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Pod Vodárenskou věž́ı 2 – 182 07 Prague 8 – Czech Republic

jiri.wiedermann@cs.cas.cz

(B)Department of Computer Science – Comenius University
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Abstract. Wireless Parallel Turing Machine (WPTM) is a new compu-
tational model recently introduced and studied by the authors. Its design
captures important features of wireless mobile computing. In this paper
we survey the results related to the descriptive complexity aspects of the
new model. In particular, we show a tight relationship of wireless parallel
computing to alternating and synchronized alternating Turing machines.
This relationship opens, e.g., the road to circuit complexity by offering
an elegant WPTM characterization of bounded uniform circuit families,
such as NC and NCi. The structural properties of computational graphs
of WPTM computations inspire definitions of new complexity measures
capturing important aspects of wireless computations: energy consump-
tion and the number of broadcasting channels used during computation.
These measures do not seem to have direct counterparts in alternating
computations. We mention some results related to these new structural
measures, e.g., a polynomial time–bounded complexity hierarchy based
on channel complexity, lying between P and PSPACE which seems to be
incomparable to the standard polynomial–time alternating hierarchy.

Keywords: alternating Turing machine, simulation, simultaneous time–
space complexity, wireless parallel Turing Machine

1 Introduction

Rather than asking what dynamic computational resources are needed for solving
a problem, descriptive complexity is interested in the complexity of expressing a
solution of a given problem using formal descriptive systems. A major part of
traditional descriptive complexity has been based on alternation. This is because
the known theory of alternating Turing machines (ATMs) offers a direct link
from alternating computations to their description in the formalism of quantified
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Boolean formulae or that of uniform families of Boolean circuits (cf. [5], [6]). The
main goal of this paper is to bring into attention of specialists a new universal
computational model designed and studied recently by the authors, the so–called
wireless parallel Turing machine (WPTM) and to demonstrate its usefulness also
for investigating the descriptive complexity of problems.

There are several good reasons for studying the WPTMs. First, they cap-
ture the paradigm of wireless mobile computing. Second, they offer a new view
of alternation and synchronized alternation. Third, they reveal new structural
complexity measures inspired by wireless computation. Fourth, they induce a
natural polynomial–time complexity hierarchy based on the channel complexity.
Last but not least, the WPTMs suggest a possible realization of synchronous
parallel computations using wireless technologies.

The history of WPTMs dates back to 2005 when the first conference Com-
putability in Europe was organized. The present authors have been invited to
contribute to the post–conference proceedings entitled New Computational Para-
digms: Changing Conceptions of What Is Computable (with B. Cooper, B. Löwe,
A. Sorbi, editors) which should appear in Springer-Verlag [8]. The paper was
accepted in August 2006 but, unfortunately, as of the time of this writing (April
2007), the volume did not appear. So far, the original paper is available as a
technical report [8].

The authors contributed to the volume by a novel unconventional model whose
design has been inspired by the trends in wireless communication technologies.
What would be the computational power and efficiency of a device consisting of a
number of processors communicating one with each other via radio, on different
channels? In the computational complexity theory there seem to be no computa-
tional models based on wireless communication between processors. There is an
essential difference between broadcasting and a link or address–based communi-
cation: broadcasting can be heard by any number of processors which are within
the reach of a sender. On the other hand, there is no possibility to “address”
a certain selected processor, except dedicating a special channel to it. None of
the existing computational models captures similar principles. Therefore it was
of interest to design a model which would exploit the possibility of wireless par-
allel communication on different channels. There is one additional bonus when
considering broadcasting: a link–free communication is a prerequisite of mobil-
ity. Thus, wireless parallel computing mirrors important aspects of computing
performed by dynamically changing sets of mobile processors.

In order to facilitate computational complexity considerations, we have chosen
a model based on Turing machines. Since we were interested in parallel compu-
tations over a dynamic sets of identical processors, we have decided to adopt the
process multiplication mechanism used in the ATMs (cf. [1]). That is, a process
can spawn the finite number of new processes which start to compute from the
same configuration as their parent. However, any similarity with the ATMs ends
here. In our model, there is no nondeterminism and there is no implicit accep-
tance mechanism which “automatically” terminates a computation when there is
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an accepting subtree in the respective computational tree. Unlike in the ATMs,
where “fathers” can transfer information only to their “sons”, in our model pro-
cesses can communicate in a more flexible manner. In order to communicate, the
processes must establish a connection, i.e., they must “tune” to the same chan-
nel. This is achieved by writing the same number to each process’s channel tape.
Doing so, all processes tuned to the same channel can exchange messages. A
computation terminates when all processes agree upon a result of a computation
and terminate.

