Reference Manual

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, cpotrf/zpotrf andcheevx/zheevx

returned an error code:

If info = i ≤ n, cheevx/zheevx failed to
converge, andi eigenvectors failed to converge. Their
indices are stored in the arrayifail ;
If info = n + i , for 1 ≤ i ≤ n, then the leading minor
of orderi of B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , whereε is the machine precision. Ifabstol

is less than or equal to zero, thenε* ||T||1 will be used in its place, whereT
is the tridiagonal matrix obtained by reducingA to tridiagonal form.
Eigenvalues will be computed most accurately whenabstol is set to twice
the underflow threshold 2* ?lamch ('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2* ?lamch ('S').

For optimum performance uselwork ≥ (nb+1)* n, wherenb is the
blocksize forchetrd/zhetrd returned byilaenv .
If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-439

?spgv
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized
symmetric definite eigenproblem with
matrices in packed storage.

call sspgv (itype , jobz, uplo, n, ap, bp, w, z, ldz, work, info)

call dspgv (itype , jobz, uplo, n, ap, bp, w, z, ldz, work, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx= λ x, or B Ax= λ x .

HereA andB are assumed to be symmetric, stored in packed format, andB
is also positive definite.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type isAx = λ Bx;
if itype = 2, the problem type isABx= λ x;
if itype = 3, the problem type isB Ax= λ x.

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysap andbp store the upper
triangles ofA andB;
If uplo = 'L' , arraysap andbp store the lower
triangles ofA andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

5-440

5 Intel® Math Kernel Library Reference Manual

ap, bp, work REALfor sspgv

DOUBLE PRECISIONfor dspgv .
Arrays:
ap(*) contains the packed upper or lower triangle of
the symmetric matrixA, as specified byuplo . The
dimension ofap must be at least max(1,n* (n+1)/2).

bp(*) contains the packed upper or lower triangle of
the symmetric matrixB, as specified byuplo . The
dimension ofbp must be at least max(1,n* (n+1)/2).

work(*) is a workspace array,DIMENSIONat least
max(1, 3n).

ldz INTEGER. The leading dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' , ldz ≥ max(1,n) .

Output Parameters

ap On exit, the contents ofap are overwritten.

bp On exit, contains the triangular factorU or L from the
Cholesky factorizationB = UTU or B = L LT, in the same
storage format asB.

w, z REALfor sspgv

DOUBLE PRECISIONfor dspgv .
Arrays:
w(*) , DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*) . The second dimension ofz must be at least
max(1,n).
If jobz ='V' , then if info = 0, z contains the matrixZ
of eigenvectors. The eigenvectors are normalized as
follows:

if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1 Z = I;

If jobz ='N' , thenz is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-441

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, spptrf/dpptrf andsspev/dspev

returned an error code:

If info = i ≤ n, sspev/dspev failed to converge,
andi off-diagonal elements of an intermediate
tridiagonal did not converge to zero;
If info = n + i , for 1 ≤ i ≤ n, then the leading minor
of orderi of B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

5-442

5 Intel® Math Kernel Library Reference Manual

?hpgv
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized
Hermitian definite eigenproblem with
matrices in packed storage.

call chpgv (itype , jobz, uplo, n, ap, bp, w, z, ldz, work, rwork,
info)

call zhpgv (itype , jobz, uplo, n, ap, bp, w, z, ldz, work, rwork,
info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx= λ x, or B Ax= λ x .

HereA andB are assumed to be Hermitian, stored in packed format, andB
is also positive definite.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type isAx = λ Bx;
if itype = 2, the problem type isABx= λ x;
if itype = 3, the problem type isB Ax= λ x.

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysap andbp store the upper
triangles ofA andB;
If uplo = 'L' , arraysap andbp store the lower
triangles ofA andB.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-443

n INTEGER. The order of the matricesA andB (n ≥ 0).

ap, bp, work COMPLEXfor chpgv

DOUBLE COMPLEXfor zhpgv .
Arrays:
ap(*) contains the packed upper or lower triangle of
the Hermitian matrixA, as specified byuplo . The
dimension ofap must be at least max(1,n* (n+1)/2).

bp(*) contains the packed upper or lower triangle of
the Hermitian matrixB, as specified byuplo . The
dimension ofbp must be at least max(1,n* (n+1)/2).

work(*) is a workspace array,DIMENSIONat least
max(1, 2n-1).

ldz INTEGER. The leading dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' , ldz ≥ max(1,n) .

rwork REALfor chpgv

DOUBLE PRECISIONfor zhpgv .
Workspace array,DIMENSION at least max(1, 3n-2).

Output Parameters

ap On exit, the contents ofap are overwritten.

bp On exit, contains the triangular factorU or L from the
Cholesky factorizationB = UHU or B = L LH, in the
same storage format asB.

w REALfor chpgv

DOUBLE PRECISIONfor zhpgv .
Array, DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues in ascending order.

z COMPLEXfor chpgv

DOUBLE COMPLEXfor zhpgv .
Array z(ldz,*) . The second dimension ofz must be at
least max(1,n).
If jobz ='V' , then if info = 0, z contains the matrixZ
of eigenvectors. The eigenvectors are normalized as

5-444

5 Intel® Math Kernel Library Reference Manual

follows:
if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1 Z = I;

If jobz ='N' , thenz is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, cpptrf/zpptrf andchpev/zhpev

returned an error code:

If info = i ≤ n, chpev/zhpev failed to converge,
andi off-diagonal elements of an intermediate
tridiagonal did not converge to zero;
If info = n + i , for 1 ≤ i ≤ n, then the leading minor
of orderi of B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-445

?spgvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem with matrices in packed
storage. If eigenvectors are desired, it uses a
divide and conquer method.

call sspgvd (itype , jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
iwork, liwork, info)

call dspgvd (itype , jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx= λ x, or B Ax= λ x .

HereA andB are assumed to be symmetric, stored in packed format, andB
is also positive definite. If eigenvectors are desired, it uses a divide and
conquer algorithm.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type isAx = λ Bx;
if itype = 2, the problem type isABx= λ x;
if itype = 3, the problem type isB Ax= λ x.

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

5-446

5 Intel® Math Kernel Library Reference Manual

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysap andbp store the upper
triangles ofA andB;
If uplo = 'L' , arraysap andbp store the lower
triangles ofA andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

ap, bp, work REALfor sspgvd

DOUBLE PRECISIONfor dspgvd .
Arrays:
ap(*) contains the packed upper or lower triangle of
the symmetric matrixA, as specified byuplo . The
dimension ofap must be at least max(1,n* (n+1)/2).

bp(*) contains the packed upper or lower triangle of
the symmetric matrixB, as specified byuplo . The
dimension ofbp must be at least max(1,n* (n+1)/2).

work(lwork) is a workspace array.

ldz INTEGER. The leading dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' , ldz ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork .

Constraints:
If n ≤ 1, lwork ≥ 1;
If jobz ='N' andn>1, lwork ≥ 2n;
If jobz ='V' andn>1, lwork ≥ 2n2+6n+1 .

iwork INTEGER.
Workspace array,DIMENSION (liwork). .

liwork INTEGER. The dimension of the arrayiwork .
Constraints:
If n ≤ 1, liwork ≥ 1;
If jobz ='N' andn>1, liwork ≥ 1;
If jobz ='V' andn>1, liwork ≥ 5n+3 .

Output Parameters

ap On exit, the contents ofap are overwritten.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-447

bp On exit, contains the triangular factorU or L from the
Cholesky factorizationB = UTU or B = L LT, in the same
storage format asB.

w, z REALfor sspgv

DOUBLE PRECISIONfor dspgv .
Arrays:
w(*) , DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*) . The second dimension ofz must be at least
max(1,n).
If jobz ='V' , then if info = 0, z contains the matrixZ
of eigenvectors. The eigenvectors are normalized as
follows:

if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1 Z = I;

If jobz ='N' , thenz is not referenced.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

iwork(1) On exit, if info = 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, spptrf/dpptrf andsspevd/dspevd

returned an error code:

If info = i ≤ n, sspevd/dspevd failed to
converge, andi off-diagonal elements of an
intermediate tridiagonal did not converge to zero;
If info = n + i , for 1 ≤ i ≤ n, then the leading minor
of orderi of B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

5-448

5 Intel® Math Kernel Library Reference Manual

?hpgvd
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized
Hermitian definite eigenproblem with
matrices in packed storage. If eigenvectors
are desired, it uses a divide and conquer
method.

call chpgvd (itype , jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

call zhpgvd (itype , jobz, uplo, n, ap, bp, w, z, ldz, work, lwork,
rwork, lrwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx= λ x, or B Ax= λ x .

HereA andB are assumed to be Hermitian, stored in packed format, andB
is also positive definite. If eigenvectors are desired, it uses a divide and
conquer algorithm.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type isAx = λ Bx;
if itype = 2, the problem type isABx= λ x;
if itype = 3, the problem type isB Ax= λ x.

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-449

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysap andbp store the upper
triangles ofA andB;
If uplo = 'L' , arraysap andbp store the lower
triangles ofA andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

ap, bp, work COMPLEXfor chpgvd

DOUBLE COMPLEXfor zhpgvd .
Arrays:
ap(*) contains the packed upper or lower triangle of
the Hermitian matrixA, as specified byuplo . The
dimension ofap must be at least max(1,n* (n+1)/2).

bp(*) contains the packed upper or lower triangle of
the Hermitian matrixB, as specified byuplo . The
dimension ofbp must be at least max(1,n* (n+1)/2).

work(lwork) is a workspace array.

ldz INTEGER. The leading dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' , ldz ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork .

Constraints:
If n ≤ 1, lwork ≥ 1;
If jobz ='N' andn>1, lwork ≥ n;
If jobz ='V' andn>1, lwork ≥ 2n .

rwork REALfor chpgvd

DOUBLE PRECISIONfor zhpgvd .
Workspace array,DIMENSION (lrwork).

lrwork INTEGER. The dimension of the arrayrwork .
Constraints:
If n ≤ 1, lrwork ≥ 1;
If jobz ='N' andn>1, lrwork ≥ n;
If jobz ='V' andn>1, lrwork ≥ 2n2+5n+1 .

iwork INTEGER.
Workspace array,DIMENSION (liwork). .

5-450

5 Intel® Math Kernel Library Reference Manual

liwork INTEGER. The dimension of the arrayiwork .
Constraints:
If n ≤ 1, liwork ≥ 1;
If jobz ='N' andn>1, liwork ≥ 1;
If jobz ='V' andn>1, liwork ≥ 5n+3 .

Output Parameters

ap On exit, the contents ofap are overwritten.

bp On exit, contains the triangular factorU or L from the
Cholesky factorizationB = UHU or B = L LH, in the
same storage format asB.

w REALfor chpgvd

DOUBLE PRECISIONfor zhpgvd .
Array, DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues in ascending order.

z COMPLEXfor chpgvd

DOUBLE COMPLEXfor zhpgvd .
Array z(ldz,*) . The second dimension ofz must be at
least max(1,n).
If jobz ='V' , then if info = 0, z contains the matrixZ
of eigenvectors. The eigenvectors are normalized as
follows:

if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1 Z = I;

If jobz ='N' , thenz is not referenced.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

rwork(1) On exit, if info = 0, thenrwork(1) returns the
required minimal size oflrwork .

iwork(1) On exit, if info = 0, theniwork(1) returns the
required minimal size ofliwork .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-451

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, cpptrf/zpptrf andchpevd/zhpevd

returned an error code:

If info = i ≤ n, chpevd/zhpevd failed to
converge, andi off-diagonal elements of an
intermediate tridiagonal did not converge to zero;
If info = n + i , for 1 ≤ i ≤ n, then the leading minor
of orderi of B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

5-452

5 Intel® Math Kernel Library Reference Manual

?spgvx
Computes selected eigenvalues and,
optionally, eigenvectors of a real generalized
symmetric definite eigenproblem with
matrices in packed storage.

call sspgvx (itype, jobz , range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, iwork, ifail, info)

call dspgvx (itype, jobz , range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form

Ax = λ Bx, ABx= λ x, or B Ax= λ x .

HereA andB are assumed to be symmetric, stored in packed format, andB
is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type isAx = λ Bx;
if itype = 2, the problem type isABx= λ x;
if itype = 3, the problem type isB Ax= λ x.

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

range CHARACTER*1. Must be'A' or 'V' or 'I' .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-453

If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysap andbp store the upper
triangles ofA andB;
If uplo = 'L' , arraysap andbp store the lower
triangles ofA andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

ap, bp, work REALfor sspgvx

DOUBLE PRECISIONfor dspgvx .
Arrays:
ap(*) contains the packed upper or lower triangle of
the symmetric matrixA, as specified byuplo . The
dimension ofap must be at least max(1,n* (n+1)/2).

bp(*) contains the packed upper or lower triangle of
the symmetric matrixB, as specified byuplo . The
dimension ofbp must be at least max(1,n* (n+1)/2).

work(*) is a workspace array,DIMENSION at least
max(1, 8n).

vl, vu REALfor sspgvx

DOUBLE PRECISIONfor dspgvx .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .

If range ='A' or 'I' , vl andvu are not referenced.

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.

If range ='A' or 'V' , il andiu are not referenced.

5-454

5 Intel® Math Kernel Library Reference Manual

abstol REALfor sspgvx

DOUBLE PRECISIONfor dspgvx .
The absolute error tolerance for the eigenvalues.
SeeApplication Notesfor more information.

ldz INTEGER. The leading dimension of the output arrayz .
Constraints:
ldz ≥ 1; if jobz ='V' , ldz ≥ max(1,n) .

iwork INTEGER.
Workspace array,DIMENSION at least max(1, 5n).

Output Parameters

ap On exit, the contents ofap are overwritten.

bp On exit, contains the triangular factorU or L from the
Cholesky factorizationB = UTU or B = L LT, in the same
storage format asB.

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w, z REALfor sspgvx

DOUBLE PRECISIONfor dspgvx .
Arrays:
w(*) , DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*) . The second dimension ofz must be at least
max(1,n).
If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixA
corresponding to the selected eigenvalues, with thei -th
column ofz holding the eigenvector associated with
w(i). The eigenvectors are normalized as follows:

if itype = 1 or 2, ZTB Z = I;
if itype = 3, ZTB-1 Z = I;

If jobz ='N' , thenz is not referenced.
If an eigenvector fails to converge, then that column ofz

contains the latest approximation to the eigenvector, and

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-455

the index of the eigenvector is returned inifail .
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

ifail INTEGER.
Array, DIMENSIONat least max(1,n).

If jobz ='V' , then if info = 0, the firstmelements of
ifail are zero; ifinfo > 0, theifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N' , thenifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, spptrf/dpptrf andsspevx/dspevx

returned an error code:

If info = i ≤ n, sspevx/dspevx failed to
converge, andi eigenvectors failed to converge. Their
indices are stored in the arrayifail ;
If info = n + i , for 1 ≤ i ≤ n, then the leading minor
of orderi of B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , whereε is the machine precision. Ifabstol

is less than or equal to zero, thenε* ||T||1 will be used in its place, whereT
is the tridiagonal matrix obtained by reducingA to tridiagonal form.
Eigenvalues will be computed most accurately whenabstol is set to twice
the underflow threshold 2* ?lamch ('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2* ?lamch ('S').

5-456

5 Intel® Math Kernel Library Reference Manual

?hpgvx
Computes selected eigenvalues and, optionally,
eigenvectors of a generalized Hermitian definite
eigenproblem with matrices in packed storage.

call chpgvx (itype, jobz , range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

call zhpgvx (itype, jobz , range, uplo, n, ap, bp, vl, vu, il, iu,
abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

Discussion

This routine computes selected eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form

Ax = λ Bx, ABx= λ x, or B Ax= λ x .
HereA andB are assumed to be Hermitian, stored in packed format, andB
is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either a range of
values or a range of indices for the desired eigenvalues.

Input Parameters

itype INTEGER. Must be 1 or 2 or 3.
Specifies the problem type to be solved:
if itype = 1, the problem type isAx = λ Bx;
if itype = 2, the problem type isABx= λ x;
if itype = 3, the problem type isB Ax= λ x.

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

range CHARACTER*1. Must be'A' or 'V' or 'I' .
If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-457

If range ='I' , the routine computes eigenvalues with
indicesil to iu .

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysap andbp store the upper
triangles ofA andB;
If uplo = 'L' , arraysap andbp store the lower
triangles ofA andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

ap, bp, work COMPLEXfor chpgvx

DOUBLE COMPLEXfor zhpgvx .
Arrays:
ap(*) contains the packed upper or lower triangle of
the Hermitian matrixA, as specified byuplo . The
dimension ofap must be at least max(1,n* (n+1)/2).

bp(*) contains the packed upper or lower triangle of
the Hermitian matrixB, as specified byuplo . The
dimension ofbp must be at least max(1,n* (n+1)/2).

work(*) is a workspace array,DIMENSION at least
max(1, 2n).

vl, vu REALfor chpgvx

DOUBLE PRECISIONfor zhpgvx .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .

If range ='A' or 'I' , vl andvu are not referenced.

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.

If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor chpgvx

DOUBLE PRECISIONfor zhpgvx .
The absolute error tolerance for the eigenvalues.

5-458

5 Intel® Math Kernel Library Reference Manual

SeeApplication Notesfor more information.

ldz INTEGER. The leading dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' , ldz ≥ max(1,n) .

rwork REALfor chpgvx

DOUBLE PRECISIONfor zhpgvx .
Workspace array,DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1, 5n).

Output Parameters

ap On exit, the contents ofap are overwritten.

bp On exit, contains the triangular factorU or L from the
Cholesky factorizationB = UHU or B = L LH, in the
same storage format asB.

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w REALfor chpgvx

DOUBLE PRECISIONfor zhpgvx .
Array, DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues in ascending order.

z COMPLEXfor chpgvx

DOUBLE COMPLEXfor zhpgvx .
Array z(ldz,*) . The second dimension ofz must be at
least max(1,n).
If jobz ='V' , then if info = 0, the firstmcolumns ofz
contain the orthonormal eigenvectors of the matrixA
corresponding to the selected eigenvalues, with thei -th
column ofz holding the eigenvector associated with
w(i). The eigenvectors are normalized as follows:

if itype = 1 or 2, ZHB Z = I;
if itype = 3, ZHB-1 Z = I;

If jobz ='N' , thenz is not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-459

If an eigenvector fails to converge, then that column ofz

contains the latest approximation to the eigenvector, and
the index of the eigenvector is returned inifail .
Note: you must ensure that at least max(1,m) columns
are supplied in the arrayz ; if range ='V' , the exact
value ofmis not known in advance and an upper bound
must be used.

ifail INTEGER.
Array, DIMENSIONat least max(1,n).

If jobz ='V' , then if info = 0, the firstmelements of
ifail are zero; ifinfo > 0, theifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N' , thenifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, cpptrf/zpptrf andchpevx/zhpevx

returned an error code:

If info = i ≤ n, chpevx/zhpevx failed to
converge, andi eigenvectors failed to converge. Their
indices are stored in the arrayifail ;
If info = n + i , for 1 ≤ i ≤ n, then the leading minor
of orderi of B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , whereε is the machine precision. Ifabstol

is less than or equal to zero, thenε* ||T||1 will be used in its place, whereT
is the tridiagonal matrix obtained by reducingA to tridiagonal form.
Eigenvalues will be computed most accurately whenabstol is set to twice
the underflow threshold 2* ?lamch ('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2* ?lamch ('S').

5-460

5 Intel® Math Kernel Library Reference Manual

?sbgv
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized
symmetric definite eigenproblem with
banded matrices.

call ssbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, info)

call dsbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of the form
Ax = λ Bx . HereA andB are assumed to be symmetric and banded, andB

is also positive definite.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysab andbb store the upper
triangles ofA andB;
If uplo = 'L' , arraysab andbb store the lower
triangles ofA andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals inA
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals inB
(kb ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-461

ab,bb,work REALfor ssbgv

DOUBLE PRECISIONfor dsbgv

Arrays:
ab (ldab, *) is an array containing either upper or
lower triangular part of the symmetric matrixA (as
specified byuplo) in band storage format.
The second dimension of the arrayab must be at least
max(1,n).

bb (ldbb, *) is an array containing either upper or
lower triangular part of the symmetric matrixB (as
specified byuplo) in band storage format.
The second dimension of the arraybb must be at least
max(1,n).
work(*) is a workspace array,DIMENSIONat least
max(1, 3n)

ldab INTEGER. The first dimension of the arrayab ; must be
at leastka +1.

ldbb INTEGER. The first dimension of the arraybb ; must be
at leastkb +1.

ldz INTEGER. The leading dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' , ldz ≥ max(1,n) .

Output Parameters

ab On exit, the contents ofab are overwritten.

bb On exit, contains the factorSfrom the split Cholesky
factorizationB = STS , as returned byspbstf/dpbstf .

w, z REALfor ssbgv

DOUBLE PRECISIONfor dsbgv

Arrays:
w(*) , DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*) . The second dimension ofz must be at least
max(1,n).
If jobz ='V' , then if info = 0, z contains the matrixZ
of eigenvectors , with thei -th column ofz holding the

5-462

5 Intel® Math Kernel Library Reference Manual

eigenvector associated withw(i). The eigenvectors are
normalized so thatZTB Z = I.
If jobz ='N' , thenz is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, andi

off-diagonal elements of an intermediate tridiagonal
did not converge to zero;
if info = n + i , for 1≤ i ≤ n, thenspbstf/dpbstf

returnedinfo = i and B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-463

?hbgv
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized
Hermitian definite eigenproblem with
banded matrices.

call chbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, rwork, info)

call zhbgv (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, rwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite banded eigenproblem, of the
form Ax = λ Bx . HereA andB are assumed to be Hermitian and banded,
andB is also positive definite.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysab andbb store the upper
triangles ofA andB;
If uplo = 'L' , arraysab andbb store the lower
triangles ofA andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals inA
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals inB
(kb ≥ 0).

5-464

5 Intel® Math Kernel Library Reference Manual

ab,bb,work COMPLEXfor chbgv

DOUBLE COMPLEXfor zhbgv

Arrays:
ab (ldab, *) is an array containing either upper or
lower triangular part of the Hermitian matrixA (as
specified byuplo) in band storage format.
The second dimension of the arrayab must be at least
max(1,n).

bb (ldbb, *) is an array containing either upper or
lower triangular part of the Hermitian matrixB (as
specified byuplo) in band storage format.
The second dimension of the arraybb must be at least
max(1,n).
work(*) is a workspace array,DIMENSIONat least
max(1,n) .

ldab INTEGER. The first dimension of the arrayab ; must be
at leastka +1.

ldbb INTEGER. The first dimension of the arraybb ; must be
at leastkb +1.

ldz INTEGER. The leading dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' , ldz ≥ max(1,n) .

rwork REALfor chbgv

DOUBLE PRECISIONfor zhbgv .
Workspace array,DIMENSION at least max(1, 3n).

Output Parameters

ab On exit, the contents ofab are overwritten.

bb On exit, contains the factorSfrom the split Cholesky
factorizationB = SHS , as returned bycpbstf/zpbstf .

w REALfor chbgv

DOUBLE PRECISIONfor zhbgv .
Array, DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues in ascending order.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-465

z COMPLEXfor chbgv

DOUBLE COMPLEXfor zhbgv

Array z(ldz,*) . The second dimension ofz must be
at least max(1,n).
If jobz ='V' , then if info = 0, z contains the matrixZ
of eigenvectors , with thei -th column ofz holding the
eigenvector associated withw(i). The eigenvectors are
normalized so thatZHB Z = I.
If jobz ='N' , thenz is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, andi

off-diagonal elements of an intermediate tridiagonal
did not converge to zero;
if info = n + i , for 1≤ i ≤ n, thencpbstf/zpbstf

returnedinfo = i and B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

5-466

5 Intel® Math Kernel Library Reference Manual

?sbgvd
Computes all eigenvalues and, optionally,
eigenvectors of a real generalized symmetric
definite eigenproblem with banded matrices.
If eigenvectors are desired, it uses a divide
and conquer method.

call ssbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, iwork, liwork, info)

call dsbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of the form
Ax = λ Bx . HereA andB are assumed to be symmetric and banded, andB

is also positive definite. If eigenvectors are desired, it uses a divide and
conquer algorithm.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysab andbb store the upper
triangles ofA andB;
If uplo = 'L' , arraysab andbb store the lower
triangles ofA andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals inA
(ka ≥ 0).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-467

kb INTEGER. The number of super- or sub-diagonals inB
(kb ≥ 0).

ab,bb,work REALfor ssbgvd

DOUBLE PRECISIONfor dsbgvd

Arrays:
ab (ldab, *) is an array containing either upper or
lower triangular part of the symmetric matrixA (as
specified byuplo) in band storage format.
The second dimension of the arrayab must be at least
max(1,n).

bb (ldbb, *) is an array containing either upper or
lower triangular part of the symmetric matrixB (as
specified byuplo) in band storage format.
The second dimension of the arraybb must be at least
max(1,n).

work(lwork) is a workspace array.

ldab INTEGER. The first dimension of the arrayab ; must be
at leastka +1.

ldbb INTEGER. The first dimension of the arraybb ; must be
at leastkb +1.

ldz INTEGER. The leading dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' , ldz ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork .

Constraints:
If n ≤ 1, lwork ≥ 1;
If jobz ='N' andn>1, lwork ≥ 3n;
If jobz ='V' andn>1, lwork ≥ 2n2+5n+1 .

iwork INTEGER.
Workspace array,DIMENSION (liwork). .

liwork INTEGER. The dimension of the arrayiwork .
Constraints:
If n ≤ 1, liwork ≥ 1;
If jobz ='N' andn>1, liwork ≥ 1;
If jobz ='V' andn>1, liwork ≥ 5n+3 .

5-468

5 Intel® Math Kernel Library Reference Manual

Output Parameters

ab On exit, the contents ofab are overwritten.

bb On exit, contains the factorSfrom the split Cholesky
factorizationB = STS , as returned byspbstf/dpbstf .

w, z REALfor ssbgvd

DOUBLE PRECISIONfor dsbgvd

Arrays:
w(*) , DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*) . The second dimension ofz must be at least
max(1,n).
If jobz ='V' , then if info = 0, z contains the matrixZ
of eigenvectors , with thei -th column ofz holding the
eigenvector associated withw(i). The eigenvectors are
normalized so thatZTB Z = I.
If jobz ='N' , thenz is not referenced.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

iwork(1) On exit, if info = 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, andi

off-diagonal elements of an intermediate tridiagonal
did not converge to zero;
if info = n + i , for 1≤ i ≤ n, thenspbstf/dpbstf

returnedinfo = i and B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-469

?hbgvd
Computes all eigenvalues and, optionally,
eigenvectors of a complex generalized
Hermitian definite eigenproblem with banded
matrices. If eigenvectors are desired, it uses a
divide and conquer method.

call chbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, rwork, lrwork, iwork, liwork, info)

call zhbgvd (jobz, uplo, n, ka, kb, ab, ldab, bb, ldbb, w, z, ldz,
work, lwork, rwork, lrwork, iwork, liwork, info)

Discussion

This routine computes all the eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite banded eigenproblem, of the
form Ax = λ Bx . HereA andB are assumed to be Hermitian and banded,
andB is also positive definite. If eigenvectors are desired, it uses a divide
and conquer algorithm.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

uplo CHARACTER*1. Must be'U' or 'L' .
If uplo = 'U' , arraysab andbb store the upper
triangles ofA andB;
If uplo = 'L' , arraysab andbb store the lower
triangles ofA andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals inA
(ka ≥ 0).

5-470

5 Intel® Math Kernel Library Reference Manual

kb INTEGER. The number of super- or sub-diagonals inB
(kb ≥ 0).

ab,bb,work COMPLEXfor chbgvd

DOUBLE COMPLEXfor zhbgvd

Arrays:
ab (ldab, *) is an array containing either upper or
lower triangular part of the Hermitian matrixA (as
specified byuplo) in band storage format.
The second dimension of the arrayab must be at least
max(1,n).

bb (ldbb, *) is an array containing either upper or
lower triangular part of the Hermitian matrixB (as
specified byuplo) in band storage format.
The second dimension of the arraybb must be at least
max(1,n).

work(lwork) is a workspace array.

ldab INTEGER. The first dimension of the arrayab ; must be
at leastka +1.

ldbb INTEGER. The first dimension of the arraybb ; must be
at leastkb +1.

ldz INTEGER. The leading dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' , ldz ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork .

Constraints:
If n ≤ 1, lwork ≥ 1;
If jobz ='N' andn>1, lwork ≥ n;
If jobz ='V' andn>1, lwork ≥ 2n2 .

rwork REALfor chbgvd

DOUBLE PRECISIONfor zhbgvd .
Workspace array,DIMENSION (lrwork).

lrwork INTEGER. The dimension of the arrayrwork .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-471

Constraints:
If n ≤ 1, lrwork ≥ 1;
If jobz ='N' andn>1, lrwork ≥ n;
If jobz ='V' andn>1, lrwork ≥ 2n2+5n +1 .

iwork INTEGER.
Workspace array,DIMENSION (liwork).

liwork INTEGER. The dimension of the arrayiwork .
Constraints:
If n ≤ 1, liwork ≥ 1;
If jobz ='N' andn>1, liwork ≥ 1;
If jobz ='V' andn>1, liwork ≥ 5n+3 .

Output Parameters

ab On exit, the contents ofab are overwritten.

bb On exit, contains the factorSfrom the split Cholesky
factorizationB = SHS , as returned bycpbstf/zpbstf .

w REALfor chbgvd

DOUBLE PRECISIONfor zhbgvd .
Array, DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues in ascending order.

z COMPLEXfor chbgvd

DOUBLE COMPLEXfor zhbgvd

Array z(ldz,*) . The second dimension ofz must be
at least max(1,n).
If jobz ='V' , then if info = 0, z contains the matrixZ
of eigenvectors , with thei -th column ofz holding the
eigenvector associated withw(i). The eigenvectors are
normalized so thatZHB Z = I.
If jobz ='N' , thenz is not referenced.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

rwork(1) On exit, if info = 0, thenrwork(1) returns the
required minimal size oflrwork .

5-472

5 Intel® Math Kernel Library Reference Manual

iwork(1) On exit, if info = 0, theniwork(1) returns the
required minimal size ofliwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, andi

off-diagonal elements of an intermediate tridiagonal
did not converge to zero;
if info = n + i , for 1≤ i ≤ n, thencpbstf/zpbstf

returnedinfo = i and B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-473

?sbgvx
Computes selected eigenvalues and,
optionally, eigenvectors of a real
generalized symmetric definite
eigenproblem with banded matrices.

call ssbgvx (jobz , range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,

ifail, info)

call dsbgvx (jobz , range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork,

ifail, info)

Discussion

This routine computes selected eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite banded eigenproblem, of the form
Ax= λ Bx . HereA andB are assumed to be symmetric and banded, andB is
also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either all
eigenvalues, a range of values or a range of indices for the desired
eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

range CHARACTER*1. Must be'A' or 'V' or 'I' .
If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

uplo CHARACTER*1. Must be'U' or 'L' .

5-474

5 Intel® Math Kernel Library Reference Manual

If uplo = 'U' , arraysab andbb store the upper
triangles ofA andB;
If uplo = 'L' , arraysab andbb store the lower
triangles ofA andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals inA
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals inB
(kb ≥ 0).

ab,bb,work REALfor ssbgvx

DOUBLE PRECISIONfor dsbgvx

Arrays:
ab (ldab, *) is an array containing either upper or
lower triangular part of the symmetric matrixA (as
specified byuplo) in band storage format.
The second dimension of the arrayab must be at least
max(1,n).

bb (ldbb, *) is an array containing either upper or
lower triangular part of the symmetric matrixB (as
specified byuplo) in band storage format.
The second dimension of the arraybb must be at least
max(1,n).

work(*) is a workspace array,DIMENSION at least
max(1, 7n).

ldab INTEGER. The first dimension of the arrayab ; must be
at leastka +1.

ldbb INTEGER. The first dimension of the arraybb ; must be
at leastkb +1.

vl, vu REALfor ssbgvx

DOUBLE PRECISIONfor dsbgvx .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .

If range ='A' or 'I' , vl andvu are not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-475

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.
If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor ssbgvx

DOUBLE PRECISIONfor dsbgvx .
The absolute error tolerance for the eigenvalues.
SeeApplication Notesfor more information.

ldz INTEGER. The leading dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' , ldz ≥ max(1,n) .

ldq INTEGER. The leading dimension of the output arrayq;
ldq ≥ 1. If jobz ='V' , ldq ≥ max(1,n) .

iwork INTEGER.
Workspace array,DIMENSION at least max(1, 5n).

Output Parameters

ab On exit, the contents ofab are overwritten.

bb On exit, contains the factorSfrom the split Cholesky
factorizationB = STS , as returned byspbstf/dpbstf .

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w, z, q REALfor ssbgvx

DOUBLE PRECISIONfor dsbgvx

Arrays:
w(*) , DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues in ascending order.

z(ldz,*) . The second dimension ofz must be at least
max(1,n).
If jobz ='V' , then if info = 0, z contains the matrixZ
of eigenvectors , with thei -th column ofz holding the
eigenvector associated withw(i). The eigenvectors are

5-476

5 Intel® Math Kernel Library Reference Manual

normalized so thatZTB Z = I.
If jobz ='N' , thenz is not referenced.
q(ldq,*) . The second dimension ofq must be at least
max(1,n).
If jobz ='V' , thenq contains then-by-n matrix used in
the reduction of Ax = λ Bx to standard form, that is,
Cx = λ x and consequentlyC to tridiagonal form.
If jobz ='N' , thenq is not referenced.

ifail INTEGER.
Array, DIMENSIONat least max(1,n).

If jobz ='V' , then if info = 0, the firstmelements of
ifail are zero; ifinfo > 0, theifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N' , thenifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, andi

off-diagonal elements of an intermediate tridiagonal
did not converge to zero;
if info = n + i , for 1≤ i ≤ n, thenspbstf/dpbstf

returnedinfo = i and B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , whereε is the machine precision. Ifabstol

is less than or equal to zero, thenε* ||T||1 will be used in its place, whereT
is the tridiagonal matrix obtained by reducingA to tridiagonal form.
Eigenvalues will be computed most accurately whenabstol is set to twice
the underflow threshold 2* ?lamch ('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2* ?lamch ('S').

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-477

?hbgvx
Computes selected eigenvalues and,
optionally, eigenvectors of a complex
generalized Hermitian definite
eigenproblem with banded matrices.

call chbgvx (jobz , range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork,

iwork, ifail, info)

call zhbgvx (jobz , range, uplo, n, ka, kb, ab, ldab, bb, ldbb, q,
ldq, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork,

iwork, ifail, info)

Discussion

This routine computes selected eigenvalues, and optionally, the eigenvectors
of a complex generalized Hermitian-definite banded eigenproblem, of the
form Ax = λ Bx . HereA andB are assumed to be Hermitian and banded,
andB is also positive definite.
Eigenvalues and eigenvectors can be selected by specifying either all
eigenvalues, a range of values or a range of indices for the desired
eigenvalues.

Input Parameters

jobz CHARACTER*1. Must be'N' or 'V' .
If jobz ='N' , then compute eigenvalues only.
If jobz ='V' , then compute eigenvalues and
eigenvectors.

range CHARACTER*1. Must be'A' or 'V' or 'I' .
If range ='A' , the routine computes all eigenvalues.
If range ='V' , the routine computes eigenvaluesλi in
the half-open interval:vl < λi ≤ vu .
If range ='I' , the routine computes eigenvalues with
indicesil to iu .

uplo CHARACTER*1. Must be'U' or 'L' .

5-478

5 Intel® Math Kernel Library Reference Manual

If uplo = 'U' , arraysab andbb store the upper
triangles ofA andB;
If uplo = 'L' , arraysab andbb store the lower
triangles ofA andB.

n INTEGER. The order of the matricesA andB (n ≥ 0).

ka INTEGER. The number of super- or sub-diagonals inA
(ka ≥ 0).

kb INTEGER. The number of super- or sub-diagonals inB
(kb ≥ 0).

ab,bb,work COMPLEXfor chbgvx

DOUBLE COMPLEXfor zhbgvx

Arrays:
ab (ldab, *) is an array containing either upper or
lower triangular part of the Hermitian matrixA (as
specified byuplo) in band storage format.
The second dimension of the arrayab must be at least
max(1,n).

bb (ldbb, *) is an array containing either upper or
lower triangular part of the Hermitian matrixB (as
specified byuplo) in band storage format.
The second dimension of the arraybb must be at least
max(1,n).

work(*) is a workspace array,DIMENSION at least
max(1,n).

ldab INTEGER. The first dimension of the arrayab ; must be
at leastka +1.

ldbb INTEGER. The first dimension of the arraybb ; must be
at leastkb +1.

vl, vu REALfor chbgvx

DOUBLE PRECISIONfor zhbgvx .
If range ='V' , the lower and upper bounds of the
interval to be searched for eigenvalues.
Constraint:vl < vu .

If range ='A' or 'I' , vl andvu are not referenced.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-479

il, iu INTEGER.
If range ='I' , the indices in ascending order of the
smallest and largest eigenvalues to be returned.
Constraint: 1≤ il ≤ iu ≤ n, if n > 0; il =1 andiu =0
if n = 0.
If range ='A' or 'V' , il andiu are not referenced.

abstol REALfor chbgvx

DOUBLE PRECISIONfor zhbgvx .
The absolute error tolerance for the eigenvalues.
SeeApplication Notesfor more information.

ldz INTEGER. The leading dimension of the output arrayz ;
ldz ≥ 1. If jobz ='V' , ldz ≥ max(1,n) .

ldq INTEGER. The leading dimension of the output arrayq;
ldq ≥ 1. If jobz ='V' , ldq ≥ max(1,n) .

rwork REALfor chbgvx

DOUBLE PRECISIONfor zhbgvx .
Workspace array,DIMENSION at least max(1, 7n).

iwork INTEGER.
Workspace array,DIMENSION at least max(1, 5n).

Output Parameters

ab On exit, the contents ofab are overwritten.

bb On exit, contains the factorSfrom the split Cholesky
factorizationB = SHS , as returned bycpbstf/zpbstf .

m INTEGER. The total number of eigenvalues found,
0 ≤ m≤ n. If range ='A' , m= n, and if range ='I' ,
m = iu - il +1.

w REALfor chbgvx

DOUBLE PRECISIONfor zhbgvx .
Array w(*) , DIMENSION at least max(1,n) .
If info = 0, contains the eigenvalues in ascending order.

z, q COMPLEXfor chbgvx

DOUBLE COMPLEXfor zhbgvx

Arrays:

5-480

5 Intel® Math Kernel Library Reference Manual

z(ldz,*) . The second dimension ofz must be at least
max(1,n).
If jobz ='V' , then if info = 0, z contains the matrixZ
of eigenvectors , with thei -th column ofz holding the
eigenvector associated withw(i). The eigenvectors are
normalized so thatZHB Z = I.
If jobz ='N' , thenz is not referenced.
q(ldq,*) . The second dimension ofq must be at least
max(1,n).
If jobz ='V' , thenq contains then-by-n matrix used in
the reduction of Ax = λ Bx to standard form, that is,
Cx = λ x and consequentlyC to tridiagonal form.
If jobz ='N' , thenq is not referenced.

ifail INTEGER.
Array, DIMENSIONat least max(1,n).

If jobz ='V' , then if info = 0, the firstmelements of
ifail are zero; ifinfo > 0, theifail contains the
indices of the eigenvectors that failed to converge.
If jobz ='N' , thenifail is not referenced.

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th argument had an illegal value.
If info > 0, and

if i ≤ n, the algorithm failed to converge, andi

off-diagonal elements of an intermediate tridiagonal
did not converge to zero;
if info = n + i , for 1≤ i ≤ n, thencpbstf/zpbstf

returnedinfo = i and B is not positive-definite. The
factorization ofB could not be completed and no
eigenvalues or eigenvectors were computed.

Application Notes

An approximate eigenvalue is accepted as converged when it is determined
to lie in an interval [a,b] of width less than or equal to
abstol + ε * max(|a|,|b|) , whereε is the machine precision. Ifabstol

is less than or equal to zero, thenε* ||T||1 will be used in its place, whereT

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-481

is the tridiagonal matrix obtained by reducingA to tridiagonal form.
Eigenvalues will be computed most accurately whenabstol is set to twice
the underflow threshold 2* ?lamch ('S'), not zero. If this routine returns with
info > 0, indicating that some eigenvectors did not converge, try setting
abstol to 2* ?lamch ('S').

5-482

5 Intel® Math Kernel Library Reference Manual

Generalized Nonsymmetric Eigenproblems

This section describes LAPACK driver routines used for solving
generalized nonsymmetric eigenproblems. See alsocomputational routines
that can be called to solve these problems.
Table 5-14lists routines described in more detail below.

?gges
Computes the generalized eigenvalues,
Shur form, and the left and/or right Shur
vectors for a pair of nonsymmetric
matrices.

call sgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work,

lwork, bwork, info)

call dgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr, work,

lwork, bwork, info)

call cgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alpha, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork,

bwork, info)

Table 5-14 Driver Routines for Solving Generalized Nonsymmetric
Eigenproblems

Routine Name Operation performed

?gges Computes the generalized eigenvalues, Shur form, and the left and/or right
Shur vectors for a pair of nonsymmetric matrices.

?ggesx Computes the generalized eigenvalues, Shur form, and, optionally, the left
and/or right matrices of Shur vectors .

?ggev Computes the generalized eigenvalues, and the left and/or right
generalized eigenvectors for a pair of nonsymmetric matrices.

?ggevx Computes the generalized eigenvalues, and, optionally, the left and/or right
generalized eigenvectors.

