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Abstract. This paper studies the relation between Parallel Communi-
cating Grammar Systems (PCGS) and Freely Rewriting Restarting Au-
tomata (FRR). It is shown that analysis by reduction for a PCGS with m
components, and with communication complexity bounded by constant
k can be implemented by a strongly linearized deterministic FRR-auto-
maton with t rewrites per cycle, where t ≤ m(m−1)k. We show that this
implementation is almost optimal. As consequences we obtain a pumping
lemma for the class of languages generated by PCGS with communica-
tion complexity bounded by a constant, and the fact that this class of
languages is semi-linear.

1 Introduction

This paper deals with the comparison of Freely Rewriting Restarting Automata
(FRR, [6]), and Parallel Communicating Grammar Systems (PCGS, [10,2]). Namely,
the so-called linearized FRR-automaton and returning PCGS with regular com-
ponents are used for this purpose. The motivation for our study is the usefulness
of both models in computational linguistic.

Freely rewriting restarting automata create a suitable tool for modelling the
so-called analysis by reduction, namely its topological properties connecting the
(lexical) valences and word-order in sentences with a simple segmentation struc-
ture. Analysis by reduction in general facilitates the development and testing
of categories for syntactic and semantic disambiguation of sentences of natural
languages with a simple segmentation structure. The Functional Generative De-
scription for the Czech language developed in Prague (see, e.g., [3]) is based on
this method.

FRR-automata work on so-called characteristic languages, that is, on lan-
guages with auxiliary symbols (categories) included in addition to the input
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symbols. The proper language is obtained from a characteristic language by re-
moving all auxiliary symbols from its sentences. By requiring that the automata
considered are linearized we restrict the number of auxiliary symbols allowed on
the tape by a function linear in the number of terminals on the tape. We mainly
focus on the deterministic restarting automata in order to ensure the correctness
preserving property for the analysis, i.e., after any restart within an accepting
computation the content of the tape is a word from the characteristic language,
after any restart within a non-accepting computation the content of the tape is a
word from the complement of the characteristic language, and if there is an non-
accepting computation for a word w then the word w is from the complement
of the characteristic language. In fact, we consider strongly linearized restarting
automata. This additional restriction requires that all rewrite operations must
be deletions.

Parallel Communicating Grammar Systems handle the creation of copies of
generated strings and their regular mappings in a natural way. This ability has a
strong similarity to the generation of coordinations in the Czech language (and
some other natural languages). However, the synonymy of coordinations has not
been appropriately modelled yet.

In this paper we study the relation between PCGS's and FRR's. It is shown
that analysis by reduction for a returning PCGS with m regular components, and
with communication complexity bounded by constant k can be implemented by
a strongly linearized deterministic FRR-automaton with t rewrites per cycle,
where t ≤ m(m− 1)k.

We show that this implementation is almost optimal. As a consequence of
the proof we obtain a pumping lemma for the class of languages generated by
PCGS with communication complexity bounded by a constant, and the fact that
this class of languages is semi-linear. Let us recall that the class of unconstrained
PCGS is not semi-linear.

The presented results show the potential ability of restricted PCGS's to model
the valency and the (free) word-order of the simply segmented sentences of nat-
ural languages (i.e. sentences without coordinations, and segmented in a rather
simple way).

The paper is organized as follows. In Section 2 we give the basic de�ni-
tions and results concerning Freely Rewriting Automata. Parallel Communi-
cating Grammar Systems are introduced in Section 3. We give the de�nitions,
summarize known relevant facts and motivate the technical notions utilized in
the proof of the main result of the paper there. Results are presented in Section 4
and �nally, some closing remarks are given in Section 5.

2 Restarting Automata

A freely rewriting restarting automaton, abbreviated as FRR-automaton, is de-
scribed by an 8-tuple M = (Q, Σ, Γ, c, $, q0, k, δ). It consists of a �nite-state
control, a �exible tape, and a read/write window of a �xed size k ≥ 1. Here Q
denotes a �nite set of (internal) states that contains the initial state q0, Σ is
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a �nite input alphabet, and Γ is a �nite tape alphabet that contains Σ. The
elements of Γ rΣ are called auxiliary symbols. The additional symbols c, $ 6∈ Γ
are used as markers for the left and right end of the workspace, respectively.
They cannot be removed from the tape. The behavior of M is described by a
transition function δ that associates transition steps to certain pairs of the form
(q, u) consisting of a state q and a possible content u of the read/write window.
There are four types of transition steps: move-right steps, rewrite steps, restart
steps, and accept steps. A move-right step simply shifts the read/write window
one position to the right and changes the internal state. A rewrite step causes
M to replace a non-empty pre�x u of the content of the read/write window by
a shorter word v, thereby shortening the length of the tape, and to change the
state. Further, the read/write window is placed immediately to the right of the
string v. A restart step causes M to place its read/write window over the left end
of the tape, so that the �rst symbol it sees is the left sentinel c, and to reenter
the initial state q0. Finally, an accept step simply causes M to halt and accept.

A con�guration of M is described by a string αqβ, where q ∈ Q, and either
α = ε (the empty word) and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$};
here q represents the current state, αβ is the current content of the tape, and it
is understood that the window contains the �rst k symbols of β or all of β when
|β| ≤ k. A restarting con�guration is of the form q0cw$, where w ∈ Γ ∗.