In the computational complexity theory, in the past there have been attempts
to introduce a restricted type of additional communication into the standard
model of ATMs. The respective investigations were mostly inspired by scien-
tific curiosity, rather than by an existing technology. The prime examples of
such attempts have been the synchronized alternating Turing machines (cf. [3],
[4], [7]). The polynomial time on these machines turned up to be equivalent
to PSPACE what has qualified these machines into a so–called second machine
class. This machine class is characterized by the Parallel Computation Thesis
stating that parallel time complexity on any second machine class model is poly-
nomially related to sequential space complexity of an equivalent deterministic
Turing machine (cf. [2]). However, it has also turned up that the synchronized
Turing machines are slightly more powerful than the ATMs (under the standard
assumptions like LOGSPACE 6= PTIME, etc.), since the former machines make an
optimal use of their space: polynomial time on these machines equals their loga-
rithmic space [4], [7]. Nevertheless, the WPTMs represent a completely different
model than alternating or synchronized alternating machines. They represent
a parallel deterministic model of computation, with an explicit, reconfigurable
inter–processor communication mechanism which serves also for acceptance pur-
poses.

The results from [8] have shown that the WPTMs are computationally re-
lated both to the alternating and synchronized alternating Turing machines. Un-
der the self-explaining notation and reasonable assumptions on T (n), in [8] it
has been established that ATIME(T(n)) ⊆ WTIME(T(n)) and WTIME(T(n)) ⊆
ATIME(T2(n)), i.e., a polynomial-time equivalence of both models: WPTIME =
APTIME. Both respective simulations work in space of size O(T (n)). From these
results it has followed that the WPTMs do belong to the second machine class
and similarly as the synchronized Turing machines they use their space optimally:
WPTIME = WLOGSPACE.

In the subsequent paper [9] we continued our studies of the computational
relations between WPTMs and ATMs. Our new simulations have shown an
ultimate improvement of the previous results—namely mutual simulations of both
models preserving their simultaneous time and space complexities for a wide
range of these complexity measures. The new results have opened the road to the
descriptive complexity. For instance, these results allowed a neat characterization
of uniform circuit families NCi of polynomial size and of depth (log n)i in terms
of WPTM computations.



44 Jǐŕı Wiedermann and Dana Pardubská

In the present survey paper we will briefly describe the results mentioned pre-
viously and complement them by new results related to the structural complexity.
We will introduce new parallel complexity measures induced by the structural
properties of the underlying computational graphs. First, we will be interested
in the number of (parallel) wireless connections realized by a processor during a
computation. This number is captured by so–called listening complexity. When
simulating an ATM machine it will turn out that this complexity is linearly re-
lated to the number of alternations of the simulated alternating computation.
The reverse relation is open. We will also be interested in the maximal number
of channels used in a WPTM computation. So far, we do not know of any direct
counterpart of this measure in alternating computations. This measure leads
to a new interesting hierarchy of polynomially time–bounded complexity classes
positioned between P and PSPACE (assuming the disjointness of the latter two
classes).

The structure of the paper is as follows. In Section 2 we recall an informal
definition of a WPTM and that of its computation. In Section 3 we sketch a sim-
ulation of a WPTM by an ATM which is simultaneously linear in time and space.
In Section 4 we prove a reverse simulation with the similar complexity bounds as
in the previous case. Both simulations allow computations in sub-linear space.
In Section 5 we recapitulate the relation of the basic WPTM complexity classes
to the standard fundamental complexity hierarchy and in Section 6 we sketch
the characterization of bounded circuit families by the WPTMs. In Section 7
the (one way) relationship between the listening complexity and the number of
alternations is established. Finally, in Section 8 we introduce a hierarchy based
on channel complexity and study its basic properties. Conclusions appear in
Section 9.

From space reasons, the proofs of our theorems and corollaries are only
sketched and the reader should usually refer to the original sources. Results
from Section 7 and 8 are new.