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-483

call zgges (jobvsl, jobvsr, sort, selctg, n, a, lda, b, ldb, sdim,
alpha, beta, vsl, ldvsl, vsr, ldvsr, work, lwork, rwork,

bwork, info)

Discussion

This routine .computes for a pair ofn-by-n real/complex nonsymmetric
matrices (A,B), the generalized eigenvalues, the generalized real/complex
Schur form (S,T), optionally, the left and/or right matrices of Schur vectors
(vsl andvsr). This gives the generalized Schur factorization

(A,B) = (vsl * S* vsr H, vsl * T* vsr H)

Optionally, it also orders the eigenvalues so that a selected cluster of
eigenvalues appears in the leading diagonal blocks of the upper
quasi-triangular matrixSand the upper triangular matrixT. The leading
columns ofvsl andvsr then form an orthonormal/unitary basis for the
corresponding left and right eigenspaces (deflating subspaces).
(If only the generalized eigenvalues are needed, use the driver?ggev

instead, which is faster.)
A generalized eigenvalue for a pair of matrices (A,B) is a scalarw or a ratio
alpha/ beta= w, such thatA - w* B is singular. It is usually represented as
the pair (alpha, beta), as there is a reasonable interpretation forbeta=0 or
for both being zero.
A pair of matrices (S,T) is in generalized real Schur form ifT is upper
triangular with non-negative diagonal andS is block upper triangular with
1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized
eigenvalues, while 2-by-2 blocks ofSwill be “standardized" by making the
corresponding elements ofT have the form:

and the pair of corresponding 2-by-2 blocks inSandT will have a complex
conjugate pair of generalized eigenvalues.
A pair of matrices (S,T) is in generalized complex Schur form ifSandT are
upper triangular and, in addition, the diagonal ofT are non-negative real
numbers.

a
0

0

b

5-484

5 Intel® Math Kernel Library Reference Manual

Input Parameters

jobvsl CHARACTER*1. Must be'N' or 'V' .
If jobvsl ='N' , then the left Shur vectors are not
computed.
If jobvsl ='V' , then the left Shur vectors are
computed.

jobvsr CHARACTER*1. Must be'N' or 'V' .
If jobvsr ='N' , then the right Shur vectors are not
computed.
If jobvsr ='V' , then the right Shur vectors are
computed.

sort CHARACTER*1. Must be'N' or 'S' .
Specifies whether or not to order the eigenvalues on the
diagonal of the generalized Schur form.

If sort ='N' , then eigenvalues are not ordered.
If sort ='S' , eigenvalues are ordered (seeselctg).

selctg LOGICAL FUNCTIONof threeREALarguments
for real flavors.
LOGICAL FUNCTIONof two COMPLEXarguments
for complex flavors.

selctg must be declaredEXTERNALin the calling
subroutine.
If sort ='S' , selctg is used to select eigenvalues to
sort to the top left of the Shur form.
If sort ='N' , selctg is not referenced.

For real flavors:
An eigenvalue (alphar (j) + alphai (j))/beta (j) is
selected ifselctg (alphar (j), alphai (j), beta (j)) is
true; that is, if either one of a complex conjugate pair of
eigenvalues is selected, then both complex eigenvalues
are selected.
Note that in the ill-conditioned case, a selected complex
eigenvalue may no longer satisfy
selctg (alphar (j), alphai (j), beta (j)) = .TRUE.

after ordering. In this caseinfo is set ton+2 .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-485

For complex flavors:
An eigenvaluealpha (j) / beta (j) is selected if
selctg (alpha (j), beta (j)) is true.
Note that a selected complex eigenvalue may no longer
satisfyselctg (alpha (j), beta (j)) = .TRUE. after
ordering, since ordering may change the value of
complex eigenvalues (especially if the eigenvalue is
ill-conditioned); in this caseinfo is set ton+2 (see
info below).

n INTEGER. The order of the matricesA, B, vsl , andvsr

(n ≥ 0).

a, b, work REALfor sgges

DOUBLE PRECISIONfor dgges

COMPLEXfor cgges

DOUBLE COMPLEXfor zgges .
Arrays:
a(lda, *) is an array containing then-by-n matrix A
(first of the pair of matrices).
The second dimension ofa must be at least max(1,n).

b(ldb, *) is an array containing then-by-n matrix B
(second of the pair of matrices).
The second dimension ofb must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

ldb INTEGER. The first dimension of the arrayb.
Must be at least max(1,n) .

ldvsl,ldvsr INTEGER. The first dimensions of the output matrices
vsl andvsr , respectively. Constraints:
ldvsl ≥ 1. If jobvsl ='V' , ldvsl ≥ max(1,n) .
ldvsr ≥ 1. If jobvsr ='V' , ldvsr ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork .

5-486

5 Intel® Math Kernel Library Reference Manual

lwork ≥ max(1, 8n+16) for real flavors;
lwork ≥ max(1, 2n) for complex flavors.
For good performance,lwork must generally be larger.

rwork REALfor cgges

DOUBLE PRECISIONfor zgges

Workspace array,DIMENSIONat least max(1, 8n).
This array is used in complex flavors only.

bwork LOGICAL.
Workspace array,DIMENSIONat least max(1,n).
Not referenced ifsort ='N' .

Output Parameters

a On exit, this array has been overwritten by its
generalized Shur formS .

b On exit, this array has been overwritten by its
generalized Shur formT .

sdim INTEGER.
If sort ='N' , sdim = 0.
If sort ='S' , sdim is equal to the number of
eigenvalues (after sorting) for whichselctg is true.
Note that for real flavors complex conjugate pairs for
which selctg is true for either eigenvalue count as 2.

alphar,alphai REALfor sgges ;
DOUBLE PRECISIONfor dgges .
Arrays,DIMENSION at least max(1,n) each. Contain
values that form generalized eigenvalues in real flavors.
Seebeta .

alpha COMPLEXfor cgges ;
DOUBLE COMPLEXfor zgges .
Array, DIMENSION at least max(1,n). Contain values
that form generalized eigenvalues in complex flavors.
Seebeta .

beta REALfor sgges

DOUBLE PRECISIONfor dgges

COMPLEXfor cgges

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-487

DOUBLE COMPLEXfor zgges .
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar (j) + alphai (j)* i)/beta (j), j=1,...,n,
will be the generalized eigenvalues.
alphar (j) + alphai (j)* i andbeta (j), j=1,...,n are the
diagonals of the complex Schur form (S,T) that would
result if the 2-by-2 diagonal blocks of the real
generalized Schur form of (A,B) were further reduced to
triangular form using complex unitary transformations.
If alphai (j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, withalphai (j+1) negative.
For complex flavors:
On exit,alpha (j)/beta (j), j=1,...,n, will be the
generalized eigenvalues.alpha (j), j=1,...,n, and
beta (j), j=1,...,n, are the diagonals of the complex
Schur form (S,T) output bycgges/zgges . Thebeta (j)
will be non-negative real.

See alsoApplication Notesbelow.

vsl, vsr REALfor sgges

DOUBLE PRECISIONfor dgges

COMPLEXfor cgges

DOUBLE COMPLEXfor zgges .
Arrays:
vsl (ldvsl, *) , the second dimension ofvsl must be
at least max(1,n).
If jobvsl ='V' , this array will contain the left Shur
vectors.
If jobvsl ='N' , vsl is not referenced.

vsr (ldvsr, *) , the second dimension ofvsr must be
at least max(1,n).
If jobvsr ='V' , this array will contain the right Shur
vectors.
If jobvsr ='N' , vsr is not referenced.

5-488

5 Intel® Math Kernel Library Reference Manual

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , and
i ≤ n :

theQZ iteration failed. (A,B) is not in Shur form, but
alphar (j), alphai (j) (for real flavors), oralpha (j) (for
complex flavors), andbeta (j), j= info +1,...,n should be
correct.

i > n : errors that usually indicate LAPACK problems:

i = n+1: other thanQZ iteration failed in?hgeqz ;

i = n+2: after reordering, roundoff changed values of
some complex eigenvalues so that leading eigenvalues
in the generalized Schur form no longer satisfy
selctg = .TRUE. . This could also be caused due to
scaling;

i = n+3: reordering failed in?tgsen .

Application Notes

If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

The quotientsalphar (j)/beta (j) andalphai (j)/beta (j) may easily over-
or underflow, andbeta (j) may even be zero. Thus, you should avoid simply
computing the ratio. However,alphar andalphai will be always less than
and usually comparable with norm(A) in magnitude, andbeta always less
than and usually comparable with norm(B).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-489

?ggesx
Computes the generalized eigenvalues,
Shur form, and, optionally, the left
and/or right matrices of Shur vectors .

call sggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call dggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alphar, alphai, beta, vsl, ldvsl, vsr, ldvsr,
rconde, rcondv, work, lwork, iwork, liwork, bwork, info)

call cggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv,
work, lwork, rwork, iwork, liwork, bwork, info)

call zggesx (jobvsl, jobvsr, sort, selctg, sense, n, a, lda, b, ldb,
sdim, alpha, beta, vsl, ldvsl, vsr, ldvsr, rconde, rcondv,
work, lwork, rwork, iwork, liwork, bwork, info)

Discussion

This routine computes for a pair ofn-by-n real/complex nonsymmetric
matrices (A,B), the generalized eigenvalues, the generalized real/complex
Schur form (S,T), optionally, the left and/or right matrices of Schur vectors
(vsl andvsr). This gives the generalized Schur factorization

(A,B) = (vsl * S* vsr H, vsl * T* vsr H)

Optionally, it also orders the eigenvalues so that a selected cluster of
eigenvalues appears in the leading diagonal blocks of the upper
quasi-triangular matrixSand the upper triangular matrixT;
computes a reciprocal condition number for the average of the selected
eigenvalues (rconde); and computes a reciprocal condition number for the
right and left deflating subspaces corresponding to the selected eigenvalues
(rcondv). The leading columns ofvsl andvsr then form an
orthonormal/unitary basis for the corresponding left and right eigenspaces
(deflating subspaces).

5-490

5 Intel® Math Kernel Library Reference Manual

A generalized eigenvalue for a pair of matrices (A,B) is a scalarw or a ratio
alpha/ beta= w, such thatA - w* B is singular. It is usually represented as
the pair (alpha, beta), as there is a reasonable interpretation forbeta=0 or
for both being zero.
A pair of matrices (S,T) is in generalized real Schur form ifT is upper
triangular with non-negative diagonal andS is block upper triangular with
1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond to real generalized
eigenvalues, while 2-by-2 blocks ofSwill be “standardized" by making the
corresponding elements ofT have the form:

and the pair of corresponding 2-by-2 blocks inSandT will have a complex
conjugate pair of generalized eigenvalues.
A pair of matrices (S,T) is in generalized complex Schur form ifSandT are
upper triangular and, in addition, the diagonal ofT are non-negative real
numbers.

Input Parameters

jobvsl CHARACTER*1. Must be'N' or 'V' .
If jobvsl ='N' , then the left Shur vectors are not
computed.
If jobvsl ='V' , then the left Shur vectors are
computed.

jobvsr CHARACTER*1. Must be'N' or 'V' .
If jobvsr ='N' , then the right Shur vectors are not
computed.
If jobvsr ='V' , then the right Shur vectors are
computed.

sort CHARACTER*1. Must be'N' or 'S' .
Specifies whether or not to order the eigenvalues on the
diagonal of the generalized Schur form.

If sort ='N' , then eigenvalues are not ordered.
If sort ='S' , eigenvalues are ordered (seeselctg).

a
0

0

b

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-491

selctg LOGICAL FUNCTIONof threeREALarguments
for real flavors.
LOGICAL FUNCTIONof two COMPLEXarguments
for complex flavors.

selctg must be declaredEXTERNALin the calling
subroutine.
If sort ='S' , selctg is used to select eigenvalues to
sort to the top left of the Shur form.
If sort ='N' , selctg is not referenced.

For real flavors:
An eigenvalue (alphar (j) + alphai (j))/beta (j) is
selected ifselctg (alphar (j), alphai (j), beta (j)) is
true; that is, if either one of a complex conjugate pair of
eigenvalues is selected, then both complex eigenvalues
are selected.
Note that in the ill-conditioned case, a selected complex
eigenvalue may no longer satisfy
selctg (alphar (j), alphai (j), beta (j)) = .TRUE.

after ordering. In this caseinfo is set ton+2 .

For complex flavors:
An eigenvaluealpha (j) / beta (j) is selected if
selctg (alpha (j), beta (j)) is true.
Note that a selected complex eigenvalue may no longer
satisfyselctg (alpha (j), beta (j)) = .TRUE. after
ordering, since ordering may change the value of
complex eigenvalues (especially if the eigenvalue is
ill-conditioned); in this caseinfo is set ton+2 (see
info below).

sense CHARACTER*1. Must be'N' , 'E' , 'V' , or 'B' .
Determines which reciprocal condition number are
computed.

If sense ='N' , none are computed;
If sense ='E' , computed for average of selected
eigenvalues only;
If sense ='V' , computed for selected deflating
subspaces only;

5-492

5 Intel® Math Kernel Library Reference Manual

If sense ='B' , computed for both.
If sense is 'E' , 'V' , or 'B' , thensort must equal
'S' .

n INTEGER. The order of the matricesA, B, vsl , andvsr

(n ≥ 0).

a, b, work REALfor sggesx

DOUBLE PRECISIONfor dggesx

COMPLEXfor cggesx

DOUBLE COMPLEXfor zggesx .
Arrays:
a(lda, *) is an array containing then-by-n matrix A
(first of the pair of matrices).
The second dimension ofa must be at least max(1,n).

b(ldb, *) is an array containing then-by-n matrix B
(second of the pair of matrices).
The second dimension ofb must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

ldb INTEGER. The first dimension of the arrayb.
Must be at least max(1,n) .

ldvsl,ldvsr INTEGER. The first dimensions of the output matrices
vsl andvsr , respectively. Constraints:
ldvsl ≥ 1. If jobvsl ='V' , ldvsl ≥ max(1,n) .
ldvsr ≥ 1. If jobvsr ='V' , ldvsr ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork .
For real flavors:
lwork ≥ max(1, 8(n+1)+16);
if sense = 'E' , 'V' , or 'B' , then
lwork ≥ max(8(n+1)+16) , 2* sdim * (n- sdim)) .
For complex flavors:
lwork ≥ max(1, 2n);
if sense = 'E' , 'V' , or 'B' , then
lwork ≥ max(2n , 2* sdim * (n- sdim)) .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-493

For good performance,lwork must generally be larger.

rwork REALfor cggesx

DOUBLE PRECISIONfor zggesx

Workspace array,DIMENSIONat least max(1, 8n).
This array is used in complex flavors only.

iwork INTEGER.
Workspace array,DIMENSION (liwork) . Not
referenced ifsense = 'N' .

liwork INTEGER. The dimension of the arrayiwork .

liwork ≥ n+6 for real flavors;
liwork ≥ n+2 for complex flavors.

bwork LOGICAL.
Workspace array,DIMENSIONat least max(1,n).
Not referenced ifsort ='N' .

Output Parameters

a On exit, this array has been overwritten by its
generalized Shur formS .

b On exit, this array has been overwritten by its
generalized Shur formT .

sdim INTEGER.
If sort ='N' , sdim = 0.
If sort ='S' , sdim is equal to the number of
eigenvalues (after sorting) for whichselctg is true.
Note that for real flavors complex conjugate pairs for
which selctg is true for either eigenvalue count as 2.

alphar,alphai REALfor sggesx ;
DOUBLE PRECISIONfor dggesx .
Arrays,DIMENSION at least max(1,n) each. Contain
values that form generalized eigenvalues in real flavors.
Seebeta .

5-494

5 Intel® Math Kernel Library Reference Manual

alpha COMPLEXfor cggesx ;
DOUBLE COMPLEXfor zggesx .
Array, DIMENSION at least max(1,n). Contain values
that form generalized eigenvalues in complex flavors.
Seebeta .

beta REALfor sggesx

DOUBLE PRECISIONfor dggesx

COMPLEXfor cggesx

DOUBLE COMPLEXfor zggesx .
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar (j) + alphai (j)* i)/beta (j), j=1,...,n,
will be the generalized eigenvalues.
alphar (j) + alphai (j)* i andbeta (j), j=1,...,n are the
diagonals of the complex Schur form (S,T) that would
result if the 2-by-2 diagonal blocks of the real
generalized Schur form of (A,B) were further reduced to
triangular form using complex unitary transformations.
If alphai (j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, withalphai (j+1) negative.
For complex flavors:
On exit,alpha (j)/beta (j), j=1,...,n, will be the
generalized eigenvalues.alpha (j), j=1,...,n, and
beta (j), j=1,...,n, are the diagonals of the complex
Schur form (S,T) output bycggesx/zggesx . The
beta (j) will be non-negative real.

See alsoApplication Notesbelow.

vsl, vsr REALfor sggesx

DOUBLE PRECISIONfor dggesx

COMPLEXfor cggesx

DOUBLE COMPLEXfor zggesx .
Arrays:
vsl (ldvsl, *) , the second dimension ofvsl must be
at least max(1,n).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-495

If jobvsl ='V' , this array will contain the left Shur
vectors.
If jobvsl ='N' , vsl is not referenced.

vsr (ldvsr, *) , the second dimension ofvsr must be
at least max(1,n).
If jobvsr ='V' , this array will contain the right Shur
vectors.
If jobvsr ='N' , vsr is not referenced.

rconde,rcondv REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSION(2) each

If sense = 'E' or 'B' , rconde (1) andrconde (2)
contain the reciprocal condition numbers for the average
of the selected eigenvalues.
Not referenced ifsense = 'N' or 'V' .

If sense = 'V' or 'B' , rcondv (1) andrcondv (2)
contain the reciprocal condition numbers for the
selected deflating subspaces.
Not referenced ifsense = 'N' or 'E' .

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , and
i ≤ n :

theQZ iteration failed. (A,B) is not in Shur form, but
alphar (j), alphai (j) (for real flavors), oralpha (j) (for
complex flavors), andbeta (j), j= info +1,...,n should be
correct.

i > n : errors that usually indicate LAPACK problems:

i = n+1: other thanQZ iteration failed in?hgeqz ;

5-496

5 Intel® Math Kernel Library Reference Manual

i = n+2: after reordering, roundoff changed values of
some complex eigenvalues so that leading eigenvalues
in the generalized Schur form no longer satisfy
selctg = .TRUE. . This could also be caused due to
scaling;

i = n+3: reordering failed in?tgsen .

Application Notes

If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

The quotientsalphar (j)/beta (j) andalphai (j)/beta (j) may easily over-
or underflow, andbeta (j) may even be zero. Thus, you should avoid simply
computing the ratio. However,alphar andalphai will be always less than
and usually comparable with norm(A) in magnitude, andbeta always less
than and usually comparable with norm(B).

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-497

?ggev
Computes the generalized eigenvalues,
and the left and/or right generalized
eigenvectors for a pair of nonsymmetric
matrices.

call sggev (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta,
vl, ldvl, vr, ldvr, work, lwork, info)

call dggev (jobvl, jobvr, n, a, lda, b, ldb, alphar, alphai, beta,
vl, ldvl, vr, ldvr, work, lwork, info)

call cggev (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta,
vl, ldvl, vr, ldvr, work, lwork, rwork, info)

call zggev (jobvl, jobvr, n, a, lda, b, ldb, alpha, beta,
vl, ldvl, vr, ldvr, work, lwork, rwork, info)

Discussion

This routine computes for a pair ofn-by-n real/complex nonsymmetric
matrices (A,B), the generalized eigenvalues, and optionally, the left and/or
right generalized eigenvectors.

A generalized eigenvalue for a pair of matrices (A,B) is a scalarλ or a ratio
alpha/ beta= λ, such thatA - λ* B is singular. It is usually represented as
the pair (alpha, beta), as there is a reasonable interpretation forbeta=0 and
even for both being zero.
The right generalized eigenvectorv(j) corresponding to the generalized
eigenvalueλ(j) of (A,B) satisfies

A* v(j) = λ(j)* B* v(j) .

The left generalized eigenvectoru(j) corresponding to the generalized
eigenvalueλ(j) of (A,B) satisfies

u(j)H* A = λ(j)* u(j)H* B

whereu(j)H denotes the conjugate transpose ofu(j).

5-498

5 Intel® Math Kernel Library Reference Manual

Input Parameters

jobvl CHARACTER*1. Must be'N' or 'V' .
If jobvl ='N' , the left generalized eigenvectors are not
computed;
If jobvl ='V' , the left generalized eigenvectors are
computed.

jobvr CHARACTER*1. Must be'N' or 'V' .
If jobvr ='N' , the right generalized eigenvectors are
not computed;
If jobvr ='V' , the right generalized eigenvectors are
computed.

n INTEGER. The order of the matricesA, B, vl , andvr

(n ≥ 0).

a, b, work REALfor sggev

DOUBLE PRECISIONfor dggev

COMPLEXfor cggev

DOUBLE COMPLEXfor zggev .
Arrays:
a(lda, *) is an array containing then-by-n matrix A
(first of the pair of matrices).
The second dimension ofa must be at least max(1,n).

b(ldb, *) is an array containing then-by-n matrix B
(second of the pair of matrices).
The second dimension ofb must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

ldb INTEGER. The first dimension of the arrayb.
Must be at least max(1,n) .

ldvl,ldvr INTEGER. The first dimensions of the output matrices
vl andvr , respectively. Constraints:
ldvl ≥ 1. If jobvl ='V' , ldvl ≥ max(1,n) .
ldvr ≥ 1. If jobvr ='V' , ldvr ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork .

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-499

lwork ≥ max(1, 8n+16) for real flavors;
lwork ≥ max(1, 2n) for complex flavors.
For good performance,lwork must generally be larger.

rwork REALfor cggev

DOUBLE PRECISIONfor zggev

Workspace array,DIMENSIONat least max(1, 8n).
This array is used in complex flavors only.

Output Parameters

a, b On exit, these arrays have been overwritten.

alphar,alphai REALfor sggev ;
DOUBLE PRECISIONfor dggev .
Arrays,DIMENSION at least max(1,n) each. Contain
values that form generalized eigenvalues in real flavors.
Seebeta .

alpha COMPLEXfor cggev ;
DOUBLE COMPLEXfor zggev .
Array, DIMENSION at least max(1,n). Contain values
that form generalized eigenvalues in complex flavors.
Seebeta .

beta REALfor sggev

DOUBLE PRECISIONfor dggev

COMPLEXfor cggev

DOUBLE COMPLEXfor zggev .
Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar (j) + alphai (j)* i)/beta (j), j=1,...,n,
will be the generalized eigenvalues.
If alphai (j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, withalphai (j+1) negative.
For complex flavors:
On exit,alpha (j)/beta (j), j=1,...,n, will be the
generalized eigenvalues.

See alsoApplication Notesbelow.

5-500

5 Intel® Math Kernel Library Reference Manual

vl, vr REALfor sggev

DOUBLE PRECISIONfor dggev

COMPLEXfor cggev

DOUBLE COMPLEXfor zggev .
Arrays:
vl (ldvl, *) ; the second dimension ofvl must be at
least max(1,n).

If jobvl ='V' , the left generalized eigenvectorsu(j) are
stored one after another in the columns ofvl , in the
same order as their eigenvalues. Each eigenvector will
be scaled so the largest component have abs(Re) +
abs(Im) = 1. Ifjobvl ='N' , vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, thenu(j) = vl (:,j), the j-th
column ofvl . If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, thenu(j) = vl (:,j) + i* vl (:,j+1)
andu(j+1) = vl (:,j) - i* vl (:,j+1), wherei= .

For complex flavors:
u(j) = vl (:,j), the j-th column ofvl .

vr (ldvr, *) ; the second dimension ofvr must be at
least max(1,n).

If jobvr ='V' , the right generalized eigenvectorsv(j)
are stored one after another in the columns ofvr , in the
same order as their eigenvalues. Each eigenvector will
be scaled so the largest component have abs(Re) +
abs(Im) = 1. Ifjobvr ='N' , vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, thenv(j) = vr (:,j), the j-th
column ofvr . If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, thenv(j) = vr (:,j) + i* vr (:,j+1)
andv(j+1) = vr (:,j) - i* vr (:,j+1).

For complex flavors:
v(j) = vr (:,j), the j-th column ofvr .

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

1–

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-501

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , and
i ≤ n :

theQZ iteration failed. No eigenvectors have been
calculated, butalphar (j), alphai (j) (for real flavors),
or alpha (j) (for complex flavors), andbeta (j),
j=info +1,...,n should be correct.

i > n : errors that usually indicate LAPACK problems:

i = n+1: other thanQZ iteration failed in?hgeqz ;

i = n+2: error return from?tgevc .

Application Notes

If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

The quotientsalphar (j)/beta (j) andalphai (j)/beta (j) may easily over-
or underflow, andbeta (j) may even be zero. Thus, you should avoid simply
computing the ratio. However,alphar andalphai (for real flavors) or
alpha (for complex flavors) will be always less than and usually
comparable with norm(A) in magnitude, andbeta always less than and
usually comparable with norm(B).

5-502

5 Intel® Math Kernel Library Reference Manual

?ggevx
Computes the generalized eigenvalues,
and, optionally, the left and/or right
generalized eigenvectors.

call sggevx (balanc, jobvl , jobvr, sense, n, a, lda, b, ldb,
alphar, alphai, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,

lwork, iwork, bwork, info)

call dggevx (balanc, jobvl , jobvr, sense, n, a, lda, b, ldb,
alphar, alphai, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,

lwork, iwork, bwork, info)

call cggevx (balanc, jobvl , jobvr, sense, n, a, lda, b, ldb,
alpha, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,

lwork, rwork, iwork, bwork, info)

call zggevx (balanc, jobvl , jobvr, sense, n, a, lda, b, ldb,
alpha, beta, vl, ldvl, vr, ldvr, ilo, ihi,
lscale, rscale, abnrm, bbnrm, rconde, rcondv, work,

lwork, rwork, iwork, bwork, info)

Discussion

This routine computes for a pair ofn-by-n real/complex nonsymmetric
matrices (A,B), the generalized eigenvalues, and optionally, the left and/or
right generalized eigenvectors.

Optionally also, it computes a balancing transformation to improve the
conditioning of the eigenvalues and eigenvectors (ilo , ihi , lscale ,
rscale , abnrm , andbbnrm), reciprocal condition numbers for the
eigenvalues (rconde), and reciprocal condition numbers for the right
eigenvectors (rcondv).

A generalized eigenvalue for a pair of matrices (A,B) is a scalarλ or a ratio
alpha/ beta= λ, such thatA - λ* B is singular. It is usually represented as
the pair (alpha, beta), as there is a reasonable interpretation forbeta=0 and

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-503

even for both being zero.
The right generalized eigenvectorv(j) corresponding to the generalized
eigenvalueλ(j) of (A,B) satisfies

A* v(j) = λ(j)* B* v(j) .

The left generalized eigenvectoru(j) corresponding to the generalized
eigenvalueλ(j) of (A,B) satisfies

u(j)H* A = λ(j)* u(j)H* B

whereu(j)H denotes the conjugate transpose ofu(j).

Input Parameters

balanc CHARACTER*1. Must be'N' , 'P' , 'S' , or 'B' .
Specifies the balance option to be performed.

If balanc ='N' , do not diagonally scale or permute;
If balanc ='P' , permute only;
If balanc ='S' , scale only;
If balanc ='B' , both permute and scale.

Computed reciprocal condition numbers will be for the
matrices after balancing and/or permuting. Permuting
does not change condition numbers (in exact
arithmetic), but balancing does.

jobvl CHARACTER*1. Must be'N' or 'V' .
If jobvl ='N' , the left generalized eigenvectors are not
computed;
If jobvl ='V' , the left generalized eigenvectors are
computed.

jobvr CHARACTER*1. Must be'N' or 'V' .
If jobvr ='N' , the right generalized eigenvectors are
not computed;
If jobvr ='V' , the right generalized eigenvectors are
computed.

sense CHARACTER*1. Must be'N' , 'E' , 'V' , or 'B' .
Determines which reciprocal condition number are
computed.

5-504

5 Intel® Math Kernel Library Reference Manual

If sense ='N' , none are computed;
If sense ='E' , computed for eigenvalues only;
If sense ='V' , computed for eigenvectors only;
If sense ='B' , computed for eigenvalues and
eigenvectors.

n INTEGER. The order of the matricesA, B, vl , andvr

(n ≥ 0).

a, b, work REALfor sggevx

DOUBLE PRECISIONfor dggevx

COMPLEXfor cggevx

DOUBLE COMPLEXfor zggevx .
Arrays:
a(lda, *) is an array containing then-by-n matrix A
(first of the pair of matrices).
The second dimension ofa must be at least max(1,n).

b(ldb, *) is an array containing then-by-n matrix B
(second of the pair of matrices).
The second dimension ofb must be at least max(1,n).

work (lwork) is a workspace array.

lda INTEGER. The first dimension of the arraya.
Must be at least max(1,n) .

ldb INTEGER. The first dimension of the arrayb.
Must be at least max(1,n) .

ldvl,ldvr INTEGER. The first dimensions of the output matrices
vl andvr , respectively. Constraints:
ldvl ≥ 1. If jobvl ='V' , ldvl ≥ max(1,n) .
ldvr ≥ 1. If jobvr ='V' , ldvr ≥ max(1,n) .

lwork INTEGER. The dimension of the arraywork .
For real flavors:
lwork ≥ max(1, 6n);
if sense = 'E' , lwork ≥ 12n ;
if sense = 'V' , or 'B' , lwork ≥ 2n2+ 12n+16 .
For complex flavors:

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-505

lwork ≥ max(1, 2n);
if sense ='N' , or 'E' , lwork ≥ 2n ;
if sense = 'V' , or 'B' , lwork ≥ 2n2+ 2n .

rwork REALfor cggevx

DOUBLE PRECISIONfor zggevx

Workspace array,DIMENSIONat least max(1, 6n).
This array is used in complex flavors only.

iwork INTEGER.
Workspace array,DIMENSION at least (n+6) for real
flavors and at least (n+2) for complex flavors.
Not referenced ifsense = 'E' .

bwork LOGICAL.
Workspace array,DIMENSIONat least max(1,n).
Not referenced ifsense ='N' .

Output Parameters

a, b On exit, these arrays have been overwritten.

If jobvl ='V' or jobvr ='V' or both, thena contains
the first part of the real Schur form of the "balanced"
versions of the inputA andB, andb contains its second
part.

alphar,alphai REALfor sggevx ;
DOUBLE PRECISIONfor dggevx .
Arrays,DIMENSION at least max(1,n) each. Contain
values that form generalized eigenvalues in real flavors.
Seebeta .

alpha COMPLEXfor cggevx ;
DOUBLE COMPLEXfor zggevx .
Array, DIMENSION at least max(1,n). Contain values
that form generalized eigenvalues in complex flavors.
Seebeta .

beta REALfor sggevx

DOUBLE PRECISIONfor dggevx

COMPLEXfor cggevx

DOUBLE COMPLEXfor zggevx .

5-506

5 Intel® Math Kernel Library Reference Manual

Array, DIMENSION at least max(1,n).
For real flavors:
On exit, (alphar (j) + alphai (j)* i)/beta (j), j=1,...,n,
will be the generalized eigenvalues.
If alphai (j) is zero, then the j-th eigenvalue is real; if
positive, then the j-th and (j+1)-st eigenvalues are a
complex conjugate pair, withalphai (j+1) negative.
For complex flavors:
On exit,alpha (j)/beta (j), j=1,...,n, will be the
generalized eigenvalues.

See alsoApplication Notesbelow.

vl, vr REALfor sggevx

DOUBLE PRECISIONfor dggevx

COMPLEXfor cggevx

DOUBLE COMPLEXfor zggevx .
Arrays:
vl (ldvl, *) ; the second dimension ofvl must be at
least max(1,n).

If jobvl ='V' , the left generalized eigenvectorsu(j) are
stored one after another in the columns ofvl , in the
same order as their eigenvalues. Each eigenvector will
be scaled so the largest component have abs(Re) +
abs(Im) = 1. Ifjobvl ='N' , vl is not referenced.
For real flavors:
If the j-th eigenvalue is real, thenu(j) = vl (:,j), the j-th
column ofvl . If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, thenu(j) = vl (:,j) + i* vl (:,j+1)
andu(j+1) = vl (:,j) - i* vl (:,j+1), wherei= .

For complex flavors:
u(j) = vl (:,j), the j-th column ofvl .

vr (ldvr, *) ; the second dimension ofvr must be at
least max(1,n).

If jobvr ='V' , the right generalized eigenvectorsv(j)
are stored one after another in the columns ofvr , in the
same order as their eigenvalues. Each eigenvector will

1–

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-507

be scaled so the largest component have abs(Re) +
abs(Im) = 1. Ifjobvr ='N' , vr is not referenced.
For real flavors:
If the j-th eigenvalue is real, thenv(j) = vr (:,j), the j-th
column ofvr . If the j-th and (j+1)-st eigenvalues form a
complex conjugate pair, thenv(j) = vr (:,j) + i* vr (:,j+1)
andv(j+1) = vr (:,j) - i* vr (:,j+1).

For complex flavors:
v(j) = vr (:,j), the j-th column ofvr .

ilo, ihi INTEGER.
ilo andihi are integer values such that on exit
A(i,j) = 0 andB(i,j) = 0 if i > j and j = 1,..., ilo -1 or

i = ihi +1,...,n.
If balanc ='N' or 'S' , ilo = 1 andihi = n.

lscale,rscale REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.
Arrays,DIMENSIONat least max(1,n) each.
lscale contains details of the permutations and
scaling factors applied to the left side ofA andB.
If PL(j) is the index of the row interchanged with row j,
andDL(j) is the scaling factor applied to row j, then

lscale (j) = PL(j), for j = 1,...,ilo -1

= DL(j), for j = ilo ,...,ihi

= PL(j) for j = ihi +1,...,n.

The order in which the interchanges are made isn to
ihi +1, then 1 toilo -1.

rscale contains details of the permutations and
scaling factors applied to the right side ofA andB.
If PR(j) is the index of the column interchanged with
column j, andDR(j) is the scaling factor applied to
column j, then

rscale (j) = PR(j), for j = 1,...,ilo -1

= DR(j), for j = ilo ,...,ihi

= PR(j) for j = ihi +1,...,n.

5-508

5 Intel® Math Kernel Library Reference Manual

The order in which the interchanges are made isn to
ihi +1, then 1 toilo -1.

abnrm,bbnrm REALfor single-precision flavors
DOUBLE PRECISIONfor double-precision flavors.

The one-norms of the balanced matricesA andB,
respectively.

rconde,rcondv REALfor single precision flavors
DOUBLE PRECISIONfor double precision flavors.
Arrays,DIMENSIONat least max(1,n) each.

If sense ='E' , or 'B' , rconde contains the reciprocal
condition numbers of the selected eigenvalues, stored in
consecutive elements of the array. For a complex
conjugate pair of eigenvalues two consecutive elements
of rconde are set to the same value. Thusrconde (j),
rcondv (j), and the j-th columns ofvl andvr all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If sense ='V' , rconde is not referenced.

If sense ='V' , or 'B' , rcondv contains the estimated
reciprocal condition numbers of the selected
eigenvectors, stored in consecutive elements of the
array. For a complex eigenvector two consecutive
elements ofrcondv are set to the same value. If the
eigenvalues cannot be reordered to computercondv (j),
rcondv (j) is set to 0; this can only occur when the true
value would be very small anyway.
If sense ='E' , rcondv is not referenced.

work(1) On exit, if info = 0, thenwork(1) returns the required
minimal size oflwork .

info INTEGER.
If info = 0, the execution is successful.
If info = -i , thei th parameter had an illegal value.
If info = i , and
i ≤ n :

LAPACK Routines: Least Squares and Eigenvalue Problems5

5-509

theQZ iteration failed. No eigenvectors have been
calculated, butalphar (j), alphai (j) (for real flavors),
or alpha (j) (for complex flavors), andbeta (j),
j=info +1,...,n should be correct.

i > n : errors that usually indicate LAPACK problems:

i = n+1: other thanQZ iteration failed in?hgeqz ;

i = n+2: error return from?tgevc .

Application Notes

If you are in doubt how much workspace to supply for the arraywork , use a
generous value oflwork for the first run. On exit, examinework (1) and
use this value for subsequent runs.

The quotientsalphar (j)/beta (j) andalphai (j)/beta (j) may easily over-
or underflow, andbeta (j) may even be zero. Thus, you should avoid simply
computing the ratio. However,alphar andalphai (for real flavors) or
alpha (for complex flavors) will be always less than and usually
comparable with norm(A) in magnitude, andbeta always less than and
usually comparable with norm(B).

References

[LUG] E. Anderson, Z. Bai et al.LAPACK User’s Guide.Third
edition, SIAM, Philadelphia, 1999.

[Golub96] G.Golub, C. Van Loan.Matrix Computations.Johns
Hopkins University Press, Baltimore, third edition,
1996.

6-1

Vector Mathematical
Functions

6
This chapter describes Vector Mathematical Functions Library (VML),
which is designed to compute elementary functions on vector arguments.
VML is an integral part of the Math Kernel Library and the VML
terminology is used here for simplicity in discussing this group of functions.

VML includes a set of highly optimized implementations of certain
computationally expensive core mathematical functions (power,
trigonometric, exponential, hyperbolic etc.) that operate on vectors.

Application programs that might significantly improve performance with
VML include nonlinear programming software, integrals computation, and
many others.

VML functions are divided into the following groups according to the
operations they perform:

• VML Mathematical Functionscompute values of elementary
functions (such as sine, cosine, exponential, logarithm and so on) on
vectors with unit increment indexing.
• VML Pack/Unpack Functionsconvert to and from vectors with
positive increment indexing, vector indexing and mask indexing (see
Appendix Afor details on vector indexing methods).
VML Service Functions allow the user to set /get the accuracy mode,
and set/get the error code.

VML mathematical functions take an input vector as argument, compute
values of the respective elementary function element-wise, and return the
results in an output vector.

6-2

6 Intel® Math Kernel Library Reference Manual

Data Types and Accuracy Modes
Mathematical and pack/unpack vector functions in VML have been
implemented for vector arguments of single and double precision real data.
Both Fortran- and C-interfaces to all functions, including VML service
functions, are provided in the library. The differences in naming and calling
the functions for Fortran- and C-interfaces are detailed in theFunction
Naming Conventionssection below.

Each vector function from VML (for each data format) can work in two
modes: High Accuracy (HA) and Low Accuracy (LA). For many functions,
using the LA version will improve performance at the cost of accuracy.
For some cases, the advantage of relaxing the accuracy improves
performance very little so the same function is employed for both versions.
Error behavior depends not only on whether the HA or LA version is
chosen, but also depends on the processor on which the software runs.
In addition, special value behavior may differ between the HA and LA
versions of the functions. Any information on accuracy behavior can be
found in the Release Notes for MKL.

Switching between the two modes (HA and LA) is accomplished by using
vmlSetMode(mode) (seeTable 6-10). The functionvmlGetMode()
will return the currently used mode. The High Accuracy mode is used by
default.

Function Naming Conventions
Full names of all VML functions include only lowercase letters for
Fortran-interface, whereas for C-interface names the lowercase letters are
mixed with uppercase.

VML mathematical and pack/unpack function full names have the
following structure:

v <p> <name> <mod>

The initial letterv is a prefix indicating that a function belongs to VML.
The<p> field is a precision prefix that indicates the data type:

s REAL for Fortran–interface, orfloat for C–interface
d DOUBLE PRECISIONfor Fortran–interface, ordouble for

C–interface.

Vector Mathematical Functions6

6-3

The<name> field indicates the function short name, with some of its letters
in uppercase for C-interface (seeTables 6-2, 6-8).

The<mod> field (written in uppercase for C-interface) is present in
pack/unpack functions only; it indicates the indexing method used:

i indexing with positive increment
v indexing with index vector
m indexing with mask vector.

VML service function full names have the following structure:

vml <name>

where vml is a prefix indicating that a function belongs to VML, and
<name> is the function short name, which includes some uppercase letters
for C-interface (seeTable 6-9).
To call VML functions from an application program, use conventional
function calls. For example, the VML exponential function for single
precision data can be called as

call vsexp (n, a, y) for Fortran–interface, or
vsExp (n, a, y); for C–interface.

Functions Interface

The interface to VML functions includes function full names and the
arguments list.
The Fortran- and C-interface descriptions for different groups of VML
functions are given below. Note that some functions (Div , Pow, and
Atan2) have two input vectorsa and b as their arguments, while
SinCos function has two output vectorsy and z .

VML Mathematical Functions:

Fortran:

call v<p><name>(n, a, y)

call v<p><name>(n, a, b, y)
call v<p><name>(n, a, y, z)

6-4

6 Intel® Math Kernel Library Reference Manual

C:

v<p><name>(n, a, y);
v<p><name>(n, a, b, y);
v<p><name>(n, a, y, z);

Pack Functions:

Fortran:

call v<p>packi(n, a, inca, y)
call v<p>packv(n, a, ia, y)

call v<p>packm(n, a, ma, y)

C:

v<p>PackI(n, a, inca, y);
v<p>PackV(n, a, ia, y);
v<p>PackM(n, a, ma, y);

Unpack Functions:

Fortran:

call v<p>unpacki(n, a, y, incy)
call v<p>unpackv(n, a, y, iy)

call v<p>unpackm(n, a, y, my)

C:

v<p>UnpackI(n, a, y, incy);
v<p>UnpackV(n, a, y, iy);
v<p>UnpackM(n, a, y, my);

Service Functions:

Fortran:

oldmode = vmlsetmode(mode)

mode = vmlgetmode()

olderr = vmlseterrstatus (err)

err = vmlgeterrstatus()

olderr = vmlclearerrstatus()

oldcallback = vmlseterrorcallback(callback)

callback = vmlgeterrorcallback()

oldcallback = vmlclearerrorcallback()

Vector Mathematical Functions6

6-5

C:
oldmode = vmlSetMode(mode);

mode = vmlGetMode(void);

olderr = vmlSetErrStatus (err);

err = vmlGetErrStatus(void);

olderr = vmlClearErrStatus(void);

oldcallback = vmlSetErrorCallBack(callback);

callback = vmlGetErrorCallBack(void);

oldcallback = vmlClearErrorCallBack(void);

Input Parameters:

n number of elements to be calculated

a first input vector

b second input vector

inca vector increment for the input vectora

ia index vector for the input vectora

ma mask vector for the input vectora

incy vector increment for the output vectory

iy index vector for the output vectory

my mask vector for the output vectory

err error code

mode VML mode

callback pointer to the callback function

Output Parameters:

y first output vector

z second output vector

err error code

mode VML mode

olderr former error code

oldmode former VML mode

oldcallback pointer to the former callback function

6-6

6 Intel® Math Kernel Library Reference Manual

The data types of the parameters used in each function are specified in the
respective function description section. All VML mathematical functions
can perform in-place operations, which means that the same vector can be
used as both input and output parameter. This holds true for functions with
two input vectors as well, in which case one of them may be overwritten
with the output vector. For functions with two output vectors, one of them
may coincide with the input vector.

Vector Indexing Methods
Current VML mathematical functions work only with unit increment.
Arrays with other increments, or more complicated indexing, can be
accommodated by gathering the elements into a contiguous vector and then
scattering them after the computation is complete.
Three following indexing methods are used to gather/scatter the vector
elements in VML:

• positive increment
• index vector
• mask vector.