Any computation of M consists of certain phases. A phase, called a cycle,
starts in a restarting con�guration. The window is shifted along the tape by
move-right and rewrite operations until a restart operation is performed and
thus a new restarting con�guration is reached. If no further restart operation
is performed, the computation necessarily �nishes in a halting con�guration �
such a phase is called a tail. It is required that in each cycle M performs at
least one rewrite step. As each rewrite step shortens the tape, we see that each
cycle reduces the length of the tape. We use the notation u `c

M v to denote a
cycle of M that begins with the restarting con�guration q0cu$ and ends with
the restarting con�guration q0cv$; the relation `c∗

M is the re�exive and transitive
closure of `c

M .
A word w ∈ Γ ∗ is accepted by M , if there is a computation which starts from

the restarting con�guration q0cw$, and ends with an application of an accept
step. By LC(M) we denote the language consisting of all words accepted by M .
It is the characteristic language of M .

By PrΣ we denote the projection from Γ ∗ onto Σ∗, that is, PrΣ is the mor-
phism de�ned by a 7→ a (a ∈ Σ) and A 7→ ε (A ∈ Γ rΣ). If v := PrΣ(w), then
v is the Σ-projection of w, and w is an expanded version of v. For a language
L ⊆ Γ ∗, PrΣ(L) := {PrΣ(w) | w ∈ L }. Further, for K ⊆ Γ , |x|K denotes the
number of occurrences of symbols from K in x.

In recent papers (see, e.g., [5]) restarting automata were mainly used as
acceptors. The (input) language accepted by a restarting automaton M is the set
L(M) := LC(M)∩Σ∗. Here, motivated by linguistic considerations to model the
analysis by reduction with parallel processing, we are rather interested in the so-
called proper language of M , which is the set of words LP(M) := PrΣ(LC(M)).
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Hence, a word v ∈ Σ∗ belongs to LP(M) if and only if there exists an expanded
version u of v such that u ∈ LC(M).

For each type X of restarting automata, we use LC(X) and LP(X) to denote
the class of all characteristic languages and the class of all proper languages of
automata of this type.

The following basic properties of FRR-automata are often used in proofs.
(Correctness Preserving Property.) Each deterministic FRR-automaton M
is correctness preserving, i.e., if u ∈ LC(M) and u `c∗

M v, then v ∈ LC(M), too.
(Cycle Pumping Lemma.) For any FRR-automaton M , there exists a con-
stant p such that the following property holds. Assume that uxvyz `c

M ux′vy′z
is a cycle of M , where u = u1u2 · · ·un for some non-empty words u1, . . . , un and
an integer n > p. Then there exist r, s ∈ N+, 1 ≤ r < s ≤ n, such that
u1 · · ·ur−1(ur · · ·us−1)ius · · ·unxvyz `c

M u1 · · ·ur−1(ur · · ·us−1)ius · · ·unx′vy′z
holds for all i ≥ 0, that is, ur · · ·us−1 is a �pumping factor� in the above cycle.
Similarly, such a pumping factor can be found in any factorization of length
greater than p of v or z as well as in any factorization of length greater than p
of a word accepted in a tail computation.

We focus our attention on FRR-automata, for which the use of auxiliary
symbols is less restricted than in [6]�we allow the number of auxiliary symbols
to be linear in the length of the characteristic word.

De�nition 1. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be an FRR-automaton.
(a) M is called linearized if there exists a constant j ∈ N+ such that

|w|Γ−Σ ≤ j · |w|Σ + j for each w ∈ LC(M).
(b) M is called strongly linearized if it is linearized, and if each of its rewrite

operations just deletes some symbols.
Since linearized FRR-automata operate in linear space, we have the following:

Corollary 1. If M is a linearized FRR-automaton, then the proper language
LP(M) is context-sensitive.

Due to our linguistic motivations we are mainly interested in the strongly
linearized FRR-automata and their proper languages in what follows. We denote
by SLnRR the class of strongly linearized deterministic FRR-automata, and, for
t ∈ N+, we use the pre�x t- to denote the types of FRR-automata that execute
at most t rewrite steps in any cycle.

3 Parallel Communicating Grammar Systems
To be consistent with our previous works concerning the returning parallel com-
municating grammar system with regular components we follow the de�nitions
and abbreviation PCGS from the early papers [10,2,7]. The same system is de-
�ned in a slightly di�erent way and denoted PCREG in [1]; the di�erences are
only in formalism and denotations.
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PCGS of degree m, m ≥ 1, is an (m + 1)-tuple Π = (G1, . . . , Gm,K),
where, for all i ∈ {1, . . . , m}, Gi = (Ni, T, Si, Pi) are regular grammars, called
component grammars, satisfying Ni ∩ T = ∅ and K ⊆ {Q1, . . . , Qm}

⋂⋃m
i=1 Ni

is a set of special symbols, called communication symbols.
A con�guration is an m-tuple C = (x1, . . . , xm), xi = αiAi, αi ∈ T ∗, Ai ∈
(Ni∪ε); we call xi the i-th component of the con�guration (resp. component). The
nonterminal cut of con�guration C is the m−tuple N(C) = (A1, A2, . . . , Am).
If N(C) contains at least one communication symbol, it is denoted NC(C) and
called an NC-cut.