2 Wireless Parallel Turing Machine

Wireless Parallel Turing Machine (WPTM) is a parallel deterministic Turing ma-
chine in which the mechanism of the process multiplication used in ATMs (cf. [1])
and communication “via radio” has been adopted. That is, a process can spawn
a finite number of new processes which start to compute from the same configu-
ration as their parent. In order to communicate, the processes must establish a
connection, i.e., they must “tune” to the same channel. This is achieved by writ-
ing the same channel–number to each process’s channel tape. All processes tuned
to the same channel can then exchange “messages”. We model a message by an
element of a state control, so-called communication state. A message broadcasted
by a process at time t is heard at time t+1 by all listening processes1 which have

1Note that this description and the subsequent definition differs from those given in [8] and
[9] by explicitly splitting the set of working states into so–called broadcasting, listening and
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tuned in the same channel at time t+1. We require that all messages broadcasted
on a specified channel in a given time are the same. A computation terminates
when all processes agree upon a result of computation and terminate.

Definition 1 (Informal). A k-tape wireless parallel Turing machine (WPTM)
with a separate read–only input tape and a separate channel tape is a twelve–
tuple M = (k, B, L, Q, R,Σ, Γ, ∆, q0, ε, qaccept, qreject), where

• k ≥ 1 is the number of work tapes;
• B, L, Q, and R are the disjoint finite sets of broadcasting, listening, local

and communication states respectively;
K = B ∪ L ∪ Q is called a set of working states. Initial state q0 ∈ Q;
R contains three distinguished states: empty communication state ε and
states qaccept, qreject;

• Σ, Γ are finite input and work tape alphabets; $ 6∈ Σ is an end-marker,
♯ ∈ Γ is the blank symbol, ♯ 6∈ Σ

• ∆ ⊆ K×R×(Σ∪{$})×Γk+1×K×R×(Γ−{♯})k+1×{−1, 0, 1}k+2 is the next
move relation; the elements of ∆ are called transitions. A transition with
the new communication state r′ 6= ε is called a broadcasting transition2; it
is said to broadcast state r′ ∈ R. The broadcasting transitions pertinent to
the same head configuration3 must all broadcast the same communication
state.

A configuration of a WPTM M is an element of K×R×Σ∗×((Γ−{♯})∗)k+1×
N

k+2. Based on the type of a working state a configuration is called a broadcasting,
listening or local configuration.

A configuration is tuned to channel c if it has string c written to the left from
the current channel tape head position. A broadcasting configuration tuned to
c, to which a transition with the new communication state r′ 6= ε applies is said
to broadcast r′ on channel c.

A computational step can be seen as a two–phase process. In the first phase—
in a simple step—all applicable transitions are applied to each configuration. Two
or more transitions applicable to a particular configuration result in spawning of
new processes. Formally, a spawning corresponds to the universal branching in
ATMs. In the second phase, the communication between the processes is realized:
the communication states of listening configurations are rewritten by the symbols
broadcasted by transitions applied in the simple step. Of course, doing so, both
the broadcasting and the listening configurations must have been tuned to the
same channels. The computation gets aborted if there are at least two processes
broadcasting different communication states on the same channel.

For any input w to M the computational graph G(w) of M on that input is a
rooted, directed, possibly infinite acyclic multi-graph whose nodes are configura-

local states.
2W.l.o.g. we assume that in any broadcasting state only symbols 6= ε are broadcasted
3A head configuration of M represents the working and the communication state of the finite

control and the contents of cells scanned by each head.
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Figure 1. The computational graph of M

tions of M and edges correspond to transition and communication links (Fig. 1).
The depth of a node in G(w) is its distance from the root. For any d ≥ 0, there
exists a communication link between any node α in depth d and any node γ in
depth d+1 if and only if α is a broadcasting node, γ is a listening node and both
nodes are tuned to the same channel. We say M accepts input word w if the
computational graph G(w) is finite and all leaves of G(w) are terminal configu-
rations in communication state qaccept tuned to the same channel. Note that the
computational graph is defined in an entirely deterministic manner.

There are several complexity measures relevant to WPTMs. The space com-
plexity of a computational graph G(w) is the maximum space, over all tapes, of
any configuration in G(w); the channel space of G(w) is defined similarly, but
only channel tape is considered. We say a WPTM M operates in space S(n) if
for every string w accepted by M (w ∈ L(M)) of length n the computational
graph G(w) is of space complexity at most S(n); similarly, M operates in time
T (n) if for every string w ∈ L(M) of length n a computational graph G(w) is of
depth at most T (n).