The indexing method used in a particular function is indicated by the
indexing modifier (see the description of the<mod> field in
Function Naming Conventions). For more information on indexing methods
seeVector Arguments in VMLin Appendix A.

Error Diagnostics
The VML library has its own error handler. The only difference for C- and
Fortran- interfaces is that the MKL error reporting routineXERBLAcan be
called after the Fortran- interface VML function encounters an error, and
this routine gets information onVML_STATUS_BADSIZEand

VML_STATUS_BADMEMinput errors (seeTable 6-12).

Vector Mathematical Functions6

6-7

The VML error handler has the following properties:

1) The Error Status (vmlErrStatus) global variable is set after
each VML function call. The possible values of this variable are
shown in theTable 6-12.

2) Depending on the VML mode, the error handler function invokes:
• errno variable setting. The possible values are shown in the

Table 6-1
• writing error text information to thestderr stream
• raising the appropriate exception on error, if necessary
• calling the additional error handler callback function.

Table 6-1 Set Values of the errno Variable

Value of errno Description

0 No errors are detected.

EINVAL The array dimension is not positive.

EACCES NULL pointer is passed.

EDOM At least one of array values is out of a
range of definition.

ERANGE At least one of array values caused a
singularity, overflow or underflow.

6-8

6 Intel® Math Kernel Library Reference Manual

VML Mathematical Functions
This section describes VML functions which compute values of elementary
mathematical functions on real vector arguments with unit increment.
Each function group is introduced by its short name, a brief description of
its purpose, and the calling sequence for each type of data both for Fortran-
and C-interfaces, as well as a description of the input/output arguments.

For all VML mathematical functions, the input range of parameters is equal
to the mathematical range of definition in the set of defined values for the
respective data type. Several VML functions, specificallyDiv , Exp, Sinh ,
Cosh, andPow, can result in an overflow. For these functions, the
respective input threshold values that mark off the precision overflow are
specified in the function description section. Note that in these
specifications,FLT_MAXdenotes the maximum number representable in
single precision data type, whileDBL_MAXdenotes the maximum number
representable in double precision data type.

Table 6-2lists available mathematical functions and data types associated
with them.

Table 6-2 VML Mathematical Functions

Function Short
Name

Data
Types

Description

Power and Root Functions

Inv s, d Inversion of the vector elements

Div s, d Divide elements of one vector by elements of second vector

Sqrt s, d Square root of vector elements

InvSqrt s, d Inverse square root of vector elements

Cbrt s, d Cube root of vector elements

InvCbrt s, d Inverse cube root of vector elements

Pow s, d Each vector element raised to the specified power

* continued

Vector Mathematical Functions6

6-9

Table 6-2 VML Mathematical Functions (continued)

Function Short
Name

Data
Types

Description

Exponential and Logarithmic Functions

Exp s, d Exponential of vector elements

Ln s, d Natural logarithm of vector elements

Log10 s, d Denary logarithm of vector elements

Trigonometric Functions

Cos s, d Cosine of vector elements

Sin s, d Sine of vector elements

SinCos s, d Sine and cosine of vector elements

Tan s, d Tangent of vector elements

Acos s, d Inverse cosine of vector elements

Asin s, d Inverse sine of vector elements

Atan s, d Inverse tangent of vector elements

Atan2 s, d Four-quadrant inverse tangent of elements of two vectors

Hyperbolic Functions

Cosh s, d Hyperbolic cosine of vector elements

Sinh s, d Hyperbolic sine of vector elements

Tanh s, d Hyperbolic tangent of vector elements

Acosh s, d Inverse hyperbolic cosine (nonnegative) of vector elements

Asinh s, d Inverse hyperbolic sine of vector elements

Atanh s, d Inverse hyperbolic tangent of vector elements

6-10

6 Intel® Math Kernel Library Reference Manual

Inv
Performs element by element inversion
of the vector.

Fortran:
call vsinv(n, a, y)

call vdinv(n, a, y)

C:
vsInv(n, a, y);

vdInv(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsinv

DOUBLE PRECISION, INTENT(IN) for vdinv

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsInv

const double* for vdInv

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vsinv

DOUBLE PRECISION for vdinv

Array, specifies the output vectory.

Vector Mathematical Functions6

6-11

C:

y float* for vsInv

double* for vdInv

Pointer to an array that contains the output vectory.

Div
Performs element by element division of
vectora by vectorb.

Fortran:
call vsdiv(n, a, b, y)

call vddiv(n, a, b, y)

C:
vsDiv(n, a, b, y);

vdDiv(n, a, b, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a, b REAL, INTENT(IN) for vsdiv

DOUBLE PRECISION, INTENT(IN) for vddiv

Arrays, specify the input vectorsa and b.

C:

n int . Specifies the number of elements to be calculated.

a, b const float* for vsDiv

const double* for vdDiv

Pointers to arrays that contain the input vectorsa and b.

6-12

6 Intel® Math Kernel Library Reference Manual

Table 6-3 Precision Overflow Thresholds for Div Function

Output Parameters

Fortran:

y REAL for vsdiv

DOUBLE PRECISION for vddiv

Array, specifies the output vectory.

C:

y float* for vsDiv

double* for vdDiv

Pointer to an array that contains the output vectory.

Sqrt
Computes a square root
of vector elements.

Fortran:
call vssqrt(n, a, y)

call vdsqrt(n, a, y)

C:
vsSqrt(n, a, y);

vdSqrt(n, a, y);

Data Type Threshold Limitations on Input Parameters

single precision abs(a[i]) < abs(b[i]) * FLT_MAX

double precision abs(a[i]) < abs(b[i]) * DBL_MAX

Vector Mathematical Functions6

6-13

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vssqrt

DOUBLE PRECISION, INTENT(IN) for vdsqrt

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsSqrt

const double* for vdSqrt

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vssqrt

DOUBLE PRECISION for vdsqrt

Array, specifies the output vectory.

C:

y float* for vsSqrt

double* for vdSqrt

Pointer to an array that contains the output vectory.

InvSqrt
Computes an inverse square root
of vector elements.

Fortran:
call vsinvsqrt(n, a, y)

call vdinvsqrt(n, a, y)

6-14

6 Intel® Math Kernel Library Reference Manual

C:
vsInvSqrt(n, a, y);

vdInvSqrt(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsinvsqrt

DOUBLE PRECISION, INTENT(IN) for vdinvsqrt

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsInvSqrt

const double* for vdInvSqrt

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vsinvsqrt

DOUBLE PRECISION for vdinvsqrt

Array, specifies the output vectory.

C:

y float* for vsInvSqrt

double* for vdInvSqrt

Pointer to an array that contains the output vectory.

Vector Mathematical Functions6

6-15

Cbrt
Computes a cube root
of vector elements.

Fortran:
call vscbrt(n, a, y)

call vdcbrt(n, a, y)

C:
vsCbrt(n, a, y);

vdCbrt(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vscbrt

DOUBLE PRECISION, INTENT(IN) for vdcbrt

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsCbrt

const double* for vdCbrt

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vscbrt

DOUBLE PRECISION for vdcbrt

Array, specifies the output vectory.

C:

y float* for vsCbrt

double* for vdCbrt

Pointer to an array that contains the output vectory.

6-16

6 Intel® Math Kernel Library Reference Manual

InvCbrt
Computes an inverse cube root
of vector elements.

Fortran:
call vsinvcbrt(n, a, y)

call vdinvcbrt(n, a, y)

C:
vsInvCbrt(n, a, y);

vdInvCbrt(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsinvcbrt

DOUBLE PRECISION, INTENT(IN) for vdinvcbrt

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsInvCbrt

const double* for vdInvCbrt

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vsinvcbrt

DOUBLE PRECISION for vdinvcbrt

Array, specifies the output vectory.

C:

y float* for vsInvCbrt

double* for vdInvCbrt

Pointer to an array that contains the output vectory.

Vector Mathematical Functions6

6-17

Pow
Computesa to the powerb
for elements of two vectors.

Fortran:
call vspow(n, a, b, y)

call vdpow(n, a, b, y)

C:
vsPow(n, a, b, y);

vdPow(n, a, b, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a, b REAL, INTENT(IN) for vspow

DOUBLE PRECISION, INTENT(IN) for vdpow

Arrays, specify the input vectorsa and b.

C:

n int . Specifies the number of elements to be calculated.
a, b const float* for vsPow

const double* for vdPow

Pointers to arrays that contain the input vectorsa and b.

Table 6-4 Precision Overflow Thresholds for Pow Function

Data Type Threshold Limitations on Input Parameters

single precision abs(a[i]) < (FLT_MAX) 1/b[i]

double precision abs(a[i]) < (DBL_MAX) 1/b[i]

6-18

6 Intel® Math Kernel Library Reference Manual

Output Parameters

Fortran:

y REAL for vspow

DOUBLE PRECISION for vdpow

Array, specifies the output vectory.

C:

y float* for vsPow

double* for vdPow

Pointer to an array that contains the output vectory.

Discussion

The functionPow has certain limitations on the input range ofa andb

parameters. Specifically, ifa[i] is positive, thenb[i] may be arbitrary.
For negative or zeroa[i] , the value ofb[i] must be integer (either
positive or negative).

Exp
Computes an exponential
of vector elements.

Fortran:
call vsexp(n, a, y)

call vdexp(n, a, y)

C:
vsExp(n, a, y);

vdExp(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

Vector Mathematical Functions6

6-19

a REAL, INTENT(IN) for vsexp

DOUBLE PRECISION, INTENT(IN) for vdexp

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsExp

const double* for vdExp

Pointer to an array that contains the input vectora.

Table 6-5 Precision Overflow Thresholds for Exp Function

Output Parameters

Fortran:

y REAL for vsexp

DOUBLE PRECISION for vdexp

Array, specifies the output vectory.

C:

y float* for vsExp

double* for vdExp

Pointer to an array that contains the output vectory.

Data Type Threshold Limitations on Input Parameters

single precision a[i] < Ln(FLT_MAX)

double precision a[i] < Ln(DBL_MAX)

6-20

6 Intel® Math Kernel Library Reference Manual

Ln
Computes natural logarithm
of vector elements.

Fortran:
call vsln(n, a, y)
call vdln(n, a, y)

C:
vsLn(n, a, y);
vdLn(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsln

DOUBLE PRECISION, INTENT(IN) for vdln

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsLn

const double* for vdLn

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vsln

DOUBLE PRECISION for vdln

Array, specifies the output vectory.

C:

y float* for vsLn

double* for vdLn

Pointer to an array that contains the output vectory.

Vector Mathematical Functions6

6-21

Log10
Computes denary logarithm
of vector elements.

Fortran:
call vslog10(n, a, y)

call vdlog10(n, a, y)

C:
vsLog10(n, a, y);

vdLog10(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vslog10

DOUBLE PRECISION, INTENT(IN) for vdlog10

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsLog10

const double* for vdLog10

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vslog10

DOUBLE PRECISION for vdlog10

Array, specifies the output vectory.

C:

y float* for vsLog10

double* for vdLog10

Pointer to an array that contains the output vectory.

6-22

6 Intel® Math Kernel Library Reference Manual

Cos
Computes cosine of vector elements.

Fortran:
call vscos(n, a, y)

call vdcos(n, a, y)

C:
vsCos(n, a, y);

vdCos(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vscos

DOUBLE PRECISION, INTENT(IN) for vdcos

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsCos

const double* for vdCos

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vscos

DOUBLE PRECISION for vdcos

Array, specifies the output vectory.

C:

y float* for vsCos

double* for vdCos

Pointer to an array that contains the output vectory.

Vector Mathematical Functions6

6-23

Sin
Computes sine of vector elements.

Fortran:
call vssin(n, a, y)

call vdsin(n, a, y)

C:
vsSin(n, a, y);

vdSin(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vssin

DOUBLE PRECISION, INTENT(IN) for vdsin

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsSin

const double* for vdSin

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vssin

DOUBLE PRECISION for vdsin

Array, specifies the output vectory.

C:

y float* for vsSin

double* for vdSin

Pointer to an array that contains the output vectory.

6-24

6 Intel® Math Kernel Library Reference Manual

SinCos
Computes sine and cosine
of vector elements.

Fortran:
call vssincos(n, a, y, z)
call vdsincos(n, a, y, z)

C:
vsSinCos(n, a, y, z);
vdSinCos(n, a, y, z);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vssincos

DOUBLE PRECISION, INTENT(IN) for vdsincos

Array, specifies the input vectora.
C:

n int . Specifies the number of elements to be calculated.
a const float* for vsSinCos

const double* for vdSinCos

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y, z REAL for vssincos

DOUBLE PRECISION for vdsincos

Arrays, specify the output vectorsy (for sine values)
andz (for cosine values).

C:

y, z float* for vsSinCos

double* for vdSinCos

Pointers to arrays that contain the output vectorsy (for sine
values) andz (for cosine values).

Vector Mathematical Functions6

6-25

Tan
Computes tangent of vector elements.

Fortran:
call vstan(n, a, y)

call vdtan(n, a, y)

C:
vsTan(n, a, y);

vdTan(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vstan

DOUBLE PRECISION, INTENT(IN) for vdtan

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsTan

const double* for vdTan

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vstan

DOUBLE PRECISION for vdtan

Array, specifies the output vectory.

C:

y float* for vsTan

double* for vdTan

Pointer to an array that contains the output vectory.

6-26

6 Intel® Math Kernel Library Reference Manual

Acos
Computes inverse cosine
of vector elements.

Fortran:
call vsacos(n, a, y)

call vdacos(n, a, y)

C:
vsAcos(n, a, y);

vdAcos(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsacos

DOUBLE PRECISION, INTENT(IN) for vdacos

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsAcos

const double* for vdAcos

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vsacos

DOUBLE PRECISION for vdacos

Array, specifies the output vectory.

C:

y float* for vsAcos

double* for vdAcos

Pointer to an array that contains the output vectory.

Vector Mathematical Functions6

6-27

Asin
Computes inverse sine
of vector elements.

Fortran:
call vsasin(n, a, y)

call vdasin(n, a, y)

C:
vsAsin(n, a, y);

vdAsin(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsasin

DOUBLE PRECISION, INTENT(IN) for vdasin

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsAsin

const double* for vdAsin

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vsasin

DOUBLE PRECISION for vdasin

Array, specifies the output vectory.

C:

y float* for vsAsin

double* for vdAsin

Pointer to an array that contains the output vectory.

6-28

6 Intel® Math Kernel Library Reference Manual

Atan
Computes inverse tangent
of vector elements.

Fortran:
call vsatan(n, a, y)

call vdatan(n, a, y)

C:
vsAtan(n, a, y);

vdAtan(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsatan

DOUBLE PRECISION, INTENT(IN) for vdatan

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsAtan

const double* for vdAtan

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vsatan

DOUBLE PRECISION for vdatan

Array, specifies the output vectory.

C:

y float* for vsAtan

double* for vdAtan

Pointer to an array that contains the output vectory.

Vector Mathematical Functions6

6-29

Atan2
Computes four-quadrant inverse
tangent of elements of two vectors.

Fortran:
call vsatan 2(n, a, b, y)

call vdatan 2(n, a, b, y)

C:
vsAtan 2(n, a, b, y);

vdAtan 2(n, a, b, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a, b REAL, INTENT(IN) for vsatan2

DOUBLE PRECISION, INTENT(IN) for vdatan2

Arrays, specify the input vectorsa and b.

C:

n int . Specifies the number of elements to be calculated.

a, b const float* for vsAtan2

const double* for vdAtan2

Pointers to arrays that contain the input vectorsa and b.

Output Parameters

Fortran:

y REAL for vsatan2

DOUBLE PRECISION for vdatan2

Array, specifies the output vectory.

6-30

6 Intel® Math Kernel Library Reference Manual

C:

y float* for vsAtan2

double* for vdAtan2

Pointer to an array that contains the output vectory.

The elements of the output vectory are computed as the four-quadrant
arctangent ofa[i] / b[i] .

Cosh
Computes hyperbolic cosine
of vector elements.

Fortran:
call vscosh(n, a, y)

call vdcosh(n, a, y)

C:
vsCosh(n, a, y);

vdCosh(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vscosh

DOUBLE PRECISION, INTENT(IN) for vdcosh

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsCosh

const double* for vdCosh

Pointer to an array that contains the input vectora.

Vector Mathematical Functions6

6-31

Table 6-6 Precision Overflow Thresholds for Cosh Function

Output Parameters

Fortran:

y REAL for vscosh

DOUBLE PRECISION for vdcosh

Array, specifies the output vectory.

C:

y float* for vsCosh

double* for vdCosh

Pointer to an array that contains the output vectory.

Sinh
Computes hyperbolic sine
of vector elements.

Fortran:
call vssinh(n, a, y)

call vdsinh(n, a, y)

C:
vsSinh(n, a, y);

vdSinh(n, a, y);

Data Type Threshold Limitations on Input Parameters

single precision -Ln(FLT_MAX)-Ln2 < a[i] < Ln(FLT_MAX)+Ln2

double precision -Ln(DBL_MAX)-Ln2 < a[i] < Ln(DBL_MAX)+Ln2

6-32

6 Intel® Math Kernel Library Reference Manual

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vssinh

DOUBLE PRECISION, INTENT(IN) for vdsinh

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsSinh

const double* for vdSinh

Pointer to an array that contains the input vectora.

Table 6-7 Precision Overflow Thresholds for Sinh Function

Output Parameters

Fortran:

y REAL for vssinh

DOUBLE PRECISION for vdsinh

Array, specifies the output vectory.

C:

y float* for vsSinh

double* for vdSinh

Pointer to an array that contains the output vectory.

Data Type Threshold Limitations on Input Parameters

single precision -Ln(FLT_MAX)-Ln2 < a[i] < Ln(FLT_MAX)+Ln2

double precision -Ln(DBL_MAX)-Ln2 < a[i] < Ln(DBL_MAX)+Ln2

Vector Mathematical Functions6

6-33

Tanh
Computes hyperbolic tangent
of vector elements.

Fortran:
call vstanh(n, a, y)

call vdtanh(n, a, y)

C:
vsTanh(n, a, y);

vdTanh(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vstanh

DOUBLE PRECISION, INTENT(IN) for vdtanh

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsTanh

const double* for vdTanh

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vstanh

DOUBLE PRECISION for vdtanh

Array, specifies the output vectory.

C:

y float* for vsTanh

double* for vdTanh

Pointer to an array that contains the output vectory.

6-34

6 Intel® Math Kernel Library Reference Manual

Acosh
Computes inverse hyperbolic cosine
(nonnegative) of vector elements.

Fortran:
call vsacosh(n, a, y)

call vdacosh(n, a, y)

C:
vsAcosh(n, a, y);

vdAcosh(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsacosh

DOUBLE PRECISION, INTENT(IN) for vdacosh

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsAcosh

const double* for vdAcosh

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vsacosh

DOUBLE PRECISION for vdacosh

Array, specifies the output vectory.

C:

y float* for vsAcosh

double* for vdAcosh

Pointer to an array that contains the output vectory.

Vector Mathematical Functions6

6-35

Asinh
Computes inverse hyperbolic sine
of vector elements.

Fortran:
call vsasinh(n, a, y)

call vdasinh(n, a, y)

C:
vsAsinh(n, a, y);

vdAsinh(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsasinh

DOUBLE PRECISION, INTENT(IN) for vdasinh

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsAsinh

const double* for vdAsinh

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vsasinh

DOUBLE PRECISION for vdasinh

Array, specifies the output vectory.

C:

y float* for vsAsinh

double* for vdAsinh

Pointer to an array that contains the output vectory.

6-36

6 Intel® Math Kernel Library Reference Manual

Atanh
Computes inverse hyperbolic tangent
of vector elements.

Fortran:
call vsatanh(n, a, y)

call vdatanh(n, a, y)

C:
vsAtanh(n, a, y);

vdAtanh(n, a, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements
to be calculated.

a REAL, INTENT(IN) for vsatanh

DOUBLE PRECISION, INTENT(IN) for vdatanh

Array, specifies the input vectora.

C:

n int . Specifies the number of elements to be calculated.

a const float* for vsAtanh

const double* for vdAtanh

Pointer to an array that contains the input vectora.

Output Parameters

Fortran:

y REAL for vsatanh

DOUBLE PRECISION for vdatanh

Array, specifies the output vectory.

C:

y float* for vsAtanh

double* for vdAtanh

Pointer to an array that contains the output vectory.

Vector Mathematical Functions6

6-37

VML Pack/Unpack Functions
This section describes VML functions which convert vectors with unit increment
to and from vectors with positive increment indexing, vector indexing and mask
indexing (seeAppendix Afor details on vector indexing methods).

Table 6-8lists available VML Pack/Unpack functions, together with data types
and indexing methods associated with them.

Table 6-8 VML Pack/Unpack Functions

Pack
Copies elements of an array
with specified indexing to
a vector with unit increment.

Fortran:
call vspacki(n, a, inca, y)

call vspackv(n, a, ia, y)

call vspackm(n, a, ma, y)

call vdpacki(n, a, inca, y)

call vdpackv(n, a, ia, y)

call vdpackm(n, a, ma, y)

Function Short
Name

Data
Types

Indexing
Methods

Description

Pack s, d I,V,M Gathers elements of arrays, indexed by different
methods.

Unpack s, d I,V,M Scatters vector elements to arrays with different
indexing.

6-38

6 Intel® Math Kernel Library Reference Manual

C:
vsPackI(n, a, inca, y);

vsPackV(n, a, ia, y);

vsPackM(n, a, ma, y);

vdPackI(n, a, inca, y);

vdPackV(n, a, ia, y);

vdPackM(n, a, ma, y);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements to be
calculated.

a REAL, INTENT(IN) for vspacki , vspackv , vspackm

DOUBLE PRECISION, INTENT(IN) for vdpacki ,
vdpackv , vdpackm

Array, DIMENSION at least(1 + (n-1)* inca) for vspacki,

at leastmax(n,max(ia [j])),j=0,…, n-1, for vspackv,

at leastn for vspackm,

Specifies the input vectora.

inca INTEGER, INTENT(IN) for vspacki , vdpacki .
Specifies the increment for the elements ofa.

ia INTEGER, INTENT(IN) for vspackv , vdpackv .
Array, DIMENSION at leastn

Specifies the index vector for the elements ofa.

ma INTEGER, INTENT(IN) for vspackm , vdpackm .
Array, DIMENSION at leastn

Specifies the mask vector for the elements ofa.

C:

n int . Specifies the number of elements to be calculated

a const float* for vsPackI , vsPackV , vsPackM

const double* for vdPackI , vdPackV , vdPackM

Specifies the pointer to an array that contains the input vectora.
Size of the array must be:

Vector Mathematical Functions6

6-39

at least (1 + (n-1)* inca) for vsPackI,

at leastmax(n,max(ia [j])),j=0,…, n-1, for vsPackV,

at leastn for vsPackM.

inca int for vsPackI , vdPackI .
Specifies the increment for the elements ofa.

ia const int* for vsPackV , vdPackV . Specifies the pointer to
an array of size at leastn that contains the index vector

for the elements ofa.

ma const int* for vsPackM , vdPackM . Specifies the pointer to
an array of size at leastn that contains the mask vector

for the elements ofa.

Output Parameters

Fortran:

y REAL for vspacki , vspackv , vspackm

DOUBLE PRECISION for vdpacki , vdpackv , vdpackm

Array, DIMENSION at leastn, specifies the output vectory.

C:

y float* for vsPackI , vsPackV , vsPackM

double* for vdPackI , vdPackV , vdPackM

Specifies the pointer to an array of size at leastn that contains
the output vectory.

Unpack
Copies elements of a vector with unit
increment to an array with specified
indexing.

Fortran:
call vsunpacki(n, a, y, incy)

call vsunpackv(n, a, y, iy)

call vsunpackm(n, a, y, my)

call vdunpacki(n, a, y, incy)

6-40

6 Intel® Math Kernel Library Reference Manual

call vdunpackv(n, a, y, iy)

call vdunpackm(n, a, y, my)

C:
vsUnpackI(n, a, y, incy);

vsUnpackV(n, a, y, iy);

vsUnpackM(n, a, y, my);

vdUnpackI(n, a, y, incy);

vdUnpackV(n, a, y, iy);

vdUnpackM(n, a, y, my);

Input Parameters

Fortran:

n INTEGER, INTENT(IN) . Specifies the number of elements to be
calculated.

a REAL, INTENT(IN) for vsunpacki , vsunpackv , vsunpackm

DOUBLE PRECISION, INTENT(IN) for vdunpacki ,
vdunpackv , vdunpackm .

Array, DIMENSION at leastn, specifies the input vectora.

incy INTEGER, INTENT(IN) for vsunpacki , vdunpacki .
Specifies the increment for the elements ofy .

iy INTEGER, INTENT(IN) for vsunpackv , vdunpackv .
Array, DIMENSION at leastn, specifies the index vector
for the elements ofy.

my INTEGER, INTENT(IN) for vsunpackm , vdunpackm .
Array, DIMENSION at leastn, specifies the mask vector
for the elements ofy.

C:

n int . Specifies the number of elements to be calculated .

a const float* for vsUnpackI , vsUnpackV , vsUnpackM

const double* for vdUnpackI , vdUnpackV , vdUnpackM

Specifies the pointer to an array of size at leastn that contains
the input vectora.

incy int for vsUnpackI , vdUnpackI .
Specifies the increment for the elements ofy .

Vector Mathematical Functions6

6-41

iy const int* for vsUnpackV , vdUnpackV . Specifies the
pointer to an array of size at leastn that contains the index
vector for the elements ofa.

my const int* for vsUnpackM , vdUnpackM . Specifies the
pointer to an array of size at leastn that contains the mask
vector for the elements ofa.

Output Parameters

Fortran:

y REAL for vsunpacki , vsunpackv , vsunpackm

DOUBLE PRECISION for vdunpacki , vdunpackv ,
vdunpackm .
Array, DIMENSION

at least (1 + (n-1)* incy) for vsunpacki,

at leastmax(n,max(iy [j])),j=0,…, n-1, for vsunpackv,

at leastn for vsunpackm

Specifies the output vectory.

C:

y float* for vsUnpackI , vsUnpackV , vsUnpackM

double* for vdUnpackI , vdUnpackV , vdUnpackM

Specifies the pointer to an array that contains the output vectory.
Size of the array must be:

at least (1 + (n-1)* incy) for vsUnPackI,

at leastmax(n,max(ia [j])),j=0,…, n-1, for vsUnPackV,

at leastn for vsUnPackM.

6-42

6 Intel® Math Kernel Library Reference Manual

VML Service Functions
This section describes VML functions which allow the user to set /get the
accuracy mode, and set/get the error code. All these functions are available
both in Fortran- and C- interfaces.
Table 6-9lists available VML Service functions and their short description.

Table 6-9 VML Service Functions

SetMode
Sets the VML mode tomode parameter and
stores the previous VML mode tooldmode .

Fortran:
oldmode = vmlsetmode(mode)

C:
oldmode = vmlSetMode(mode);

Function Short Name Description

SetMode Sets the VML mode

GetMode Gets the VML mode

SetErrStatus Sets the VML error status

GetErrStatus Gets the VML error status

ClearErrStatus Clears the VML error status

SetErrorCallBack Sets the additional error handler callback function

GetErrorCallBack Gets the additional error handler callback function

ClearErrorCallBack Deletes the additional error handler callback function

Vector Mathematical Functions6

6-43

Input Parameters

Fortran:

mode INTEGER, INTENT(IN) . Specifies the VML mode to be set.

C:

mode int . Specifies the VML mode to be set.

Output Parameters

Fortran:

oldmode INTEGER, INTENT(IN) . Specifies the former VML mode.

C:

oldmode int . Specifies the former VML mode.

Discussion

Themode parameter is designed to control accuracy, FPU and error handling
options.Table 6-10lists values of themode parameter, defined in themode.h

header file for C- interface and in theVML.fi file for Fortran- interface. All
other possible values of themode parameter may be obtained from these values
by using bitwise OR (|) addition operation to combine one value for accuracy,
one for FPU, and one for error control options. The default value of themode
parameter isVML_HA | VML_ERRMODE_DEFAULT. Thus, the current FPU
control word (FPU precision and the rounding method) is used by default.

If any VML mathematical function requires different FPU precision, or
rounding method, it changes these options automatically and then restores the
former values. Themodeparameter enables you to minimize switching the
internal FPU mode inside each VML mathematical function that works with
similar precision and accuracy settings. To accomplish this, set themode
parameter toVML_FLOAT_CONSISTENTfor single precision functions, or to
VML_DOUBLE_CONSISTENTfor double precision functions. These values of
themodeparameter are the optimal choice for the respective function groups,
as they are required for most of the VML mathematical functions. After the
execution is over, set themode to VML_RESTOREif you need to restore the
previous FPU mode.

6-44

6 Intel® Math Kernel Library Reference Manual

Table 6-10 Values of the mode Parameter

Examples

Several examples of calling the functionvmlSetMode() with different values of
themodeparameter are given below:

Value of mode Description

Accuracy Control

VML_HA High accuracy versions of VML functions will be used

VML_LA Low accuracy versions of VML functions will be used

Additional FPU Mode Control

VML_FLOAT_CONSISTENT The optimal FPU mode (control word) for single
precision functions is set, and the previous FPU mode
is saved

VML_DOUBLE_CONSISTENT The optimal FPU mode (control word) for double
precision functions is set, and the previous FPU mode
is saved

VML_RESTORE The previously saved FPU mode is restored

Error Mode Control

VML_ERRMODE_IGNORE No action is set for computation errors

VML_ERRMODE_ERRNO On error, the errno variable is set

VML_ERRMODE_STDERR On error, the error text information is written to
stderr

VML_ERRMODE_EXCEPT On error, an exception is raised

VML_ERRMODE_CALLBACK On error, an additional error handler function is called

VML_ERRMODE_DEFAULT On error, the errno variable is set, an exception is
raised, and an additional error handler function is
called

Vector Mathematical Functions6

6-45

Fortran:

oldmode = vmlsetmode(VML_LA)

call vmlsetmode(IOR(VML_LA, IOR(VML_FLOAT_CONSISTENT,
VML_ERRMODE_IGNORE)))

call vmlsetmode(VML_RESTORE)

C:

vmlSetMode(VML_LA);

vmlSetMode(VML_LA | VML_FLOAT_CONSISTENT | VML_ERRMODE_IGNORE);

vmlSetMode(VML_RESTORE);

GetMode
Gets the VML mode.

Fortran:
mod = vmlgetmode()

C:
mod = vmlGetMode(void);

Output Parameters

Fortran:

mod INTEGER. Specifies the fullmode parameter.

C:

mod int . Specifies the fullmode parameter.

Discussion

The functionvmlGetMode() returns the VMLmode parameter which controls
accuracy, FPU and error handling options. Themod variable value is some
combination of the values listed in theTable 6-10. The values ofmode parameter
are defined in themode.h header file for C- interface and in theVML.fi file for
Fortran- interface. You can obtain some of these values using the respective mask
from theTable 6-11, for example:

6-46

6 Intel® Math Kernel Library Reference Manual

Fortran:

mod = vmlgetmode()

accm = IAND(mod, VML_ACCURACY_MASK)

fpum = IAND(mod, VML_FPUMODE_MASK)

errm = IAND(mod, VML_ERRMODE_MASK)

C:

accm = vmlGetMode(void)& VML_ACCURACY_MASK;

fpum = vmlGetMode(void)& VML_FPUMODE _MASK;

errm = vmlGetMode(void)& VML_ERRMODE _MASK;

Table 6-11 Values of Mask for the mode Parameter

SetErrStatus
Sets the VML error status toerr and stores
the previous VML error status toolderr .

Fortran:
olderr = vmlseterrstatus(err)

C:
olderr = vmlSetErrStatus(err);

Input Parameters

Fortran:

err INTEGER, INTENT(IN) . Specifies the VML error status
to be set.

Value of mask Description

VML_ACCURACY_MASK Specifies mask for accuracy mode selection.

VML_FPUMODE_MASK Specifies mask for FPU mode selection.

VML_ERRMODE_MASK Specifies mask for error mode selection.

Vector Mathematical Functions6

6-47

C:

err int . Specifies the VML error status to be set.

Output Parameters

Fortran:

olderr INTEGER, INTENT(IN) . Specifies the former VML error status.

C:

olderr int . Specifies the former VML error status.

Table 6-12lists possible values of theerr parameter.

Table 6-12 Values of the VML Error Status

Examples:
vmlSetErrStatus(VML_STATUS_OK);

vmlSetErrStatus(VML_STATUS_ERRDOM);

vmlSetErrStatus(VML_STATUS_UNDERFLOW);

Error Status Description

VML_STATUS_OK The execution was completed successfully.

VML_STATUS_BADSIZE The array dimension is not positive.

VML_STATUS_BADMEM NULL pointer is passed.

VML_STATUS_ERRDOM At least one of array values is out of a range

of definition.

VML_STATUS_SING At least one of array values caused a

singularity.

VML_STATUS_OVERFLOW An overflow has happened during the

calculation process.

VML_STATUS_UNDERFLOW An underflow has happened during the

calculation process.

6-48

6 Intel® Math Kernel Library Reference Manual

GetErrStatus
Gets the VML error status.

Fortran:
err = vmlgeterrstatus()

C:
err = vmlGetErrStatus(void);

Output Parameters

Fortran:

err INTEGER. Specifies the VML error status.

C:

err int . Specifies the VML error status.

ClearErrStatus
Sets the VML error status to
VML_STATUS_OKand stores the
previous VML error status toolderr .

Fortran:
olderr = vmlclearerrstatus()

C:
olderr = vmlClearErrStatus(void);

Output Parameters

Fortran:

olderr INTEGER. Specifies the former VML error status.

Vector Mathematical Functions6

6-49

C:

olderr int . Specifies the former VML error status.

SetErrorCallBack
Sets the additional error handler
callback function and gets the old
callback function.

Fortran:
oldcallback = vmlseterrorcallback(callback)

C:
oldcallback = vmlSetErrorCallBack(callback);

Input Parameters

Fortran:

callback Pointer to the callback function.
The callback function has the following format:

INTEGER FUNCTION ERRFUNC(par)

TYPE (ERROR_STRUCTURE) par

! ...

! user error processing

! ...

ERRFUNC = 0

! if ERRFUNC = 0 - standard VML error
handler

! is called after the callback

! if ERRFUNC != 0 - standard VML error
handler

! is not called

END

6-50

6 Intel® Math Kernel Library Reference Manual

The passed error structure is defined as follows:

TYPE ERROR_STRUCTURE
SEQUENCE

INTEGER*4 ICODE

INTEGER*4 IINDEX

REAL*8 DBA1

REAL*8 DBA2

REAL*8 DBR1

REAL*8 DBR2

CHARACTER(64) CFUNCNAME

INTEGER*4 IFUNCNAMELEN

END TYPE ERROR_STRUCTURE

C:

callback Pointer to the callback function.
The callback function has the following format:

static int __stdcall MyHandler(DefVmlErrorContext*
pContext)

{
/* Handler body */
};

The passed error structure is defined as follows:

typedef struct _DefVmlErrorContext

{

int iCode; /* Error status value */

int iIndex; /* Index for bad array
element, or bad array
dimension, or bad
array pointer */

double dbA1; /* Error argument 1 */

double dbA2; /* Error argument 2 */

double dbR1; /* Error result 1 */

double dbR2; /* Error result 2 */

char cFuncName[64]; /* Function name */

int iFuncNameLen; /* Length of function name*/

} DefVmlErrorContext;

Vector Mathematical Functions6

6-51

Output Parameters

Fortran:

oldcallback Pointer to the former callback function.

C:

oldcallback Pointer to the former callback function.

Discussion

The callback function is called on each VML mathematical function error if
VML_ERRMODE_CALLBACKerror mode is set (seeTable 6-10).

Use thevmlSetErrorCallBack() function if you need to define your
own callback function instead of default empty callback function.

The input structure for a callback function contains the following
information
about the encountered error:

• the input value which caused an error
• location (array index) of this value
• the computed result value
• error code
• name of the function in which the error occurred.

You can insert your own error processing into the callback function. This
may include correcting the passed result values in order to pass them back
and resume computation. The standard error handler is called after the
callback function only if it returns0.

GetErrorCallBack
Gets the additional error handler
callback function.

Fortran:
fun = vmlgeterrorcallback()

6-52

6 Intel® Math Kernel Library Reference Manual

C:
fun = vmlGetErrorCallBack(void);

Output Parameters

Fortran:

fun Pointer to the callback function.

C:

fun Pointer to the callback function.

ClearErrorCallBack
Deletes the additional error handler
callback function and retrieves the
former callback function.

Fortran:
oldcallback = vmlclearerrorcallback()

C:
oldcallback = vmlClearErrorCallBack(void);

Output Parameters

Fortran:

oldcallback INTEGER. Pointer to the former callback function.

C:

oldcallback int . Pointer to the former callback function.

7-1

Vector Generators of
Statistical Distributions 7

This chapter describes the part of MKL which is known as vector statistics
library (VSL) and is designed for the purpose of generating vectors of
pseudorandom numbers.

VSL provides a set of pseudorandom number generator subroutines
implementing basic continuous and discrete distributions. To speed up
performance, all these subroutines were developed using the calls to the
highly optimizedBasic Random Number Generators(BRNGs) and the
library of vector mathematical functions (VML, seechapter 6).

All VSL subroutines can be classified into three major categories:

• Pseudorandom number generators for different types of statistical
distributions, for example, uniform, normal (Gaussian), binomial, etc.
Detailed description of the generators can be found inPseudorandom
Generatorssection.

• Basic subroutines to handle random number streams: create, initialize,
delete, copy, get the index of a basic generator. The description of these
subroutines can be found inService Subroutinessection.

• Registration subroutines for basic pseudorandom generators and
subroutines that obtain properties of the registered generators (see
Advanced Service Subroutinessection).

The last two categories will be referred to as service subroutines.

7-2

7 Intel® Math Kernel Library Reference Manual

Conventions
In this discussion, a Random Number Generator (RNG) means a
number-theoretic deterministic algorithm that generates number sequences,
which can be interpreted as random samplings from a universal set with a
given probability distribution function. Since random numbers are
generated by a deterministic algorithm, they cannot be truly random and
should be referred to as pseudorandom. The respective generators should be
also called pseudorandom. However, in this chapter no specific
differentiation is made between random and pseudorandom numbers, as
well as between random and pseudorandom generators unless the context
requires otherwise. Likewise, the termsrandom numberandvariate,
statistical distributionandprobability distribution,are not distinguished
here either.

The choice of a number-theoretic algorithmA and initial conditionsI
identifies a unique sequence of random numbers, which is called a random
stream. The pair is referred to as the random stream state. In VSL a
stream is identified by astream descriptorrepresented asTYPE

(VSL_STREAM_STATE)structure in FORTRAN interface, and
VSLStreamStatePtr pointer in C interface.

All generators of nonuniform distributions, both discrete and continuous,
are built on the basis of the uniform distribution generators, called Basic
Random Number Generators (BRNGs). The pseudorandom numbers with
nonuniform distribution are obtained through an appropriate transformation
of the uniformly distributed pseudorandom numbers. The most common
transformation techniques include the inverse Cumulative Distribution
Function (CDF), acceptance/rejection method, and mixtures. For certain
types of distribution, several generation methods are implemented.

VSL subroutines for pseudorandom number generation accept the stream
descriptor and the distribution parameters as input and write the result in a
vector of pseudorandom numbers with a given distribution. For a given
statistical distribution, several generation methods can be used, which may
differ in efficiency for particular ranges of input parameters. Consequently,
the most efficient generators often use different methods for different
ranges. To establish the generation method to be used in the subroutine, you

A I,〈 〉

Vector Generators of Statistical Distributions7

7-3

should specify the input parameter called the method number. Description
of methods available for each generator can be found inPseudorandom
Generatorssection.

In the discussion that follow, the termsmultiprocessor system,
computational node, andprocessorrefer to any configuration of the system
with shared or distributed memory, or combination of the two. Specifically,
a computational node, or a processor, refers to a computational unit capable
of performing independent parallel computations (this may be either a
physical processor, a cluster node, or a logical parallel process).

Mathematical Notation

The following notation is used throughout the text:

N The set of natural numbers .

Z The set of integers .

R The set of real numbers.

The floor ofa (the largest integer less than or equal toa).

or xor Bitwise exclusive OR.

or Binomial coefficient or combination (, ;
). . For binomial coefficient is

defined as

. If , then .

Cumulative Gaussian distribution function

, defined over .

, .

LCG(a,c,m) Linear Congruential Generator , where
a is called themultiplier, c is called theincrementandmis called the
modulusof the generator.

N 1, 2, 3...{ }=

Z ... -3, -2, -1, 0, 1, 2, 3 ...{ }=

a

⊕

Cα
k α

k
 α R∈ α 0≥

k N∈ 0{ }∪ Cα
0 1= α k≥

Cα
k α α 1–() ... α k– 1+()

k!
--= α k< Cα

k 0=

Φ x()

Φ x() 1

2π
----------- exp

y
2

2
-----–

 yd

∞–

x

∫= ∞– x + ∞< <

Φ ∞–() 0= Φ + ∞() 1=

xn 1+ axn c+() mod m=

7-4

7 Intel® Math Kernel Library Reference Manual

Naming Conventions

The names of all VSL functions in FORTRAN are lowercase; names in C
may contain both lowercase and uppercase letters.

The names of generator subroutines have the following structure:

wherev is the prefix of a VSL vector function, and the field<type of

result> is eithers , d , or i and specifies one of the following types:

Prefixess andd apply to continuous distributions only, prefixi applies
only to discrete case. The prefixrng indicates that the subroutine is a
pseudorandom generator, and the<distribution> field specifies the type
of statistical distribution.

Names of service subroutines follow the template below:

vsl <name> ,

wherevsl is the prefix of a VSL service function. The field<name>

contains a short function name. For a more detailed description of service
subroutines refer toService SubroutinesandAdvanced Service Subroutines
sections.

MCG(a,m) Multiplicative Congruential Generator is a
special case of Linear Congruential Generator, where the incrementc
is taken to be 0.

GFSR(p,q) Generalized Feedback Shift Register Generator
.

v<type of result> rng <distribution> for FORTRAN-interface

v<type of result> Rng<distribution> for C-interface

s REAL for FORTRAN-interface
float for C-interface

d DOUBLE PRECISIONfor FORTRAN-interface
double for C-interface

i INTEGERfor FORTRAN-interface
int for C-interface

xn 1+ axn() mod m=

xn xn p– xn q–⊕=

Vector Generators of Statistical Distributions7

7-5

Prototype of each generator subroutine implementing a given type of
random number distribution fits the following structure:

<function name> (method, stream, n, r, [<distribution

parameters>]) ,
where

• method is the number specifying the method of generation. A detailed
description of this parameter can be found inPseudorandom
Generatorssection.