We say a con�guration X = (x1, . . . , xm) directly derives a con�guration
Y = (y1, . . . , ym) and write X ⇒ Y , if Y is derived from X by one generative or
communication step (see below). Informally, in a communication step any occur-
rence of a communication symbol Qi in X is substituted by the i-th component of
X (assuming that this component does not contain any communication symbol).

Let X = (x1, . . . , xm), xi = αiAi, αi ∈ T ∗, Ai ∈ (Ni ∪ ε):

1. (generative step) if Ai /∈ K for all i, 1 ≤ i ≤ m, then
xi

Gi⇒ yi for xi ∈ T ∗Ni,
yi = xi for xi ∈ T+;

2. (communication step) if Ai ∈ K for some i, 1 ≤ i ≤ m, then for each k such
that xk = zkQjk

, zk ∈ T ∗, Qjk
∈ K, the following holds:

(a) If Ajk
/∈ K, then yk = zkxjk

and yjk
= Sjk

.
(b) If Ajk

∈ K, then yk = xk.
For all remaining indices t, for which xt does not contain a communication
symbol and Qt does not occur in any of xi's, we put yt = xt.

Now, we describe the derivations in a PCGS. A derivation of a PCGS Π is a
sequence of con�gurations D = C1, C2, . . . , Ct, where Ci ⇒ Ci+1 in Π. If the
�rst component of Ct is a terminal word w, then we usually write D(w) instead
of D. Analogously, we denote by W (D) the terminal word generated within the
derivation D. Every derivation can be viewed as a sequence of generative steps
and communication steps.

If no communication symbol appears in any of the components, then we
perform a generative step consisting of rewriting steps synchronously performed
in each of the component grammars Gi, 1 ≤ i ≤ m. If any of the components
is a terminal string, it is left unchanged. If any of the components contains
a nonterminal that cannot be rewritten, the derivation is blocked. If the �rst
component is a terminal word y, then y is the word generated by Π in this
derivation.

If a communication symbol is present in any of the components, then a com-
munication step is performed. It consists of replacing those communication sym-
bols with the phrases they refer to for which the phrases do not contain com-
munication symbols. Such an individual replacement is called a communication.
Obviously, in one communication step at most m−1 communications can be per-
formed. If some communication symbol was not replaced in this communication
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step, it may be replaced in one of the next communication steps. Communi-
cation steps are performed until no more communication symbols are present
or the derivation is blocked because no communication symbol can be replaced
in the last communication step. This maximal sub-sequence of communication
steps form a communication section.

Generative section is a non-empty sequence of generative steps between two
consecutive communication steps (resp. communication sequences) in D(w),
resp. before the �rst and/or after the last communication step in D(w).

Thus, communication steps divide the derivation into generative and com-
munication sections.
The (terminal) language L(Π) generated by a PCGS Π is the set of terminal
words that appears in a component G1(this component is also called a master
of the system):

L(Π) = {α ∈ T ∗ | (S1, . . . , Sm) ⇒+ (α, β2, . . . , βm) }.

To illustrate the derivation and to motivate/demonstrate the bellow de�ned
notions let us give the illustrative example.

Example 1. Consider a PCGS Πab(2) = (G1, G2, G3, {Q2, Q3}) generating [8] the
language

Lab(2) = {ai1bi1ai2bi1+i2 | ij ∈ N}.
Bellow, the grammars are implicitly given by their productions; a, b are termi-
nals, all other symbols are non-terminals.
P1 : {S1 → aS1|aQ2, Z2 → aZ2|aQ3, Z3 → b}
P2 : {S2 → bZ2, Z2 → bZ2}
P3 : {S3 → Z3, Z3 → bZ3}
Let us consider the following derivation D1(w); we write the con�gurations into
columns and separate them by sign | when the particular step is generative, resp.
by sign || to point out the communication step.
˛̨
˛̨
˛̨
S1

S2

S3

˛̨
˛̨
˛̨

aS1

bZ2

Z3

˛̨
˛̨
˛̨
a2S1

b2Z2

bZ3

˛̨
˛̨
˛̨

a3Q2

b3Z2

b2Z3| {z }
1st generative section

∥∥∥∥∥
a3b3Z2

S2

b2Z3

∣∣∣∣∣
a3b3aZ2

bZ2

b2bZ3

∣∣∣∣∣
a3b3a2Q3

b2Z2

b2b2Z3

∥∥∥∥∥
a3b3a2b2b2Z3

b2Z2

S3

∣∣∣∣∣
a3b3a2b2b2b
b2bZ2

Z3

∣∣∣∣∣

The derivation has three generative sections; the content of the �rst grammar
at the end of the �rst generative section is a3Q2, thus the terminal string a3 has
been generated in grammar G1 within this section. ¦

Let D = D(w) = C0, C1, . . . , Ct be the derivation of w by Π; D(w), Π, and
w are �xed in what follows. Several notions can be associated with the derivation
D(w) which help to analyze the derivation of Π and to unambiguously describe
w. We start with those describing the structure of w �rst.
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g(i, j), resp. g(i, j, D(w)) denotes the terminal part generated by Gi within the
j-th generative section of D(w), we call it (i, j)-(generative) factor (by D(w))

n(i, j), resp. n(i, j, D(w)) denotes the number of occurrences of g(i, j) in w. Note
that n(i, j) > 1 is possible, when there are at least two di�erent component
grammars requiring the content of the same component grammar at the same
time (see Example 2).