The listening complexity LC(n) of M is defined as the maximal number of
listening configurations along any root–to–leaf path following the transition edges
only, in the computational graph G(w), taken over all accepted inputs w of length
n. The channel complexity CC(n) of M is defined as the maximal number of
channels used in a computation of M, taken over all accepted inputs w of length n.

Both listening complexity and channel complexity are complexity measures
of great importance in wireless computing. For wireless computations in which a
processor broadcasts and listens for approximatively the same time the listening
complexity captures the maximal number of wireless connections realized during a
computation by a processor and hence is related to the energy consumption of that
processor in broadcasting and listening mode during a computation. The channel
complexity is related to the broadband on which the processes can broadcast on
various channels simultaneously.
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In order to be able to study also computations with sub–linear times, we
extend our model by so–called index tape to which non-negative binary numbers
can be written. If there is a number i written in binary on the index tape and the
machine enters a special, so–called index state qindex, then the input head on the
input tape relocates itself in a single move to the i-th cell of that tape, for any
1 ≤ i ≤ n, and to the (n + 1)-st cell otherwise. For a similar mechanism in the
context of ATMs, cf. [1]. In general, one can also consider a model with several
channel tapes and also nondeterministic versions of the previous models, but in
this paper we will restrict ourselves to the basic variant of a WPTM as defined
above.

In a given space, the WPTMs are able to compute for super-exponentially
long time.

Proposition 2. If M is a WPTM of time complexity T (n) ≥ log n and space
complexity S(n), then there exists a constant c > 0 depending only on M such

that for any n > 0, S(n) ≤ T (n) ≤ ccS(n)
.

Sketch of the proof: Clearly, T (n) ≥ S(n) since time at least S(n) is needed in
order to write down S(n) symbols on any of M ’s tapes. On the other hand, for
a suitable constant d > 0 depending only on M, a WPTM of space complexity
S(n) can generate up to O(dS(n)) different processes, each of space complexity
S(n) which all together represent space of size O(S(n)dS(n)). In such a space, one

can generate up to ccS(n)
different configurations for a suitable c > d. 2

3 Linear time-space simulation of wireless communi-

cation by alternation

Now we present the theorem stating the relationship between the computations of
WPTMs and those of ATMs; we will also sketch the main ideas of the respective
proof. For details, the reader is referred to [9].

Theorem 3. Let W be an one-tape WPTM of time complexity T (n) ≥ n and
of space complexity S(n). Then W can be simulated by an alternating Turing
machine A simultaneously in time O(T (n)) and in space O(T (n)). Moreover, if
S(n) is fully space constructible in time T (n) then A is of simultaneous time
complexity O(T (n)) and space complexity O(S(n) + log T (n) + n).

Sketch of the proof: Consider the computational graph G(w) of W on an
input w of size n. Obviously, A has no problem in simulating the computation
of W along the spawning (transition) edges in G (we will omit parameter w

in G whenever no confusion can arise) since the respective configurations are
computed deterministically from their predecessors. There is no problem when
arriving at local or broadcasting configurations. However, arriving into a new
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listening configuration in G, A guesses whether there was a broadcast to that
configuration, or not.

In the former case, when the new configuration has been modified by broad-
casting, in addition to computing the new configuration by applying a simple
transition to its predecessor, A must also guess the new communication state r′ in
the new configuration. Doing so, A will immediately start a recursive verification
process. Seen in G, this process “climbs” from the given listening configuration ℓ

towards the root of G. In such ℓ, the process splits itself in a universal mode into
three processes: the first one verifies the upward path along the transition edge,
the second one along the broadcasting edge; the third process verifies whether the
broadcast has been conflict–free (i.e., whether on the given channel all processes
have broadcasted the same symbol).

The first process has to guess the simple transition δ which has been applied
in order to reach ℓ. After guessing δ, the process computes the spawning prede-
cessor of ℓ and recursively verifies this predecessor. The second process guesses
the entire broadcasting configuration (note that it must have been tuned to the
same channel as ℓ, i.e., the contents of the channel tape need not be guessed) and
recursively verifies the guessed configuration. The recursion terminates success-
fully by reaching the initial configuration. The third process recursively checks
in universal mode for all communication symbols different from r′ whether there
were broadcasting configurations sending on the same channel as ℓ has been
tuned into. This recursion ends successfully when no such configurations reach-
able from the root of G have been found, in the given depth or size (depending
on the assumption of the theorem).