• stream defines the random stream descriptor and must have a nonzero
value. Random streams and their usage are discussed further in
Random StreamsandService Subroutines.

• n defines the number of pseudorandom values to be generated. Ifn is
less than or equal to zero, no values are generated. Furthermore, ifn is
negative, an error condition is set.

• r defines the destination array for the generated numbers. The
dimension of the array must be large enough to store at leastn
pseudorandom numbers.

Additional parameters included into<distribution parameters>

field are individual for each generator subroutine and are described in detail
in Pseudorandom Generatorssection.

To invoke a pseudorandom generator, use a call to the respective VSL
subroutine. For example, to obtain a vectorr , composed ofn independent
and identically distributed pseudorandom numbers with normal (Gaussian)
distribution, that have the mean valuea and standard deviationsigma ,
write the following:

for FORTRAN-interface

call vsrnggaussian(method, stream, n, r, a, sigma)

for C-interface

vsRngGaussian(method, stream, n, r, a, sigma)

7-6

7 Intel® Math Kernel Library Reference Manual

Basic Pseudorandom Generators
Basic Random Number Generators (BRNGs) are the major and widely
spread tool to obtain uniformly distributed pseudorandom numbers.

VSL provides a number of basic generators that differ in speed and quality:
the 32-bit multiplicative congruential generatorMCG(1132489760, 231 - 1)
[L’Ecuyer99], the 32-bit generalized feedback shift register generator
GFSR(250,103)[Kirkpatrick81], and the combined multiple recursive
generatorMRG-32k3a[L’Ecuyer99a]. Essentially, applicability of a basic
generator to a given computational task is very difficult to estimate. To
ensure more reliable results, basic generators are usually tested in a series of
statistical tests prior to actual computation. Comparative performance
analysis of the generators and testing results can be found inVSLNotes.

Users may want to design and use their own basic generators. VSL provides
means of registration of such user-designed generators through the steps
described inAdvanced Service Subroutinessection.

For some basic generators, VSL provides two methods of creating
independent random streams in multiprocessor computations, which are the
leapfrog method and the block-splitting method. The properties of the
generators designed for parallel computations are discussed in detail in
[Coddington94].

For a more detailed description of the generator properties and testing
results refer toVSLNotes.

Random Streams

Several random streams may be used in one application for a number of
reasons.

First, it may be necessary to supply random data to different computational
nodes of a multiprocessor system. In this case, the following options are
available:

• use an individual basic generator for each computational node, so that
each random stream is filled from a different basic generator;

• use one basic generator for all computational nodes and generate
several independent random streams using the leapfrog method or the
block-splitting method;

vslnotes.htm
vslnotes.htm

Vector Generators of Statistical Distributions7

7-7

• use combination of the two approaches, when one basic generator is
used to generate independent streams for all nodes and each of the
nodes in turn uses its own generator.

Another reason is related to the fact that many Monte Carlo simulations
require additional randomization. A simple illustration is the necessity to
assign random streams to different elements of the model or to run variance
reduction methods [Bratley87].

In either case, the correlation between different random streams can affect
reliability of the final result.

Data Types

Stream State. Random numbers can be generated by portions using the
notion of astream state, which is a structure created after a call to the
stream creating subroutine. A stream state descriptor is used to access the
structure:

FORTRAN

TYPE VSL_STREAM_STATE

INTEGER*4 descriptor1
INTEGER*4 descriptor2

END TYPE VSL_STREAM_STATE

C

typedef (void*) VSLStreamStatePtr;

SeeAdvanced Service Subroutinesfor the format of the stream state
structure for user-designed generators.

Service Subroutines
Stream handling comprises subroutines for creating, deleting, or copying
the streams and getting the index of a basic generator.

7-8

7 Intel® Math Kernel Library Reference Manual

Table 7-1lists all available service subroutines

Most of the generator-based work comprises three basic steps:

4. Creating and initializing a stream (NewStream, NewStreamEx,
CopyStream, LeapfrogStream, SkipAheadStream).

5. Generating pseudorandom numbers with given distribution, see
Pseudorandom Generators.

6. Deleting the stream (DeleteStream).

Note that you can concurrently create multiple streams and obtain
pseudorandom data from one or several generators by using the stream
state. You must use theDeleteStream function to delete all the streams
afterwards.

Table 7-1 Service Subroutines

Subroutine Short Description

NewStream Creates and initializes a random stream.

NewStreamEx Creates and initializes a random stream for the
generators with multiple initial conditions.

DeleteStream Deletes previously created stream.

CopyStream Copies a stream to another stream.

LeapfrogStream Initializes the stream of k-th computational node in
a nstreams-node cluster by the leapfrog method.

SkipAheadStream Initializes the stream by the block-splitting method.

GetStreamStateBrng Obtains the index of the basic generator
responsible for the generation of a given random
stream.

NOTE. In the above table, thevsl prefix in the function names is omitted.
In the function reference this prefix is always used in function prototypes
and code examples.

Vector Generators of Statistical Distributions7

7-9

NewStream
Creates and initializes a random stream.

Fortran:
call vslnewstream(stream, brng, seed)

C:
vslNewStream(stream, brng, seed)

Discussion

For a basic generator with numberbrng , this function creates a new stream
and initializes it with a 32-bit seed. The function is also applicable for
generators with multiple initial conditions. SeeVSLNotesfor a more
detailed description of stream initialization for different basic generators.

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

brng INTEGER, INTENT(IN). Index of the basic
generator to initialize the stream.

seed INTEGER, INTENT(IN). Initial condition of
the stream.

brng int . Index of the basic generator to initialize
the stream.

seed unsigned int . Initial condition of the
stream.

stream TYPE(VSL_STREAM_STATE),

INTENT(OUT) . Stream state descriptor.

vslnotes.htm

7-10

7 Intel® Math Kernel Library Reference Manual

C:

NewStreamEx
Creates and initializes a random stream
for generators with multiple initial
conditions.

Fortran:
call vslnewstreamex(stream, brng, n, params)

C:
vslNewStreamEx(stream, brng, n, params)

Discussion

This function provides an advanced tool to set the initial conditions for a
basic generator if its input arguments imply several initialization
parameters. This subroutine should not be used unless it is specially
necessary. Whenever possible, usevslNewStream , which is analogous to
vslNewStreamEx except that it takes only one 32-bit initial condition. In
particular,vslNewStreamEx may be used to initialize the seed tables in
Generalized Feedback Shift Register Generators (GFSRs). A more detailed
description of this issue can be found inVSLNotes.

Input Parameters

FORTRAN:

stream VSLStreamStatePtr* . Pointer to the stream
state structure.

brng INTEGER, INTENT(IN). Index of the basic
generator to initialize the stream.

n INTEGER, INTENT(IN). Number of initial
conditions contained inparams .

vslnotes.htm

Vector Generators of Statistical Distributions7

7-11

C:

Output Parameters

FORTRAN:

C:

DeleteStream
Deletes a random stream.

Fortran:
call vsldeletestream(stream)

C:
vslDeleteStream(stream)

params INTEGER, INTENT(IN). Array of initial
conditions necessary for the basic generator
brng to initialize the stream.

brng int . Index of the basic generator to initialize
the stream.

n int. Number of initial conditions contained in
params .

params const unsigned int[]. Array of initial
conditions necessary for the basic generator
brng to initialize the stream.

stream TYPE(VSL_STREAM_STATE),

INTENT(OUT) . Stream state descriptor.

stream VSLStreamStatePtr* . Pointer to the stream
state structure.

7-12

7 Intel® Math Kernel Library Reference Manual

Discussion

This function deletes the random stream created by one of the initialization
functions.

Input/Output Parameters

FORTRAN:

C:

CopyStream
Creates a copy of a random stream.

Fortran:
call vslcopystream(newstream, srcstream)

C:
vslCopyStream(newstream, srcstream)

Discussion

The function creates an exact copy ofsrcstream and stores its descriptor
to newstream .

Input Parameters

FORTRAN:

stream TYPE(VSL_STREAM_STATE),

INTENT(INOUT) . Descriptor of the stream to
be deleted; must have non-zero value.

stream VSLStreamStatePtr* . Pointer to the stream
state structure; must have non-zero value.
After the stream is successfully deleted, the
stream pointer is set toNULL.

scrstream TYPE(VSL_STREAM_STATE),

INTENT(IN) . Descriptor of the stream to be
copied.

Vector Generators of Statistical Distributions7

7-13

C:

Output Parameters

FORTRAN:

C:

LeapfrogStream
Initializes stream ofk-th computational
node innstreams -node cluster using
the leapfrog method.

Fortran:
call vslleapfrogstream(stream, k, nstreams)

C:
vslLeapfrogtream(stream, k, nstreams)

Discussion

The function uses the leapfrog method (seeFigure 7-1) to generate an
independent random stream for the computational nodek , 0≤k<nstreams ,
wherenstreams is the largest number of computational nodes used.

srcstream VSLStreamStatePtr . Pointer to the stream
state structure to be copied.

newstream TYPE(VSL_STREAM_STATE),

INTENT(OUT) . Descriptor of the stream copy.

newstream VSLStreamStatePtr* . Pointer to the copy
of the stream state structure.

7-14

7 Intel® Math Kernel Library Reference Manual

The following code examples illustrate the initialization of three
independent streams using the leapfrog method:

Figure 7-1 Leapfrog Method

Example 7-1 FORTRAN Code for Leapfrog Method

…
type(VSL_STREAM_STATE)stream1
type(VSL_STREAM_STATE)stream2
type(VSL_STREAM_STATE)stream3

! Creating 3 identical streams
call vslnewstream(stream1, VSL_BRNG_MCG31, 174)
call vslcopystream(stream2, stream1)
call vslcopystream(stream3, stream1)

! Leapfrogging the streams
call vslleapfrogstream(stream1, 0, 3)
call vslleapfrogstream(stream2, 1, 3)
call vslleapfrogstream(stream3, 2, 3)

! Generating random numbers
…
! Deleting the streams
call vsldeletestream(stream1)
call vsldeletestream(stream2)
call vsldeletestream(stream3)
…

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1st node stream

2ndnode stream

3rd node stream

nstrea m = 3

At node1 thestreamcontains1, 4, 7, 10, 13, 16, 19, …
At node2 thestreamcontains2, 5, 8, 11, 14, 17, 20, …
At node3 thestreamcontains3, 6, 9, 12, 15, 18, 21, …

Vector Generators of Statistical Distributions7

7-15

Input Parameters

FORTRAN:

Example 7-2 C Code for Leapfrog Method

…
VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;

/* Creating 3 identical streams */
vslNewStream(&stream1, VSL_BRNG_MCG31, 174);
vslCopyStream(&stream2, stream1);
vslCopyStream(&stream3, stream1);

/* Leapfrogging the streams */
vslLeapfrogStream(stream1, 0, 3);
vslLeapfrogStream(stream2, 1, 3);
vslLeapfrogStream(stream3, 2, 3);

/* Generating random numbers */
…
/* Deleting the streams */
vslDeleteStream(&stream1);
vslDeleteStream(&stream2);
vslDeleteStream(&stream3);
…

stream TYPE(VSL_STREAM_STATE),

INTENT(IN) . Descriptor of the stream to
which the leapfrog method is applied.

k INTEGER, INTENT(IN) . Index of the
computational node, or stream number.

nstreams INTEGER, INTENT(IN) . Largest number of
computational nodes, or number of
independent streams.

7-16

7 Intel® Math Kernel Library Reference Manual

C:

SkipAheadStream
Initializes a stream using the
block-splitting method.

Fortran:
call vslskipaheadstream(stream, nskip)

C:
vslSkipAheadStream(stream, nskip)

Discussion

This function initializes an independent random stream of a given
computational node through the block-splitting method (seeFigure 7-2).
The maximum number of computational nodes is unlimited. The largest
number of elements skipped in a given stream isnskip .

stream VSLStreamStatePtr . Pointer to the stream
state structure to which the leapfrog method is
applied.

k int . Index of the computational node, or
stream number.

nstreams int . Largest number of computational nodes,
or number of independent steams.

Vector Generators of Statistical Distributions7

7-17

The following code examples illustrate how to initialize three independent
streams using theSkipAheadStream function:

Figure 7-2 Block-Splitting Method

Example 7-3 FORTRAN Code for Block-Splitting Method

…
TYPE(VSL_STREAM_STATE)stream1
TYPE(VSL_STREAM_STATE)stream2
TYPE(VSL_STREAM_STATE)stream3

! Creating the 1st stream
call vslnewstream(stream1, VSL_BRNG_MCG31, 174)

! Skipping ahead by 7 elements the 2nd stream
call vslcopystream(stream2, stream1);
call vslskipaheadstream(stream2, 7);

! Skipping ahead by 7 elements the 3rd stream
call vslcopystream(stream3, stream2);
call vslskipaheadstream(stream3, 7);

! Generating random numbers
…
! Deleting the streams
call vsldeletestream(stream1)
call vsldeletestream(stream2)
call vsldeletestream(stream3)
…

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1st node stream

2ndnode stream

3rd node stream

At node1 thestreamcontains1, 2, 3, 4, 5, 6, 7.
At node2 thestreamcontains8, 9, 10, 11, 12, 13, 14.
At node3 thestreamcontains15, 16, 17, 18, 19, 20, 21.

nski p=7

7-18

7 Intel® Math Kernel Library Reference Manual

Input Parameters

FORTRAN:

C:

Example 7-4 C Code for Block-Splitting Method

VSLStreamStatePtr stream1;
VSLStreamStatePtr stream2;
VSLStreamStatePtr stream3;

/* Creating the 1st stream */
vslNewStream(&stream1, VSL_BRNG_MCG31, 174);

/* Skipping ahead by 7 elements the 2nd stream */
vslCopyStream(&stream2, stream1);
vslSkipAheadStream(stream2, 7);

/* Skipping ahead by 7 elements the 3rd stream */
vslCopyStream(&stream3, stream2);
vslSkipAheadStream(stream3, 7);

/* Generating random numbers */
…
/* Deleting the streams */
vslDeleteStream(&stream1);
vslDeleteStream(&stream2);
vslDeleteStream(&stream3);
…

stream TYPE(VSL_STREAM_STATE),

INTENT(IN) . Descriptor of the stream to
which the block-splitting method is applied.

nskip INTEGER, INTENT(IN) . Number of skipped
elements.

stream VSLStreamStatePtr . Pointer to the stream
state structure to which the block-splitting
method is applied.

nskip int . Number of skipped elements.

Vector Generators of Statistical Distributions7

7-19

GetStreamStateBrng
Returns index of a basic generator used for
generation of a given random stream.

Fortran:
brng = vslgetstreamstatebrng(stream)

C:
brng = vslGetStreamStateBrng(stream)

Discussion

This function retrieves the index of a basic generator used for generation of
a given random stream.

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

C:

stream TYPE(VSL_STREAM_STATE), INTENT(IN) .
Descriptor of the stream state.

stream VSLStreamStatePtr . Pointer to the stream
state structure.

brng INTEGER. Index of the basic generator assigned
for the generation ofstream ; negative in case
of an error.

brng int . Index of the basic generator assigned for
the generation ofstream ; negative in case of
an error.

7-20

7 Intel® Math Kernel Library Reference Manual

Pseudorandom Generators
This section contains description of VSL subroutines for generating random
numbers with different types of distribution. Each function group is
introduced by the type of underlying distribution and contains a short
description of its functionality, as well as specifications of the call sequence
for both FORTRAN and C-interface and the explanation of input and output
parameters.
Table 7-2andTable 7-3list the pseudorandom number generator
subroutines, together with used data types and output distributions.

Table 7-2 Continuous Distribution Generators

Type of
Distribution

Data
Types

Description

Uniform s, d Uniform continuous distribution on the interval (a,b).

Gaussian s, d Normal (Gaussian) distribution.

Exponential s, d Exponential distribution.

Laplace s, d Laplace distribution (double exponential distribution).

Weibull s, d Weibull distribution.

Cauchy s, d Cauchy distribution.

Rayleigh s, d Rayleigh distribution.

Lognormal s, d Lognormal distribution.

Gumbel s, d Gumbel (extreme value) distribution.

Table 7-3 Discrete Distribution Generators

Type of Distribution
Data
Types Description

Uniform i Uniform discrete distribution on the interval [a,b).

UniformBits i Generator of integer random values with uniform bit
distribution.

Bernoulli i Bernoulli distribution.

Geometric i Geometric distribution.

Binomial i Binomial distribution.

Hypergeometric i Hypergeometric distribution.

Poisson i Poisson distribution.

NegBinomial i Negative binomial distribution, or Pascal distribution.

Vector Generators of Statistical Distributions7

7-21

Continuous Distributions

This section describes routines for generating pseudorandom numbers with
continuous distribution.

Uniform
Generates pseudorandom numbers with
uniform distribution.

Fortran:
call vsrnguniform(method, stream, n, r, a, b)

call vdrnguniform(method, stream, n, r, a, b)

C:
vsRngUniform(method, stream, n, r, a, b)

vdRngUniform(method, stream, n, r, a, b)

Discussion

This function generates pseudorandom numbers uniformly distributed over
the interval (a, b), where a, b are the left and right bounds of the
interval, respectively, and ; .

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

a b, R∈ a b<

fa b, x()
1

b a–
------------ , x a(b),∈

0, x a(b),∉

= ∞– x + ∞< <

Fa b, x()

0, x a<
x a–
b a–
------------ , a x≤ b<

1, x b≥

= ∞– x + ∞< <

7-22

7 Intel® Math Kernel Library Reference Manual

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method; dummy and set to 0 in case of
uniform distribution.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a REAL, INTENT(IN) for vsrnguniform .

DOUBLE PRECISION, INTENT(IN) for
vdrnguniform .

Left bounda.

b REAL, INTENT(IN) for vsrnguniform .

DOUBLE PRECISION, INTENT(IN) for
vdrnguniform .

Right boundb.

method int. Generation method; dummy and set to 0
in case of uniform distribution.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a float for vsRngUniform .

double for vdRngUniform .

Left bounda.

Vector Generators of Statistical Distributions7

7-23

Output Parameters

FORTRAN:

C:

Gaussian
Generates normally distributed
pseudorandom numbers.

Fortran:
call vsrnggaussian(method, stream, n, r, a, sigma)

call vdrnggaussian(method, stream, n, r, a, sigma)

C:
vsRngGaussian(method, stream, n, r, a, sigma)

vdRngGaussian(method, stream, n, r, a, sigma)

b float for vsRngUniform .

double for vdRngUniform .

Right boundb.

r REAL, INTENT(OUT) for vsrnguniform .

DOUBLE PRECISION, INTENT(OUT)for
vdrnguniform .

Vector ofn pseudorandom numbers uniformly
distributed over the interval(a,b) .

r float* for vsRngUniform .

double* for vdRngUniform .

Vector ofn pseudorandom numbers uniformly
distributed over the interval(a,b) .

7-24

7 Intel® Math Kernel Library Reference Manual

Discussion

This function generates pseudorandom numbers with normal (Gaussian)
distribution with mean value and standard deviation , where

; .

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

The cumulative distribution function can be expressed in terms of
standard normal distribution as

.

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a REAL, INTENT(IN) for vsrnggaussian .

DOUBLE PRECISION, INTENT(IN) for
vdrnggaussian .

Mean valuea.

a σ
a σ, R∈ σ 0>

fa σ, x()
1

2πσ
--------------- x a–()2

2σ2
-------------------–

exp= ∞– x + ∞< <

Fa σ, x()
1

2πσ
--------------- y a–()2

2σ2
-------------------–

exp yd

∞–

x

∫= ∞– x + ∞< <

Fa σ, x()
Φ x()

Fa σ, x() Φ x a–() σ⁄()=

Vector Generators of Statistical Distributions7

7-25

C:

Output Parameters

FORTRAN:

C:

sigma REAL, INTENT(IN) for vsrnggaussian .

DOUBLE PRECISION, INTENT(IN) for
vdrnggaussian .

Standard deviation .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a float for vsRngGaussian .

double for vdRngGaussian .

Mean valuea.

sigma float for vsRngGaussian .

double for vdRngGaussian .

Standard deviation .

r REAL, INTENT(OUT) for vsrnggaussian .

DOUBLE PRECISION, INTENT(OUT)for
vdrnggaussian .

Vector ofn normally distributed
pseudorandom numbers.

r float* for vsRngGaussian .

double* for vdRngGaussian .

Vector ofn normally distributed
pseudorandom numbers.

σ

σ

7-26

7 Intel® Math Kernel Library Reference Manual

Exponential
Generates exponentially distributed
pseudorandom numbers.

Fortran:
call vsrngexponential(method, stream, n, r, a, beta)

call vdrngexponential(method, stream, n, r, a, beta)

C:
vsRngExponential(method, stream, n, r, a, beta)

vdRngExponential(method, stream, n, r, a, beta)

Discussion

This function generates pseudorandom numbers with exponential
distribution that has the displacement and scalefactor , where

; .

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

a β
a β, R∈ β 0>

fa β, x()
1
β
--- x a–()–() β⁄(), x a≥exp

0, x a<

= ∞– x + ∞< <

Fa β, x()
1 x a–()–() β⁄(), x a≥exp–

0, x a<

= ∞– x + ∞< <

Vector Generators of Statistical Distributions7

7-27

C:

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a REAL, INTENT(IN) for
vsrngexponential .

DOUBLE PRECISION, INTENT(IN) for
vdrngexponential .

Displacementa.

beta REAL, INTENT(IN) for
vsrngexponential .

DOUBLE PRECISION, INTENT(IN) for
vdrngexponential .

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a float for vsRngExponential .

double for vdRngExponential .

Displacementa.

beta float for vsRngExponential .

double for vdRngExponential .

Scalefactor .

β

β

7-28

7 Intel® Math Kernel Library Reference Manual

Output Parameters

FORTRAN:

C:

Laplace
Generates pseudorandom numbers with
Laplace distribution.

Fortran:
call vsrnglaplace(method, stream, n, r, a, beta)

call vdrnglaplace(method, stream, n, r, a, beta)

C:
vsRngLaplace(method, stream, n, r, a, beta)

vdRngLaplace(method, stream, n, r, a, beta)

Discussion

This function generates pseudorandom numbers with Laplace distribution
with mean value (or average) and scalefactor , where

r REAL, INTENT(OUT) for
vsrngexponential .

DOUBLE PRECISION, INTENT(OUT)for
vdrngexponential .

Vector ofn exponentially distributed
pseudorandom numbers.

r float* for vsRngExponential .

double* for vdRngExponential .

Vector ofn exponentially distributed
pseudorandom numbers.

a β

Vector Generators of Statistical Distributions7

7-29

; . The scalefactor value determines the standard
deviation as

.

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation method.

stream TYPE (VSL_STREAM_STATE), INTENT(IN). Descriptor
of the stream state structure.

n INTEGER, INTENT(IN). Number of random values to be
generated.

a REAL, INTENT(IN) for vsrnglaplace .

DOUBLE PRECISION, INTENT(IN) for vdrnglaplace .

Mean valuea.

beta REAL, INTENT(IN) for vsrnglaplace .

DOUBLE PRECISION, INTENT(IN) for vdrnglaplace .

Scalefactor .

a β, R∈ β 0>

σ β 2=

fa β, x()
1

2β
----------- x a–

β
---------------–

 exp= ∞– x + ∞< <

Fa β, x()

1
2
--- x a–

β
---------------–

 , x a<exp

1
1
2
--- x a–

β
---------------–

 exp– , x a≥

= ∞– x + ∞< <

β

7-30

7 Intel® Math Kernel Library Reference Manual

C:

Output Parameters

FORTRAN:

C:

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state descriptor.

n int. Number of random values to be
generated.

a float for vsRngLaplace .

double for vdRngLaplace .

Mean valuea.

beta float for vsRngLaplace .

double for vdRngLaplace .

Scalefactor .

r REAL, INTENT(OUT) for vsrnglaplace .

DOUBLE PRECISION, INTENT(OUT)for
vdrnglaplace .

Vector ofn Laplace distributed pseudorandom
numbers.

r float* for vsRngLaplace .

double* for vdRngLaplace .

Vector ofn Laplace distributed pseudorandom
numbers.

β

Vector Generators of Statistical Distributions7

7-31

Weibull
Generates Weibull distributed
pseudorandom numbers.

Fortran:
call vsrngweibull(method, stream, n, r, alpha, a, beta)

call vdrngweibull(method, stream, n, r, alpha, a, beta)

C:
vsRngWeibull(method, stream, n, r, alpha, a, beta)

vdRngWeibull(method, stream, n, r, alpha, a, beta)

Discussion

This function generates Weibull distributed pseudorandom numbers with
displacement , scalefactor , and shape , where ;

; .

The probability density function is given by:

The cumulative distribution function is as follows:

, .

a β α α β a, , R∈
α 0> β 0>

fa α β, , x()

α
βα
------ x a–()α 1– x a–

β

 α
–

 , x a≥exp

0, x a<

=

Fa α β, , x()
1

x a–
β

 α

–
 , x a≥exp–

0, x a<

= ∞– x + ∞< <

7-32

7 Intel® Math Kernel Library Reference Manual

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

alpha REAL, INTENT(IN) for vsrngweibull .

DOUBLE PRECISION, INTENT(IN) for
vdrngweibull .

Shape .

a REAL, INTENT(IN) for vsrngweibull .

DOUBLE PRECISION, INTENT(IN) for
vdrngweibull .

Displacementa.

beta REAL, INTENT(IN) for vsrngweibull .

DOUBLE PRECISION, INTENT(IN) for
vdrngweibull .

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

alpha float for vsRngWeibull .

double for vdRngWeibull .

Shape .

α

β

α

Vector Generators of Statistical Distributions7

7-33

Output Parameters

FORTRAN:

C:

Cauchy
Generates Cauchy distributed
pseudorandom values.

Fortran:
call vsrngcauchy(method, stream, n, r, a, beta)

call vdrngcauchy(method, stream, n, r, a, beta)

a float for vsRngWeibull .

double for vdRngWeibull .

Displacementa.

beta float for vsRngWeibull .

double for vdRngWeibull .

Scalefactor .

r REAL, INTENT(OUT) for vsrngweibull .

DOUBLE PRECISION, INTENT(OUT)for
vdrngweibull .

Vector ofn Weibull distributed pseudorandom
numbers.

r float* for vsRngWeibull .

double* for vdRngWeibull .

Vector ofn Weibull distributed pseudorandom
numbers.

β

7-34

7 Intel® Math Kernel Library Reference Manual

C:
vsRngCauchy(method, stream, n, r, a, beta)

vdRngCauchy(method, stream, n, r, a, beta)

Discussion

This function generates Cauchy distributed pseudorandom numbers with
displacement and scalefactor , where ; .

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a REAL, INTENT(IN) for vsrngcauchy .

DOUBLE PRECISION, INTENT(IN) for
vdrngcauchy .

Displacementa.

a β a β, R∈ β 0>

fa β, x()
1

πβ 1
x a–

β

 2
+

---= ∞– x + ∞< <

Fa β, x()
1
2
--- 1

π
---arctan

x a–
β

 += ∞– x + ∞< <

Vector Generators of Statistical Distributions7

7-35

C:

Output Parameters

FORTRAN:

C:

beta REAL, INTENT(IN) for vsrngcauchy .

DOUBLE PRECISION, INTENT(IN) for
vdrngcauchy .

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a float for vsRngCauchy .

double for vdRngCauchy .

Displacementa.

beta float for vsRngCauchy .

double for vdRngCauchy .

Scalefactor .

r REAL, INTENT(OUT) for vsrngcauchy .

DOUBLE PRECISION, INTENT(OUT)for
vdrngcauchy .

Vector ofn Cauchy distributed pseudorandom
numbers.

r float* for vsRngCauchy .

double* for vdRngCauchy .

Vector ofn Cauchy distributed pseudorandom
numbers.

β

β

7-36

7 Intel® Math Kernel Library Reference Manual

Rayleigh
Generates Rayleigh distributed
pseudorandom values.

Fortran:
call vsrngrayleigh(method, stream, n, r, a, beta)

call vdrngrayleigh(method, stream, n, r, a, beta)

C:
vsRngRayleigh(method, stream, n, r, a, beta)

vdRngRayleigh(method, stream, n, r, a, beta)

Discussion

This function generates Rayleigh distributed pseudorandom numbers with
displacement and scalefactor , where ; .

Rayleigh distribution is a special case of Weibull distribution, where the
shape parameter = 2.

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

a β a β, R∈ β 0>

α

fa β, x()

2 x a–()
β2

-------------------- x a–()
β2

2

–
 , x a≥exp

0, x a<

= ∞– x + ∞< <

Fa β, x()
1

x a–()
β2

2

–
 , x a≥exp–

0, x a<

= ∞– x + ∞< <

Vector Generators of Statistical Distributions7

7-37

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a REAL, INTENT(IN) for vsrngrayleigh .

DOUBLE PRECISION, INTENT(IN) for
vdrngrayleigh .

Displacementa.

beta REAL, INTENT(IN) for vsrngrayleigh .

DOUBLE PRECISION, INTENT(IN) for
vdrngrayleigh .

Scalefactor .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a float for vsRngRayleigh .

double for vdRngRayleigh .

Displacementa.

beta float for vsRngRayleigh .

double for vdRngRayleigh .

Scalefactor .

β

β

7-38

7 Intel® Math Kernel Library Reference Manual

Output Parameters

FORTRAN:

C:

Lognormal
Generates lognormally distributed
pseudorandom numbers.

Fortran:
call vsrnglognormal(method, stream, n, r, a, sigma, b,
beta)

call vdrnglognormal(method, stream, n, r, a, sigma, b,
beta)

C:
vsRngLognormal(method, stream, n, r, a, sigma, b, beta)

vdRngLognormal(method, stream, n, r, a, sigma, b, beta)

r REAL, INTENT(OUT) for vsrngrayleigh .

DOUBLE PRECISION, INTENT(OUT)for
vdrngrayleigh .

Vector ofn Rayleigh distributed
pseudorandom numbers.

r float* for vsRngRayleigh .

double* for vdRngRayleigh .

Vector ofn Rayleigh distributed
pseudorandom numbers.

Vector Generators of Statistical Distributions7

7-39

Discussion

This function generates lognormally distributed pseudorandom numbers
with average of distribution and standard deviation of subject normal
distribution, displacement , and scalefactor , where

; ; .

The probability density function is given by:

The cumulative distribution function is as follows:

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a REAL, INTENT(IN) for vsrnglognormal .

DOUBLE PRECISION, INTENT(IN) for
vdrnglognormal .

Averagea of the subject normal distribution.

a σ
b β

a σ b β, , , R∈ σ 0> β 0>

fa σ b β, , , x()
1

σ x b–() 2π
-------------------------------- x b–() β⁄() a–ln[]2

2σ2
---–

, x b>exp

0, x b≤

=

Fa σ b β, , , x()
Φ x b–() β⁄() a–ln() σ⁄(), x b>
0, x b≤

=

7-40

7 Intel® Math Kernel Library Reference Manual

C:

sigma REAL, INTENT(IN) for vsrnglognormal .

DOUBLE PRECISION, INTENT(IN) for
vdrnglognormal .

Standard deviation of the subject normal
distribution.

b REAL, INTENT(IN) for vsrnglognormal .

DOUBLE PRECISION, INTENT(IN) for
vdrnglognormal .

Displacementb.

beta REAL, INTENT(IN) for vsrnglognormal .

DOUBLE PRECISION, INTENT(IN) for
vdrnglognormal .

Scalefactor value .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a float for vsRngLognormal .

double for vdRngLognormal .

Averagea of the subject normal distribution.

sigma float for vsRngLognormal .

double for vdRngLognormal .

Standard deviation of the subject normal
distribution.

b float for vsRngLognormal .

double for vdRngLognormal .

Displacementb.

σ

β

σ

Vector Generators of Statistical Distributions7

7-41

Output Parameters

FORTRAN:

C:

Gumbel
Generates Gumbel distributed
pseudorandom values.

Fortran:
call vsrnggumbel(method, stream, n, r, a, beta)

call vdrnggumbel(method, stream, n, r, a, beta)

C:
vsRngGumbel(method, stream, n, r, a, beta)

vdRngGumbel(method, stream, n, r, a, beta)

beta float for vsRngLognormal .

double for vdRngLognormal .

Scalefactor value .

r REAL, INTENT(OUT) for vsrnglognormal .

DOUBLE PRECISION, INTENT(OUT)for
vdrnglognormal .

Vector ofn lognormally distributed
pseudorandom numbers.

r float* for vsRngLognormal .

double* for vdRngLognormal .

Vector ofn lognormally distributed
pseudorandom numbers.

β

7-42

7 Intel® Math Kernel Library Reference Manual

Discussion

This function generates Gumbel distributed pseudorandom numbers with
displacement and scalefactor , where ; .

The probability density function is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream
state structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a REAL, INTENT(IN) for vsrnggumbel .

DOUBLE PRECISION, INTENT(IN) for
vdrnggumbel .

Displacementa.

beta REAL, INTENT(IN) for vsrnggumbel .

DOUBLE PRECISION, INTENT(IN) for
vdrnggumbel .

Scalefactor .

method int. Generation method.

a β a β, R∈ β 0>

fa β, x()
1
β
--- x a–

β

 x a–() β⁄()exp–()expexp= ∞– x + ∞< <

Fa β, x() 1 x a–() β⁄()exp–()exp–= ∞– x + ∞< <

β

Vector Generators of Statistical Distributions7

7-43

Output Parameters

FORTRAN:

C:

Discrete Distributions

This section describes routines for generating pseudorandom numbers with
discrete distribution.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a float for vsRngGumbel .

double for vdRngGumbel .

Displacementa.

beta float for vsRngGumbel .

double for vdRngGumbel .

Scalefactor .

r REAL, INTENT(OUT) for vsrnggumbel .

DOUBLE PRECISION, INTENT(OUT)for
vdrnggumbel .

Vector ofn pseudorandom values with
Gumbel distribution.

r float* for vsRngGumbel .

double* for vdRngGumbel .

Vector ofn pseudorandom values with
Gumbel distribution.

β

7-44

7 Intel® Math Kernel Library Reference Manual

Uniform
Generates pseudorandom numbers
uniformly distributed over the interval

.

Fortran:
call virnguniform(method, stream, n, r, a, b)

C:
viRngUniform(method, stream, n, r, a, b)

Discussion

This function generates pseudorandom numbers uniformly distributed over
the interval , wherea, b are the left and right bounds of the
interval, respectively, and ; .

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

a b),[

a b),[
a b, Z∈ a b<

P x k=() 1
b a–
------------= k a a 1, …, b 1–+,{ }∈

Fa b, x()

0, x a<
x a– 1+

b a–
---------------------------- , a x b<≤

1, x b≥

= x R∈

Vector Generators of Statistical Distributions7

7-45

C:

Output Parameters

FORTRAN:

C:

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a INTEGER, INTENT(IN). Left interval
bounda.

b INTEGER, INTENT(IN). Right interval
boundb.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a int. Left interval bounda.

b int. Right interval boundb.

r INTEGER, INTENT(OUT) . Vector ofn
pseudorandom values uniformly distributed
over the interval[a,b) .

r int*. Vector ofn pseudorandom values
uniformly distributed over the interval[a,b) .

7-46

7 Intel® Math Kernel Library Reference Manual

UniformBits
Generates integer random values with
uniform bit distribution.

Fortran:
call virnguniformbits(method, stream, n, r)

C:
viRngUniform(method, stream, n, r)

Discussion

This function generates integer random values with uniform bit
distribution.The generators of uniformly distributed numbers can be
represented as recurrence relations over integer values in modular
arithmetic. Apparently, each integer can be treated as a vector of several
bits. In a truly random generator, these bits are random, while in
pseudorandom generators this randomness can be violated. For example, a
well known drawback of linear congruential generators is that lower bits are
less random than higher bits (for example, see [Knuth81]). For this reason,
care should be taken when using this function. Typically, in a 32-bitLCG
only 24 higher bits of an integer value can be considered truly random. See
VSLNotesfor details.

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method. A dummy argument in
virnguniformbits. Should be zero.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

vslnotes.htm

Vector Generators of Statistical Distributions7

7-47

C:

Output Parameters

FORTRAN:

method int. Generation method. A dummy argument
in viRngUniformBits. Should be zero.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

r INTEGER, INTENT(OUT) . Vector ofn
pseudorandom integer numbers. If the
stream was generated by a 64 or a 128-bit
generator, each integer value is represented by
two or four elements ofr respectively. The
number of bytes occupied by each integer is
contained in the fieldwordsize of the
structureVSL_BRNG_PROPERTIES. The total
number of bits that are actually used to store
the value are contained in the fieldnbits of
the same structure. SeeAdvanced Service
Subroutinesfor a more detailed discussion of
VSL_BRNG_PROPERTIES.

7-48

7 Intel® Math Kernel Library Reference Manual

C:

Bernoulli
Generates Bernoulli distributed
pseudorandom values.

Fortran:
call virngbernoulli(method, stream, n, r, p)

C:
viRngBernoulli(method, stream, n, r, p)

Discussion

This function generates Bernoulli distributed pseudorandom numbers with
probability of a single trial success, where

; .

A variate is called Bernoulli distributed, if after a trial it is equal to 1 with
probability of successp, and to 0 with probability1–p .

r unsigned int*. Vector ofn pseudorandom
integer numbers. If thestream was generated
by a 64 or a 128-bit generator, each integer
value is represented by two or four elements
of r respectively. The number of bytes
occupied by each integer is contained in the
field WordSize of the structure
VSLBrngProperties . The total number of
bits that are actually used to store the value are
contained in the fieldNBits of the same
structure. SeeAdvanced Service Subroutines
for a more detailed discussion of
VSLBrngProperties .

p

p R∈ 0 p 1≤ ≤

Vector Generators of Statistical Distributions7

7-49

The probability distribution is given by:

,

.

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

p DOUBLE PRECISION, INTENT(IN) .
Success probabilityp of a trial.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

p double. Success probabilityp of a trial.

P X 1=() p=

P X 0=() 1 p–=

Fp x()

0, x 0<
1 p– , 0 x 1<≤

1, x 1≥

= x R∈

7-50

7 Intel® Math Kernel Library Reference Manual

Output Parameters

FORTRAN:

C:

Geometric
Generates geometrically distributed
pseudorandom values.

Fortran:
call virnggeometric(method, stream, n, r, p)

C:
viRngGeometric(method, stream, n, r, p)

Discussion

This function generates geometrically distributed pseudorandom numbers
with probability of a single trial success, where ; .

A geometrically distributed variate represents the number of independent
Bernoulli trials preceding the first success. The probability of a single
Bernoulli trial success isp.

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, .

r INTEGER, INTENT(OUT) . Vector ofn
Bernoulli distributed pseudorandom values.

r int*. Vector ofn Bernoulli distributed
pseudorandom values.

p p R∈ 0 p 1< <

P X k=() p 1 p–()k⋅= k 0 1, 2, …,{ }∈

Fp x()
0, x 0<

1 1 p–() x 1+
– , x 0≥

= x R∈

Vector Generators of Statistical Distributions7

7-51

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

p DOUBLE PRECISION, INTENT(IN) .
Success probabilityp of a trial.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

p double. Success probabilityp of a trial.

r INTEGER, INTENT(OUT) . Vector ofn
geometrically distributed pseudorandom
values.

r int*. Vector ofn geometrically distributed
pseudorandom values.

7-52

7 Intel® Math Kernel Library Reference Manual

Binomial
Generates binomially distributed
pseudorandom numbers.

Fortran:
call virngbinomial(method, stream, n, r, ntrial, p)

C:
viRngBinomial(method, stream, n, r, ntrial, p)

Discussion

This function generates binomially distributed pseudorandom numbers with
number of independent Bernoulli trials , and with probability of a
single trial success, where ; , .

A binomially distributed variate represents the number of successes inm

independent Bernoulli trials with probability of a single trial successp.

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

m p
p R∈ 0 p 1≤ ≤ m N∈

P X k=() Cm
k p

k 1 p–()m k–
= k 0 1, … m,,{ }∈

Fm p, x()

0, x 0<

Cm
k p

k 1 p–()m k–

k 0=

x

∑ , 0 x m<≤

1, x m≥

= x R∈

Vector Generators of Statistical Distributions7

7-53

C:

Output Parameters

FORTRAN:

C:

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

ntrial INTEGER, INTENT(IN). Number of
independent trialsm.

p DOUBLE PRECISION, INTENT(IN) .
Success probabilityp of a single trial.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

ntrial int. Number of independent trialsm.

p double. Success probabilityp of a single
trial.

r INTEGER, INTENT(OUT) . Vector ofn
binomially distributed pseudorandom values.

r int*. Vector ofn binomially distributed
pseudorandom values.

7-54

7 Intel® Math Kernel Library Reference Manual

Hypergeometric
Generates hypergeometrically
distributed pseudorandom values.

Fortran:
call virnghypergeometric(method, stream, n, r, l, s, m)

C:
viRngHypergeometric(method, stream, n, r, l, s, m)

Discussion

This function generates hypergeometrically distributed pseudorandom
values with lot size , size of sampling , and number of marked elements
in the lot , where ; .

Consider a lot ofl elements comprisingm“marked” andl-m “unmarked“
elements. A trial sampling without replacement of exactlys elements from
this lot helps to define the hypergeometric distribution, which is the
probability that the group ofs elements contains exactlyk marked
elements.

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

l s
m l m s, , N 0{ }∪∈ l max s m,()≥

P X k=()
Cm

k Cl m–
s k–

Cl
s

---------------------= k max 0, s m l–+(), … min s m,(),{ }∈

Fl s m, , x()

0, x max 0, s m l–+()<

Cm
k Cl m–

s k–

Cl
s

k max 0 s m l–+,()=

x

∑ , max 0, s m l–+() x min s m,()≤ ≤

1, x min s m,()>

=

Vector Generators of Statistical Distributions7

7-55

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

C:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

l INTEGER, INTENT(IN). Lot sizel .

s INTEGER, INTENT(IN). Size of sampling
without replacements .

m INTEGER, INTENT(IN). Number of marked
elementsm.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

l int. Lot sizel .

s int. Size of sampling without replacements .

m int. Number of marked elementsm.

r INTEGER, INTENT(OUT) . Vector ofn
hypergeometrically distributed pseudorandom
values.

r int*. Vector ofn hypergeometrically
distributed pseudorandom values.

7-56

7 Intel® Math Kernel Library Reference Manual

Poisson
Generates Poisson distributed
pseudorandom values.