Communication structure CS(D(w)) captures the connection between the ter-
minal word w and its particular derivation D(w))�it determines, how w is
composed from individual g(i, j)'s:
CS(D(w)) = (i1, j1), (i2, j2) , . . . , (ir, jr), where w = g(i1, j1)g(i2, j2) . . . g(ir, jr).
The set of the tuples of indices of CS(D(w)) is denoted I(D(w)). Realize that
a communication has been involved if (i, j) ∈ I(D(w)) for i 6= 1.

Let us analyze the derivation D1(w) from Example 1:
g(1, 1) = a3 g(1, 2) = a2 g(1, 3) = b
g(2, 1) = b3 g(2, 2) = b2 g(2, 3) = b
g(3, 1) = b2 g(3, 2) = b2 g(3, 3) = ε︸ ︷︷ ︸

w = a3b3a2b5 = g(1, 1)g(2, 1)g(1, 2)g(3, 1)g(3, 2)g(1, 3)

We can see that the communication structure CS(D1(w)), I(D1(w)) and par-
ticular n(i, j)'s have the following form:

CS(D1(w)) = (1, 1)(2, 1)(1, 2)(3, 1)(3, 2)(1, 3)
I(D1(w)) = {(1, 1), (2, 1), (1, 2), (3, 1), (3, 2), (1, 3)}
n(1, 1) = n(1, 2) = n(2, 1) = n(3, 1) = n(3, 2) = 1
n(1, 3) = n(2, 2) = n(2, 3) = n(3, 3) = 0

The last couple of notions is mostly connected with the derivations them-
selves.
The trace of a (sub)derivation D is the sequence T (D) of nonterminal cuts of
individual con�gurations of D; T (D)=N(C0), N(C1), . . . , N(Ct). Note that (in
general) the trace does not unambiguously identify the derivation.
The communication sequence, resp. NC-sequence is de�ned analogously; NCS(D)
is the sequence of all NC-cuts in the (sub)derivation D. Let us recall that any
NC-cut contains at least one communication symbol. Realize also that the com-
munication sequence NCS(D(w)) unambiguously de�nes the communication
structure of w. Moreover, the set of words with the same communication se-
quence/structure might, in general, be in�nite.
A cycle in the derivation is such a smallest (continuous) sub-derivation C od D,
C = C1, . . . , Cj , in which the corresponding �rst and last nonterminal cuts are
the same; N(C1) = N(Cj).
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If none of nonterminal cuts involved in C contains a communication symbol
then, obviously, whole cycle is contained in one generative section; we speak
about a generative cycle in this case. If the only nonterminal cuts of C containing
a communication symbols are the �rst and the last one (N(C1) = N(Cj)), then
the cycle is called communication cycle.

Note that, if there is a cycle in the derivation D(w) then manifold repetition3
of the cycle is possible and the resulting derivation is again a derivation of some
terminal word. We call a derivation D(w) reduced if every repetition of its cycle
leads to a longer terminal word ω; |w| < |ω|. Obviously, to every derivation
D(w) there is an equivalent reduced derivation D′(w) of the same word. In what
follows, we consider only the derivations that are reduced.

Fact 1 Repetition/deletion of a generative cycle does not change the communi-
cation sequence and communication structure of the derivation.

Again, we illustrate the de�ned notions on the derivation D1 from Example 1.

T (D1) =

0
@

S2

S2

S3

1
A
0
@

S1

Z2

Z3

1
A
0
@

S1

Z2

Z3

1
A

| {z }
generative cycle

0
@

Q2

Z2

Z3

1
A
0
@

Z2

S2

Z3

1
A
0
@

Q3

Z2

Z3

1
A
0
@

Z3

Z2

S3

1
A
0
@

ε
Z2

Z3

1
A

NCS(D1) =

0
@

Q2

Z2

Z3

1
A
0
@

Q3

Z2

Z3

1
A

Delete the �rst generative cycle from the derivation D1. As a result, we have the
derivation D2:

∣∣∣∣∣
S1

S2

S3

∣∣∣∣∣
aS1

bZ2

Z3

∣∣∣∣∣
a2Q2

b2Z2

bZ3

∥∥∥∥∥
a2b2Z2

S2

bZ3

∣∣∣∣∣
a2b2aZ2

bZ2

bbZ3

∣∣∣∣∣
a2b2a2Q3

b2Z2

bb2Z3

∥∥∥∥∥
a2b2a2bb2Z3

b2Z2

S3

∣∣∣∣∣
a2b2a2bb2b
b2bZ2

Z3

∣∣∣∣∣

Deletion of the generative cycle has caused the change of the terminal strings
generated within the �rst generative section and consequently, the terminal word
ω generated within this changed derivation D2.

g(1, 1, D2) = a2, g(2, 1, D2) = b2, g(3, 1, D2) = b and CS(D1) = CS(D2)
⇓

ω = g(1, 1, D2)g(2, 1, D2)g(1, 2, D2)g(3, 1, D2)g(3, 2, D2)g(1, 3, D2) = a2b2a2bb2b

Finally, let us de�ne the notion of communication complexity. This paper
utilizes the notion of communication complexity from [2,7]. Informally, commu-
nication complexity of a derivation D (denoted com(D)) is de�ned as the number
of communications performed within the derivation D. E.g., the communication
complexity of the derivation D1 from Example 1 is equal 2.