Discovering an accepting verification subtree by the verification process must
happen in time T (n) at the latest if such a subtree exists. Therefore the size of
guessed configurations can grow up to O(T (n)). However, if S(n) is constructible
in time T (n), then we can stop the verification process whenever a configuration
longer than S(n) is reached.

In the case when no modification via broadcasting has been guessed, A has to
verify this guess. This is done similarly as in the previous case by computing all
configurations that could have influenced the given configuration by broadcast-
ing. Note that such configurations need not occur in G since they need not be
reachable from the root. The verification ends successfully when such configura-
tions do not exist or are not reachable from the initial configuration in the given
depth or space (again depending on the assumption of the theorem).

It is important that thanks to the deterministic evolution of WPTMs compu-
tations the previously described verification processes can be repeated with the
same results when restarted from the same configuration. Such repetitions will
inevitably happen since the verification processes climbing towards the root of G

get invoked at each level in G.

Proceeding in accordance with the previous idea we get a quadratic time
simulation since climbing against the direction of broadcasting edges at each level
we have to guess the entire configuration (this has been the algorithm described in
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[8]). However, this can be avoided by using a novel technique developed in [9]. At
the heart of this technique there is the idea of successive building configurations
from so–called kernels. A kernel of a configuration is given by the contents of its
channel tape, position of all heads and contents of all cells scanned by the tape
heads on the working tapes and on the input tape. The previous verification
process can then be modified so that it starts by only guessing the kernel in
a constant time (since the channel tape is “copied” in one step, thanks to the
mechanism of configuration multiplication in universal states) and then, in the
subsequent recursive calls, at each step on each tape the currently built part of
a configuration is being “encased” by adequately guessed symbols, in accordance
with the guessed movements of the respective tape head, so as the kernel finally
develops into a full configuration. If properly done, the whole verification process
can run in linear time as required. 2

The simulation from the proof of Theorem 3 can be modified for WPTMs
and ATMs equipped by the index tape. The treatment of the index tape is not
completely trivial, see [9] for the details.

Corollary 4. Let A, W be as in Theorem 3. If both A and W are equipped
by the index tape, T (n) ≥ log n and S(n) is fully space constructible in time
T (n), than A is of simultaneous time complexity O(T (n)) and space complexity
O(S(n) + log T (n)).

4 Linear time-space simulation of alternation by wire-

less communication

Now we turn our attention to the simulation of an ATM by a WPTM. We assume
that both machines are equipped by the index tapes.

Theorem 5. Let T (n) be a time–constructible function, let S(n) ≥ log n be a
space constructible function in time T (n) ≥ log n. An ATM A of time complexity
T (n) and of space complexity S(n) can be simulated by a WPTM W simultane-
ously in time O(T (n)) and in space O(S(n)).

Sketch of the proof: The basic idea of simulation is simple: W simulates A by
spawning the same processes as A would. In addition to the current configuration
W also remembers its father’s configuration for the purpose of future communi-
cation. Reaching level T (n) W checks whether the acceptance condition of A has
been satisfied. To that end W starts a verification process in each reached config-
uration of A. Seen in T, the computational tree of A, the purpose of this process
is to propagate the quality (accepting, rejecting, undefined) of each reached con-
figuration, combined with the quality of its sibling, upwards to the root of T. The
rules for combining the quality are the standard ones holding for the alternat-
ing computations (cf. [1]). In more details, the verification proceeds as follows:
the sons of the common father report, one after the other, in an agreed-upon
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ordering, their quality to their father. They do so on a channel whose number
is given by the father’s configuration. Obviously, the cost of this step is linear
in the space complexity of A. After obtaining the qualities from all its sons, a
father computes its own quality and proceeds recursively. This approach leads
to simulation of A by W in quadratic time and linear space. The quadratic time
is caused by the necessity of “re–tuning” each time we climb one level in tree T

(note that a WPTM can broadcast only on a channel whose number finds itself
to the left of the head on the channel tape).

The complexity of the lastly mentioned re–tuning can be decreased by using
a different representation of configurations on the tapes of W combined with the
technique of amortized complexity. The idea is as follows: when descending T, we
use the so–called explicit representation of the corresponding A’s configurations
only in depths which are multiplies of S(n) (here we need the assumption on
the constructibility of S(n)). The respective depths in T are called reference lev-
els. This term is needed for introducing the notion of an implicit representation
of a configuration. An implicit representation of a configuration c2 w.r.t. both
the sequence σ = δ1, δ2, . . . , δk of transitions and configuration c1 is the string
c1#δ1# . . .#δk if and only if c2 is obtained from c1 by subsequently applying tran-
sitions from σ to c1. Thus, a configuration c2 which is at distance k < S(n) from
configuration c1 on some reference level will be represented as c1#δ1# . . .#δk.