Fortran:
call virngpoisson(method, stream, n, r, lambda)

C:
viRngPoisson(method, stream, n, r, lambda)

Discussion

This function generates Poisson distributed pseudorandom numbers with
distribution parameter , where ; .

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

λ λ R∈ λ 0>

P X k=() λk
e

λ–

k!
-------------= k 0, 1, 2, …{ }∈

Fλ x()
λk

e
λ–

k!

k 0=

x

∑ , x 0≥

0, x 0<

= x R∈

Vector Generators of Statistical Distributions7

7-57

C:

Output Parameters

FORTRAN:

C:

NegBinomial
Generates pseudorandom numbers with
negative binomial distribution.

Fortran:
call virngnegbinomial(method, stream, n, r, a, p)

C:
viRngNegBinomial(method, stream, n, r, a, p)

n INTEGER, INTENT(IN). Number of
random values to be generated.

lambda DOUBLE PRECISION, INTENT(IN) .
Distribution parameter .

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

lambda double. Distribution parameter .

r INTEGER, INTENT(OUT) . Vector ofn
Poisson distributed pseudorandom values.

r int*. Vector ofn Poisson distributed values.

λ

λ

7-58

7 Intel® Math Kernel Library Reference Manual

Discussion

This function generates pseudorandom numbers with negative binomial
distribution and distribution parameters and., where ;

; .

If the first distribution parameter , this distribution is the same as
Pascal distribution. If , the distribution can be interpreted as the
expected time of -th success in a sequence of Bernoulli trials, when the
probability of success is .

The probability distribution is given by:

, .

The cumulative distribution function is as follows:

, .

Input Parameters

FORTRAN:

method INTEGER, INTENT(IN). Generation
method.

stream TYPE (VSL_STREAM_STATE),

INTENT(IN). Descriptor of the stream state
structure.

n INTEGER, INTENT(IN). Number of
random values to be generated.

a DOUBLE PRECISION, INTENT(IN) . The
first distribution parametera.

p DOUBLE PRECISION, INTENT(IN) . The
second distribution parameterp.

a p p a, R∈
0 p 1< < a 0>

a N∈
a N∈

a
p

P X k=() Ca k 1–+
k p

a 1 p–()k
= k 0, 1, 2, …{ }∈

Fa p, x()
Ca k 1–+

k p
a 1 p–()k

k 0=

x

∑ , x 0≥

0, x 0<

= x R∈

Vector Generators of Statistical Distributions7

7-59

C:

Output Parameters

FORTRAN:

C:

Advanced Service Subroutines
This section describes service subroutines for registering a basic generator
and obtaining properties of the previously registered basic generators.

method int. Generation method.

stream VSLStreamStatePtr. Pointer to the stream
state structure.

n int. Number of random values to be
generated.

a double . The first distribution parametera.

p double . The second distribution parameterp.

r INTEGER, INTENT(OUT) . Vector ofn
pseudorandom values with negative binomial
distribution.

r int*. Vector ofn pseudorandom values with
negative binomial distribution.

Table 7-4 Advanced Service Subroutines

Subroutine Short Description

RegisterBrng Registers a user-designed basic
generator.

GetBrngProperties Returns the structure with
properties of the basic generator
with a given number.

7-60

7 Intel® Math Kernel Library Reference Manual

Data types

The subroutines of this section refer to a structure defining the properties of
the basic generator:

Example 7-5 Fortran Version

TYPE VSL_BRNG_PROPERTIES
INTEGER streamstatesize
INTEGER nseeds
INTEGER includeszero
INTEGER wordsize
INTEGER nbits
INTEGER initstream
INTEGER sbrng
INTEGER dbrng
INTEGER ibrng

END TYPE VSL_BRNG_PROPERTIES

Example 7-6 C Version

typedef struct _VSLBRngProperties {
int StreamStateSize;
int NSeeds;
int IncludesZero;
int WordSize;
int NBits;
InitStreamPtr InitStream;
sBRngPtr sBRng;
dBRngPtr dBRng;
iBRngPtr iBRng;

} VSLBRngProperties;

Example 7-7 Pointers to Functions

typedef int (*InitStreamPtr)(int method, void * stream, int n,
const unsigned int params[]);

typedef void (*sBRngPtr)(void * stream, int n, float r[],
float a, float b);

typedef void (*dBRngPtr)(void * stream, int n, double r[],
double a, double b);

typedef void (*iBRngPtr)(void * stream, int n,
unsigned int r[]);

Vector Generators of Statistical Distributions7

7-61

Table 7-5 Field Descriptions

Field Short Description

FORTRAN:

streamstatesize

C:

StreamStateSize

The size, in bytes, of the stream state structure
for a given basic generator.

FORTRAN:

nseeds

C:

NSeeds

The number of 32-bit initial conditions (seeds)
necessary to initialize the stream state structure
for a given basic generator.

FORTRAN:

includeszero

C:

IncludesZero

Flag value indicating whether the generator can
produce a pseudorandom 01.

FORTRAN:

wordsize

C:

WordSize

Machine word size, in bytes, used in
integer-value computations. Possible values: 4,
8, and 16 for 32, 64, and 128-bit generators,
respectively.

FORTRAN:

nbits

C:

NBits

The number of bits required to represent a
pseudorandom value in integer arithmetic. Note
that, for instance, 48-bit pseudorandom values
are stored to 64-bit (8 byte) memory locations.
In this case, WordSize is equal to 8 (number
of bytes used to store the pseudorandom value),
while NBits contains the actual number of bits
occupied by the value (in this example, 48).

FORTRAN:

initstream

C:

InitStream

Contains the pointer to the initialization
subroutine of a given basic generator.

FORTRAN:

sbrng

C:

sBRng

Contains the pointer to the basic generator of
single precision real numbers uniformly
distributed over the interval (a,b) (REALin
FORTRAN and float in C).

7-62

7 Intel® Math Kernel Library Reference Manual

RegisterBrng
Registers user-defined basic generator.

Fortran:
brng = vslregisterbrng(properties)

C:
brng = vslRegisterBrng(properties)

Discussion

An example of a registration procedure can be found inVSL\Examples.

FORTRAN:

dbrng

C:

dBRng

Contains the pointer to the basic generator of
double precision real numbers uniformly
distributed over the interval (a,b) (DOUBLE
PRECISION in FORTRAN and double in C).

FORTRAN:

ibrng

C:

iBRng

Contains the pointer to the basic generator of
integer numbers with uniform bit distribution2

(INTEGERin FORTRAN and unsigned int
in C).

1. Certain types of generators, for example, generalized feedback shift registers can potentially
generate a pseudorandom 0. On the other hand, generators like multiplicative congruential
generators never generate such a number. In most cases this information is irrelevant because the
probability of generating a zero value is extremely small. However, in certain non-uniform distribution
generators the possibility for a basic generator to produce a pseudorandom zero may lead to
generation of an infinitely large number (overflow). Even though the software handles overflows
correctly, so that they may be interpreted as + and , the user has to be careful and verify the
final results. If an infinitely large number may affect the computation, the user should either remove
such numbers from the generated vector, or use safe generators, which do not produce
pseudorandom 0.

2. A specific generator that permits operations over single bits and bit groups of pseudorandom
numbers.

Table 7-5 Field Descriptions (continued)

Field Short Description

∞ ∞–

Vector Generators of Statistical Distributions7

7-63

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

C:

GetBrngProperties
Returns structure with properties of a
given basic generator.

Fortran:
call vslgetbrngproperties(brng, properties)

properties TYPE (VSL_BRNG_PROPERTIES),

INTENT(IN). Structure containing
properties of the basic generator to be
registered.

properties VSLBrngProperties*. Structure
containing properties of the basic generator
to be registered.

brng INTEGER. The number (index) of the
registered basic generator; used for
identification. Negative values indicate the
registration error.

brng int . The number (index) of the registered
basic generator; used for identification.
Negative values indicate the registration
error.

7-64

7 Intel® Math Kernel Library Reference Manual

C:
call vslGetBrngProperties(brng, properties)

Input Parameters

FORTRAN:

C:

Output Parameters

FORTRAN:

C:

Formats for User-Designed Generators
To register a user-designed basic generator usingRegisterBrng function,
you need to pass the pointeriBrng to the integer-value implementation of
the generator; the pointerssBrng anddBrng to the generator
implementations for single and double precision values, respectively; and
pass the pointerInitStream to the stream initialization subroutine. This
section contains recommendations on defining such functions with input
and output arguments. An example of the registration procedure for a
user-designed generator can be found inVSL\Examples.

brng INTEGER, INTENT(IN). Number
(index) of the registered basic generator.

brng int. Number (index) of the registered
basic generator.

properties TYPE (VSL_BRNG_PROPERTIES),

INTENT(OUT). Structure containing
properties of the generator with number
brng .

properties VSLBrngProperties* . Structure
containing properties of the generator with
numberbrng .

Vector Generators of Statistical Distributions7

7-65

InitStream

FORTRAN:

INTEGER FUNCTION mybrnginitstream(method, stream, n, params)

INTEGER, INTENT (IN) :: method

TYPE(MYSTREAM_STATE), INTENT (INOUT):: stream

INTEGER, INTENT (IN) :: n

INTEGER, INTENT (IN) :: params

! Initialize the stream

…

END SUBROUTINE mybrnginitstream

C:

int MyBrngInitStream(int method , VSLStreamStatePtr stream ,

int n, const unsigned int params [])

{

/* Initialize the stream */

…

} /* MyBrngInitStream */

Discussion

The initialization subroutine of a user-designed generator must initialize
stream according to the specified initializationmethod , initial conditions
params and the argumentn. The value ofmethod determines the
initialization method to be used.

• If method is equal to0, the initialization is by the standard generation
method, which must be supported by all basic generators. In this case
the function assumes that thestream structure was not previously
initialized. The value ofn is used as the actual number of 32-bit values
passed as initial conditions throughparams . Note, that the situation
when the actual number of initial conditions passed to the function is
not sufficient to initialize the generator is not an error. Whenever it
occurs, the basic generator must initialize the missing conditions using
default settings.

7-66

7 Intel® Math Kernel Library Reference Manual

• If method is equal to1, the generation is by the leapfrog method,
wheren specifies the number of computational nodes (independent
streams). Here the function assumes that thestream was previously
initialized by the standard generation method. In this caseparams
contains only one element, which identifies the computational node. If
the generator does not support the leapfrog method, the function must
return the error codeVSL_ERROR_LEAPFROG_UNSUPPORTED.

• If method is equal to2, the generation is by the block-splitting
method. Same as above, thestream is assumed to be previously
initialized by the standard generation method;params is not used,n
identifies the number of skipped elements. If the generator does not
support the block-splitting method, the function must return the error
codeVSL_ERROR_SKIPAHEAD_UNSUPPORTED.

For a more detailed description of the leapfrog and the block-splitting
methods, refer to the description ofLeapfrogStream and
SkipAheadStream , respectively.

Stream state structure is individual for every generator. However, each
structure has a number of fields that are the same for all the generators:

FORTRAN:

type(mystream_state)

INTEGER reserved1

INTEGER reserved2

[fields specific for the given generator]

end type mystream_state

C:

typedef struct

{

int Reserved1 ;

int Reserved2 ;

[fields specific for the given generator]

} MyStreamState

The fieldsReserved1 andReserved2 are reserved for private needs only,
and must not be modified by the user. When including specific fields into
the structure, follow the rules below:

Vector Generators of Statistical Distributions7

7-67

• The fields must fully describe the current state of the generator. For
example, the state of a linear congruential generator can be identified
by only one initial condition;

• If the generator can use both the leapfrog and the block-splitting
methods, additional fields should be introduced to identify the
independent streams. For example, in , apart from the
initial conditions, two more fields should be specified: the value of the
multiplier and the value of the increment .

For a more detailed discussion, refer to [Knuth81], and [Gentle98]. An
example of the registration procedure can be found inVSL\Examples.

iBRng

FORTRAN:

SUBROUTINE imybrng(stream, n, r)

TYPE(MYSTREAM_STATE), INTENT(INOUT):: stream

INTEGER, INTENT(IN) :: n

INTEGER, DIMENSION(*), INTENT(OUT) :: r

! Generating integer random numbers

! Pay attention to word size needed to

! store one random number

DO i = 1, n

R(I) = …

END DO

! Update stream state

END SUBROUTINE imybrng

C:

void iMyBrng(VSLStreamStatePtr stream , int n,

unsigned int r [])

{

int i ; /* Loop variable */

/* Generating integer random numbers */

/* Pay attention to word size needed to

LCG a c m, ,()

ak ak 1–()c a 1–()⁄

7-68

7 Intel® Math Kernel Library Reference Manual

store only random number */

for(i = 0; i < n; i ++)

{

r [i] = …

}

/* Update stream state */

…

} /* iMyBrng */

sBRng

FORTRAN:

SUBROUTINE smybrng(stream, n, r, a, b)

TYPE(MYSTREAM_STATE), INTENT(INOUT):: stream

INTEGER, INTENT(IN) :: n

REAL, DIMENSION(n), INTENT(OUT) :: r

REAL, INTENT(IN) :: a

REAL, INTENT(IN) :: b

! Generating real (a,b) random numbers

DO i = 1, n

R(I) = …

END DO

! Update stream state

END SUBROUTINE smybrng

C:

void sMyBrng(VSLStreamStatePtr stream , int n, float r [],

float a, float b)

NOTE. When using 64 and 128-bit generators, consider digit capacity
to store the numbers to the pseudorandom vectorr correctly. For
example, storing one 64-bit value requires two elements ofr , the first to
store the lower 32 bits and the second to store the higher 32 bits.
Similarly, use 4 elements ofr to store a 128-bit value.

Vector Generators of Statistical Distributions7

7-69

{

int i ; /* Loop variable */

/* Generating float (a,b) random numbers */

for (i = 0; i < n; i ++)

{

r [i] = …

}

/* Update stream state */

…

} /* sMyBrng */

dBRng

FORTRAN:

SUBROUTINE dmybrng(stream, n, r, a, b)

TYPE(MYSTREAM_STATE), INTENT(INOUT) :: stream

INTEGER, INTENT(IN) :: n

DOUBLE PRECISION, DIMENSION(n), INTENT(OUT) :: r

REAL, INTENT(IN) :: a

REAL, INTENT(IN) :: b

! Generating double precision (a,b) random numbers

DO i = 1, n

R(I) = …

END DO

! Update stream state

…

END SUBROUTINE dmybrng

C:

void dMyBrng(VSLStreamStatePtr stream , int n, double r [],

double a, double b)

{

int i ; /* Loop variable */

/* Generating double (a,b) random numbers */

for (i = 0; i < n; i ++)

{

r [i] = …

7-70

7 Intel® Math Kernel Library Reference Manual

}

/* Update stream state */

…

} /* dMyBrng */

References
[Bratley87] Bratley P., Fox B.L., and Schrage L.E.A Guide to

Simulation. 2nd edition. Springer-Verlag, New York,
1987.

[Coddington94] Coddington, P. D.Analysis of Random Number
Generators Using Monte Carlo Simulation.Int. J. Mod.
Phys. C–5, 547, 1994.

[Gentle98] Gentle, James E.Random Number Generation and
Monte Carlo Methods, Springer-Verlag New York, Inc.,
1998.

[L’Ecuyer94] L’Ecuyer, Pierre.Uniform Random Number Generation.
Annals of Operations Research, 53, 77–120, 1994.

[L’Ecuyer99] L’Ecuyer, Pierre.Tables of Linear Congruential
Generators of Different Sizes and Good Lattice
Structure. Mathematics of Computation, 68, 225,
249-260, 1999.

[L’Ecuyer99a] L’Ecuyer, Pierre.Good Parameter Sets for Combined
Multiple Recursive Random Number Generators.
Operations Research, 47, 1, 159-164, 1999.

[L’Ecuyer01] L’Ecuyer, Pierre.Software for Uniform Random Number
Generation: Distinguishing the Good and the Bad.
Proceedings of the 2001 Winter Simulation Conference,
IEEE Press, 95–105, Dec. 2001.

[Kirkpatrick81] Kirkpatrick, S., and Stoll, E.A Very Fast Shift-Register
Sequence Random Number Generatory. Journal of
Computational Physics, V. 40. 517–526, 1981.

Vector Generators of Statistical Distributions7

7-71

[Knuth81] Knuth, Donald E.The Art of Computer Programming,
Volume 2, Seminumerical Algorithms. 2nd edition,
Addison-Wesley Publishing Company, Reading,
Massachusetts, 1981.

8-1

Advanced DFT Interface 8
The Fast Fourier Transform (FFT) algorithm that calculates the Discrete
Fourier Transform (DFT) is one of the major breakthroughs in scientific
computing and is now an indispensable tool in a vast number of fields.
Unfortunately, software that provide fast computation of DFT via FFT
differ vastly in functionality and lack uniformity. A widely accepted
Applications Programmer Interface (API) for DFT would advance the field
of scientific computing significantly. In this chapter, we present the
specification of DFTI, a new interface that combines functionality with ease
of use.

Although MKL still supports the FFT interface described in chapter 3, users
are encouraged to migrate to the new advanced DFTI interface in their
application programs.

Introduction
In this chapter, we present the Fortran and C specification of the DFTI
interface. Fortran stands for Fortran 95.

We assume the availability of native complex types in C as they are
specified in C9X. Before presenting the details of the specification, we give
a couple of usage examples.

For most common situations, we expect a DFT computation can be effected
by three function calls. Here are two one-dimensional computations.

NOTE. DFTI interface relies critically on many modern features offered
in Fortran 95 that have no counterpart in Fortran 77.

8-2

8 Intel® Math Kernel Library Reference Manual

// Fortran example.

// 1D complex to complex, and real to conjugate even

Use DFTI

Complex :: X(32)

Real :: Y(34)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle

Integer :: Status

...put input data into X(1),...,X(32); Y(1),...,Y(32)

// Perform a complex to complex transform

Status = DftiCreateDescriptor(My_Desc1_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32)

Status = DftiCommitDescriptor(My_Desc1_Handle)

Status = DftiComputeForward(My_Desc1_Ptr, X)

// result is given by {X(1),X(2),...,X(32)}

// Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,
DFTI_REAL, 1, 32)

Status = DftiCommitDescriptor(My_Desc2_Handle)

Status = DftiComputeForward(My_Desc2_Ptr, Y)

// result is given by {Y(1)+iY(2), Y(3)+iY(4), ..., Y(33)+iY(34),

// Y(31)-iY(32), Y(29)-iY(30), ..., Y(3)-iY(4).

/* C example, float _Complex is defined in C9X */

#include "dfti.h"

float _Complex x[32];

float y[34];

dfti_descriptor *my_desc1_handle, *my_desc2_handle;

/* or alternatively

dfti_descriptor_handle my_desc1_handle, my_desc2_handle; */

long status;

...put input data into x[0],...,x[31]; y[0],...,y[31]

status = DftiCreateDescriptor(&my_desc1_handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32);

status = DftiCommitDescriptor(my_desc1_handle);

Advanced DFT Interface8

8-3

status = DftiComputeForward(my_desc1_handle, x);

/* result is x[0], ..., x[31] */

status = DftiCreateDescriptor(&my_desc2_handle, DFTI_SINGLE,
DFTI_REAL, 1, 32);

status = DftiCommitDescriptor(my_desc2_handle);

status = DftiComputeForward(my_desc2_handle, y);

/* y[0]+iy[1], ..., y[32]+iy[33], y[30]-iy[31], ..., y[2]-iy[3] */

The following is an example of two simple two-dimensional transforms.

// Fortran example.

// 2D complex to complex, and real to conjugate even

Use DFTI

Complex :: X(32,100)

Real :: Y(34,100)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc1_Handle, My_Desc2_Handle

Integer :: Status, L(2)

...put input data into X(j,k), Y(j,k), 1<=j=32,1<=k<=100

...set L(1) = 32, L(2) = 100

...the transform is a 32-by-100

// Perform a complex to complex transform

Status = DftiCreateDescriptor(My_Desc1_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 2, L)

Status = DftiCommitDescriptor(My_Desc1_Handle)

Status = DftiComputeForward(My_Desc1_Handle, X)

// result is given by X(j,k), 1<=j<=32, 1<=k<=100

// Perform a real to complex conjugate even transform

Status = DftiCreateDescriptor(My_Desc2_Handle, DFTI_SINGLE,
DFTI_REAL, 2, L)

Status = DftiCommitDescriptor(My_Desc2_Handle)

Status = DftiComputeForward(My_Desc2_Handle, Y)

// result is given by the complex value z(j,k) 1<=j<=32; 1<=k<=100 where

// z(j,k) = Y(2j-1,k) + iY(2j,k) 1<=j<=17; 1<=k<=100

// z(j,k) = Y(2(34-j)-1,k) - iY(2(34-j),k) 18<=j<=32; 1<=k<=100

8-4

8 Intel® Math Kernel Library Reference Manual

/* C example */

#include "dfti.h"

float _Complex x[32][100];

float y[34][100];

dfti_descriptor_handle my_desc1_handle, my_desc2_handle;

/* or alternatively

dfti_descriptor *my_desc1_handle, *my_desc2_handle; */

long status, l[2];

...put input data into x[j][k] 0<=j<=31, 0<=k<=99

...put input data into y[j][k] 0<=j<=31, 0<=k<=99

...put l[0] = 32, l[1] = 100

status = DftiCreateDescriptor(&my_desc1_handle, DFTI_SINGLE,
DFTI_COMPLEX, 2, l);

status = DftiCommitDescriptor(my_desc1_handle);

status = DftiComputeForward(my_desc1_handle, x[0]);

/* result is the complex value x[j][k], 0<=j<=31, 0<=k<=99 */

status = DftiCreateDescriptor(&my_desc2_handle, DFTI_SINGLE,
DFTI_REAL, 2, l);

status = DftiCommitDescriptor(my_desc2_handle);

status = DftiComputeForward(my_desc2_handle, y[0]);

/* result is the complex value z(j,k) 0<=j<=31; 0<=k<=99

/* z(j,k) = y[2j][k] + iy[2j+1][k] 0<=j<=16; 0<=k<=99 */

/* z(j,k) = y[2(32-j)][k] - iy[2(32-j)+1][k] 17<=j<=31; 1<=k<=100 */

The record of typeDFTI_DESCRIPTOR, when created, contains information
about the length and domain of the DFT to be computed. Moreover, it
contains the setting of a rather large number of configuration parameters.
The illustrations above use the default settings for all of these parameters,
which include, for example, the following:

• the DFT to be computed does not have a scale factor;
• there is only one set of data to be transformed;
• the data is stored contiguously in memory;
• the forward transform is defined to be the formula using

rather than ;
• complex data is stored in the native complex data type;
• the computed result overwrites (in place) the input data; etc.

e i2πjk n⁄–

e+i 2πjk n⁄

Advanced DFT Interface8

8-5

Should any one of these many default settings be inappropriate, they can be
changed one-at-a-time through the functionDftiSetValue . For example,
suppose you would prefer to preserve the input data after the DFT computation.
To do that, you should change the configuration of the placement of result to
that of "not in place" from the default choice of "in place."

// Fortran example

// 1D complex to complex, not in place

Use DFTI

Complex :: X_in(32), X_out(32)

type(DFTI_DESCRIPTOR), POINTER :: My_Desc_Handle

Integer :: Status

...put input data into X_in(j), 1<=j<=32

Status = DftiCreateDescriptor(My_Desc_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32)

Status = DftiSetValue(My_Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)

Status = DftiCommitDescriptor(My_Desc_Handle)

Status = DftiComputeForward(My_Desc_Handle, X_in, X_out)

// result is X_out(1),X_out(2),...,X_out(32)

/* C example */

#include "dfti.h"

float _Complex x_in[32], x_out[32];

dfti_descriptor_handle my_desc_handle;

/* or alternatively

dfti_descriptor *my_desc_handle; */

long status;

...put input data into x_in[j], 0 <= j < 32

status = DftiCreateDescriptor(&my_desc_handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32);

status = DftiSetValue(my_desc_handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE);

status = DftiCommitDescriptor(my_desc_handle);

status = DftiComputeForward(my_desc_handle, x_in, x_out);

/* result is x_out[0], x_out[1], ..., x_out[31] */

The approach uses one single data structure, the descriptor, to record flexible
configuration whose parameters can be changed independently. This results in
vast functionality and ease of use.

8-6

8 Intel® Math Kernel Library Reference Manual

DFTI
The interface is called DFTI. In Fortran, it is provided by the moduleDFTI

and accessed through the "use " statement in Fortran. In C, it is provided by
the header filedfti.h and accessed through "include ". This interface
provides a number of types, parameters, and functions. The Fortran
interface provides a derived typeDFTI_DESCRIPTOR; a number of named
constants representing various names of configuration parameters and their
possible values; and a number of overloaded functions through the generic
functionality of Fortran 95. The C interface provides a structure type
DFTI_DESCRIPTOR, a macro definition

#define DFTI_DESCRIPTOR_HANDLE DFTI_DESCRIPTOR *;

a number of named constants of two enumeration types
DFTI_CONFIG_PARAMandDFTI_CONFIG_VALUE;
and a number of functions, some of which accept different number of input
arguments.

There are four main categories of functions.

1. Descriptor Manipulation. There are four functions in this category.
The first one creates a DFT descriptor whose storage is allocated
dynamically by the routine. This function configures the descriptor
with default settings corresponding to a few input values supplied by
the user.
The second "commits" the descriptor to all its setting. In practice, this
usually means that all the necessary precomputation will be
performed. This may include factorization of the input length and
computation of all the required twiddle factors. The third function
makes an extra copy of a descriptor, and the fourth function frees up all
the memory allocated for the descriptor information.

2. DFT Computation. There are two functions in this category. The first
effects a forward DFT computation, and the second a backward DFT
computation.

3. Descriptor configuration. There are two functions in this category.
One function sets one specific value to one of the many configuration
parameters that are changeable (a few are not); the other gets the
current value of any one of these configuration parameters (all are
readable). These parameters, though many, are handled one-at-a-time.

Advanced DFT Interface8

8-7

4. Status Checking. All of the functions above return an integer value
denoting the status of the operation. In particular, a non-zero return
value always indicates a problem of some sort. Envisioned to be further
enhanced in a latter stage, DFTI at present provides for one logical
status class function and a simple status message generation function.

In consideration for mixed-language programming, the specification
mandates that the function in Fortran is provided by an interface body, thus
separating the function name from the external names. This is mandated
even for the functions that are not generic in nature. However, the actual
external names and details of the interface body is not part of the
specification, although some examples are given in this document. We now
specify each of these functions in the order of the categories.

Descriptor Manipulation
There are four functions in this category: create a descriptor, commit a
descriptor, copy a descriptor, and free a descriptor.

CreateDescriptor
Allocates memory for the descriptor
data structure and instantiates it with
default configuration settings.

Usage
// Fortran

Status = DftiCreateDescriptor(Desc_Handle, &
Precision, &
Forward_Domain, &
Dimension, &
Length)

/* C */

8-8

8 Intel® Math Kernel Library Reference Manual

status = DftiCreateDescriptor(*desc_handle,
precision,
forward_domain,
dimension,
length);

Discussion

This function allocates memory for the descriptor data structure and
instantiates it with all the default configuration settings with respect to the
precision, domain, dimension, and length of the desired transform. The
domain is understood to be the domain of the forward transform. Since
memory is allocated dynamically, the result is actually a pointer to the
created descriptor. This function is slightly different from the
"initialization" routine in more traditional software packages or libraries
such as FFTPACK or NAG. In all likelihood, this function will not perform
any significant computation work such as twiddle factors computation, as
the default configuration settings can still be changed upon user's request
through the value setting functionDftiSetValue .

The precision and (forward) domain are specified through named constants
provided in DFTI for the configuration values. The choices for precision are
DFTI_SINGLE andDFTI_DOUBLE; and the choices for (forward) domain
areDFTI_COMPLEX, DFTI_REAL, andDFTI_CONJUGATE_EVEN. SeeTable
8-3 for the complete table of named constants for configuration values.

Dimension is a simple positive integer indicating the dimension of the
transform. Length is either a simple positive integer for one-dimensional
transform, or an integer array (pointer in C) containing the positive integers
corresponding to the lengths dimensions for multi-dimensional transform.
A zero status value indicates a successful completion. See“Status
Checking”for more information on returned status.

Interface and prototype
//Fortran interface.

INTERFACE DftiCreateDescriptor

//Note that the body provided here is for illustration only

//The specification does not mandate what it should be.

//It is possible that implementation will use common external

//functions below to be shared by Fortran and C implementation of DFTI

Advanced DFT Interface8

8-9

FUNCTION DFTI_CREATE_DESCRIPTOR_1D(Desc_Handle, Prec, Dom, Dim, Length)

INTEGER :: DFTI_CREATE_DESCRIPTOR_1D

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Prec, Dom

INTEGER, INTENT(IN) :: Dim, Length

END FUNCTION DFTI_CREATE_DESCRIPTOR_1D

FUNCTION DFTI_CREATE_DESCRIPTOR_HIGHD(Desc_Handle, Prec, Dom, Dim, Length)

INTEGER :: DFTI_CREATE_DESCRIPTOR_HIGHD

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Prec, Dom

INTEGER, INTENT(IN) :: Dim, Length(*)

END FUNCTION DFTI_CREATE_DESCRIPTOR_HIGHD

END INTERFACE DftiCreateDescriptor

Note that the function is overloaded as the actual argument forLength can
be a scalar or a a rank-one array.

/* C prototype */

long DftiCreateDescriptor(DFTI_DESCRIPTOR_HANDLE *,
DFTI_CONFIG_PARAM ,
DFTI_CONFIG_PARAM ,
long ,
...);

The variable arguments facility is used to cope with the argument for
lengths that can be a scalar (long), or an array (long *).

CommitDescriptor
Performs all initialization that
facilitates the actual DFT computation.

Usage
// Fortran

Status = DftiCommitDescriptor(Desc_Handle)

8-10

8 Intel® Math Kernel Library Reference Manual

/* C */

status = DftiCommitDescriptor(desc_handle);

Discussion

The interface requires a function that commits a previously created
descriptor be invoked before the descriptor can be used for DFT
computations. Typically, this committal performs all initialization that
facilitates the actual DFT computation. For a modern implementation, it
may involve exploring many different factorizations of the input length to
search for highly efficient computation method.

Any changes of configuration parameters of a committed descriptor via the
set value function (see“Descriptor configuration”) requires a re-committal
of the descriptor before a computation function can be invoked. In all
likelihood, this committal function call will be immediately followed by a
computation function call (see“DFT Computation”).

A zero status value indicates a successful completion. See“Status
Checking”for more information on returned status.

Interface and prototype
// Fortran interface

INTERFACE DftiCommitDescriptor

//Note that the body provided here is for illustration only

//The specification does not mandate what it should be.

//It is possible that implementation will use common external

//functions below to be shared by Fortran and C implementation of DFTI

FUNCTION DFTI_COMMIT_DESCRIPTOR_EXTERNAL(Desc_Handle)

INTEGER :: DFTI_COMMIT_DESCRIPTOR_EXTERNAL

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

END FUNCTION DFTI_COMMIT_DESCRIPTOR_EXTERNAL

END INTERFACE DftiCommitDescriptor

/* C prototype */

long DftiCommitDescriptor(DFTI_DESCRIPTOR_HANDLE);

Advanced DFT Interface8

8-11

CopyDescriptor
Copies an existing descriptor.

Usage
// Fortran

Status = DftiCopyDescriptor(Desc_Handle_Original,
Desc_Handle_Copy)

/* C */

status = DftiCopyDescriptor(desc_handle_original,
&desc_handle_copy);

Discussion

This function makes a copy of an existing descriptor and provides a pointer
to it. The purpose is that all information of the original descriptor will be
maintained even if the original is destroyed via the free descriptor function
to be specified next.
A zero status value indicates a successful completion. See“Status
Checking”for more information on returned status.

Interface and prototype
// Fortran interface

INTERFACE DftiCopyDescriptor

//Note that the body provided here is for illustration only

//The specification does not mandate what it should be.

//It is possible that implementation will use common external

//functions below to be shared by Fortran and C implementation of DFTI

FUNCTION DFTI_COPY_DESCRIPTOR_EXTERNAL(Desc_Handle_Original,
Desc_Handle_Copy)

INTEGER :: DFTI_COPY_DESCRIPTOR_EXTERNAL

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle_Original, Desc_Handle_Copy

END FUNCTION DFTI_COPY_DESCRIPTOR_EXTERNAL

END INTERFACE DftiCopyDescriptor

/* C prototype */

long DftiCopyDescriptor (DFTI_DESCRIPTOR_HANLDE, DFTI_DESCRIPTOR_HANDLE *);

8-12

8 Intel® Math Kernel Library Reference Manual

FreeDescriptor
Frees memory allocated for a
descriptor.

Usage
// Fortran

Status = DftiFreeDescriptor(Desc_Handle)

/* C */

status = DftiFreeDescriptor(&desc_handle);

Discussion

This function frees up all memory space allocated for a descriptor. A zero
status value indicates a successful completion. See“Status Checking”for
more information on returned status.

Interface and prototype
// Fortran interface

INTERFACE DftiFreeDescriptor

//Note that the body provided here is for illustration only

//The specification does not mandate what it should be.

//It is possible that implementation will use common external

//functions below to be shared by Fortran and C implementation of DFTI

FUNCTION DFTI_FREE_DESCRIPTOR_EXTERNAL(Desc_Handle)

INTEGER :: DFTI_FREE_DESCRIPTOR_EXTERNAL

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

END FUNCTION DFTI_FREE_DESCRIPTOR_EXTERNAL

END INTERFACE DftiFreeDescriptor

/* C prototype */

long DftiFreeDescriptor(DFTI_DESCRIPTOR_HANDLE *);

Advanced DFT Interface8

8-13

DFT Computation
There are two functions in this category: compute the forward transform,
and compute the backward transform.

ComputeForward
Computes the forward DFT.

Usage
// Fortran

Status = DftiComputeForward(Desc_Handle, X_inout)

Status = DftiComputeForward(Desc_Handle, X_in, X_out)

Status = DftiComputeForward(Desc_Handle, X_inout, Y_inout)

Status = DftiComputeForward(Desc_Handle, X_in, Y_in, X_out, Y_out)

/* C */

status = DftiComputeForward(desc_handle, x_inout);

status = DftiComputeForward(desc_handle, x_in, x_out);

status = DftiComputeForward(desc_handle, x_inout, y_inout);

status = DftiComputeForward(desc_handle, x_in, y_in, x_out, y_out);

Discussion

As soon as a descriptor is configured and committed successfully, actual
computation of DFT can be performed. TheDftiComputeForward

function computes the forward DFT. By default, this is the transform using
the factor (instead of the one with a positive sign). Because of the
flexibility in configuration, input data can be represented in various ways as
well as output result can be placed differently. Consequently, the number of
input parameters as well as their type vary. This variation is accommodated
by the generic function facility of Fortran 95.

A zero status value indicates a successful completion. See“Status
Checking”for more information on returned status.

e i2π n⁄–

8-14

8 Intel® Math Kernel Library Reference Manual

Interface and prototype
//Fortran interface.

INTERFACE DftiComputeFoward

//Note that the body provided here is for illustration only

//The specification does not mandate what it should be.

//It is possible that implementation will use common external

//functions below to be shared by Fortran and C implementation of DFTI

// One argument single precision complex

FUNCTION DFTI_COMPUTE_FORWARD_C(Desc_Handle, X)

INTEGER :: DFTI_COMPUTE_FORWARD_C

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX, INTENT(INOUT) :: X(*)

END FUNCTION DFTI_COMPUTE_FORWARD_C

// One argument double precision complex

FUNCTION DFTI_COMPUTE_FORWARD_Z(Desc_Handle, X)

INTEGER :: DFTI_COMPUTE_FORWARD_Z

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX (Kind((0D0,0D0))), INTENT(INOUT) :: X(*)

END FUNCTION DFTI_COMPUTE_FORWARD_Z

// One argument single precision real

FUNCTION DFTI_COMPUTE_FORWARD_R(Desc_Handle, X)

INTEGER :: DFTI_COMPUTE_FORWARD_R

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL, INTENT(INOUT) :: X(*)

END FUNCTION DFTI_COMPUTE_FORWARD_R

// One argument double precision real

...

// Two argument single precision complex

...

...

// Four argument double precision real

FUNCTION DFTI_COMPUTE_FORWARD_DDDD(Desc_Handle, X1_In, X2_In,
Y1_Out, Y2_Out)

INTEGER :: DFTI_COMPUTE_FORWARD_DDDD

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL (Kind(0D0)), INTENT(IN) :: X1_In(*), X2_In(*)

Advanced DFT Interface8

8-15

REAL (Kind(0D0)), INTENT(OUT) :: Y1_Out(*), Y2_Out(*)

END FUNCTION DFTI_COMPUTE_FORWARD_DDDD

END INTERFACE DftiComputeFoward

/* C prototype */

long DftiComputeForward(DFTI_DESCRIPTOR_HANDLE,
void *,
...);

The implementations of DFTI expect the data be treated as data stored
linearly in memory with a regular "stride" pattern (discussed more fully in
“Strides”, see also [3]). The function expects the starting address of the first
element. Hence we use the assume-size declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly
how many arguments and of what type should be present. The
implementation could use this information to check against possible input
inconsistency.

ComputeBackward
Computes the backward DFT.

Usage
// Fortran

Status = DftiComputeBackward(Desc_Handle, X_inout)

Status = DftiComputeBackward(Desc_Handle, X_in, X_out)

Status = DftiComputeBackward(Desc_Handle, X_inout, Y_inout)

Status = DftiComputeBackward(Desc_Handle, X_in, Y_in, X_out, Y_out)

/* C */

status = DftiComputeBackward(desc_handle, x_inout);

status = DftiComputeBackward(desc_handle, x_in, x_out);

status = DftiComputeBackward(desc_handle, x_inout, y_inout);

status = DftiComputeBackward(desc_handle, x_in, y_in, x_out, y_out);

8-16

8 Intel® Math Kernel Library Reference Manual

Discussion

As soon as a descriptor is configured and committed successfully, actual
computation of DFT can be performed. TheDftiComputeBackward

function computes the backward DFT. By default, this is the transform
using the factor (instead of the one with a negative sign). Because
of the flexibility in configuration, input data can be represented in various
ways as well as output result can be placed differently. Consequently, the
number of input parameters as well as their type vary. This variation is
accommodated by the generic function facility of Fortran 95.

A zero status value indicates a successful completion. See“Status
Checking”for more information on returned status.

Interface and prototype
//Fortran interface.

INTERFACE DftiComputeBackward

//Note that the body provided here is for illustration only

//The specification does not mandate what it should be.

//It is possible that implementation will use common external

//functions below to be shared by Fortran and C implementation of DFTI

// One argument single precision complex

FUNCTION DFTI_COMPUTE_BACKWARD_C(Desc_Handle, X)

INTEGER :: DFTI_COMPUTE_BACKWARD_C

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX, INTENT(INOUT) :: X(*)

END FUNCTION DFTI_COMPUTE_BACKWARD_C

// One argument double precision complex

FUNCTION DFTI_COMPUTE_BACKWARD_Z(Desc_Handle, X)

INTEGER :: DFTI_COMPUTE_BACKWARD_Z

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

COMPLEX (Kind((0D0,0D0))), INTENT(INOUT) :: X(*)

END FUNCTION DFTI_COMPUTE_BACKWARD_Z

// One argument single precision real

FUNCTION DFTI_COMPUTE_BACKWARD_R(Desc_Handle, X)

INTEGER :: DFTI_COMPUTE_BACKWARD_R

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL, INTENT(INOUT) :: X(*)

ei2π n⁄

Advanced DFT Interface8

8-17

END FUNCTION DFTI_COMPUTE_BACKWARD_R

// One argument double precision real

...

// Two argument single precision complex

...

...

// Four argument double precision real

FUNCTION DFTI_COMPUTE_BACKWARD_DDDD(Desc_Handle, X1_In, X2_In,
Y1_Out, Y2_Out)

INTEGER :: DFTI_COMPUTE_BACKWARD_DDDD

TYPE(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

REAL (Kind(0D0)), INTENT(IN) :: X1_In(*), X2_In(*)

REAL (Kind(0D0)), INTENT(OUT) :: Y1_Out(*), Y2_Out(*)

END FUNCTION DFTI_COMPUTE_BACKWARD_DDDD

END INTERFACE DftiComputeBackward

/* C prototype */

long DftiComputeBackward(DFTI_DESCRIPTOR_HANDLE,
void *,
...);

The implementations of DFTI expect the data be treated as data stored
linearly in memory with a regular "stride" pattern (discussed more fully in
“Strides”, see also [3]). The function expects the starting address of the first
element. Hence we use the assume-size declaration in Fortran.

The descriptor by itself contains sufficient information to determine exactly
how many arguments and of what type should be present. The
implementation could use this information to check against possible input
inconsistency.

8-18

8 Intel® Math Kernel Library Reference Manual

Descriptor configuration
There are two functions in this category: the value setting function sets one
particular configuration parameter to an appropriate value, and the value
getting function reads the values of one particular configuration parameter.
While all configuration parameters are readable, a few of them cannot be set
by user. Some of these contain fixed information of a particular
implementation such as version number, or dynamic information, but
nevertheless are derived by the implementation during execution of one of
the functions.

Table 8-1 Settable Configuration Parameters

Named Constants Value Type Comments

Most common configurations, no default, must be set explicitly

DFTI_PRECISION Named constant Precision of computation

DFTI_FORWARD_DOMAIN Named constant Domain for the forward transform

DFTI_DIMENSION Integer scalar Dimension of the transform

DFTI_LENGTHS Integer scalar/array Lengths of each dimension

Common configurations including multiple transform and data representation

DFTI_NUMBER_OF_TRANSFORMSInteger scalar For multiple number of transforms

DFTI_FORWARD_SIGN Named constant The definition for forward transform

DFTI_FORWARD_SCALE Floating-point scalar Scale factor for forward transform

DFTI_BACKWARD_SCALE Floating-point scalar Scale factor for backward transform

DFTI_PLACEMENT Named constant Placement of the computation result

DFTI_COMPLEX_STORAGE Named constant Storage method, complex domain
data

DFTI_REAL_STORAGE Named constant Storage method, real domain data

DFTI_CONJUGATE_EVEN_STORAGENamed constant Storage method, conjugate even
domain data

DFTI_DESCRIPTOR_NAME Character string No longer than
DFTI_MAX_NAME_LENGTH

Advanced DFT Interface8

8-19

Every single one of these configuration parameters is identified by a named
constant in the DFTI module. In C, these named constants have the
enumeration typeDFTI_CONFIG_PARAM. The list of configuration
parameters whose values can be set by user is given inTable 8-1; the list of
configuration parameters that are read-only is given inTable 8-2. Note that
all parameters are readable. Most of these parameters are self-explanatory,
while some others are discussed more fully with the specification of the
relevant functions.