Then, communication complexity of the language and associated complexity
class are also de�ned in the usual way (always considering the corresponding
maximum):
3 Deletion of a cycle is also possible.
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De�nition 2. Let Π = (G1, . . . , Gm,K) be a PCGS and D(w) = C0, C1, . . . , Ct,
where Ci = (Ci,1, Ci,2, . . . , Ci,m), be the derivation of w by Π. Denote by I,
I = {t1, t2, . . . , tk | t1<t2<. . .<tk}, the set of all communication steps of D(w)
for which the (ti − 1)−st step is rewriting. Then com(D(w)) =

∑k
i=1 |Cti

|K .

De�nition 3. Let f : N→ N+ be a function, Π be a PCGS, and w ∈ L(Π). We
say that Π is of communication complexity f if, for any derivation D(w) by Π,
com(D(w)) ≤ f(|w|). We say that a language L has communication complexity
f , if there exists a PCGS Π of communication complexity f such L = L(Π).
The class of languages with communication complexity f is denoted COM(f(n));
for f(n) = k the corresponding class is denoted COM(k).

Realize that if L ∈ COM(k), then there is a PCGS Π generating L such
that none of its derivations contains a communication cycle. We say that Π is
a PCGS without a communication cycle or equivalently that Π is a PCGS with
constant communication complexity. The problem of deciding whether a given
PCGS is of constant communication complexity or not is decidable.

Here, we are mainly interested in the class COM(k). Relevant observations
characterizing the derivations of PCGS with constant communication complexity
(see [7] for more information) are summarized in the following facts:

Fact 2 Let Π be a PCGS without a communication cycle. Then there are con-
stants d(Π), `(Π), s(Π) such that

1. the number n(i, j) of occurrences of individual g(i, j)′s in reduced derivation
is bounded by d(Π); n(i, j) ≤ d(Π);

2. the length of the communication structure for every reduced derivation is
bounded by `(Π);

3. the cardinality of the set of the possible communication structures correspond-
ing to a reduced derivation by Π is bounded by s(Π).

Fact 3 Let Π be a PCGS without a communication cycle, D(w) a reduced
derivation of a terminal word w. Then there is a constant e(Π) such that, if
more than e(Π) generative steps of j-th generative section were performed than
at least one g(i, j,D(w)) has been changed.

Corollary 2. Let Π be a PCGS without a communication cycle. Then the set
of all generative-cycle free derivations by Π is �nite.

4 Results

We start the section showing that a language generated by a PCGS Π with con-
stant communication complexity can be analyzed (by reduction) by a t-SLnRR-
automaton M .

The high-level idea is to merge the terminal word w with the information
describing its reduced derivation D(w) in a way allowing simultaneously the
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"simulation/reduction" of the derivation D(w) and the correctness checking.
Analysis by reduction is based on the deletion of the parts of a (characteristic)
word which correspond to parts generated within one generative cycle. To be
able to identify necessary sub-words corresponding to one generative cycle we
insert the delimiters [b, i, j], [e, i, j] to denote the beginning and end of individual
g(i, j)'s into a characteristic word. To make the computation deterministic, we
pre�x the characteristic word with communication structure. Such a merged
(characteristic) word is then called Π-description of w.

Now, let us describe the construction of Π-description of w in more details.
Assume the derivation rules in individual component grammars are ordered. Let
(α1A1, . . . , αmAm) be the con�guration at the beginning of the j-th generative
section,
0
BB@

α1A1

α2A2

· · ·
αmAm

1
CCA

(i1,1,...,i1,m)→

0
BB@

α1α1,1A1,1

α2α1,2A1,2

· · ·
αmα1,mA1,m

1
CCA

(i2,1...,i2,m)→ · · ·

(is,1...,is,m)→

0
BB@

α1α1,1α2,1 . . . αs,1As,1

α2α1,2α2,2 . . . αs,2As,2

· · ·
αmα1,mα2,m . . . αs,mAs,m

1
CCA

be the sub-derivation corresponding to this generative section; (i1,...,im)→ means,
that j-th component grammar has applied its ij-th derivation rule. Merging the
description of this sub-derivation into g(i, j) we obtain extended version ex-g(i, j)
of g(i, j):

ex-g(i, j) = [b, i, j]




i1,1

i1,2

· · ·
i1,m


α1,i




i2,1

i2,2

· · ·
i2,m


 α2,i · · ·




is,1

is,2

· · ·
is,m


 αs,i[e, i, j]

Note that the terminal strings α1, . . . , αm from the con�guration at the begin-
ning of the j-th generative section have not been generated within the j-th gener-
ative section and thus are not involved in ex-g(i, j). Realize that all nonterminals
A1, . . . , Am, . . . , A1,1, . . . , As,m and thus also all nonterminal/communication cuts
and cycles are implicitly given in ex-g(i, j).