Now the idea emerges: at the reference levels, the configurations of A will be
remembered by W both in the explicit form and in the implicit form w.r.t the
configuration at the next upper level. At all other depths we only use implicit
representations. Then, using the previous algorithm, on non–reference levels we
broadcast at channels whose numbers are given by the implicit configurations.
In such cases, re-tuning to the next level can be done in time O(1). Reaching
a reference level, the channel number to which the process should re–tune (i.e.,
a configuration on the next upper level in the implicit form) has already been
prepared in the node at hand. The re–tuning to the implicit form takes time
O(S(n)), but this time gets amortized since the re–tuning happens only once
after each S(n) steps. 2

5 WPTMs and fundamental complexity classes

In what follows, in addition to the standard deterministic complexity classes such
as LOGSPACE, PTIME, PSPACE, and EXPTIME we will also use their analogues
defined for the alternating and wireless parallel Turing machines. These classes
will be denoted by prefixing the standard complexity classes listed before by A

or W, respectively.

Concentrating merely to the time complexity of the respective simulations in
the preceding two theorems the following corollary characterizing the power of
WPTM’s polynomial time is a consequence of the latter theorems and of known
properties of alternating complexity classes (cf. [1]).
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Corollary 6. For any time constructible function T (n) with T (n) ≥ n,
⋃

k>0

WTIME(Tk(n)) =
⋃

k>0

ATIME(Tk(n)) i.e., WPTIME = APTIME = PSPACE

Next, we turn our attention to the relationship between deterministic and
wireless space. This relationship cannot be inferred directly from the previous
theorems by focusing merely to the space complexity, since in Corollary 4 the
space on the simulating ATM machine depends both on the space complexity S(n)
and the logarithm of time complexity T (n) of the simulating WPTM machine.
Due to Proposition 2, log T (n) might be as high as cS(n) for some machines.

Theorem 7. For any S(n) ≥ log n

WSPACE(S(n)) =
⋃

c>0

DSPACE(cS(n))

WLOGSPACE = PSPACE = WPTIME, WPSPACE = EXPSPACE = WEXPTIME

Sketch of the proof: We sketch the simulations yielding the result. In what
follows D is used to denote a single tape deterministic Turing machine while M

denotes a WPTM.
Simulation of D by M mirrors the proofs of similar theorems known in the

theory of synchronized alternation (cf. [3], [7]). I.e., the contents of cells of D are
kept in processes of M spawning a new process each time the head of D on its
work tape enters a blank cell. On its working tape, process number i remembers
the symbol written in the i–th cell of the D−th tape and the state of D if the
head scans the i–th cell of D. Number i in binary is stored at the channel tape
of the i–th process and it is used to communicate Ds head movements with the
neighboring cell/process. M simulates D by following its moves and updating
the information in the processes corresponding to the respective updated cells
and state changes of D. The “head movements” from the i–th process (cell)
are realized by broadcasting the respective “message” to the cell’s left or right
neighbor on channel (i− 1) or (i+1) whose number equals the index of that cell.
Thus, re–tuning a channel amounts to adding or subtracting 1 from the current
channel number. Clearly, channel space complexity of the simulating machine is
O(log S(n)) while working space complexity is O(1).

To simulate M by D consider the computational graph TM of M on input
w. Each configuration in TM is of size O(S(n)); in this estimate the input head
position is included thanks to our assumption on the size of S(n). If w is accepted

by M then at most O(c
S(n)
1 ) different processes can occur in M. It follows that

for a suitable c > c1 D has enough space to write down all the respective config-
urations and within this space it can easily keep track of all M ’s actions. D will
accept if and only if its computation will correspond to an accepting tree of M

on w.

With the help of Corollary 4 the result holds also for the WPTMs and TMs
equipped by the index tapes. 2
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From Corollary 6 and Theorem 7 we see that logarithmic space and polyno-
mial space and time coincide both for synchronized alternating (cf. [7] and [4])
and wireless parallel Turing machines. Thus, w.r.t. these classes both models
are equivalent. Especially note that similarly as synchronized alternating Tur-
ing machines, WPTMs use their space in an optimal manner—e.g., “wireless”
polynomial time equals “wireless” logarithmic space.