Configurations regarding stride of data

DFTI_INPUT_DISTANCE Integer scalar Multiple transforms, distance of first
elements

DFTI_OUTPUT_DISTANCE Integer scalar Multiple transforms, distance of first
elements

DFTI_INPUT_STRIDES Integer array Stride information of input data

DFTI_OUTPUT_STRIDES Integer array Stride information of output data

Advanced configuration

DFTI_INITIALIZATION_EFFORT Named constant Dynamic search for computation
method

DFTI_ORDERING Named constant Scrambling of data order

DFTI_WORKSPACE Named constant Computation without auxiliary
storage

DFTI_TRANSPOSE Named constant Scrambling of dimension

Table 8-2 Read-Only Configuration Parameters

Named Constants Value Type Comments

DFTI_COMMIT_STATUS Name constant Whether descriptor has been committed

DFTI_VERSION String DFTI implementation version number

DFTI_FORWARD_ORDERING Integer pointer Pointer to an integer array (see “Ordering”)

DFTI_BACKWARD_ORDERINGInteger pointer Pointer to an integer array (see “Ordering”)

Table 8-1 Settable Configuration Parameters (continued)

Named Constants Value Type Comments

8-20

8 Intel® Math Kernel Library Reference Manual

The configuration parameters are set by various values. Some of these
values are specified by native data types such as an integer value (for
example, number of simultaneous transforms requested), or a
single-precision number (for example, the scale factor one would like to
apply on a forward transform).

Other configuration values are discrete in nature (for example, the domain
of the forward transform) and are thus provided in the DFTI module as
named constants. In C, these named constants have the enumeration type
DFTI_CONFIG_VALUE. The complete list of named constants used for this
kind of configuration values is given inTable 8-3.

Table 8-3 Named Constant Configuration Values

Named Constant Comments

DFTI_SINGLE Single precision

DFTI_DOUBLE Double precision

DFTI_COMPLEX Complex domain

DFTI_REAL Real domain

DFTI_CONJUGATE_EVEN Conjugate even domain

DFTI_NEGATIVE Sign used to define the forward transform

DFTI_POSITIVE Sign used to define the forward transform

DFTI_INPLACE Output overwrites input

DFTI_NOT_INPLACE Output does not overwrite input

DFTI_COMPLEX_COMPLEX Storage method (see “Storage schemes”)

DFTI_REAL_REAL Storage method (see “Storage schemes”)

DFTI_COMPLEX_REAL Storage method (see “Storage schemes”)

DFTI_REAL_COMPLEX Storage method (see “Storage schemes”)

DFTI_HIGH A high setting, related to initialization effort

DFTI_MEDIUM A medium setting, related to initialization effort

DFTI_LOW A low setting, related to initialization effort

DFTI_COMMITTED Committal status of a descriptor

DFTI_UNCOMMITTED Committal status of a descriptor

DFTI_ORDERED Data ordered in both forward and backward domains

DFTI_BACKWARD_SCRAMBLEDData scrambled in backward domain (by forward transform)

Advanced DFT Interface8

8-21

Table 8-4lists the possible values for those configuration parameters that
are discrete in nature.

DFTI_FORWARD_SCRAMBLEDData scrambled in forward domain (by backward transform)

DFTI_ALLOW Allow certain request or usage if useful

DFTI_AVOID Avoid certain request or usage if practical

DFTI_NONE Used to specify no transposition

DFTI_VERSION_LENGTH Number of characters for version length

DFTI_MAX_NAME_LENGTH Maximum descriptor name length

DFTI_MAX_MESSAGE_LENGTHMaximum status message length

Table 8-4 Settings for Discrete Configuration Parameters

Named Constant Possible Values

DFTI_PRECISION DFTI_SINGLE , or

DFTI_DOUBLE(no default)

DFTI_FORWARD_DOMAIN DFTI_COMPLEX, or

DFTI_REAL, or

DFTI_CONJUGATE_EVEN(no default)

DFTI_FORWARD_SIGN DFTI_NEGATIVE (default), or

DFTI_POSITIVE

DFTI_PLACEMENT DFTI_INPLACE (default), or

DFTI_NOT_INPLACE

DFTI_COMPLEX_STORAGE DFTI_COMPLEX_COMPLEX(default), or

DFTI_COMPLEX REAL, or

DFTI_REAL_REAL

DFTI_REAL_STORAGE DFTI_REAL_REAL (default), or

DFTI_REAL_COMPLEX

DFTI_CONJUGATE_EVEN_STORAGE DFTI_COMPLEX_COMPLEX, or

DFTI_COMPLEX_REAL(default), or

DFTI_REAL_REAL (1-D transform only)

Table 8-3 Named Constant Configuration Values (continued)

Named Constant Comments

8-22

8 Intel® Math Kernel Library Reference Manual

Table 8-5lists the default values of the settable configuration parameters.

Table 8-5 Default Configuration Values of Settable Parameters

Named Constants Default Value

DFTI_NUMBER_OF_TRANSFORMS 1

DFTI_FORWARD_SIGN DFTI_NEGATIVE

DFTI_FORWARD_SCALE 1.0

DFTI_BACKWARD_SCALE 1.0

DFTI_PLACEMENT DFTI_INPLACE

DFTI_COMPLEX_STORAGE DFTI_COMPLEX_COMPLEX

DFTI_REAL_STORAGE DFTI_REAL_REAL

DFTI_CONJUGATE_EVEN_STORAGE DFTI_COMPLEX_REAL

DFTI_DESCRIPTOR_NAME no name, string of zero length

DFTI_INPUT_DISTANCE 0

DFTI_OUTPUT_DISTANCE 0

DFTI_INPUT_STRIDES Tightly packed according to dimension, lengths, and
storage

DFTI_OUTPUT_STRIDES Same as above. See “Strides” for details

DFTI_INITIALIZATION_EFFORT DFTI_MEDIUM

DFTI_ORDERING DFTI_ORDERED

DFTI_WORKSPACE DFTI_ALLOW

DFTI_TRANSPOSE DFTI_NONE

Advanced DFT Interface8

8-23

SetValue
Sets one particular configuration
parameter with the specified configuration
value.

Usage
// Fortran

Status = DftiSetValue(Desc_Handle, &
Config_Param, &
Config_Val)

/* C */

status = DftiSetValue(desc_handle,
config_param,
config_val);

Discussion

This function sets one particular configuration parameter with the specified
configuration value. The configuration parameter is one of the named
constants listed inTable 8-1, and the configuration value is the
corresponding appropriate type, which can be a named constant or a native
type. See “Configuration Settings”for details of the meaning of the
setting.

A zero status value indicates a successful completion. See“Status
Checking”for more information on returned status.

Interface and prototype

// Fortran interface

INTERFACE DftiSetValue

//Note that the body provided here is for illustration only

//The specification does not mandate what it should be.

//It is possible that implementation will use common external

//functions below to be shared by Fortran and C implementation of DFTI

8-24

8 Intel® Math Kernel Library Reference Manual

FUNCTION DFTI_SET_VALUE_INTVAL(Desc_Handle, Config_Param, INTVAL)

INTEGER :: DFTI_SET_VALUE_INTVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(IN) :: INTVAL

END FUNCTION DFTI_SET_VALUE_INTVAL

FUNCTION DFTI_SET_VALUE_SGLVAL(Desc_Handle, Config_Param, SGLVAL)

INTEGER :: DFTI_SET_VALUE_SGLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL, INTENT(IN) :: SGLVAL

END FUNCTION DFTI_SET_VALUE_SGLVAL

FUNCTION DFTI_SET_VALUE_DBLVAL(Desc_Handle, Config_Param, DBLVAL)

INTEGER :: DFTI_SET_VALUE_DBLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL (KIND(0D0)), INTENT(IN) :: DBLVAL

END FUNCTION DFTI_SET_VALUE_DBLVAL

FUNCTION DFTI_SET_VALUE_INTVEC(Desc_Handle, Config_Param, INTVEC)

INTEGER :: DFTI_SET_VALUE_INTVEC

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(IN) :: INTVEC(*)

END FUNCTION DFTI_SET_VALUE_INTVEC

FUNCTION DFTI_SET_VALUE_CHARS(Desc_Handle, Config_Param, CHARS)

INTEGER :: DFTI_SET_VALUE_CHARS

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

CHARCTER(*), INTENT(IN) :: CHARS

END FUNCTION DFTI_SET_VALUE_CHARS

END INTERFACE DftiSetValue

Advanced DFT Interface8

8-25

/* C prototype */

long DftiSetValue(DFTI_DESCRIPTOR_HANDLE,
DFTI_CONFIG_PARAM ,
...);

GetValue
Gets the configuration value of one
particular configuration parameter.

Usage
// Fortran

Status = DftiGetValue(Desc_Handle, &
Config_Param, &
Config_Val)

/* C */

status = DftiGetValue(desc_handle,
config_param,
&config_val);

Discussion

This function gets the configuration value of one particular configuration
parameter. The configuration parameter is one of the named constants listed
in Table 8-1andTable 8-2, and the configuration value is the corresponding
appropriate type, which can be a named constant or a native type.
A zero status value indicates a successful completion. See“Status
Checking”for more information on returned status.

Interface and prototype
// Fortran interface

INTERFACE DftiGetValue

//Note that the body provided here is for illustration only

//The specification does not mandate what it should be.

//It is possible that implementation will use common external

8-26

8 Intel® Math Kernel Library Reference Manual

//functions below to be shared by Fortran and C implementation of DFTI

FUNCTION DFTI_GET_VALUE_INTVAL(Desc_Handle, Config_Param, INTVAL)

INTEGER :: DFTI_GET_VALUE_INTVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(OUT) :: INTVAL

END FUNCTION DFTI_GET_VALUE_INTVAL

FUNCTION DFTI_GET_VALUE_SGLVAL(Desc_Handle, Config_Param, SGLVAL)

INTEGER :: DFTI_GET_VALUE_SGLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL, INTENT(OUT) :: SGLVAL

END FUNCTION DFTI_GET_VALUE_SGLVAL

FUNCTION DFTI_GET_VALUE_DBLVAL(Desc_Handle, Config_Param, DBLVAL)

INTEGER :: DFTI_GET_VALUE_DBLVAL

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

REAL (KIND(0D0)), INTENT(OUT) :: DBLVAL

END FUNCTION DFTI_GET_VALUE_DBLVAL

FUNCTION DFTI_GET_VALUE_INTVEC(Desc_Handle, Config_Param, INTVEC)

INTEGER :: DFTI_GET_VALUE_INTVEC

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, INTENT(OUT) :: INTVEC(*)

END FUNCTION DFTI_GET_VALUE_INTVEC

FUNCTION DFTI_GET_VALUE_INTPNT(Desc_Handle, Config_Param, INTPNT)

INTEGER :: DFTI_GET_VALUE_INTPNT

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

INTEGER, DIMENSION(*), POINTER :: INTPNT

END FUNCTION DFTI_GET_VALUE_INTPNT

FUNCTION DFTI_GET_VALUE_CHARS(Desc_Handle, Config_Param, CHARS)

INTEGER :: DFTI_GET_VALUE_CHARS

Advanced DFT Interface8

8-27

Type(DFTI_DESCRIPTOR), POINTER :: Desc_Handle

INTEGER, INTENT(IN) :: Config_Param

CHARCTER(*), INTENT(OUT):: CHARS

END FUNCTION DFTI_GET_VALUE_CHARS

END INTERFACE DftiGetValue

/* C prototype */

long DftiGetValue(DFTI_DESCRIPTOR_HANDLE,
DFTI_CONFIG_PARAM ,

...);

Configuration Settings

Precision of transform

The configuration parameterDFTI_PRECISION denotes the floating-point
precision in which the transform is to be carried out. A setting of
DFTI_SINGLE stands for single precision, and a setting ofDFTI_DOUBLE

stands for double precision. The data is meant to be presented in this
precision; the computation will be carried out in this precision; and the
result will be delivered in this precision. This is one of the four settable
configuration parameters that do not have default values. The user must set
them explicitly, most conveniently at the call to descriptor creation function
DftiCreateDescriptor.

Forward domain of transform

The general form of the discrete Fourier transform is

(7.1)

for , where is an arbitrary real-valued scale factor and
. By default, the forward transform is defined by and .

In most common situations, the domain of the forward transform, that is, the
set where the input (periodic) sequence belongs, can be
either the set of complex-valued sequences, real-valued sequences, and

zk1 k2 … kd, , , σ … wj1 j2 … jd, , ,
j1 0=

n1 1–

∑
j2 0=

n2 1–

∑
jd 0=

nd 1–

∑× δi2π j lkl nl⁄
l 1=

d

∑

exp=

kl 0 1 2 …,±,±,= σ
δ 1±= σ 1= δ 1–=

wj1 j2 … jd, , ,{ }

8-28

8 Intel® Math Kernel Library Reference Manual

complex-valued conjugate even sequences. The configuration parameter
DFTI_FORWARD_DOMAINindicates the domain for the forward transform.
Note that this implicitly specifies the domain for the backward transform
because of mathematical property of the DFT. SeeTable 8-6for details.

On transforms in the real domain, some software packages only offer one
"real-to-complex" transform. This in essence omits the conjugate even
domain for the forward transform. The forward domain configuration
parameterDFTI_FORWARD_DOMAINis the second of four configuration
parameters without default value.

Transform dimension and lengths

The dimension of the transform is a positive integer value represented in an
integer scalar of typeInteger . For one-dimensional transform, the
transform length is specified by a positive integer value represented in an
integer scalar of typeInteger . For multi-dimensional (≥ 2) transform, the
lengths of each of the dimension is supplied in an integer array.
DFTI_DIMENSION andDFTI_LENGTHSare the remaining two of four
configuration parameters without default.

As mentioned, these four configuration parameters do not have default
value. They are most conveniently set at the descriptor creation function.
Nevertheless, any one of these four configuration values can be changed,
although this is not deemed common.

Table 8-6 Correspondence of Forward and Backward Domain

Forward Domain Implied Backward Domain

Complex (DFTI_COMPLEX) Complex

Real (DFTI_REAL) Conjugate Even

Conjugate Even (DFTI_CONJUGATE_EVEN) Real

CAUTION. Changing the dimension and length would likely render the
stride value inappropriate. Unless certain of otherwise, the user is
advised to reconfigure the stride (see“Strides”).

Advanced DFT Interface8

8-29

Number of transforms

In some situations, the user may need to perform a number of DFT
transforms of the same dimension and lengths. The most common situation
would be to transform a number of one-dimensional data of the same
length. This parameter has the default value of 1, and can be set to positive
integer value by anInteger data type in Fortran andlong data type in C.

Sign and scale

The general form of the discrete Fourier transform is given by (7.1), for
, where is an arbitrary real-valued scale factor and

. By default, the forward transform is defined by and ,
and the backward transform is defined by and . The user can
change the definition of forward transform via setting the sign to be
DFTI_NEGATIVE (default) orDFTI_POSITIVE . The sign of the backward
transform is implicitly defined to be the negative of the sign for the forward
transform.

The forward transform and backward transform are each associated with a
scale factor of its own with default value of 1. The user can set one or
both of them via the two configuration parametersDFTI_FORWARD_SCALE

andDFTI_BACKWARD_SCALE. For example, for a one-dimensional
transform of lengthn, one can use the default scale of 1 for the forward
transform while setting the scale factor for backward transform to be 1/n,
making the backward transform the inverse of the forward transform.

The scale factor configuration parameter should be set by a real
floating-point data type of the same precision as the value for
DFTI_PRECISION .

Placement of result

By default, the computational functions overwrite the input data with the
output result. That is, the default setting of the configuration parameter
DFTI_PLACEMENTis DFTI_INPLACE . The user can change that by setting
it to DFTI_NOT_INPLACE.

kl 0 1 2 …,±,±,= σ
δ 1±= σ 1= δ 1–=

σ 1= δ 1=

δ

σ

8-30

8 Intel® Math Kernel Library Reference Manual

Storage schemes

For each of the three domainsDFTI_COMPLEX, DFTI_REAL, and
DFTI_CONJUGATE_EVEN(for the forward as well as the backward
operator), a subset of the four storage schemesDFTI_COMPLEX_COMPLEX,
DFTI_COMPLEX_REAL, DFTI_REAL_COMPLEX, andDFTI_REAL_REAL.
Specific examples are presented here to illustrate the storage schemes. See
the document [3] for the rationale behind this definition of the storage
schemes.

Storage scheme for complex domain

This setting is recorded in the configuration parameter
DFTI_COMPLEX_STORAGE. The three values that can be set are
DFTI_COMPLEX_COMPLEX, DFTI_COMPLEX_REAL, and
DFTI_REAL_REAL. Consider a one-dimensionaln-length transform of the
form

, Sÿ .

Assume the stride has default value (unit stride) andDFTI_PLACEMENThas
the default in-place setting.

1. DFTI_COMPLEX_COMPLEXstorage scheme.A typical usage will be as
follows.

COMPLEX :: X(0:n-1)

...some other code...

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

X(k) = zk , k = 0,1,...,n-1 .

2. DFTI_COMPLEX_REALstorage scheme. A typical usage will be as
follows.

REAL :: X(0:2*n-1)

zk wje
i2πjk n⁄–

j 0=

n 1–

∑= wj zk ∈,

Advanced DFT Interface8

8-31

...some other code...

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(2* j) = Re(wj) , X(2* j +1) = Im(wj) , j = 0,1,...,n-1 .

On output,

X(2* k) = Re(zk) , X(2* k+1) = Im(zk) , k = 0,1,...,n-1 .

The notations Re(wj) and Im(wj) are the real and imaginary parts of the
complex numberwj .

3. DFTI_REAL_REALstorage scheme. A typical usage will be as follows.

REAL :: X(0:n-1), Y(0:n-1)

...some other code...

Status = DftiComputeForward(Desc_Handle, X, Y)

On input,

X(j) = Re(wj) , Y(j) = Im(wj) , j = 0,1,...,n-1 .

On output,

X(k) = Re(zk) , Y(k) = Im(zk) , k = 0,1,...,n-1 .

Storage scheme for the real and conjugate even domains

This setting for the storage schemes for these domains are recorded in the
configuration parametersDFTI_REAL_STORAGEand
DFTI_CONJUGATE_EVEN. Since a forward real domain corresponds to a
conjugate even backward domain, we consider them together. We use a
one-dimensional real to conjugate even transform as our example. In-place
computation is assumed whenever possible (that is, when the input data type
matches with the output data type).

Consider a one-dimensionaln-length transform of the form

, S� , Sÿ .

There is a symmetry: whenever 0≤ n-k < n. Assume the stride
has default value (unit stride).

zk wje
i2πjk n⁄–

j 0=

n 1–

∑= wj ∈ zk ∈

zn k– zk=

8-32

8 Intel® Math Kernel Library Reference Manual

1. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_COMPLEXfor
conjugate even domain. A typical usage will be as follows.

// m = floor(n/2)

REAL :: X(0:n-1)

COMPLEX :: Y(0:m)

...some other code...

...out of place transform...

Status = DftiComputeForward(Desc_Handle, X, Y)

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Y(k) = zk , k = 0,1,...,m.

2. DFTI_REAL_REAL for real domain, DFTI_COMPLEX_REALfor
conjugate even domain. A typical usage will be as follows.

// m = floor(n/2)

REAL :: X(0:2*m+1)

...some other code...

...assuming inplace...

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

X(2* k) = Re(zk) , X(2* k+1) = Im(zk) , k = 0,1,...,m.

3. DFTI_REAL_REAL for real domain, DFTI_REAL_REAL for conjugate
even domain.This storage scheme for conjugate even domain is applicable
for one-dimensional transform only. A typical usage will be as follows.

// m = floor(n/2)

REAL :: X(0:n-1)

...some other code...

...assuming inplace...

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(j) = wj , j = 0,1,...,n-1 .

Advanced DFT Interface8

8-33

On output,

X(k) = Re(zk) , k = 0,1,...,m.

and

X(n- k) = Im(zk) , k = 0,1,...,m-1 .

4. DFTI_REAL_COMPLEXfor real domain, DFTI_COMPLEX_COMPLEXfor
conjugate even domain.A typical usage will be as follows.

// m = floor(n/2)

COMPLEX :: X(0:n-1)

...some other code...

...inplace transform...

Status = DftiComputeForward(Desc_Handle, X)

On input,

X(j) = wj , j = 0,1,...,n-1 .

That is, the imaginary parts ofX(j) are zero. On output,

Y(k) = zk , k = 0,1,...,m.

wheremis .

5. DFTI_REAL_COMPLEXfor real domain, DFTI_COMPLEX_REALfor
conjugate even domain.A typical usage will be as follows.

// m = floor(n/2)

COMPLEX :: X(0:n-1)

REAL :: Y(0:2*m+1)

...some other code...

...not inplace...

Status = DftiComputeForward(Desc_Handle, X, Y)

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

X(2* k) = Re(zk) , X(2* k+1) = Im(zk) , k = 0,1,...,m.

6. DFTI_REAL_COMPLEXfor real domain, DFTI_REAL_REAL for
conjugate even domain.This storage scheme for conjugate even domain is
applicable for one-dimensional transform only. A typical usage will be as
follows.

n 2⁄

8-34

8 Intel® Math Kernel Library Reference Manual

// m = floor(n/2)

COMPLEX :: X(0:n-1)

REAL :: Y(0:n-1)

...some other code...

...not inplace...

Status = DftiComputeForward(Desc_Handle, X, Y)

On input,

X(j) = wj , j = 0,1,...,n-1 .

On output,

Y(k) = Re(zk) , k = 0,1,...,m.

and

Y(n- k) = Im(zk) , k = 0,1,...,m-1 .

Input and output distances

DFTI allows the computation of multiple number of transforms.
Consequently, one needs to be able to specify the data distribution of these
multiple sets of data. This is accomplished by the distance between the first
data element of the consecutive data sets. The following example illustrates
the specification. Consider computing the forward DFT on three 32-length
complex sequences stored inX(0:31, 1) , X(0:31, 2) , andX(0:31, 3) .
Suppose the results are to be stored in the locationsY(0:31, k) , k = 1, 2,
3, of the arrayY(0:63, 3) . Thus the input distance is 32, while the output
distance is 64. Here is the code fragment:

COMPLEX :: X(0:31,3), Y(0:64,3)

...................

Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32)

Status = DftiSetValue(Desc_Handle, DFTI_NUMBER_OF_TRANSFORM, 3)

Status = DftiSetValue(Desc_Handle, DFTI_INPUT_DISTANCE, 32)

Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_DISTANCE, 64)

Status = DftiSetValue(Desc_Handle, DFTI_PLACEMENT, DFTI_NOT_INPLACE)

Status = DftiCommitDescriptor(Desc_Handle)

Status = DftiComputeForward(Desc_Handle, X, Y)

Advanced DFT Interface8

8-35

Strides

In addition to supporting transforms of multiple number of datasets, DFTI
supports non-unit stride distribution of data within each data set. Consider
the following situation where a 32-length DFT is to be computed on the
sequencexj , 0 ≤ j < 32. The actual location of these values are inX(5) ,
X(7) , ...,X(67) of an arrayX(1:68) . The stride accommodated by DFTI
consists of a displacement from the first element of the data arrayL0,
(4 in this case), and a constant distance of consecutive elementsL1 (2 in this
case). Thus

xj = X(1 + L0 + L1 * j) = X(5 + L1 * j) .

This stride vector (2, 4) is provided by a length-2 rank-1 integer array:

COMPLEX :: X(68)

INTEGER :: Stride(2)

...................

Status = DftiCreateDescriptor(Desc_Handle, DFTI_SINGLE,
DFTI_COMPLEX, 1, 32)

Stride = (/ 4, 2 /)

Status = DftiSetValue(Desc_Handle, DFTI_INPUT_STRIDE, Stride)

Status = DftiSetValue(Desc_Handle, DFTI_OUTPUT_STRIDE, Stride)

Status = DftiCommitDescriptor(Desc_Handle)

Status = DftiComputeForward(Desc_Handle, X)

In general, for ad-dimensional transform, the stride is provided by a
d +1-length integer vector (L0, L1, L2, ...,Ld) with the meaning:

L0 = displacement from the first array element

L1 = distance between consecutive data elements in the first dimension

L2 = distance between consecutive data elements in the second dimension

... = ...

Ld = distance between consecutive data elements in thed-th dimension.

A d-dimensional data sequence

, 0 ≤ j i < Ji , 1 ≤ i ≤ d

will be stored in the rank-1 arrayX by the mapping

= X(first index +L0 + j1L1 + j2L2 + ... + jdLd) .

xj1 j2 … jd, , ,

xj1 j2 … jd, , ,

8-36

8 Intel® Math Kernel Library Reference Manual

For multiple transforms, the valueL0 applies to the first data sequence, and
Lj , j = 1, 2,...,d apply to all the data sequences.

In the case of a single one-dimensional sequence,L1 is simply the usual
stride. The default setting of strides in the general multi-dimensional
situation corresponds to the case where the sequences are distributed tightly
into the array:

L1 = 1, L2= J1, L3 = J1J2 ,...,Ld =

Both the input data and output data have a stride associated. The default that
is set corresponding to the data to be stored contiguously in memory that is
natural to the language.

Finally, consider a contrived example where a 20-by-40 two-dimensional
DFT is computed explicitly using one-dimensional transforms.

// Fortran

COMPLEX :: X(20,40)

INTEGER :: STRIDE(2)

...

Status = DftiCreatDescriptor(Desc_Handle_Dim1, DFTI_SINGLE,
DFTI_COMPLEX, 1, 20)

Status = DftiCreatDescriptor(Desc_Handle_Dim2, DFTI_SINGLE,
DFTI_COMPLEX, 1, 40)

// perform 40 one-dimensional transforms along 1st dimension

Status = DftiSetValue(Desc_Handle_Dim1, DFTI_NUMBER_OF_TRANSFORMS, 40)

Status = DftiSetValue(Desc_Handle_Dim1, DFTI_INPUT_DISTANCE, 20)

Status = DftiSetValue(Desc_Handle_Dim1, DFTI_OUTPUT_DISTANCE, 20)

Status = DftiCommitDescriptor(Desc_Handle_Dim1)

Status = DftiComputeForward(Desc_Handle_Dim1, X)

// perform 20 one-dimensional transforms along 2nd dimension

Stride(1) = 0; Stride(2) = 20

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_NUMBER_OF_TRANSFORMS, 20)

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_INPUT_DISTANCE, 1)

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_OUTPUT_DISTANCE, 1)

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_INPUT_STRIDE, Stride)

Ji

i 1=

d 1–

∏

Advanced DFT Interface8

8-37

Status = DftiSetValue(Desc_Handle_Dim2, DFTI_OUTPUT_STRIDE, Stride)

Status = DftiCommitDescriptor(Desc_Handle_Dim2)

Status = DftiComputeForward(Desc_Handle_Dim2, X)

/* C */

float _Complex x[20][40];

long stride[2];

...

status = DftiCreatDescriptor(*desc_handle_dim1, DFTI_SINGLE,
DFTI_COMPLEX, 1, 20);

status = DftiCreatDescriptor(*desc_handle_dim2, DFTI_SINGLE,
DFTI_COMPLEX, 1, 40);

/* perform 40 one-dimensional transforms along 1st dimension */

/* note that the 1st dimension data are not unit-stride */

stride[0] = 0; stride[1] = 40;

status = DftiSetValue(desc_handle_dim1, DFTI_NUMBER_OF_TRANSFORMS, 40);

status = DftiSetValue(desc_handle_dim1, DFTI_INPUT_DISTANCE, 1);

status = DftiSetValue(desc_handle_dim1, DFTI_OUTPUT_DISTANCE, 1);

status = DftiSetValue(desc_handle_dim1, DFTI_INPUT_STRIDE, stride);

status = DftiSetValue(desc_handle_dim1, DFTI_OUTPUT_STRIDE, stride);

status = DftiCommitDescriptor(desc_handle_dim1);

status = DftiComputeForward(desc_handle_dim1, x);

/* perform 20 one-dimensional transforms along 2nd dimension */

/* note that the 2nd dimension is unit stride */

status = DftiSetValue(desc_handle_dim2, DFTI_NUMBER_OF_TRANSFORMS, 20);

status = DftiSetValue(desc_handle_dim2, DFTI_INPUT_DISTANCE, 40);

status = DftiSetValue(desc_handle_dim2, DFTI_OUTPUT_DISTANCE, 40);

status = DftiCommitDescriptor(desc_handle_dim2);

status = DftiComputeForward(desc_handle_dim2, x);

Initialization Effort

In modern approaches to constructing fast algorithms (FFT) for DFT
computations, one often has a flexibility of spending more effort in
initializing (preparing for) an FFT algorithm to buy higher efficiency in the

8-38

8 Intel® Math Kernel Library Reference Manual

computation on actual data to follow. DFTI accommodates this situation
through the configuration parameterDFTI_INITIALIZATION_EFFORT .
The three configuration values areDFTI_LOW, DFTI_MEDIUM(default), and
DFTI_HIGH . Note that specific implementations of DFTI may or may not
make use of this setting.

Ordering

It is well known that a number of FFT algorithms apply an explicit
permutation stage that is time consuming [4]. Doing away with this step is
tantamount to applying DFT to input whose order is scrambled or resulting
in scrambling the order of the DFT result. In applications such as
convolution and power spectrum calculation, the order of result or data is
unimportant and thus permission of scrambled order is attractive if it leads
to higher performance. Our API allows the following three options:

1. DFTI_ORDERED: Forward transform data ordered, backward transform
data ordered. This is the default.

2. DFTI_BACKWARD_SCRAMBLED: Forward transform data ordered,
backward transform data scrambled.

3. DFTI_FORWARD_SCRAMBLED: Forward transform data scrambled,
backward transform data ordered.

Table 8-7tabulates the effect on this configuration setting.

Note that meaning of the latter two options are "allow scrambled order if
practical." There are situations where in fact allowing out of order data
gives no performance advantage, and thus an implementation may choose to
ignore the suggestion. Strictly speaking, the normal order is also a
scrambled order, the trivial one.

Table 8-7 Scrambled Order Transform

DftiComputeForward DftiComputeBackward

DFTI_ORDERING Input →→→→ Output Input →→→→ Output

DFTI_ORDERED ordered → ordered ordered → ordered

DFTI_BACKWARD_SCRAMBLED ordered → scrambled scrambled → ordered

DFTI_FORWARD_SCRAMBLED scrambled → ordered ordered → scrambled

Advanced DFT Interface8

8-39

When the ordering setting is other than the defaultDFTI_ORDERED, the user
may need to know the actual ordering of the input and output data. The
ordering of the data in the forward domain is obtained through reading
(getting) the configuration parameterDFTI_FORWARD_ORDERING; and the
ordering of the data in the reverse domain is obtained through reading
(getting) the configuration parameterDFTI_BACKWARD_ORDERING. The
configuration values are integer vectors, thus provided by pointer to any
integer array. We now describe how these integer values specify the actual
scrambling of data.

All scramblings involved are digit reversal along one single dimension.
Precisely, a lengthJ is factored intoK ordered factorsD1, D2, ...,DK. Any
index i, 0 ≤ i < n, can be expressed uniquely asK digits i1, i2, ..., iK where
0 ≤ il < Dl and

i =i1 + i2D1 + i3D1D2 +... + iKD1D2 ... DK-1 .

A digit reversal permutation scram(i) is given by

scram(i) = iK +iK-1DK + iK-2DKDK-1 +... +i1DKDK-1 ... D2

FactoringJ into one factorJ leads to no scrambling at all, that is,
scram(i) = i. Note that the factoring needs not correspond exactly to the
number of "butterfly" stages to be carried out. In fact, the computation
routine in its initialization stage will decide if indeed a scrambled order in
some or all of the dimensions would lead to performance gain. The digits of
the digit reversal are recorded and stored in the descriptor. These digits can
be obtained by calling a corresponding inquiry routine that returns a pointer
to an integer array. The first element isK (1) which is the number of digits
for the first dimension, followed byK (1) values of the corresponding digits.
If dimension is higher than one, the next integer value isK (2) , etc.

We comment that simple permutation such as mod-p sort [4] is a special
case of digit reversal. Hence this option could be useful to
high-performance implementation of one-dimensional DFT via a "six-step"
or "four-step" framework [4].

We can inquire about the scrambling decided on the forward data and
reverse data. This information is returned as an integer vector containing a
number of sequence (K, D1, D2,...,DK), one for each dimension. Thus the

8-40

8 Intel® Math Kernel Library Reference Manual

first element indicates how manyD's will follow. The inquiry routine
allocates memory, fills it will this information, and returns a pointer to the
memory location.

Workspace

There are FFT algorithms that does not require a scratch space for
permutation purposes. We provide the setting ofDFTI_ALLOW(default) and
DFTI_AVOID for the optionDFTI_WORKSPACE. Note that the setting
DFTI_AVOID is meant to be "avoid if practical," hence allowing the
implementation the flexibility to use workspace regardless of the setting.

Transposition

This is an option that allows for the result of a high-dimensional transform
to be presented in a transposed manner. The default setting isDFTI_NONE

and can be set toDFTI_ALLOW. Similar to that of scrambled order,
sometimes in higher dimension transform, performance can be gained if the
result is delivered in a transposed manner. Our API offers an option that
allows the output be returned in a transposed form if performance gain is
expected. Since the generic stride specification is naturally suited for
representation of transposition, this option allows the strides for the output
to be possibly different from those originally specified by the user. Consider
an example where a two-dimensional result , 0≤ ji < ni, is expected.
Originally the user specified that the result be distributed in the
(flat) arrayY in with generic stridesL1 = 1 andL2 = n1. With the option that
allows for transposition, the computation may actually return the result into
Y with strideL1 = n2 andL2 = 1. These strides are obtainable from an
appropriate inquiry function. Note also that in dimension 3 and above,
transposition means an arbitrary permutation of the dimension.

Status Checking
All of the functions of the category descriptor manipulation, DFT
computation, and descriptor configuration return an integer value denoting
the status of the operation. In the status checking category, we provide two

yj1 j2,

Advanced DFT Interface8

8-41

functions. One is a logical function that checks if the status reflects an error
of a predefined class, and the second is an error message function that
returns a character string.

ErrorClass
Checks if the status reflects an error of a
predefined class.

Usage
// Fortran

Predicate = DftiErrorClass(Status, Error_Class)

/* C */

predicate = DftiErrorClass(status, error_class);

Discussion

DFTI provides a set of predefined error class listed inTable 8-8. These are
named constants and have the typeINTEGERin Fortran andlong in C.

Table 8-8 Predefined Error Class

Named Constants Comments

DFTI_NO_ERROR No error

DFTI_INVALID_CONFIGURATION Invalid settings of one or more configuration
parameters

DFTI_INCONSISTENT_CONFIGURATION Inconsistent configuration or input parameters

DFTI_BAD_DESCRIPTOR Descriptor is unusable for computation

DFTI_UNIMPLEMENTED Unimplemented legitimate settings; implementation
dependent

DFTI_MEMORY_ERROR Usually associated with memory allocation

8-42

8 Intel® Math Kernel Library Reference Manual

Note that the correct usage is to check if the status returns.TRUE. or
.FALSE. through the use ofDFTI_ERROR_CLASSwith a specific error
class. Direct comparison of a status with the predefined class is an incorrect
usage.

Interface and prototype
//Fortran interface

INTERFACE DftiErrorClass

//Note that the body provided here is for illustration only

//The specification does not mandate what it should be.

//It is possible that implementation will use common external

//functions below to be shared by Fortran and C implementation of DFTI

FUNCTION DFTI_ERROR_CLASS_EXTERNAL(Status, Error_Class)

LOGICAL DFTI_ERROR_CLASS_EXTERNAL

INTEGER, INTENT(IN) :: Status, Error_Class

END FUNCTION DFTI_ERROR_CLASS_EXTERNAL

END INTERFACE DftiErrorClass

/* C prototype */

long DftiErrorClass(long , long);

ErrorMessage
Generates an error message.

Usage
// Fortran

ERROR_MESSAGE = DftiErrorMessage(Status)

/* C */

error_message = DftiErrorMessage(status);

Advanced DFT Interface8

8-43

Discussion

The error message function generates an error message character string. The
maximum length of the string in Fortran is given by the named constant
DFTI_MAX_MESSAGE_LENGTH. The actual error message is implementation
dependent. In Fortran, the user needs to use a character string of length
DFTI_MAX_MESSAGE_LENGTHas the target. In C, the function returns a
pointer to a character string, that is, a character array with the delimiter ' 0'.

Interface and prototype
//Fortran interface

INTERFACE DftiErrorMessage

//Note that the body provided here is for illustration only

//The specification does not mandate what it should be.

//It is possible that implementation will use common external

//functions below to be shared by Fortran and C implementation of DFTI

FUNCTION DFTI_ERROR_MESSAGE_EXTERNAL(Status, Error_Class)

CHARACTER(*) DFTI_ERROR_MESSAGE_EXTERNAL(Status)

INTEGER, INTENT(IN) :: Status

END FUNCTION DFTI_ERROR_MESSAGE_EXTERNAL

END INTERFACE DftiErrorMessage

/* C prototype */

char *DftiErrorMessage(long);

References
[1] E. Oran Brigham,The Fast Fourier Transform and Its Applications,
Prentice Hall, New Jersey, 1988.

[2] Athanasios Papoulis,The Fourier Integral and its Applications, 2nd
edition, McGraw-Hill, New York, 1984.

[3] Ping Tak Peter Tang,DFTI, a New API for DFT: Motivation, Design,
and Rationale, March 2002.

[4] Charles Van Loan,Computational Frameworks for the Fast Fourier
Transform, SIAM, Philadelphia, 1992

A-1

Routine and Function
Arguments A

The major arguments in the BLAS routines are vector and matrix, whereas
VML functions work on vector arguments only.
The sections that follow discuss each of these arguments and provide
examples.

Vector Arguments in BLAS
Vector arguments are passed in one-dimensional arrays. The array
dimension (length) and vector increment are passed as integer variables.
The length determines the number of elements in the vector. The increment
(also called stride) determines the spacing between vector elements and the
order of the elements in the array in which the vector is passed.

A vector of lengthn and incrementincx is passed in a one-dimensional
arrayx whose values are defined as

x(1), x(1+| incx |), ..., x(1+(n-1)* | incx |)

If incx is positive, then the elements in arrayx are stored in increasing
order. If incx is negative, the elements in arrayx are stored in decreasing
order with the first element defined asx(1+(n-1)* | incx |) . If incx is
zero, then all elements of the vector have the same value,x(1) . The
dimension of the one-dimensional array that stores the vector must always
be at least

idimx = 1 + (n-1)* | incx |

A-2

A Intel® Math Kernel Library Reference Manual

Example A-1 One-dimensional Real Array

Let x(1:7) be the one-dimensional real array
x = (1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.0) .
If incx =2 andn = 3, then the vector argument with elements in
order from first to last is(1.0, 5.0, 9.0) .
If incx = -2 andn = 4, then the vector elements in order from first
to last is(13.0, 9.0, 5.0, 1.0) .
If incx = 0 andn = 4, then the vector elements in order from first to
last is(1.0, 1.0, 1.0, 1.0) .

One-dimensional substructures of a matrix, such as the rows, columns, and
diagonals, can be passed as vector arguments with the starting address and
increment specified. In Fortran, storing themby n matrix is based on
column-major ordering where the increment between elements in the same
column is1, the increment between elements in the same row ism, and the
increment between elements on the same diagonal ism + 1.

Example A-2 Two-dimensional Real Matrix

Let a be the real 5 x 4 matrix declared asREAL A (5,4) .
To scale the third column ofa by 2.0, use the BLAS routinesscal
with the following calling sequence:
call sscal (5, 2.0, a(1,3), 1) .
To scale the second row, use the statement:
call sscal (4, 2.0, a(2,1), 5) .
To scale the main diagonal of A by 2.0, use the statement:
call sscal (5, 2.0, a(1,1), 6) .

NOTE. The default vector argument is assumed to be 1.

Routine and Function ArgumentsA

A-3

Vector Arguments in VML
Vector arguments of VML mathematical functions are passed in
one-dimensional arrays with unit vector increment. It means that a vector of
lengthn is passed contiguously in an arraya whose values are defined as
a[0], a[1], ..., a[n-1] (for C- interface).
To accommodate for arrays with other increments, or more complicated
indexing, VML contains auxiliary pack/unpack functions that gather the
array elements into a contiguous vector and then scatter them after the
computation is complete.

Generally, if the vector elements are stored in a one-dimensional arraya as

a[m0], a[m1], ..., a[mn-1]

and need to be regrouped into an arrayy as

y[k0], y[k1], ..., y[kn-1] ,

VML pack/unpack functions can use one of the following indexing methods:

Positive Increment Indexing

k j = incy * j , mj = inca * j , j = 0 ,…, n-1

Constraint:incy > 0 andinca > 0.
For example, settingincy = 1 specifies gathering array elements into a
contiguous vector.

This method is similar to that used in BLAS, with the exception that negative
and zero increments are not permitted.

Index Vector Indexing

k j = iy[j] , mj = ia[j] , j = 0 ,…, n-1 ,

whereia andiy are arrays of lengthn that contain index vectors for the
input and output arraysa andy, respectively.

Mask Vector Indexing

Indicesk j , mj are such that:

my[k j] ≠ 0, ma[mj] ≠ 0 , j = 0,…, n-1 ,

wheremaandmy are arrays that contain mask vectors for the input and
output arraysa andy, respectively.

A-4

A Intel® Math Kernel Library Reference Manual

Matrix Arguments
Matrix arguments of the Math Kernel Library routines can be stored in
either one- or two-dimensional arrays, using the following storage schemes:

• conventional full storage (in a two-dimensional array)
• packed storage for Hermitian, symmetric, or triangular matrices

(in a one-dimensional array)
• band storage for band matrices (in a two-dimensional array).

Full storage is the following obvious scheme: a matrixA is stored in a
two-dimensional arraya, with the matrix elementaij stored in the array
elementa(i , j) .

If a matrix is triangular (upper or lower, as specified by the argument
uplo), only the elements of the relevant triangle are stored; the remaining
elements of the array need not be set.

Routines that handle symmetric or Hermitian matrices allow for either the
upper or lower triangle of the matrix to be stored in the corresponding
elements of the array:

if uplo ='U' , aij is stored ina(i , j) for i ≤ j ,
other elements ofa need not be set.

if uplo ='L' , aij is stored ina(i , j) for j ≤ i ,
other elements ofa need not be set.