We use ex-g(i, j) to merge the (topological) information about derivation
D(w) into w. Obviously, we can speak about traces and factor cycles in the
extended factor ex-g(i, j) similarly as we speak about traces and generative
cycles in derivations.

Replace any occurrence of g(i, j) in w by ex-g(i, j); the result is denoted ex-w.
Then, concatenating NC-sequence of D(w) and ex-w we obtain Π-description
of w:

Πd(D(w)) = #NCS(D(w))ex-w#

Remember that the Π-description of w is closely related to some (�xed) deriva-
tion D(w) of w. In general, there might be several Π-descriptions of the same
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word w. Choosing one Π-description of w, we have �xed one of its derivations,
namely D(w).

Let the derivation rules in the component grammars in Example 1 be ordered
from left to right. Then, for the derivation D1(w) we have

ex-g(1, 1) = [b, 1, 1]

0
@

1
1
1

1
A a

0
@

1
2
2

1
A a

0
@

2
2
2

1
A a[e, 1, 1]

From the above discussion the following facts should be obvious:

Fact 4 Let Π be a PCGS with constant communication complexity, D(w) be a
reduced derivation and Πd(D(w)) be the Π-description of w. Then

(a) the terminal word w is obtained from Πd(D(w)) by deleting all symbols which
are not the terminal symbols of Π;

(b) the length of Πd(D(w)) is bounded from above by cΠ · |w|+ cΠ , where cΠ is
a constant depending on Π only;

(c) the sets of possible NC-sequences and communication structures of Π are
�nite. Thus, a �nite automaton is su�cient to check if a given string x is a
correct ex-g(i, j), NCS(D(w)), resp. CS(D(w)).

We are ready for the main result of this paper. Based on the analysis by
reduction the construction of a k-SLnRR-automaton M accepting the character-
istic language LC(M)={Πd(D(w)) | w ∈ L(Π)} is outlined in the proof of the
next theorem.

Theorem 1. Let k ∈ N be a constant, Π be a PCGS of degree m with commu-
nication complexity bounded by k. Then there is a t-SLnRR-automaton M such
that L(Π) = LP (M), and t ≤ m(m− 1)k.

Proof. We outline the construction of a k-SLnRR-automaton M accepting the
characteristic language LC(M) = {Πd(D(w)) | w ∈ L(Π)}. Let ω be an input
word to M . M starts to �simulate�, resp. reduce the derivation D(w) supposing
ω = Πd(D(w)). The main idea is to reduce ω in a cycle of M to ω1 ∈ LC(M)
accordingly to a reduction (deletion) of a chosen occurrence of a generative cycle
of D(w). To keep the automaton deterministic, the generative cycle taken for
reduction has to be deterministically identi�ed. Therefore, we take the generative
cycle implicitly described in the leftmost ex-g(i, j) in the actual ω. Let us denote
the newly reduced derivation D(w1) (using the corresponding shortened terminal
word w1 for that).

Simultaneously, we need to ensure that an ω 6∈ LC(M) should either be
directly rejected or reduced to some ω1 6∈ LC(M). The set of "short" deriva-
tions (resp.Π-descriptions) is �nite (Corollary 2), thus checkable by �nite au-
tomaton. The long word ω 6∈ LC(M) will either in successive steps be reduced
to such a short ω′ that is not a correct Π-description from LC(M), or some
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inconsistency will be found within the reduction. In this way we ensure by the
�nite control of M the correctness preserving property of M .

Let short(Π) be the �nite set of all generative-cycle-free Π-descriptions,
` = maxω∈short(Π) |ω|. If |ω| ≤ ` then M decides in an accepting/rejecting tail.
Otherwise, M is trying to perform a cycle.
A cycle by M . At the beginning of its cycle M assumes the content ω of the tape
to be ω = NCS(D(w))ex-w. In order to check the consistence of ω, M stores
NCS(D(w)) and SC(D(w)) in its �nite control; remember that SC(D(w)) is
unambiguously given by NCS(D(w)). From now on, M can be viewed as a pair
of two simultaneously working automata. One, that is responsible for reduction
and the second, that is responsible for veri�cation of consistency. For simplicity,
we will describe those �two� automata separately.

Let us start with the description of the reduction: M deterministically �nds
the leftmost factor cycle in ex-w. Let this (occurrence of the) generative cycle
be found between the delimiters [b, i, j] and [e, i, j] thus indicating that we are
going to reduce the �rst generative cycle of the j-th generative section; denote
this occurrence of the cycle c(i, j).

More precisely, the pre�x of the content of the M 's window is of the form

[b, i, j]




i1,1

i1,2

· · ·
i1,m


α1,i · · ·αr−1,i

0
BB@

ir,1

ir,2

· · ·
ir,m

1
CCAαr,i · · ·

0
BB@

is,1

is,2

· · ·
is,m

1
CCAαs,i

| {z }
c(i,j)




is+1,1

is+1,2

· · ·
is+1,m


 · · ·

unambiguously identifying the �rst s + 1 steps of the j-th generative section
(including those of the generative cycle) as

pref(j) =




i1,1

i1,2

· · ·
i1,m


 · · ·




ir,1

ir,2

· · ·
ir,m


 · · ·




is,1

is,2

· · ·
is,m







is+1,1

is+1,2

· · ·
is+1,m




Now, if pref(j) is a possible sub-derivation in Π and the terminal string α1,i . . . αs,i

is consistent with this sub-derivation then M :
� remembers [j, pref(j)] in its state
� deletes c(i, j) from the tape; realize that the left-side nonterminals in produc-
tion ir,p and ir+1,p, 1 ≤ p ≤ m, are the same