6 Wireless computing and uniform circuits

Now we will continue our quest toward descriptive complexity issues in wire-
less computing. To that end we establish the connection between the WPTM
computations and the circuit computations.

Let WTISP(T(n), S(n)) denote the class of WPTM computations (with the
index tape) of a simultaneous time complexity T (n) and space complexity S(n),
and ATISP(T(n), S(n)) denote an analogous class for ATMs.

Let USIDE(S(n), T(n)) be the uniform family of bounded fan-in circuits of
size S(n) and depth T (n) (where U ∈ {UE, U∗

E}, using the notation from [6]). It
is known that ATISP(T(n), S(n)) = USIDE(2O(S(n)), T(n)), for S(n), T (n) ≥ log n

deterministically computable in space S(n) [6].

Let NCi =def USIDE(nO(1), (log n)i) be the class of all sets A ⊆ {0, 1}∗ for
which there is a uniform circuit family of polynomial size and of depth (log n)i,

let NC =def

⋃
i≥0 NCi.

By these relations we get further consequences of the previous results:

Corollary 8.

(i) for log n ≤ S(n) ≤ T (n) ≤ cS(n), with S(n) and T (n) deterministically
computable in space S(n) we have
WTISP(T(n), S(n)) = ATISP(T(n), S(n)) = USIDE(2O(S(n)), T(n));

(ii) WTISP((log n)i, log n) = NCi

(iii) WTISP((log n)O(1), log n) = NC

Thus, simultaneously bounded WPTM computations characterize exactly
uniformly bounded circuit families.

7 Number of alternations and listening complexity

It appears that there is a neat relationship between the number of alternations
of an ATM and the listening complexity of a simulating WPTM.

Theorem 9. Let T (n), A(n) be time constructible functions and S(n) be a space
constructible function. Let A be an ATM of time complexity T (n) and space com-
plexity S(n) making A(n) alternations. Then A can be simulated by a WPTM W

of time complexity O(T (n)), space complexity O(S(n)+log T (n)) and of listening
complexity LC(n) = O(A(n)).
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Sketch of the proof: The starting idea is that one used in the simulation
described in the proof of Theorem 5. From the viewpoint of the statement we are
after, the simulation from Theorem 5 makes too many listenings: when evaluating
the computational tree T of A, the quality of configurations is collected with the
help of broadcasting proceeding level by level, i.e., the number of listenings needed
gets proportional to T (n).

To decrease the listening complexity we will evaluate the tree in a bottom–up
manner, proceeding only through alternating nodes (i.e., all other nodes will be
skipped from consideration); the root and leaves of T are considered alternating
nodes too. First of all, we will assume that all paths in T are of length T (n).
This can be achieved by keeping a counter of size ∼ log T (n) in each process.
Moreover, while descending T, W remembers in each configuration its own depth
as well as the alternating configuration in the nearest higher level in T and the
number of that level.

Evaluation of a subtree S whose all leaves are alternating nodes in the nearest
depth, rooted in an alternating configuration a, is done in three steps: in the
first, second, and third step, respectively, all leaves with accepting, rejecting,
and undefined quality, respectively, send their evaluation to a on channel whose
number is given by a concatenated with the level number of a. Based on this
information A can compute its own quality.

Note that in order the previous evaluation procedure to work correctly the
communication in S requires good timing. Moreover, to save listenings, the roots
of alternating subtrees must be switched on to the listening mode only at times
when their leaves are about to report to the respective roots. This is solved by
implementing a triggering mechanism which makes use of the before mentioned
counter. The mechanism works as follows: each process continues counting until
T (n). Reaching the maximal value all processes start count down towards zero
leaving enough time between individual counts for performing the three–step
evaluation procedure described above. Now the simulation preserves the follow-
ing invariant: in the count–down time i, T (n) ≥ i ≥ 0, the alternating nodes
whose nearest alternating root is at level i will start the three–step evaluation
procedure and simultaneously, the alternating nodes at level i (i.e., the roots of
the corresponding subtrees) switch to the listening mode.

Note that the number of listening nodes along each spawning path in G is
proportional to the number of alternations of A. 2

The existence of similar result for an ATM simulating a WPTM is an open
problem.