Packed storage allows you to store symmetric, Hermitian, or triangular
matrices more compactly: the relevant triangle (again, as specified by the
argumentuplo) is packed by columns in a one-dimensional arrayap:

if uplo ='U' , aij is stored inap(i +j (j -1)/2) for i ≤ j
if uplo ='L' , aij is stored inap(i +(2* n- j)*(j -1)/2) for j ≤ i .

In descriptions of LAPACK routines, arrays with packed matrices have
names ending inp.

Band storage is as follows: anmby n band matrix withkl non-zero
sub-diagonals andku non-zero super-diagonals is stored compactly in a
two-dimensional arrayab with kl +ku +1 rows andn columns. Columns of
the matrix are stored in the corresponding columns of the array, and
diagonals of the matrix are stored in rows of the array. Thus,

aij is stored inab(ku +1+i - j , j) for max(n,j - ku) ≤ i ≤ min(n,j +kl).

Routine and Function ArgumentsA

A-5

Use the band storage scheme only whenkl andku are much less than the
matrix sizen. (Although the routines work correctly for all values ofkl andku ,
it’s inefficient to use the band storage if your matrices are not really banded).

When a general band matrix is supplied forLU factorization, space must be
allowed to storekl additional super-diagonals generated by fill-in as a result of
row interchanges. This means that the matrix is stored according to the above
scheme, but withkl + ku super-diagonals.

The band storage scheme is illustrated by the following example, when
m = n = 6, kl = 2, ku = 1:

Array elements marked * are not used by the routines; elements marked+ need
not be set on entry, but are required by the LU factorization routines to store the
results. The input array will be overwritten on exit by the details of the LU
factorization as follows:

whereuij are the elements of the upper triangular matrix U, andmij are the
multipliers used during factorization.

a11 a12 0 0 0 0

a21 a22 a23 0 0 0

a31 a32 a33 a34 0 0

0 a42 a43 a44 a45 0

0 0 a53 a54 a55 a56

0 0 0 a64 a65 a66

* * * + + +

* * + + + +

* a12 a23 a34 a45 a56

a11 a22 a33 a44 a55 a66

a21 a32 a43 a54 a65 *
a31 a42 a53 a64 * *

Banded matrix A Band storage of A

* * * u14 u25 u36

* * u13 u24 u35 u46

* u12 u23 u34 u45 u56

u11 u22 u33 u44 u55 u66

m21 m32 m43 m54 m65 *
m31 m42 m53 m64 * *

A-6

A Intel® Math Kernel Library Reference Manual

Triangular band matrices are stored in the same format, with eitherkl = 0 if
upper triangular, orku = 0 if lower triangular. For symmetric or Hermitian
band matrices withk sub-diagonals or super-diagonals, you need to store
only the upper or lower triangle, as specified by the argumentuplo :

if uplo ='U' , aij is stored inab(k+1+i - j , j) for max(1,j - k) ≤ i ≤ j
if uplo ='L' , aij is stored inab(1+ i - j , j) for j ≤ i ≤ min(n,j +k).

In descriptions of LAPACK routines, arrays that hold matrices in band
storage have names ending inb.

In Fortran, column-major ordering of storage is assumed. This means that
elements of the same column occupy successive storage locations.

Three quantities are usually associated with a two-dimensional array
argument: its leading dimension, which specifies the number of storage
locations between elements in the same row, its number of rows, and its
number of columns. For a matrix in full storage, the leading dimension of
the array must be at least as large as the number of rows in the matrix.

A character transposition parameter is often passed to indicate whether the
matrix argument is to be used in normal or transposed form or, for a
complex matrix, if the conjugate transpose of the matrix is to be used.
The values of the transposition parameter for these three cases are the
following:

'N' or 'n' normal (no conjugation, no transposition)

'T' or 't' transpose

'C' or 'c' conjugate transpose.

Routine and Function ArgumentsA

A-7

Example A-3 Two-Dimensional Complex Array

SupposeA (1:5, 1:4) is the complex two-dimensional array
presented by matrix

Let transa be the transposition parameter,mbe the number of rows,n
be the number of columns, andlda be the leading dimension. Then if
transa = 'N', m = 4, n = 2, andlda = 5, the matrix argument
would be

If transa = 'T', m = 4, n = 2, andlda =5,
the matrix argument would be

If transa = ' C', m = 4, n = 2, andlda =5,
the matrix argument would be

Note that care should be taken when using a leading dimension value which
is different from the number of rows specified in the declaration of the
two-dimensional array. For example, suppose the arrayA above is declared
asCOMPLEX A (5,4) .

continued*

1.1 0.11,() 1.2 0.12,() 1.3 0.13,() 1.4 0.14,()
2.1 0.21,() 2.2 0.22,() 2.3 0.23,() 2.4 0.24,()
3.1 0.31,() 3.2 0.32,() 3.3 0.33,() 3.4 0.34,()
4.1 0.41,() 4.2 0.42,() 4.3 0.43,() 4.4 0.44,()
5.1 0.51,() 5.2 0.52,() 5.3 0.53,() 5.4 0.54,()

1.1 0.11,() 1.2 0.12,()
2.1 0.21,() 2.2 0.22,()
3.1 0.31,() 3.2 0.32,()
4.1 0.41,() 4.2 0.42,()

1.1 0.11,() 2.1 0.21,() 3.1 0.31,() 4.1 0.41,()
1.2 0.12,() 2.2 0.22,() 3.2 0.32,() 4.2 0.42,()

1.1 0.11–,() 2.1 0.21–,() 3.1 0.31–,() 4.1 0.41–,()
1.2 0.12–,() 2.2 0.22–,() 3.2 0.32–,() 4.2 0.42–,()

A-8

A Intel® Math Kernel Library Reference Manual

Then if transa = ' N', m= 3, n = 4, andlda = 4, the matrix argument will
be

1.1 0.11,() 5.1 0.51,() 4.2 0.42,() 3.3 0.33,()
2.1 0.21,() 1.2 0.12,() 5.2 0.52,() 4.3 0.43,()
3.1 0.31,() 2.2 0.22,() 1.3 0.13,() 5.3 0.53,()

B-1

Code Examples B
This appendix presents code examples of using BLAS routines and
functions.

Example B-1 Using BLAS Level 1 Function

The following example illustrates a call to the BLAS Level 1 function
sdot . This function performs a vector-vector operation of computing a
scalar product of two single-precision real vectorsx andy.

Parameters

n Specifies the order of vectorsx andy.

incx Specifies the increment for the elements ofx .

incy Specifies the increment for the elements ofy.

program dot_main
real x(10), y(10), sdot, res
integer n, incx, incy, i
external sdot

n = 5
incx = 2
incy = 1

do i = 1, 10
x(i) = 2.0e0
y(i) = 1.0e0

end do

continued *

?dot
description

B-2

B Intel® Math Kernel Library Reference Manual

Example B-1 Using BLAS Level 1 Function (continued)

res = sdot (n, x, incx, y, incy)

print*, ‘SDOT = ‘, res

end

As a result of this program execution, the following line is printed:

SDOT = 10.000

Example B-2 Using BLAS Level 1 Routine

The following example illustrates a call to the BLAS Level 1 routinescopy .
This routine performs a vector-vector operation of copying a
single-precision real vectorx to a vectory.

Parameters

n Specifies the order of vectorsx andy.

incx Specifies the increment for the elements ofx .

incy Specifies the increment for the elements ofy.

program copy_main
real x(10), y(10)
integer n, incx, incy, i

n = 3

incx = 3

incy = 1

do i = 1, 10

x(i) = i

end do

call scopy (n, x, incx, y, incy)

print*, ‘Y = ‘, (y(i), i = 1, n)

end

As a result of this program execution, the following line is printed:

Y = 1.00000 4.00000 7.00000

?copy
description

Code ExamplesB

B-3

Example B-3 Using BLAS Level 2 Routine

The following example illustrates a call to the BLAS Level 2 routinesger .
This routine performs a matrix-vector operation

a := alpha * x* y ' + a.

Parameters

alpha Specifies a scalaralpha .

x m-element vector.

y n -element vector.

a mby n matrix.

program ger_main
real a(5,3), x(10), y(10), alpha
integer m, n, incx, incy, i, j, lda

m = 2
n = 3
lda = 5
incx = 2
incy = 1
alpha = 0.5
do i = 1, 10

x(i) = 1.0
y(i) = 1.0

end do

do i = 1, m
do j = 1, n

a(i,j) = j
end do

end do

call sger (m, n, alpha, x, incx, y, incy, a, lda)

print*, ‘Matrix A: ‘

do i = 1, m

print*, (a(i,j), j = 1, n)

end do

end

continued *

?ger
description

B-4

B Intel® Math Kernel Library Reference Manual

Example B-3 Using BLAS Level 2 Routine (continued)

As a result of this program execution, matrixa is printed as follows:

Matrix A:

1.50000 2.50000 3.50000

1.50000 2.50000 3.50000

Example B-4 Using BLAS Level 3 Routine

The following example illustrates a call to the BLAS Level 3 routine
ssymm. This routine performs a matrix-matrix operation

c := alpha * a* b' + beta * c .

Parameters

alpha Specifies a scalaralpha .

beta Specifies a scalarbeta .

a Symmetric matrix.

b mby n matrix.

c m by n matrix.

program symm_main
real a(3,3), b(3,2), c(3,3), alpha, beta
integer m, n, lda, ldb, ldc, i, j

character uplo, side

uplo = 'u'
side = 'l'
m = 3
n = 2
lda = 3
ldb = 3
ldc = 3
alpha = 0.5
beta = 2.0

continued *

?symm
description

Code ExamplesB

B-5

Example B-4 Using BLAS Level 3 Routine (continued)

do i = 1, m
do j = 1, m

a(i,j) = 1.0

end do

end do

do i = 1, m

do j = 1, n

c(i,j) = 1.0

b(i,j) = 2.0

end do

end do

call ssymm (side, uplo, m, n, alpha, a, lda, b, ldb,
beta, c, ldc)

print*, ‘Matrix C: ‘

do i = 1, m

print*, (c(i,j), j = 1, n)

end do

end

As a result of this program execution, matrixc is printed as follows:

Matrix C:

5.00000 5.00000

5.00000 5.00000

5.00000 5.00000

B-6

B Intel® Math Kernel Library Reference Manual

Example B-5 Calling a Complex BLAS Level 1 Function from C

The following example illustrates a call from a C program to the complex
BLAS Level 1 functionzdotc() . This function computes the dot product
of two double-precision complex vectors.

In this example, the complex dot product is returned in the structurec .

#define N 5
void main()
{

int n, inca = 1, incb = 1, i;
typedef struct{ double re; double im; } complex16;
complex16 a[N], b[N], c;
void zdotc();
n = N;
for(i = 0; i < n; i++){

a[i].re = (double)i; a[i].im = (double)i * 2.0;
b[i].re = (double)(n - i); b[i].im = (double)i * 2.0;

}
zdotc(&c, &n, a, &inca, b, &incb);
printf("The complex dot product is: (%6.2f, %6.2f

)\n", c.re, c.im);
}

NOTE. Instead of calling BLAS directly from C programs, you might
wish to use the CBLAS interface; this is the supported way of calling
BLAS from C. For more information about CBLAS, see Appendix C,
“CBLAS Interface to the BLAS”.

C-1

CBLAS Interface
to the BLAS C

This appendix presents CBLAS, the C interface to the Basic Linear Algebra
Subprograms (BLAS).

Similar to BLAS, the CBLAS interface includes three levels of functions:

• Level 1 CBLAS(vector-vector operations)
• Level 2 CBLAS(matrix-vector operations)
• Level 3 CBLAS(matrix-matrix operations).

To obtain the C interface, the Fortran routine names are prefixed with
cblas_ (for example,dasum becomescblas_dasum). Names of all
CBLAS functions are in lowercase letters.

Complex functions?dotc and?dotu become CBLAS subroutines (void
functions); they return the complex result via a void pointer, added as the
last parameter. CBLAS names of these functions are suffixed with _sub. For
example, the BLAS functioncdotc corresponds tocblas_cdotc_sub .

CBLAS Arguments
The arguments of CBLAS functions obey the following rules:

• Input arguments are declared with theconst modifier.
• Non-complex scalar input arguments are passed by value.
• Complex scalar input arguments are passed as void pointers.
• Array arguments are passed by address.
• Output scalar arguments are passed by address.
• BLAS character arguments are replaced by the appropriate enumerated

type.

C-2

C Intel® Math Kernel Library Reference Manual

• Level 2 and Level 3 routines acquire an additional parameter of type
CBLAS_ORDERas their first argument. This parameter specifies
whether two-dimensional arrays are row-major (CblasRowMajor) or
column-major (CblasColMajor).

Enumerated Types

The CBLAS interface uses the following enumerated types:

enum CBLAS_ORDER {
CblasRowMajor=101, /* row-major arrays */
CblasColMajor=102}; /* column-major arrays */

enum CBLAS_TRANSPOSE {
CblasNoTrans=111, /* trans='N' */
CblasTrans=112, /* trans='T' */
CblasConjTrans=113}; /* trans='C' */

enum CBLAS_UPLO {
CblasUpper=121, /* uplo ='U' */
CblasLower=122}; /* uplo ='L' */

enum CBLAS_DIAG {
CblasNonUnit=131, /* diag ='N' */
CblasUnit=132}; /* diag ='U' */

enum CBLAS_SIDE {
CblasLeft=141, /* side ='L' */
CblasRight=142}; /* side ='R' */

CBLAS Interface to the BLASC

C-3

Level 1 CBLAS
This is an interface toBLAS Level 1 Routines and Functions, which
perform basic vector-vector operations.

?asum
float cblas_sasum(const int N, const float *X, const int incX);

double cblas_dasum(const int N, const double *X, const int
incX);

float cblas_scasum(const int N, const void *X, const int incX);

double cblas_dzasum(const int N, const void *X, const int
incX);

?axpy
void cblas_saxpy(const int N, const float alpha, const float
*X, const int incX, float *Y, const int incY);

void cblas_daxpy(const int N, const double alpha, const double
*X, const int incX, double *Y, const int incY);

void cblas_caxpy(const int N, const void *alpha, const void *X,
const int incX, void *Y, const int incY);

void cblas_zaxpy(const int N, const void *alpha, const void *X,
const int incX, void *Y, const int incY);

?copy
void cblas_scopy(const int N, const float *X, const int incX,
float *Y, const int incY);

void cblas_dcopy(const int N, const double *X, const int incX,
double *Y, const int incY);

void cblas_ccopy(const int N, const void *X, const int incX,
void *Y, const int incY);

void cblas_zcopy(const int N, const void *X, const int incX,
void *Y, const int incY);

?dot
float cblas_sdot(const int N, const float *X, const int incX,
const float *Y, const int incY);

double cblas_ddot(const int N, const double *X, const int incX,
const double *Y, const int incY);

C-4

C Intel® Math Kernel Library Reference Manual

?dotc
void cblas_cdotc_sub(const int N, const void *X, const int
incX, const void *Y, const int incY, void *dotc);

void cblas_zdotc_sub(const int N, const void *X, const int
incX, const void *Y, const int incY, void *dotc);

?dotu
void cblas_cdotu_sub(const int N, const void *X, const int
incX, const void *Y, const int incY, void *dotu);

void cblas_zdotu_sub(const int N, const void *X, const int
incX, const void *Y, const int incY, void *dotu);

?nrm2
float cblas_snrm2(const int N, const float *X, const int incX);

double cblas_dnrm2(const int N, const double *X, const int
incX);

float cblas_scnrm2(const int N, const void *X, const int incX);

double cblas_dznrm2(const int N, const void *X, const int
incX);

?rot
void cblas_srot(const int N, float *X, const int incX, float
*Y, const int incY, const float c, const float s);

void cblas_drot(const int N, double *X, const int incX, double
*Y,const int incY, const double c, const double s);

?rotg
void cblas_srotg(float *a, float *b, float *c, float *s);

void cblas_drotg(double *a, double *b, double *c, double *s);

?rotm
void cblas_srotm(const int N, float *X, const int incX, float
*Y, const int incY, const float *P);

void cblas_drotm(const int N, double *X, const int incX, double
*Y, const int incY, const double *P);

?rotmg
void cblas_srotmg(float *d1, float *d2, float *b1, const float
b2, float *P);

void cblas_drotmg(double *d1, double *d2, double *b1, const
double b2, double *P);

CBLAS Interface to the BLASC

C-5

?scal
void cblas_sscal(const int N, const float alpha, float *X,
const int incX);

void cblas_dscal(const int N, const double alpha, double *X,
const int incX);

void cblas_cscal(const int N, const void *alpha, void *X, const
int incX);

void cblas_zscal(const int N, const void *alpha, void *X, const
int incX);

void cblas_csscal(const int N, const float alpha, void *X,
const int incX);

void cblas_zdscal(const int N, const double alpha, void *X,
const int incX);

?swap
void cblas_sswap(const int N, float *X, const int incX, float
*Y, const int incY);

void cblas_dswap(const int N, double *X, const int incX, double
*Y, const int incY);

void cblas_cswap(const int N, void *X, const int incX, void *Y,
const int incY);

void cblas_zswap(const int N, void *X, const int incX, void *Y,
const int incY);

i?amax
CBLAS_INDEX cblas_isamax(const int N, const float *X, const int
incX);

CBLAS_INDEX cblas_idamax(const int N, const double *X, const
int incX);

CBLAS_INDEX cblas_icamax(const int N, const void *X, const int
incX);

CBLAS_INDEX cblas_izamax(const int N, const void *X, const int
incX);

i?amin
CBLAS_INDEX cblas_isamin(const int N, const float *X, const int
incX);

CBLAS_INDEX cblas_idamin(const int N, const double *X, const
int incX);

CBLAS_INDEX cblas_icamin(const int N, const void *X, const int
incX);

CBLAS_INDEX cblas_izamin(const int N, const void *X, const int
incX);

C-6

C Intel® Math Kernel Library Reference Manual

Level 2 CBLAS
This is an interface toBLAS Level 2 Routines, which perform basic
matrix-vector operations. Each C routine in this group has an additional
parameter of typeCBLAS_ORDER(the first argument) that determines
whether the two-dimensional arrays use column-major or row-major
storage.

?gbmv
void cblas_sgbmv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL,
const int KU, const float alpha, const float *A, const int lda,
const float *X, const int incX, const float beta, float *Y,
const int incY);

void cblas_dgbmv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL,
const int KU, const double alpha, const double *A, const int
lda, const double *X, const int incX, const double beta, double
*Y, const int incY);

void cblas_cgbmv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL,
const int KU, const void *alpha, const void *A, const int lda,
const void *X, const int incX, const void *beta, void *Y, const
int incY);

void cblas_zgbmv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const int KL,
const int KU, const void *alpha, const void *A, const int lda,
const void *X, const int incX, const void *beta, void *Y, const
int incY);

?gemv
void cblas_sgemv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const float
alpha, const float *A, const int lda, const float *X, const int
incX, const float beta, float *Y, const int incY);

void cblas_dgemv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const double
alpha, const double *A, const int lda, const double *X, const
int incX, const double beta, double *Y, const int incY);

void cblas_cgemv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const void
*alpha, const void *A, const int lda, const void *X, const int
incX, const void *beta, void *Y, const int incY);

CBLAS Interface to the BLASC

C-7

void cblas_zgemv(const enum CBLAS_ORDER order, const enum
CBLAS_TRANSPOSE TransA, const int M, const int N, const void
*alpha, const void *A, const int lda, const void *X, const int
incX, const void *beta, void *Y, const int incY);

?ger
void cblas_sger(const enum CBLAS_ORDER order, const int M,
const int N, const float alpha, const float *X, const int incX,
const float *Y, const int incY, float *A, const int lda);

void cblas_dger(const enum CBLAS_ORDER order, const int M,
const int N, const double alpha, const double *X, const int
incX, const double *Y, const int incY, double *A, const int
lda);

?gerc
void cblas_cgerc(const enum CBLAS_ORDER order, const int M,
const int N, const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);

void cblas_zgerc(const enum CBLAS_ORDER order, const int M,
const int N, const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);

?geru
void cblas_cgeru(const enum CBLAS_ORDER order, const int M,
const int N, const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);

void cblas_zgeru(const enum CBLAS_ORDER order, const int M,
const int N, const void *alpha, const void *X, const int incX,
const void *Y, const int incY, void *A, const int lda);

?hbmv
void cblas_chbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const int K, const void *alpha,
const void *A, const int lda, const void *X, const int incX,
const void *beta, void *Y, const int incY);

void cblas_zhbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const int K, const void *alpha,
const void *A, const int lda, const void *X, const int incX,
const void *beta, void *Y, const int incY);

?hemv
void cblas_chemv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void *A,
const int lda, const void *X, const int incX, const void *beta,
void *Y, const int incY);

C-8

C Intel® Math Kernel Library Reference Manual

void cblas_zhemv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void *A,
const int lda, const void *X, const int incX, const void *beta,
void *Y, const int incY);

?her
void cblas_cher(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const void *X,
const int incX, void *A, const int lda);

void cblas_zher(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const void
*X, const int incX, void *A, const int lda);

?her2
void cblas_cher2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X,
const int incX, const void *Y, const int incY, void *A, const
int lda);

void cblas_zher2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X,
const int incX, const void *Y, const int incY, void *A, const
int lda);

?hpmv
void cblas_chpmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void
*Ap, const void *X, const int incX, const void *beta, void *Y,
const int incY);

void cblas_zhpmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void
*Ap, const void *X, const int incX, const void *beta, void *Y,
const int incY);

?hpr
void cblas_chpr(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const void *X,
const int incX, void *A);

void cblas_zhpr(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const void
*X, const int incX, void *A);

?hpr2
void cblas_chpr2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X,
const int incX, const void *Y, const int incY, void *Ap);

CBLAS Interface to the BLASC

C-9

void cblas_zhpr2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const void *alpha, const void *X,
const int incX, const void *Y, const int incY, void *Ap);

?sbmv
void cblas_ssbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const int K, const float alpha,
const float *A, const int lda, const float *X, const int incX,
const float beta, float *Y, const int incY);

void cblas_dsbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const int K, const double alpha,
const double *A, const int lda, const double *X, const int
incX, const double beta, double *Y, const int incY);

?spmv
void cblas_sspmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const float
*Ap, const float *X, const int incX, const float beta, float
*Y, const int incY);

void cblas_dspmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const double
*Ap, const double *X, const int incX, const double beta, double
*Y, const int incY);

?spr
void cblas_sspr(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const float
*X, const int incX, float *Ap);

void cblas_dspr(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const double
*X, const int incX, double *Ap);

?spr2
void cblas_sspr2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const float
*X, const int incX, const float *Y, const int incY, float *A);

void cblas_dspr2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const double
*X, const int incX, const double *Y, const int incY, double
*A);

C-10

C Intel® Math Kernel Library Reference Manual

?symv
void cblas_ssymv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const float
*A, const int lda, const float *X, const int incX, const float
beta, float *Y, const int incY);

void cblas_dsymv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const double
*A, const int lda, const double *X, const int incX, const
double beta, double *Y, const int incY);

?syr
void cblas_ssyr(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const float
*X, const int incX, float *A, const int lda);

void cblas_dsyr(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const double
*X, const int incX, double *A, const int lda);

?syr2
void cblas_ssyr2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const float alpha, const float
*X, const int incX, const float *Y, const int incY, float *A,
const int lda);

void cblas_dsyr2(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const int N, const double alpha, const double
*X, const int incX, const double *Y, const int incY, double *A,
const int lda);

?tbmv
void cblas_stbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const float *A,
const int lda, float *X, const int incX);

void cblas_dtbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const double *A,
const int lda, double *X, const int incX);

void cblas_ctbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const void *A, const
int lda, void *X, const int incX);

CBLAS Interface to the BLASC

C-11

void cblas_ztbmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const void *A, const
int lda, void *X, const int incX);

?tbsv
void cblas_stbsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const float *A,
const int lda, float *X, const int incX);

void cblas_dtbsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const double *A,
const int lda, double *X, const int incX);

void cblas_ctbsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const void *A, const
int lda, void *X, const int incX);

void cblas_ztbsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const int K, const void *A, const
int lda, void *X, const int incX);

?tpmv
void cblas_stpmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const float *Ap, float *X, const
int incX);

void cblas_dtpmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N, const double *Ap, double *X,
const int incX);

void cblas_ctpmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *Ap, void *X, const int
incX);

void cblas_ztpmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *Ap, void *X, const int
incX);

C-12

C Intel® Math Kernel Library Reference Manual

?tpsv
void cblas_stpsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const float *Ap, float *X, const
int incX);

void cblas_dtpsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const double *Ap, double *X, const
int incX);

void cblas_ctpsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *Ap, void *X, const int
incX);

void cblas_ztpsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *Ap, void *X, const int
incX);

?trmv
void cblas_strmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const float *A, const int lda,
float *X, const int incX);

void cblas_dtrmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const double *A, const int lda,
double *X, const int incX);

void cblas_ctrmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *A, const int lda, void
*X, const int incX);

void cblas_ztrmv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *A, const int lda, void
*X, const int incX);

?trsv
void cblas_strsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const float *A, const int lda,
float *X, const int incX);

CBLAS Interface to the BLASC

C-13

void cblas_dtrsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const double *A, const int lda,
double *X, const int incX);

void cblas_ctrsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *A, const int lda, void
*X, const int incX);

void cblas_ztrsv(const enum CBLAS_ORDER order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE TransA, const enum
CBLAS_DIAG Diag, const int N,const void *A, const int lda, void
*X, const int incX);

C-14

C Intel® Math Kernel Library Reference Manual

Level 3 CBLAS
This is an interface toBLAS Level 3 Routines, which perform basic
matrix-matrix operations. Each C routine in this group has an additional
parameter of typeCBLAS_ORDER(the first argument) that determines
whether the two-dimensional arrays use column-major or row-major
storage.

?gemm
void cblas_sgemm(const enum CBLAS_ORDER Order, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K, const float alpha, const
float *A, const int lda, const float *B, const int ldb, const
float beta, float *C, const int ldc);

void cblas_dgemm(const enum CBLAS_ORDER Order, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K, const double alpha,
const double *A, const int lda, const double *B, const int ldb,
const double beta, double *C, const int ldc);

void cblas_cgemm(const enum CBLAS_ORDER Order, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *B, const int ldb, const
void *beta, void *C, const int ldc);

void cblas_zgemm(const enum CBLAS_ORDER Order, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K, const void *alpha, const
void *A, const int lda, const void *B, const int ldb, const
void *beta, void *C, const int ldc);

?hemm
void cblas_chemm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const void *alpha, const void *A, const int lda, const
void *B, const int ldb, const void *beta, void *C, const int
ldc);

void cblas_zhemm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const void *alpha, const void *A, const int lda, const
void *B, const int ldb, const void *beta, void *C, const int
ldc);

CBLAS Interface to the BLASC

C-15

?herk
void cblas_cherk(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const float alpha, const void *A, const int lda,
const float beta, void *C, const int ldc);

void cblas_zherk(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const double alpha, const void *A, const int lda,
const double beta, void *C, const int ldc);

?her2k
void cblas_cher2k(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const float beta, void *C, const
int ldc);

void cblas_zher2k(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const double beta, void *C, const
int ldc);

?symm
void cblas_ssymm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const float alpha, const float *A, const int lda, const
float *B, const int ldb, const float beta, float *C, const int
ldc);

void cblas_dsymm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const double alpha, const double *A, const int lda,
const double *B, const int ldb, const double beta, double *C,
const int ldc);

void cblas_csymm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const void *alpha, const void *A, const int lda, const
void *B, const int ldb, const void *beta, void *C, const int
ldc);

void cblas_zsymm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const int M, const
int N, const void *alpha, const void *A, const int lda, const
void *B, const int ldb, const void *beta, void *C, const int
ldc);

C-16

C Intel® Math Kernel Library Reference Manual

?syrk
void cblas_ssyrk(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const float alpha, const float *A, const int lda,
const float beta, float *C, const int ldc);

void cblas_dsyrk(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const double alpha, const double *A, const int
lda, const double beta, double *C, const int ldc);

void cblas_csyrk(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const void *alpha, const void *A, const int lda,
const void *beta, void *C, const int ldc);

void cblas_zsyrk(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const void *alpha, const void *A, const int lda,
const void *beta, void *C, const int ldc);

?syr2k
void cblas_ssyr2k(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const float alpha,const float *A, const int lda,
const float *B, const int ldb, const float beta, float *C,
const int ldc);

void cblas_dsyr2k(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const double alpha, const double *A, const int
lda, const double *B, const int ldb, const double beta, double
*C, const int ldc);

void cblas_csyr2k(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSP SE Trans, const int N,
const int K, const void *alpha,const void *A, const int lda,
const void *B, const int ldb, const void *beta, void *C, const
int ldc);

void cblas_zsyr2k(const enum CBLAS_ORDER Order, const enum
CBLAS_UPLO Uplo, const enum CBLAS_TRANSPOSE Trans, const int N,
const int K, const void *alpha, const void *A, const int lda,
const void *B, const int ldb, const void *beta, void *C, const
int ldc);

CBLAS Interface to the BLASC

C-17

?trmm
void cblas_strmm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const float alpha, const float *A, const int
lda, float *B, const int ldb);

void cblas_dtrmm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const double alpha, const double *A, const int
lda, double *B, const int ldb);

void cblas_ctrmm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const void *alpha, const void *A, const int
lda, void *B, const int ldb);

void cblas_ztrmm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const void *alpha, const void *A, const int
lda, void *B, const int ldb);

?trsm
void cblas_strsm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const float alpha, const float *A, const int
lda, float *B, const int ldb);

void cblas_dtrsm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const double alpha, const double *A, const int
lda, double *B, const int ldb);

void cblas_ctrsm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const void *alpha, const void *A, const int
lda, void *B, const int ldb);

void cblas_ztrsm(const enum CBLAS_ORDER Order, const enum
CBLAS_SIDE Side, const enum CBLAS_UPLO Uplo, const enum
CBLAS_TRANSPOSE TransA, const enum CBLAS_DIAG Diag, const int
M, const int N, const void *alpha, const void *A, const int
lda, void *B, const int ldb);

Glossary-1

Glossary

AH Denotes the conjugate of a general matrixA.
See alsoconjugate matrix.

AT Denotes the transpose of a general matrixA.
See alsotranspose.

band matrix A generalm by n matrix A such thataij = 0 for
|i − j| > l, where 1 <l < min(m, n). For example, any
tridiagonal matrix is a band matrix.

band storage A special storage scheme for band matrices.
A matrix is stored in a two-dimensional array:
columns of the matrix are stored in the
corresponding columns of the array, anddiagonals
of the matrix are stored in rows of the array.

BLAS Abbreviation for Basic Linear Algebra
Subprograms. These subprograms implement
vector, matrix-vector, and matrix-matrix operations.

Bunch-Kaufman
factorization

Representation of a real symmetric or complex
Hermitian matrixA in the form A = PUDUHPT

(or A = PLDLHPT) whereP is a permutation matrix,
U andL are upper and lower triangular matrices
with unit diagonal, andD is a Hermitian
block-diagonal matrix with 1-by-1 and 2-by-2
diagonal blocks.U andL have 2-by-2 unit diagonal
blocks corresponding to the 2-by-2 blocks ofD.

Glossary-2

Intel® Math Kernel Library Reference Manual

c When found as the first letter of routine names,
c indicates the usage of single-precision complex
data type.

CBLAS C interface to the BLAS.SeeBLAS.

Cholesky factorization Representation of a symmetric positive-definite or,
for complex data, Hermitian positive-definite matrix
A in the formA = UHU or A = LLH, whereL is a
lower triangular matrix andU is an upper triangular
matrix.

condition number The numberκ(A) defined for a given square matrix
A as follows:κ(A) = ||A|| ||A−1||.

conjugate matrix The matrixAH defined for a given general matrixA
as follows: (AH)ij = (aji)

*.

conjugate number The conjugate of a complex numberz = a + bi is
z*= a − bi.

d When found as the first letter of routine names,
d indicates the usage of double-precision real data
type.

dot product The number denotedx · y and defined for given
vectorsx andy as follows:x · y = Σi xiyi.
Herexi andyi stand for theith elements ofx andy,
respectively.

double precision A floating-point data type. On Intel® processors,
this data type allows you to store real numbersx
such that 2.23*10−308< | x | < 1.79*10308.
For this data type, the machine precisionε is
approximately 10−15, which means that
double-precision numbers usually contain no more
than 15 significant decimal digits.
For more information, refer toPentium® Processor
Family Developer’s Manual, Volume 3: Architecture
and Programming Manual.

eigenvalue Seeeigenvalue problem.

Glossary

Glossary-3

eigenvalue problem A problem of finding non-zero vectorsx and
numbersλ (for a given square matrixA) such thatAx
= λx. Here the numbersλ are called theeigenvalues
of the matrixA and the vectorsx are called the
eigenvectorsof the matrixA.

eigenvector Seeeigenvalue problem.

elementary reflector
(Householder matrix)

Matrix of a general formH = I − τvvT, wherev is a
column vector andτ is a scalar.
In LAPACK elementary reflectors are used, for
example, to represent the matrixQ in theQR
factorization (the matrixQ is represented as a
product of elementary reflectors).

factorization Representation of a matrix as a product of matrices.
See alsoBunch-Kaufman factorization, Cholesky
factorization,LU factorization,LQ factorization,QR
factorization, Schur factorization.

FFTs Abbreviation for Fast Fourier Transforms.See
Chapter 3 of this book.

full storage A storage scheme allowing you to store matrices of
any kind. A matrixA is stored in a two-dimensional
arraya, with the matrix elementaij stored in the
array elementa(i , j) .

Hermitian matrix A square matrixA that is equal to its conjugate
matrix AH. The conjugateAH is defined as follows:
(AH)ij = (aji)

*.

I Seeidentity matrix.

identity matrix A square matrixI whose diagonal elements are 1,
and off-diagonal elements are 0. For any matrixA,
AI = A andIA = A.

in-place Qualifier of an operation. A function that performs
its operation in-place takes its input from an array
and returns its output to the same array.

Glossary-4

Intel® Math Kernel Library Reference Manual

inverse matrix The matrix denoted asA−1 and defined for a given
square matrixA as follows:AA−1 = A−1A = I.
A−1 does not exist for singular matricesA.

LQ factorization Representation of anm by n matrix A asA = LQ or
A = (L 0)Q. HereQ is ann by n orthogonal (unitary)
matrix. Form ≤ n, L is anm by m lower triangular
matrix with real diagonal elements; form > n,

whereL1 is ann by n lower triangular matrix, and
L2 is a rectangular matrix.

LU factorization Representation of a generalm by n matrix A as
A = PLU, whereP is a permutation matrix,L is
lower triangular with unit diagonal elements (lower
trapezoidal ifm > n) andU is upper triangular
(upper trapezoidal ifm < n).

machine precision The numberε determining the precision of the
machine representation of real numbers. For Intel®

architecture, the machine precision is approximately
10−7 for single-precision data, and approximately
10−15 for double-precision data. The precision also
determines the number of significant decimal digits
in the machine representation of real numbers.See
alsodouble precision and single precision.

MKL Abbreviation for Math Kernel Library.

orthogonal matrix A real square matrixA whose transpose and inverse
are equal, that is,AT = A- 1, and therefore
AAT = ATA = I. All eigenvalues of an orthogonal
matrix have the absolute value 1.

packed storage A storage scheme allowing you to store symmetric,
Hermitian, or triangular matrices more compactly.
The upper or lower triangle of a matrix is packed by
columns in a one-dimensional array.

L
L1

L2

=

Glossary

Glossary-5

positive-definite
matrix

A square matrixA such thatAx · x > 0 for any
non-zero vectorx. Here· denotes the dot product.

QR factorization Representation of anm by n matrix A asA = QR,
whereQ is anm by m orthogonal (unitary) matrix,
andR is n by n upper triangular with real diagonal
elements (ifm ≥ n) or trapezoidal (ifm < n) matrix.

s When found as the first letter of routine names,
s indicates the usage of single-precision real data
type.

Schur factorization Representation of a square matrixA in the form
A = ZTZH. HereT is an upper quasi-triangular
matrix (for complexA, triangular matrix) called the
Schur form ofA; the matrixZ is orthogonal (for
complexA, unitary). Columns ofZ are called Schur
vectors.

single precision A floating-point data type. On Intel® processors,
this data type allows you to store real numbersx
such that 1.18*10−38 < | x | < 3.40*1038.
For this data type, the machine precision (ε) is
approximately 10−7, which means that
single-precision numbers usually contain no more
than 7 significant decimal digits. For more
information, refer toPentium® Processor Family
Developer’s Manual, Volume 3: Architecture and
Programming Manual.

singular matrix A matrix whose determinant is zero. IfA is a
singular matrix, the inverseA- 1 does not exist, and
the system of equationsAx = b does not have a
unique solution (that is, there exist no solutions or
an infinite number of solutions).

singular value The numbers defined for a given general matrixA as
the eigenvalues of the matrixAAH. See alsoSVD.

SMP Abbreviation for Symmetric MultiProcessing. The
MKL offers performance gains through parallelism
provided by the SMP feature.

Glossary-6

Intel® Math Kernel Library Reference Manual

sparse BLAS Routines performing basic vector operations on
sparse vectors. Sparse BLAS routines take
advantage of vectors’ sparsity: they allow you to
store only non-zero elements of vectors.SeeBLAS.

sparse vectors Vectors in which most of the components are zeros.

storage scheme The way of storing matrices.Seefull storage,
packed storage, and band storage.

SVD Abbreviation for Singular Value Decomposition.
See alsoSingular value decomposition section in
Chapter 5.

symmetric matrix A square matrixA such thataij = aji .

transpose The transpose of a given matrixA is a matrixAT

such that (AT)ij = aji (rows ofA become columns of
AT, and columns ofA become rows ofAT).

trapezoidal matrix A matrixA such thatA = (A1A2), whereA1 is an
upper triangular matrix,A2 is a rectangular matrix.

triangular matrix A matrixA is called an upper (lower) triangular
matrix if all its subdiagonal elements (superdiagonal
elements) are zeros. Thus, for an upper triangular
matrix aij = 0 wheni > j; for a lower triangular
matrix aij = 0 wheni < j.

tridiagonal matrix A matrix whose non-zero elements are in three
diagonals only: the leading diagonal, the first
subdiagonal, and the first super-diagonal.

unitary matrix A complex square matrixA whose conjugate and
inverse are equal, that is, that is,AH = A- 1, and
thereforeAAH = AHA = I. All eigenvalues of a
unitary matrix have the absolute value 1.

VML Abbreviation for Vector Mathematical Library.
SeeChapter 6 of this book.

z When found as the first letter of routine names,
z indicates the usage of double-precision complex
data type.