� remembers identi�cation of the particular g(i, j) in which the successful re-
duction has just been performed4 and

� moves its window
From now on M continues its left-right move and reduces relevant parts of

the remembered generative cycle from all occurrences of ex-g(i, j), 1 ≤ i ≤ m.
4 For example, that particular g(i, j) might be deleted from the remembered

NCS(D(w))
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For that, M repeats right-move steps until (1): [b, i′, j], 1 ≤ i′ ≤ m, becomes
the leftmost symbol in its window or (2): # becomes the rightmost symbol in
its window.
(1) M tries to apply the deletion:
if

[b, i′, j]




i1,1

i1,2

· · ·
i1,m


α1,i′ · · ·αr−1,i′

0
BB@

ir,1

ir,2

· · ·
ir,m

1
CCAαr,i′ · · ·

0
BB@

is,1

is,2

· · ·
is,m

1
CCAαs,i′

| {z }
c(i′,j)




is+1,1

is+1,2

· · ·
is+1,m


 · · ·

is the pre�x of M 's window 5, and
α1,i′ . . . αs,i′ is consistent with this sub-derivation,

then M deletes c(i′, j) from the tape, moves its window and continues reduction
procedure in this cycle
else the computation is blocked

(2) if all occurrences of the �rst generative cycle in j-th generative section has
successfully been reduced and veri�cation automaton has not found any incon-
sistences then M restarts; otherwise it rejects

To guarantee the correctness preserving property the veri�cation automa-
ton checks the consistency of explicitly and implicitly stored information. More
precisely, it veri�es that
� the content of the tape is a correct Π-description
� each ex-g(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ k +1, describes the possible sub-derivation
in Π

� the �rst and last nonterminal cuts implicitly given in ex-g(i, j) are consistent
with stored NCS(D(w))

According to the Fact 4(c) such an �nite automaton exists.

Rejecting tail computation is identi�ed when either the veri�cation automa-
ton �nds the inconsistency within its left-right move or when the content of the
tape is a short word that does not belong to short(Π).

Accepting tail computation. The only situation in which the accepting tail
computation occurs is when a short word ω becomes the content of the tape and
ω ∈ short(Π).

From the above discussion and the construction of M is not hard to see
that M is a deterministic t-SLnRR-automaton that accepts the above described
language LC(M). Moreover, we can obtain LP (M) from LC(M) by a projection
of LC(M) into the terminal symbols of Π. That means LP (M) = L(Π).

5 note that we require the described sub-derivation be the same as pref(j), which is
stored in the state
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Now, let us bound the parameter t. Obviously, the number of rewrites/deletes
within one cycle of M is bounded from above by max1≤j≤k+1

∑m
i=1 n(i, j). To

bound n(i, j) realize that the number of occurrences of some g(i, j) in con�g-
uration of Π can be increased only by manifold communication: Consider a
con�guration C

(α1A1, · · · , αaAa, · · · , αmAm)

such that n′(i, j) be the number of occurrences of g(i, j)'s in Ga and there are
m′ component grammars Gi1 , . . . , Gim′ such that Aib

= Qa, 1 ≤ b ≤ m′. Then,
there are (m − 2) × n′(i, j) new occurrences of g(i, j) in the con�guration after
the realized communications. Since at the end of j-th generative section there is
only one occurrence of g(i, j) in the single component grammar Gi and since the
communication complexity of Π is bounded by k, n(i, j) ≤ (m − 1)k obviously
holds for every i, j. Thus

t ≤ m× (m− 1)k

completes the proof.
2

The following Corollary 3 easily follows from the proof of the Theorem 1.
Then, the Corollary 4 is a consequence of the Corollary 3.

Corollary 3. Let k ∈ N be a constant and Π be a PCGS of degree m with
communication complexity k. Then there are constants p, t, 0 < t ≤ m(m− 1)k,
such that any long enough word w ∈ L(Π), |w| > p can be written in the form
w = y0x1y1 · · ·xtyt, where p ≥ |x1 · · ·xt| > 0, and y0x

i
1y1 · · ·xi

tyt ∈ L(Π) for
any nonnegative integer i.

Corollary 4. Let k ∈ N be a constant, and Π be a PCGS with communication
complexity k. Then the language L(Π) is semi-linear.

The assumption about the communication complexity in Corollary 4 is nec-
essary. As the next example from [8] shows, the unconstrained PCGSs are able
to generate also languages, that are not semi-linear.

Example 2. Bellow de�ned PCGS illustrates how communication cycle can be
used to generate the language L = {a2n | n ∈ N} that is not semi-linear. Note
also that the only generated symbol a is generated within the �rst generative
section.