8 Channel complexity hierarchy

Channel complexity is a practically motivated complexity measure in wireless
computation which reflects the number of different channels on which processes
of a parallel wireless computation can communicate simultaneously. Intuitively,
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more channels can contribute to a better use of parallelism. This motivates the
study of classes of wireless computations of bounded channel complexity. We will
restrict our attention to logarithmically space–bounded and polynomially time–
bounded WPTM computations of bounded channel complexity. In what follows,
poly and exp will denote, as usually, the classes of functions of form nk or cnk

,

respectively, for any k, c > 0.

Definition 10. ΛS
log

c(n) denotes the class of logarithmically space bounded WPTM

computations of channel complexity c(n), for any 0 ≤ c(n) ≤ poly. Similarly,

ΛT
poly

c(n) denotes the class of polynomially time–bounded WPTM computations of

channel complexity c(n), for any 0 ≤ c(n) ≤ exp.

Obviously, ΛS
log
0 = DLOG since without the wireless communication the

WPTM computations reduce to deterministic Turing machine computations. On
the other hand, ΛS

log
poly = WLOGSPACE = PSPACE by virtue of Theorem 7.

Nevertheless, there is no wireless logarithmic–space hierarchy based on channel
complexity:

Theorem 11. ΛS
log
1 = ΛS

log
poly = PSPACE

Sketch of the proof: To simulate logarithmically space–bounded WPTM W1

using a polynomial number of channels by a single channel machine W2 we use
the so–called channel multiplexing. The idea is to simulate one parallel step of
W1 by one cycle of polynomial number of parallel steps of W2. More precisely,
the communication on channel i on W1 in time j is in W2 simulated by i−th step
of the j−th cycle. 2

As far as the wireless polynomial–time hierarchy is concerned, observe that
ΛT

poly
0 = P and ΛT

poly
exp = WPTIME = PSPACE (the latter equality is by Theo-

rem 7). For a single channel we have the following relationship:

Theorem 12. NP ∪ coNP ⊆ ΛT
poly
1 ⊆ Σ

poly
2

Sketch of the proof: The first inclusion is almost obvious—a single–channel
WPTM M2 constructs the respective computational tree and the leaves report
to the root similarly as in the proof of Theorem 9. The simulating Σ2 machine
M1 in the second inclusion first guesses a “broadcasting schedule” for M2, i.e.,
information what symbol is broadcasted at what time. The corresponding table
is of polynomial size. Then M1, in universal mode simulates M2 and instead of
broadcasting/listening each processor of M1 consults the table for the necessary
entry to learn what symbol has been broadcasted (if any). 2

The polynomial–time wireless hierarchy collapses for channel complexity be-
tween 1 and poly, the rest remains open:

Theorem 13. P ⊆ ΛT
poly
1 = ΛT

poly
2 = . . .ΛT

poly
poly ⊆ . . . ⊆ ΛT

poly
exp = PSPACE
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Sketch of the proof: The identities among the complexity classes are proved
with the help of channel multiplexing as in Theorem 11. 2

By virtue of this theorem, the P vs. PSPACE problem now translates in the
question, whether we can separate polynomially time–bounded wireless parallel
computations with channel complexities 0 and 1, and between poly and exp.

It is interesting to compare the hierarchy from Theorem 13 with the standard
alternating polynomial–time hierarchy. While both ends of these hierarchies co-
incide, there does not seem to be a simple relationships between the rest of the
hierarchies.

9 Conclusion

Our investigations have revealed a tight relationship between the basic complex-
ity measures on ATMs and WPTMs. It appears that within the range of an
exponential dependency between time and space complexity functions, simulta-
neous time and space bounded computations of a WPTM are linearly equivalent
to the corresponding simultaneous measures on an equivalent ATM. Thanks to
this equivalency the relationship of ATMs to the quantified Boolean formulae and
uniform Boolean circuits translates directly to WPTMs. Thus, the WPTMs offer
an alternative tool for characterizing the alternating computations or, in general,
for characterizing any computation described by an equivalent formal tool from
the domain of descriptive complexity. The WPTM computations have interesting
structural properties induced by the nature of wireless computing. First of all, it
is the listening complexity capturing the time a processor must be “on air” during
a wireless computations. We have shown that this time is related to the num-
ber of alternations. The second structural measure we have considered was the
channel complexity capturing the broadband of a wireless computation. We have
seen that this measure has lead to a new interesting hierarchy of polynomially
time–bounded complexity classes positioned between P and PSPACE (providing
the disjointness of both classes).

A further potential of wireless parallel computing in computational and de-
scriptive complexity studies remains to be seen in the future.
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