Index-1

Index
Routines

?asum, 2-5

?axpy, 2-6

?axpyi, 2-116

?bdsqr, 5-94, 5-98

?copy, 2-7

?dot, 2-8

?dotc, 2-9

?dotci, 2-119

?doti, 2-118

?dotu, 2-10

?dotui, 2-120

?fft1d, 3-4, 3-8

?fft1dc, 3-5, 3-10, 3-15

?fft2d, 3-19, 3-22, 3-28

?fft2dc, 3-20, 3-24, 3-29

?gbbrd, 5-79

?gbcon, 4-65

?gbmv, 2-24

?gbrfs, 4-95

?gbtrf, 4-10

?gbtrs, 4-36

?gebak, 5-193

?gebal, 5-190

?gebrd, 5-76

?gecon, 4-63

?gees, 5-379

?geesx, 5-384

?geev, 5-390

?geevx, 5-394

?gehrd, 5-178

?gelqf, 5-25, 5-36

?gels, 5-279

?gelsd, 5-289

?gelss, 5-286

?gelsy, 5-282

?gemm, 2-83

?gemv, 2-27

?geqpf, 5-11, 5-14

?geqrf, 5-8, 5-48, 5-60, 5-68, 5-71

?ger, 2-30

?gerc, 2-31

?gerfs, 4-92, 4-98

?geru, 2-33

?gesdd, 5-405

?gesvd, 5-400

?getrf, 4-7

?getri, 4-133

?getrs, 4-34

?ggbak, 5-233

?ggbal, 5-230

?gges, 5-482

Intel® Math Kernel Library Reference Manual

Index-2

?ggesx, 5-489

?ggev, 5-497

?ggevx, 5-502

?ggglm, 5-296

?gghrd, 5-226

?gglse, 5-293

?ggsvd, 5-409

?ggsvp, 5-267

?gtcon, 4-67

?gthr, 2-121

?gthrz, 2-122

?gttrf, 4-12

?gttrs, 4-38

?hbev, 5-348

?hbevd, 5-353

?hbevx, 5-361

?hbgst, 5-169

?hbgv, 5-463

?hbgvd, 5-469

?hbgvx, 5-477

?hbtrd, 5-130

?hecon, 4-80

?heev, 5-301

?heevd, 5-306

?heevr, 5-322

?heevx, 5-313

?hegst, 5-160

?hegv, 5-419

?hegvd, 5-425

?hegvx, 5-434

?hemm, 2-86

?hemv, 2-38

?her, 2-40

?her2, 2-42

?her2k, 2-92

?herfs, 4-116

?herk, 2-89

?hetrd, 5-111

?hetrf, 4-25

?hetri, 4-141

?hetrs, 4-51

?hgeqz, 5-235

?hpcon, 4-84

?hpev, 5-329

?hpevd, 5-334

?hpevx, 5-342

?hpgst, 5-164

?hpgv, 5-442

?hpgvd, 5-448

?hpgvx, 5-456

?hpmv, 2-44

?hpr, 2-47

?hpr2, 2-49

?hprfs, 4-122

?hptrd, 5-122

?hptrf, 4-31

?hptri, 4-145

?hptrs, 4-55

?hsein, 5-199

?hseqr, 5-195

?nrm2, 2-11

?opgtr, 5-119

?opmtr, 5-120

?orgbr, 5-82

?orghr, 5-180

?orglq, 5-28, 5-38, 5-40

?orgqr, 5-17, 5-50, 5-52

?orgtr, 5-107

?ormbr, 5-85

?ormhr, 5-182

?ormlq, 5-30, 5-42, 5-45, 5-54, 5-57, 5-62, 5-65

?ormqr, 5-19

?ormtr, 5-109

?pbcon, 4-74

Index

Index-3

?pbrfs, 4-107

?pbstf, 5-172

?pbtrf, 4-18

?pbtrs, 4-45

?pocon, 4-70

?porfs, 4-101, 4-110

?potrf, 4-14

?potri, 4-135

?potrs, 4-41

?ppcon, 4-72

?pprfs, 4-104

?pptrf, 4-16

?pptri, 4-137

?pptrs, 4-43

?ptcon, 4-76

?pteqr, 5-146

?pttrf, 4-20

?pttrs, 4-47

?rot, 2-12

?rotg, 2-14

?roti, 2-123

?rotm, 2-15

?rotmg, 2-17

?sbev, 5-346

?sbevd, 5-350

?sbevx, 5-357

?sbgst, 5-166

?sbgv, 5-460

?sbgvd, 5-466

?sbgvx, 5-473

?sbmv, 2-51

?sbtrd, 5-128

?scal, 2-18

?sctr, 2-124

?spcon, 4-82

?spev, 5-327

?spevd, 5-331

?spevx, 5-338

?spgst, 5-162

?spgv, 5-439

?spgvd, 5-445

?spgvx, 5-452

?spmv, 2-54

?spr, 2-56

?spr2, 2-58

?sprfs, 4-119

?sptrd, 5-117

?sptrf, 4-28

?sptri, 4-143

?sptrs, 4-53

?stebz, 5-141, 5-149

?stein, 5-152

?steqr, 5-134, 5-137

?sterf, 5-132

?stev, 5-365

?stevd, 5-367

?stevr, 5-374

?stevx, 5-370

?swap, 2-20

?sycon, 4-78, 5-154

?syev, 5-299

?syevd, 5-303

?syevr, 5-317

?syevx, 5-309

?sygst, 5-158

?sygv, 5-416

?sygvd, 5-422

?sygvx, 5-429

?symm, 2-96

?symv, 2-60

?syr, 2-62

?syr2, 2-64

?syr2k, 2-103

?syrfs, 4-113

Intel® Math Kernel Library Reference Manual

Index-4

?syrk, 2-100

?sytrd, 5-105

?sytrf, 4-22

?sytri, 4-139

?sytrs, 4-49

?tbcon, 4-90

?tbmv, 2-66

?tbsv, 2-69

?tbtrs, 4-61

?tgevc, 5-242

?tgexc, 5-247

?tgsen, 5-250

?tgsja, 5-271

?tgsna, 5-261

?tgsyl, 5-256

?tpcon, 4-88

?tpmv, 2-72

?tprfs, 4-127

?tpsv, 2-75

?tptri, 4-148

?tptrs, 4-59

?trcon, 4-86

?trevc, 5-205

?trexc, 5-215

?trmm, 2-107

?trmv, 2-77

?trrfs, 4-124

?trsen, 5-217

?trsm, 2-110

?trsna, 5-210

?trsv, 2-79

?trsyl, 5-222

?trtri, 4-147

?trtrs, 4-57

?ungbr, 5-88

?unghr, 5-185

?unglq, 5-32

?ungqr, 5-21

?ungtr, 5-113

?unmbr, 5-91

?unmhr, 5-187

?unmlq, 5-34

?unmqr, 5-23

?unmtr, 5-115

?upgtr, 5-124

?upmtr, 5-125

A

absolute value of a vector element
largest, 2-21
smallest, 2-22

accuracy modes, in VML, 6-2

adding magnitudes of the vector elements, 2-5

arguments
matrix, A-4
sparse vector, 2-114
vector, A-1

B

balancing a matrix, 5-190

band storage scheme, A-4

Bernoulli, 7-48

bidiagonal matrix, 5-74

Binomial, 7-52

BLAS Level 1 functions
?asum, 2-4, 2-5
?dot, 2-4, 2-8
?dotc, 2-4, 2-9
?dotu, 2-4, 2-10
?nrm2, 2-4, 2-11
code example, B-1, B-2
i?amax, 2-4, 2-21
i?amin, 2-4, 2-22

BLAS Level 1 routines
?axpy, 2-4, 2-6

Index

Index-5

?copy, 2-4, 2-7
?rot, 2-4, 2-12
?rotg, 2-4, 2-14
?rotm, 2-15
?rotmg, 2-17
?scal, 2-4, 2-18
?swap, 2-4, 2-20
code example, B-2

BLAS Level 2 routines
?gbmv, 2-23, 2-24
?gemv, 2-23, 2-27
?ger, 2-23, 2-30
?gerc, 2-23, 2-31
?geru, 2-23, 2-33
?hbmv, 2-23, 2-35
?hemv, 2-23, 2-38
?her, 2-23, 2-40
?her2, 2-23, 2-42
?hpmv, 2-23, 2-44
?hpr, 2-23, 2-47
?hpr2, 2-23, 2-49
?sbmv, 2-23, 2-51
?spmv, 2-23, 2-54
?spr, 2-23, 2-56
?spr2, 2-23, 2-58
?symv, 2-23, 2-60
?syr, 2-23, 2-62
?syr2, 2-23, 2-64
?tbmv, 2-24, 2-66
?tbsv, 2-24, 2-69
?tpmv, 2-24, 2-72
?tpsv, 2-24, 2-75
?trmv, 2-24, 2-77
?trsv, 2-24, 2-79
code example, B-3, B-4

BLAS Level 3 routines
?gemm, 2-82, 2-83
?hemm, 2-82, 2-86
?her2k, 2-82, 2-92
?herk, 2-82, 2-89
?symm, 2-82, 2-96
?syr2k, 2-82, 2-103
?syrk, 2-82, 2-100
?trmm, 2-82, 2-107

?trsm, 2-82, 2-110
code example, B-4, B-5

BLAS routines
matrix arguments, A-4
routine groups, 1-5, 2-1
vector arguments, A-1

block-splitting method, 7-6

Bunch-Kaufman factorization, 4-7
Hermitian matrix, 4-25

packed storage, 4-31
symmetric matrix, 4-22

packed storage, 4-28

C

C interface, 3-2

Cauchy, 7-33

CBLAS, 1
arguments, 1
level 1 (vector operations), 3
level 2 (matrix-vector operations), 6
level 3 (matrix-matrix operations), 14

Cholesky factorization
Hermitian positive-definite matrix, 4-14

band storage, 4-18
packed storage, 4-16

symmetric positive-definite matrix, 4-14
band storage, 4-18
packed storage, 4-16

code examples
BLAS Level 1 function, B-1
BLAS Level 1 routine, B-2
BLAS Level 2 routine, B-3
BLAS Level 3 routine, B-4

CommitDescriptor, 8-9

complex-to-complex one-dimensional FFTs, 3-3

complex-to-complex two-dimensional FFTs,
3-18

complex-to-real one-dimensional FFTs, 3-11

complex-to-real two-dimensional FFTs, 3-27

Computational Routines, 5-6

Intel® Math Kernel Library Reference Manual

Index-6

ComputeBackward, 8-15

ComputeForward, 8-13

condition number
band matrix, 4-65
general matrix, 4-63
Hermitian matrix, 4-80

packed storage, 4-84
Hermitian positive-definite matrix, 4-70

band storage, 4-74
packed storage, 4-72
tridiagonal, 4-76

symmetric matrix, 4-78, 5-154
packed storage, 4-82

symmetric positive-definite matrix, 4-70
band storage, 4-74
packed storage, 4-72
tridiagonal, 4-76

triangular matrix, 4-86
band storage, 4-90
packed storage, 4-88

tridiagonal matrix, 4-67

configuration parameters, in DFTI, 8-4

Continuous Distribution Generators, 7-20

converting a sparse vector into compressed
storage form, 2-121

and writing zeros to the original vector,
2-122

converting compressed sparse vectors into full
storage form, 2-124

CopyDescriptor, 8-11

copying vectors, 2-7

CopyStream, 7-12

CreateDescriptor, 8-7

D

data structure requirements for FFTs, 3-2

data type
in VML, 6-2
shorthand, 1-7

DeleteStream, 7-11

Descriptor configuration, in DFTI, 8-6

Descriptor Manipulation, in DFTI, 8-6

DFT computation, 8-6

DFT routines
descriptor configuration

GetValue, 8-25
SetValue, 8-23

descriptor manipulation
CommitDescriptor, 8-9
CopyDescriptor, 8-11
CreateDescriptor, 8-7
FreeDescriptor, 8-12

DFT computation
ComputeBackward, 8-15
ComputeForward, 8-13

status checking
ErrorClass, 8-41
ErrorMessage, 8-42

dimension, A-1

Discrete Distribution Generators, 7-20

Discrete Fourier Transform
CommitDescriptor, 8-9
ComputeBackward, 8-15
ComputeForward, 8-13
CopyDescriptor, 8-11
CreateDescriptor, 8-7
ErrorClass, 8-41
ErrorMessage, 8-42
FreeDescriptor, 8-12
GetValue, 8-25
SetValue, 8-23

dot product
complex vectors, conjugated, 2-9
complex vectors, unconjugated, 2-10
real vectors, 2-8
sparse complex vectors, 2-120
sparse complex vectors, conjugated, 2-119
sparse real vectors, 2-118

Driver Routines, 5-278

Index

Index-7

E

eigenvalue problems
general matrix, 5-174, 5-225
generalized form, 5-157
Hermitian matrix, 5-101
symmetric matrix, 5-101

eigenvalues.Seeeigenvalue problems

eigenvectors.Seeeigenvalue problems

error diagnostics, in VML, 6-6

Error reporting routine, XERBLA, 2-1

ErrorClass, 8-41

ErrorMessage, 8-42

errors in solutions of linear equations
general matrix, 4-92, 4-98

band storage, 4-95
Hermitian matrix, 4-116

packed storage, 4-122
Hermitian positive-definite matrix, 4-101,

4-110
band storage, 4-107
packed storage, 4-104

symmetric matrix, 4-113
packed storage, 4-119

symmetric positive-definite matrix, 4-101,
4-110

band storage, 4-107
packed storage, 4-104

triangular matrix, 4-124
band storage, 4-130
packed storage, 4-127

Euclidean norm
of a vector, 2-11

Exponential, 7-26

F

factorization
See alsotriangular factorization
Bunch-Kaufman, 4-7
Cholesky, 4-7
LU, 4-7

orthogonal (LQ, QR), 5-7

fast Fourier transforms, 1-2
C interface, 3-2
data storage types, 3-2
data structure requirements, 3-2
routines

?fft1d, 3-4, 3-8, 3-13
?fft1dc, 3-5, 3-10, 3-15
?fft2d, 3-19, 3-22, 3-28
?fft2dc, 3-20, 3-24, 3-29

FFT.Seefast Fourier transforms

finding
element of a vector with the largest absolute

value, 2-21
element of a vector with the smallest

absolute value, 2-22

font conventions, 1-7

forward or inverse FFTs, 3-4, 3-5, 3-19, 3-20

FreeDescriptor, 8-12

full storage scheme, A-4

function name conventions, in VML, 6-2

G

gathering sparse vector’s elements into
compressed form, 2-121

and writing zeros to these elements, 2-122

Gaussian, 7-23

general matrix
eigenvalue problems, 5-174, 5-225
estimating the condition number, 4-63

band storage, 4-65
inverting the matrix, 4-133
LQ factorization, 5-25, 5-36
LU factorization, 4-7

band storage, 4-10
matrix-vector product, 2-27

band storage, 2-24
QR factorization, 5-8, 5-48, 5-60, 5-68, 5-71

with pivoting, 5-11, 5-14
rank-l update, 2-30
rank-l update, conjugated, 2-31

Intel® Math Kernel Library Reference Manual

Index-8

rank-l update, unconjugated, 2-33
scalar-matrix-matrix product, 2-83
solving systems of linear equations, 4-34

band storage, 4-36

generalized eigenvalue problems, 5-157
See alsoLAPACK routines, generalized

eigenvalue problems
complex Hermitian-definite problem, 5-160

band storage, 5-169
packed storage, 5-164

real symmetric-definite problem, 5-158
band storage, 5-166
packed storage, 5-162

Geometric, 7-50

GetBrngProperties, 7-63

GetStreamStateBrng, 7-19

GetValue, 8-25

GFSR, 7-4

Givens rotation
modified Givens transformation parameters,

2-17
of sparse vectors, 2-123
parameters, 2-14

Gumbel, 7-41

H

Hermitian matrix, 5-101, 5-157
Bunch-Kaufman factorization, 4-25

packed storage, 4-31
estimating the condition number, 4-80

packed storage, 4-84
generalized eigenvalue problems, 5-157
inverting the matrix, 4-141

packed storage, 4-145
matrix-vector product, 2-38

band storage, 2-35
packed storage, 2-44

rank-1 update, 2-40
packed storage, 2-47

rank-2 update, 2-42
packed storage, 2-49

rank-2k update, 2-92
rank-n update, 2-89
scalar-matrix-matrix product, 2-86
solving systems of linear equations, 4-51

packed storage, 4-55

Hermitian positive-definite matrix
Cholesky factorization, 4-14

band storage, 4-18
packed storage, 4-16

estimating the condition number, 4-70
band storage, 4-74
packed storage, 4-72

inverting the matrix, 4-135
packed storage, 4-137

solving systems of linear equations, 4-41
band storage, 4-45
packed storage, 4-43

Hypergeometric, 7-54

I

i?amax, 2-21

i?amin, 2-22

increment, A-1

inverse matrix.Seeinverting a matrix

inverting a matrix
general matrix, 4-133
Hermitian matrix, 4-141

packed storage, 4-145
Hermitian positive-definite matrix, 4-135

packed storage, 4-137
symmetric matrix, 4-139

packed storage, 4-143
symmetric positive-definite matrix, 4-135

packed storage, 4-137
triangular matrix, 4-147

packed storage, 4-148

L

LAPACK routines
condition number estimation

Index

Index-9

?gbcon, 4-65
?gecon, 4-63
?gtcon, 4-67
?hecon, 4-80
?hpcon, 4-84
?pbcon, 4-74
?pocon, 4-70
?ppcon, 4-72
?ptcon, 4-76
?spcon, 4-82
?sycon, 4-78, 5-154
?tbcon, 4-90
?tpcon, 4-88
?trcon, 4-86

generalized eigenvalue problems
?hbgst, 5-169
?hegst, 5-160
?hpgst, 5-164
?pbstf, 5-172
?sbgst, 5-166
?spgst, 5-162
?sygst, 5-158

LQ factorization
?gelqf, 5-25, 5-36
?orglq, 5-28, 5-38, 5-40
?ormlq, 5-30, 5-42, 5-45, 5-54, 5-57,

5-62, 5-65
?unglq, 5-32
?unmlq, 5-34

matrix inversion
?getri, 4-133
?hetri, 4-141
?hptri, 4-145
?potri, 4-135
?pptri, 4-137
?sptri, 4-143
?sytri, 4-139
?tptri, 4-148
?trtri, 4-147

nonsymmetric eigenvalue problems
?gebak, 5-193
?gebal, 5-190
?gehrd, 5-178
?hsein, 5-199

?hseqr, 5-195
?orghr, 5-180
?ormhr, 5-182
?trevc, 5-205
?trexc, 5-215
?trsen, 5-217
?trsna, 5-210
?unghr, 5-185
?unmhr, 5-187

QR factorization
?geqpf, 5-11, 5-14
?geqrf, 5-8, 5-48, 5-60, 5-68, 5-71
?orgqr, 5-17, 5-50, 5-52
?ormqr, 5-19
?ungqr, 5-21
?unmqr, 5-23

singular value decomposition
?bdsqr, 5-94, 5-98
?gbbrd, 5-79
?gebrd, 5-76
?orgbr, 5-82
?ormbr, 5-85
?ungbr, 5-88
?unmbr, 5-91

solution refinement and error estimation
?gbrfs, 4-95
?gerfs, 4-92, 4-98
?herfs, 4-116
?hprfs, 4-122
?pbrfs, 4-107
?porfs, 4-101, 4-110
?pprfs, 4-104
?sprfs, 4-119
?syrfs, 4-113
?tbrfs, 4-130
?tprfs, 4-127
?trrfs, 4-124

solving linear equations
?gbtrs, 4-36
?getrs, 4-34
?gttrs, 4-38
?hetrs, 4-51
?hptrs, 4-55
?pbtrs, 4-45

Intel® Math Kernel Library Reference Manual

Index-10

?potrs, 4-41
?pptrs, 4-43
?pttrs, 4-47
?sptrs, 4-53
?sytrs, 4-49
?tbtrs, 4-61
?tptrs, 4-59
?trtrs, 4-57

Sylvester’s equation
?trsyl, 5-222

symmetric eigenvalue problems
?hbevd, 5-353
?hbtrd, 5-130
?heevd, 5-306
?hetrd, 5-111
?hpevd, 5-334
?hptrd, 5-122
?opgtr, 5-119
?opmtr, 5-120
?orgtr, 5-107
?ormtr, 5-109
?pteqr, 5-146
?sbevd, 5-350
?sbtrd, 5-128
?spevd, 5-331
?sptrd, 5-117
?stebz, 5-141, 5-149
?stein, 5-152
?steqr, 5-134, 5-137
?sterf, 5-132
?stevd, 5-367
?syevd, 5-303
?sytrd, 5-105
?ungtr, 5-113
?unmtr, 5-115
?upgtr, 5-124
?upmtr, 5-125

triangular factorization
?gbtrf, 4-10
?getrf, 4-7
?gttrf, 4-12
?hetrf, 4-25
?hptrf, 4-31
?pbtrf, 4-18

?potrf, 4-14
?pptrf, 4-16
?pttrf, 4-20
?sptrf, 4-28
?sytrf, 4-22

Laplace, 7-28

leading dimension, A-6

leapfrog method, 7-6

LeapfrogStream, 7-13

length.Seedimension

linear combination of vectors, 2-6

Linear Congruential Generator, 7-3

linear equations, solving
general matrix, 4-34

band storage, 4-36
Hermitian matrix, 4-51

packed storage, 4-55
Hermitian positive-definite matrix, 4-41

band storage, 4-45
packed storage, 4-43

symmetric matrix, 4-49
packed storage, 4-53

symmetric positive-definite matrix, 4-41
band storage, 4-45
packed storage, 4-43

triangular matrix, 4-57
band storage, 4-61
packed storage, 4-59

tridiagonal matrix, 4-38, 4-47

Lognormal, 7-38

LQ factorization, 5-6
computing the elements of

orthogonal matrix Q, 5-28, 5-38, 5-40
unitary matrix Q, 5-32

LU factorization, 4-7
band matrix, 4-10
tridiagonal matrix, 4-12

M

matrix arguments, A-4
column-major ordering, A-2, A-6

Index

Index-11

example, A-7
leading dimension, A-6
number of columns, A-6
number of rows, A-6
transposition parameter, A-6

matrix equation
AX = B, 2-110, 4-5, 4-33

matrix one-dimensional substructures, A-2

matrix-matrix operation
product

general matrix, 2-83
rank-2k update

Hermitian matrix, 2-92
symmetric matrix, 2-103

rank-n update
Hermitian matrix, 2-89
symmetric matrix, 2-100

scalar-matrix-matrix product
Hermitian matrix, 2-86
symmetric matrix, 2-96
triangular matrix, 2-107

matrix-vector operation
product, 2-24, 2-27

Hermitian matrix, 2-38
band storage, 2-35

packed storage, 2-44

symmetric matrix, 2-60
band storage, 2-51

packed storage, 2-54

triangular matrix, 2-77
band storage, 2-66

packed storage, 2-72

rank-1 update, 2-30, 2-31, 2-33
Hermitian matrix, 2-40

packed storage, 2-47

symmetric matrix, 2-62
packed storage, 2-56

rank-2 update
Hermitian matrix, 2-42

packed storage, 2-49

symmetric matrix, 2-64

packed storage, 2-58

Multiplicative Congruential Generator, 7-4

N

naming conventions, 1-6
BLAS, 2-2
LAPACK, 4-2, 5-4
Sparse BLAS, 2-115
VML, 6-2

NegBinomial, 7-57

NewStream, 7-9

NewStreamEx, 7-10

O

one-dimensional FFTs, 3-1
complex sequence, 3-9, 3-11, 3-14, 3-16
complex-to-complex, 3-3
complex-to-real, 3-11
computing a forward FFT, real input data,

3-8, 3-10
computing a forward or inverse FFT of a

complex vector, 3-4, 3-5
groups, 3-2
performing an inverse FFT, complex input

data, 3-13, 3-15
real-to-complex, 3-6
storage effects, 3-7, 3-12

orthogonal matrix, 5-74, 5-101, 5-174, 5-225

P

packed storage scheme, A-4

parameters
for a Givens rotation, 2-14
modified Givens transformation, 2-17

platforms supported, 1-4

points
rotation in the modified plane, 2-15
rotation in the plane, 2-12

Intel® Math Kernel Library Reference Manual

Index-12

Poisson, 7-56

positive-definite matrix
generalized eigenvalue problems, 5-158

product
See alsodot product
matrix-vector

general matrix, 2-27
band storage, 2-24

Hermitian matrix, 2-38
band storage, 2-35

packed storage, 2-44

symmetric matrix, 2-60
band storage, 2-51

packed storage, 2-54

triangular matrix, 2-77
band storage, 2-66

packed storage, 2-72

scalar-matrix
general matrix, 2-83
Hermitian matrix, 2-86

scalar-matrix-matrix
general matrix, 2-83
Hermitian matrix, 2-86
symmetric matrix, 2-96
triangular matrix, 2-107

vector-scalar, 2-18

pseudorandom numbers, 7-1

Q

QR factorization, 5-6
computing the elements of

orthogonal matrix Q, 5-17, 5-50, 5-52
unitary matrix Q, 5-21

with pivoting, 5-11, 5-14

quasi-triangular matrix, 5-174, 5-225

R

Random Number Generators, 7-1

random stream, 7-2

rank-1 update
conjugated, general matrix, 2-31
general matrix, 2-30
Hermitian matrix, 2-40

packed storage, 2-47
symmetric matrix, 2-62

packed storage, 2-56
unconjugated, general matrix, 2-33

rank-2 update
Hermitian matrix, 2-42

packed storage, 2-49
symmetric matrix, 2-64

packed storage, 2-58

rank-2k update
Hermitian matrix, 2-92
symmetric matrix, 2-103

rank-n update
Hermitian matrix, 2-89
symmetric matrix, 2-100

Rayleigh, 7-36

real-to-complex one-dimensional FFTs, 3-6

real-to-complex two-dimensional FFTs, 3-21

reducing generalized eigenvalue problems,
5-158

refining solutions of linear equations
band matrix, 4-95
general matrix, 4-92, 4-98
Hermitian matrix, 4-116

packed storage, 4-122
Hermitian positive-definite matrix, 4-101,

4-110
band storage, 4-107
packed storage, 4-104

symmetric matrix, 4-113
packed storage, 4-119

symmetric positive-definite matrix, 4-101,
4-110

band storage, 4-107
packed storage, 4-104

RegisterBrng, 7-62

registering a basic generator, 7-59

Index

Index-13

rotation
of points in the modified plane, 2-15
of points in the plane, 2-12
of sparse vectors, 2-123
parameters for a Givens rotation, 2-14
parameters of modified Givens

transformation, 2-17

routine name conventions
BLAS, 2-2
Sparse BLAS, 2-115

S

scalar-matrix product, 2-83, 2-86, 2-96

scalar-matrix-matrix product, 2-86
general matrix, 2-83
symmetric matrix, 2-96
triangular matrix, 2-107

scattering compressed sparse vector’s elements
into full storage form, 2-124

SetValue, 8-23

singular value decomposition, 5-74
See alsoLAPACK routines, singular value

decomposition

SkipAheadStream, 7-16

smallest absolute value of a vector element, 2-22

solving linear equations.Seelinear equations

Sparse BLAS, 2-114
data types, 2-115
naming conventions, 2-115

Sparse BLAS routines and functions, 2-115
?axpyi, 2-116
?dotci, 2-119
?doti, 2-118
?dotui, 2-120
?gthr, 2-121
?gthrz, 2-122
?roti, 2-123
?sctr, 2-124

sparse vectors, 2-114
adding and scaling, 2-116
complex dot product, conjugated, 2-119
complex dot product, unconjugated, 2-120
compressed form, 2-114

converting to compressed form, 2-121, 2-122
converting to full-storage form, 2-124
full-storage form, 2-114
Givens rotation, 2-123
norm, 2-116
passed to BLAS level 1 routines, 2-116
real dot product, 2-118
scaling, 2-116

split Cholesky factorization (band matrices),
5-172

Status Checking, in DFTI, 8-7

stream descriptor, 7-2

stream state, 7-7

stride.Seeincrement

sum
of magnitudes of the vector elements, 2-5
of sparse vector and full-storage vector,

2-116
of vectors, 2-6

SVD (singular value decomposition), 5-74

swapping vectors, 2-20

Sylvester’s equation, 5-222

symmetric matrix, 5-101, 5-157
Bunch-Kaufman factorization, 4-22

packed storage, 4-28
estimating the condition number, 4-78,

5-154
packed storage, 4-82

generalized eigenvalue problems, 5-157
inverting the matrix, 4-139

packed storage, 4-143
matrix-vector product, 2-60

band storage, 2-51
packed storage, 2-54

rank-1 update, 2-62
packed storage, 2-56

rank-2 update, 2-64
packed storage, 2-58

rank-2k update, 2-103
rank-n update, 2-100
scalar-matrix-matrix product, 2-96
solving systems of linear equations, 4-49

packed storage, 4-53

symmetric positive-definite matrix
Cholesky factorization, 4-14

Intel® Math Kernel Library Reference Manual

Index-14

band storage, 4-18
packed storage, 4-16

estimating the condition number, 4-70
band storage, 4-74
packed storage, 4-72
tridiagonal matrix, 4-76

inverting the matrix, 4-135
packed storage, 4-137

solving systems of linear equations, 4-41
band storage, 4-45
packed storage, 4-43

system of linear equations
with a triangular matrix, 2-79

band storage, 2-69
packed storage, 2-75

systems of linear equations.Seelinear equations

T

transposition parameter, A-6

triangular factorization
band matrix, 4-10
general matrix, 4-7
Hermitian matrix, 4-25

packed storage, 4-31
Hermitian positive-definite matrix, 4-14

band storage, 4-18
packed storage, 4-16
tridiagonal matrix, 4-20

symmetric matrix, 4-22
packed storage, 4-28

symmetric positive-definite matrix, 4-14
band storage, 4-18
packed storage, 4-16
tridiagonal matrix, 4-20

tridiagonal matrix, 4-12

triangular matrix, 5-174, 5-225
estimating the condition number, 4-86

band storage, 4-90
packed storage, 4-88

inverting the matrix, 4-147
packed storage, 4-148

matrix-vector product, 2-77

band storage, 2-66
packed storage, 2-72

scalar-matrix-matrix product, 2-107
solving systems of linear equations, 2-79,

4-57
band storage, 2-69, 4-61
packed storage, 2-75, 4-59

tridiagonal matrix, 5-101
estimating the condition number, 4-67
solving systems of linear equations, 4-38,

4-47

two-dimensional FFTs, 3-17
complex-to-complex, 3-18
complex-to-real, 3-27
computing a forward FFT, real input data,

3-22, 3-24
computing a forward or inverse FFT, 3-19,

3-20
computing an inverse FFT, complex input

data, 3-28, 3-29
data storage types, 3-18
data structure requirements, 3-18
equations, 3-18
groups, 3-17
real-to-complex, 3-21

U

Uniform (continuous), 7-21

Uniform (discrete), 7-44

UniformBits, 7-46

unitary matrix, 5-74, 5-101, 5-174, 5-225

updating
rank-1

general matrix, 2-30
Hermitian matrix, 2-40

packed storage, 2-47

symmetric matrix, 2-62
packed storage, 2-56

rank-1, conjugated
general matrix, 2-31

rank-1, unconjugated

Index

Index-15

general matrix, 2-33
rank-2

Hermitian matrix, 2-42
packed storage, 2-49

symmetric matrix, 2-64
packed storage, 2-58

rank-2k
Hermitian matrix, 2-92
symmetric matrix, 2-103

rank-n
Hermitian matrix, 2-89
symmetric matrix, 2-100

upper Hessenberg matrix, 5-174, 5-225

V

vector arguments, A-1
array dimension, A-1
default, A-2
examples, A-2
increment, A-1
length, A-1
matrix one-dimensional substructures, A-2
sparse vector, 2-114

vector indexing, 6-6

vector mathematical functions, 6-8
cosine, 6-22
cube root, 6-15
denary logarithm, 6-21
division, 6-11
exponential, 6-18
four-quadrant arctangent, 6-29
hyperbolic cosine, 6-30
hyperbolic sine, 6-31
hyperbolic tangent, 6-33
inverse cosine, 6-26
inverse cube root, 6-16
inverse hyperbolic cosine, 6-34
inverse hyperbolic sine, 6-35
inverse hyperbolic tangent, 6-36
inverse sine, 6-27
inverse square root, 6-13

inverse tangent, 6-28
inversion, 6-10
natural logarithm, 6-20
power, 6-17
sine, 6-23
sine and cosine, 6-24
square root, 6-12
tangent, 6-25

vector pack function, 6-37

vector statistics functions
Bernoulli, 7-48
Binomial, 7-52
Cauchy, 7-33
CopyStream, 7-12
DeleteStream, 7-11
Exponential, 7-26
Gaussian, 7-23
Geometric, 7-50
GetBrngProperties, 7-63
GetStreamStateBrng, 7-19
Gumbel, 7-41
Hypergeometric, 7-54
Laplace, 7-28
LeapfrogStream, 7-13
Lognormal, 7-38
NegBinomial, 7-57
NewStream, 7-9
NewStreamEx, 7-10
Poisson, 7-56
Rayleigh, 7-36
RegisterBrng, 7-62
SkipAheadStream, 7-16
Uniform (continuous), 7-21
Uniform (discrete), 7-44
UniformBits, 7-46
Weibull, 7-31

vector unpack function, 6-39

vectors
adding magnitudes of vector elements, 2-5
copying, 2-7
dot product

complex vectors, 2-10
complex vectors, conjugated, 2-9

Intel® Math Kernel Library Reference Manual

Index-16

real vectors, 2-8
element with the largest absolute value, 2-21
element with the smallest absolute value,

2-22
Euclidean norm, 2-11
Givens rotation, 2-14
linear combination of vectors, 2-6
modified Givens transformation parameters,

2-17
rotation of points, 2-12
rotation of points in the modified plane, 2-15
sparse vectors, 2-115
sum of vectors, 2-6
swapping, 2-20
vector-scalar product, 2-18

vector-scalar product, 2-18
sparse vectors, 2-116

VML, 6-1

VML functions
mathematical functions

Acos, 6-26
Acosh, 6-34
Asin, 6-27
Asinh, 6-35
Atan, 6-28
Atan2, 6-29
Atanh, 6-36
Cbrt, 6-15
Cos, 6-22
Cosh, 6-30
Div, 6-11
Exp, 6-18
Inv, 6-10
InvCbrt, 6-16
InvSqrt, 6-13
Ln, 6-20
Log10, 6-21
Pow, 6-17
Sin, 6-23
SinCos, 6-24
Sinh, 6-31
Sqrt, 6-12
Tan, 6-25

Tanh, 6-33
pack/unpack functions

Pack, 6-37
Unpack, 6-39

service functions
ClearErrorCallBack, 6-52
ClearErrStatus, 6-48
GetErrorCallBack, 6-51
GetErrStatus, 6-48
GetMode, 6-45
SetErrorCallBack, 6-49
SetErrStatus, 6-46
SetMode, 6-42

VSL functions
advanced service subroutines

GetBrngProperties, 7-63
RegisterBrng, 7-62

generator subroutines
, 7-57
Bernoulli, 7-48
Binomial, 7-52
Cauchy, 7-33
Exponential, 7-26
Gaussian, 7-23
Geometric, 7-50
Gumbel, 7-41
Hypergeometric, 7-54
Laplace, 7-28
Lognormal, 7-38
Poisson, 7-56
Rayleigh, 7-36
Uniform (continuous), 7-21
Uniform (discrete), 7-44
UniformBits, 7-46
Weibull, 7-31

sevice subroutines
CopyStream, 7-12
DeleteStream, 7-11
GetStreamStateBrng, 7-19
LeapfrogStream, 7-13
NewStream, 7-9
NewStreamEx, 7-10
SkipAheadStream, 7-16

Index

Index-17

W

Weibull, 7-31

X

XERBLA, error reporting routine, 2-1

	Intel® Math Kernel Library Reference Manual
	Revision History
	Legal Information
	Contents
	1. Overview
	About This Software
	BLAS Routines
	Sparse BLAS Routines
	Fast Fourier Transforms
	LAPACK Routines
	VML Functions
	VSL Functions
	DFT Interface
	Performance Enhancements
	Parallelism
	Platforms Supported

	About This Manual
	Audience for This Manual
	Manual Organization
	Notational Conventions
	Routine Name Shorthand
	Font Conventions

	Related Publications

	2. BLAS and Sparse BLAS Routines
	Routine Naming Conventions
	Matrix Storage Schemes
	BLAS Level 1 Routines and Functions
	?asum
	?axpy
	?copy
	?dot
	?dotc
	?dotu
	?nrm2
	?rot
	?rotg
	?rotm
	?rotmg
	?scal
	?swap
	i?amax
	i?amin

	BLAS Level 2 Routines
	?gbmv
	?gemv
	?ger
	?gerc
	?geru
	?hbmv
	?hemv
	?her
	?her2
	?hpmv
	?hpr
	?hpr2
	?sbmv
	?spmv
	?spr
	?spr2
	?symv
	?syr
	?syr2
	?tbmv
	?tbsv
	?tpmv
	?tpsv
	?trmv
	?trsv

	BLAS Level 3 Routines
	Symmetric Multiprocessing Version of MKL
	?gemm
	?hemm
	?herk
	?her2k
	?symm
	?syrk
	?syr2k
	?trmm
	?trsm

	Sparse BLAS Routines and Functions
	Vector Arguments in Sparse BLAS
	Naming Conventions in Sparse BLAS
	Routines and Data Types in Sparse BLAS
	BLAS Routines That Can Work With Sparse Vectors
	?axpyi
	?doti
	?dotci
	?dotui
	?gthr
	?gthrz
	?roti
	?sctr

	3. Fast Fourier Transforms
	One-dimensional FFTs
	Data Storage Types
	Data Structure Requirements
	Complex-to-Complex One-dimensional FFTs
	cfft1d/zfft1d
	cfft1dc/zfft1dc

	Real-to-Complex One-dimensional FFTs
	scfft1d/dzfft1d
	scfft1dc/dzfft1dc

	Complex-to-Real One-dimensional FFTs
	csfft1d/zdfft1d
	csfft1dc/zdfft1dc

	Two-dimensional FFTs
	Complex-to-Complex Two-dimensional FFTs
	cfft2d/zfft2d
	cfft2dc/zfft2dc

	Real-to-Complex Two-dimensional FFTs
	scfft2d/dzfft2d
	scfft2dc/dzfft2dc

	Complex-to-Real Two-dimensional FFTs
	csfft2d/zdfft2d
	csfft2dc/zdfft2dc

	4. LAPACK Routines: Linear Equations
	Routine Naming Conventions
	Matrix Storage Schemes
	Mathematical Notation
	Error Analysis
	Computational Routines
	Routines for Matrix Factorization
	?getrf
	?gbtrf
	?gttrf
	?potrf
	?pptrf
	?pbtrf
	?pttrf
	?sytrf
	?hetrf
	?sptrf
	?hptrf

	Routines for Solving Systems of Linear Equations
	?getrs
	?gbtrs
	?gttrs
	?potrs
	?pptrs
	?pbtrs
	?pttrs
	?sytrs
	?hetrs
	?sptrs
	?hptrs
	?trtrs
	?tptrs
	?tbtrs

	Routines for Estimating the Condition Number
	?gecon
	?gbcon
	?gtcon
	?pocon
	?ppcon
	?pbcon
	?ptcon
	?sycon
	?hecon
	?spcon
	?hpcon
	?trcon
	?tpcon
	?tbcon

	Refining the Solution and Estimating Its Error
	?gerfs
	?gbrfs
	?gtrfs
	?porfs
	?pprfs
	?pbrfs
	?ptrfs
	?syrfs
	?herfs
	?sprfs
	?hprfs
	?trrfs
	?tprfs
	?tbrfs

	Routines for Matrix Inversion
	?getri
	?potri
	?pptri
	?sytri
	?hetri
	?sptri
	?hptri
	?trtri
	?tptri

	Routines for Matrix Equilibration
	?geequ
	?gbequ
	?poequ
	?ppequ
	?pbequ

	Driver Routines
	?gesv
	?gesvx
	?gbsv
	?gbsvx
	?gtsv
	?gtsvx
	?posv
	?posvx
	?ppsv
	?ppsvx
	?pbsv
	?pbsvx
	?ptsv
	?ptsvx
	?sysv
	?sysvx
	?hesvx
	?hesv
	?spsv
	?spsvx
	?hpsvx
	?hpsv

	5. LAPACK Routines: Least Squares and Eigenvalue Problems
	Routine Naming Conventions
	Matrix Storage Schemes
	Mathematical Notation
	Computational Routines
	Orthogonal Factorizations
	?geqrf
	?geqpf
	?geqp3
	?orgqr
	?ormqr
	?ungqr
	?unmqr
	?gelqf
	?orglq
	?ormlq
	?unglq
	?unmlq
	?geqlf
	?orgql
	?ungql
	?ormql
	?unmql
	?gerqf
	?orgrq
	?ungrq
	?ormrq
	?unmrq
	?tzrzf
	?ormrz
	?unmrz
	?ggqrf
	?ggrqf

	Singular Value Decomposition
	?gebrd
	?gbbrd
	?orgbr
	?ormbr
	?ungbr
	?unmbr
	?bdsqr
	?bdsdc

	Symmetric Eigenvalue Problems
	?sytrd
	?orgtr
	?ormtr
	?hetrd
	?ungtr
	?unmtr
	?sptrd
	?opgtr
	?opmtr
	?hptrd
	?upgtr
	?upmtr
	?sbtrd
	?hbtrd
	?sterf
	?steqr
	?stedc
	?stegr
	?pteqr
	?stebz
	?stein
	?disna

	Generalized Symmetric-Definite Eigenvalue Problems
	?sygst
	?hegst
	?spgst
	?hpgst
	?sbgst
	?hbgst
	?pbstf

	Nonsymmetric Eigenvalue Problems
	?gehrd
	?orghr
	?ormhr
	?unghr
	?unmhr
	?gebal
	?gebak
	?hseqr
	?hsein
	?trevc
	?trsna
	?trexc
	?trsen
	?trsyl

	Generalized Nonsymmetric Eigenvalue Problems
	?gghrd
	?ggbal
	?ggbak
	?hgeqz
	?tgevc
	?tgexc
	?tgsen
	?tgsyl
	?tgsna

	Generalized Singular Value Decomposition
	?ggsvp
	?tgsja

	Driver Routines
	Linear Least Squares (LLS) Problems
	?gels
	?gelsy
	?gelss
	?gelsd

	Generalized LLS Problems
	?gglse
	?ggglm

	Symmetric Eigenproblems
	?syev
	?heev
	?syevd
	?heevd
	?syevx
	?heevx
	?syevr
	?heevr
	?spev
	?hpev
	?spevd
	?hpevd
	?spevx
	?hpevx
	?sbev
	?hbev
	?sbevd
	?hbevd
	?sbevx
	?hbevx
	?stev
	?stevd
	?stevx
	?stevr

	Nonsymmetric Eigenproblems
	?gees
	?geesx
	?geev
	?geevx

	Singular Value Decomposition
	?gesvd
	?gesdd
	?ggsvd

	Generalized Symmetric Definite Eigenproblems
	?sygv
	?hegv
	?sygvd
	?hegvd
	?sygvx
	?hegvx
	?spgv
	?hpgv
	?spgvd
	?hpgvd
	?spgvx
	?hpgvx
	?sbgv
	?hbgv
	?sbgvd
	?hbgvd
	?sbgvx
	?hbgvx

	Generalized Nonsymmetric Eigenproblems
	?gges
	?ggesx
	?ggev
	?ggevx

	References

	6. Vector Mathematical Functions
	Data Types and Accuracy Modes
	Function Naming Conventions
	Functions Interface

	Vector Indexing Methods
	Error Diagnostics
	VML Mathematical Functions
	Inv
	Div
	Sqrt
	InvSqrt
	Cbrt
	InvCbrt
	Pow
	Exp
	Ln
	Log10
	Cos
	Sin
	SinCos
	Tan
	Acos
	Asin
	Atan
	Atan2
	Cosh
	Sinh
	Tanh
	Acosh
	Asinh
	Atanh

	VML Pack/Unpack Functions
	Pack
	Unpack

	VML Service Functions
	SetMode
	GetMode
	SetErrStatus
	GetErrStatus
	ClearErrStatus
	SetErrorCallBack
	GetErrorCallBack
	ClearErrorCallBack

	7. Vector Generators of Statistical Distributions
	Conventions
	Mathematical Notation
	Naming Conventions

	Basic Pseudorandom Generators
	Random Streams
	Data Types

	Service Subroutines
	NewStream
	NewStreamEx
	DeleteStream
	CopyStream
	LeapfrogStream
	SkipAheadStream
	GetStreamStateBrng

	Pseudorandom Generators
	Continuous Distributions
	Uniform
	Gaussian
	Exponential
	Laplace
	Weibull
	Cauchy
	Rayleigh
	Lognormal
	Gumbel

	Discrete Distributions
	Uniform
	UniformBits
	Bernoulli
	Geometric
	Binomial
	Hypergeometric
	Poisson
	NegBinomial

	Advanced Service Subroutines
	Data types
	RegisterBrng
	GetBrngProperties

	Formats for User-Designed Generators
	iBRng
	sBRng
	dBRng

	References

	8. Advanced DFT Interface
	Introduction
	DFTI
	Descriptor Manipulation
	CreateDescriptor
	CommitDescriptor
	CopyDescriptor
	FreeDescriptor

	DFT Computation
	ComputeForward
	ComputeBackward

	Descriptor configuration
	SetValue
	GetValue
	Configuration Settings
	Precision of transform
	Forward domain of transform
	Transform dimension and lengths
	Number of transforms
	Sign and scale
	Placement of result
	Storage schemes
	Input and output distances
	Strides
	Initialization Effort

	Ordering
	Workspace
	Transposition

	Status Checking
	ErrorClass
	ErrorMessage

	References

	A. Routine and Function Arguments
	Vector Arguments in BLAS
	Vector Arguments in VML
	Matrix Arguments

	B. Code Examples
	C. CBLAS Interface to the BLAS
	CBLAS Arguments
	Enumerated Types

	Level 1 CBLAS
	Level 2 CBLAS
	Level 3 CBLAS

	Glossary
	Index
	Routines
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