P1 : {S1 → aB | Q2, B1 → B |ε}
P2 : {S2 → Q1, B → Q3}
P3 : {S3 → Q1, B → B1}

G1 : S1 aB S1 Q2 Q2 aaB1 aaB S1 Q2 Q2 aaaaB1 aaaa
G2 : S2 Q1 aB aQ3 aaB1 S2 Q1 aaB aaQ3 aaaaB1 S2 Q1

G3 : S3 Q1 aB aB1 S3 S3 Q1 aaB aaB1 S3 S3 Q1
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As follows from the next proposition, from the number of rewrites per cycle
point of view the result from Theorem 1 is not far from the optimal.

Proposition 1. Let Lk−copy = {(w#)k# | w ∈ {a, b}+}. Then
Lk−copy ∈ L(k-SLnRR)− L((k-1)-SLnRR), while Lk−copy ∈ COM(O(log k))

Proof. First, we sketch an upper bound part for PCGS. Using quite a sophis-
ticated construction that involves nondeterminism and timing we obtain PCGS
Πcopy that generates Lk−copy with communication complexity O(log k).

PCGS generating Lk−copy consists of several groups of grammars:

G2 is used to generate w

C1,C2,C3 are used to prepare strings of the form (w#)2
i

Wi, one-by-one
(w#)2

i

Wi Ã (w#)2
i+1

Wi+1

Pi is used to store (w#)2
i

Wi, 0 ≤ i ≤ blog kc+ 1
Stop3 is used to restart grammar C3 whenever necessary

Let bm . . . b0 be the binary representation of k, m = blog kc. Then, ω = (w#)k

is contained in G1 as a concatenation of "pieces" stored in those component
grammars Pij 's for which the corresponding bit bij = 1.

While w is generated in G2 at the beginning of the derivation all other gram-
mars are "idling", nondeterministically choosing SX → SX as long as necessary.

...
G2 S2 w1S2 w#W1 S2

C1 SC1 SC1 QG2 w#W1

C2 SC2 SC2 · · · SC2 QC1 · · ·
C3 SC3 SC3 SC3 QC1

...

Then, G2 decides to idle and all the other start working in a cycle.

...
C1 (w#)2

i
Wi SC1 QC2 QC2 (w#)2

i+1
W ′

i+1 (w#)2
i+1

Wi+1

C2 QC1 (w#)2
i
Wi (w#)2

i
QC3 (w#)2

i+1
W ′

i+1 SC2 QC1

C3 QC1 (w#)2
i
Wi (w#)2

i
W ′

i+1 SC3 SC3 QC1

Pi QC2 QC2 (w#)2
i+1

W ′
i+1 (w#)2

i+1
Wi+1

Stop3 QC3

At the end G1 nondeterministically wakes up and �nishes generation by concate-
nating parts that are necessary to be concatenated. For illustration let k = 5;
written in binary k = 101
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G1 QP1 (w#)2
0
W0 (w#)2

0
QP2 (w#)2

0
(w#)2

2
W2 (w#)2

0
(w#)2

2
# = (w#)5#

...
P0 (w#)2

0
W0 SP1 SP1 SP1 SP1

P1 (w#)2
1
W1

P2 (w#)2
2
W2 (w#)2

2
W2 (w#)2

2
W2 SP2 SP2

...

Now, let us analyze the recognition of Lk−copy with FRR automata. It is not
hard to construct an k-SLnRR-automaton Mcp such that LP (Mcp) = Lk−copy.
In fact, a very similar construction was presented by [6].

For the lower-bound part let k > 1. Assume that M is a (k − 1)-SLnRR-
automaton on Γ such that LP(M) = Lk−copy. Let A(m,n, k) := ((ambm)n#)k#
where m,n ∈ N+ are su�ciently large numbers. Obviously, A(m,n, k) ∈ Lk−copy.
Hence, there exists an expanded version w ∈ Γ ∗ of A(m,n, k) such that w ∈
LC(M). Assume that w is a shortest expanded version of A(m,n, k) in LC(M)
and consider an accepting computation C of M on input w. Based on the Pump-
ing Lemma it is easily seen that this computation cannot just consist of an ac-
cepting tail computation. Thus, it begins with a cycle of the form w `c

M x. From
the Correctness Preserving Property and from the assumption that C is accept-
ing it follows that x ∈ LC(M), which in turn implies that PrΣ(x) ∈ Lk−copy. As
all rewrite steps of M are length-reducing, |x| < |w| follows. Thus, our choice of
w ∈ LC(M) as a shortest expanded version of A(m,n, k) implies that x is not
an expanded version of A(m,n, k). Since C executes at most k− 1 rewrite steps
in the above cycle, it follows that PrΣ(x) 6∈ Lk−copy. Hence, LP(M) 6= Lk−copy,
which implies that Lk−copy 6∈ LP((k − 1)-SLnRR). 2

5 Conclusion

Motivated by the goals of computational linguistic we have studied two com-
putational models: strongly linearized restarting automata and returning PCGS
with regular components. While the restarting automata have already been used
in the context of computational linguistic, we have also assumed the usefulness
of PCGSs in the �eld. We believe that the obtained results have con�rmed our
intuition. Through the analysis by reduction we have separated a non-trivial
subclass of languages generated by PCGSs, which is semi-linear. We also believe
that the membership-problem for this class of languages is polynomial.

Based on the observations from this paper we will try to make the similar
separations for restarting automata as well. Some e�ort in this direction has
already been initiated in [9], where new measures for PCGS and a notion of
skeleton for t-FRR-automata have been introduced and studied.
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