
On PCGS and FRR-automata

Dana Pardubská?1, Martin Plátek??2, and Friedrich Otto3

1 Dept. of Computer Science, Comenius University, Bratislava
pardubska@dcs.fmph.uniba.sk

2 Dept. of Computer Science, Charles University, Prague
Martin.Platek@mff.cuni.cz

3 Fachbereich Elektrotechnik/Informatik, Universität Kassel, Kassel
otto@theory.informatik.uni-kassel.de

Abstract. This paper presents the second part of the tech-
nical report [7] in which the study of the relation between
Parallel Communicating Grammar Systems (PCGS) and
Freely Rewriting Restarting Automata (FRR) has been ini-
tiated. The �rst part of [7] is presented in [6]. Here, the
distribution and generation complexity for PCGS are intro-
duced and studied. It is shown that analysis by reduction for
PCGS with distribution complexity bounded by a constant k
and generation complexity bounded by some other constant
j can be implemented by strongly linearized deterministic
FRR-automata with k rewrites per cycle. We show in�nite
hierarchies of classes of languages based on the parameters
k, j and on the notion of skeleton.

1 Introduction
This paper deals with the comparison of Freely Rewrit-
ing Restarting Automata (FRR, [4]) and Parallel Com-
municating Grammar Systems (PCGS, [1,8]). Namely,
the so-called linearized FRR-automaton is used for this
purpose. The motivation for our study is the useful-
ness of both models in computational linguistics.

Freely rewriting restarting automata form a suit-
able tool for modelling the so-called analysis by reduc-
tion. Analysis by reduction in general facilitates the
development and testing of categories for syntactic and
semantic disambiguation of sentences of natural lan-
guages. The Functional Generative Description for the
Czech language developed in Prague (see, e.g., [2]) is
based on this method.

FRR automata work on so-called characteristic lan-
guages, that is, on languages with auxiliary symbols
(categories) included in addition to the input symbols.
The proper language is obtained from a characteristic
language by removing all auxiliary symbols from its
sentences. By requiring that the automata considered
are linearized we restrict the number of auxiliary sym-
bols allowed on the tape by a function linear in the
? Partially supported by the Slovak Grant Agency for Sci-
ence (VEGA) under contract �Theory of Models, Com-
plexity and Algorithms�.

?? Partially supported by the Grant Agency of the Czech
Republic under Grant-No. 405/08/0681 and by the pro-
gram Information Society under project 1ET100300517.

number of terminals on the tape. We mainly focus on
deterministic restarting automata in order to ensure
the correctness preserving property for the analysis,
i.e., after any restart in an accepting computation the
content of the tape is a word from the characteristic
language. In fact, we mainly consider strongly lexica-
lized restarting automata. This additional restriction
requires that all rewrite operations are deletions.

Parallel Communicating Grammar Systems are able
to handle creations of copies of generated strings and
their regular mappings in a natural way. This ability
strongly resembles the generation of coordinations in
Czech (and some other natural languages) sentences,
where coordinations are certain contiguous segments
(not only lexicalized elements). However, the synonymy
of coordinations has not yet been modelled appropri-
ately.

In this paper the notions of distribution and gen-
eration complexity for PCGS are introduced and stud-
ied. It is shown that analysis by reduction for PCGS
with distribution complexity bounded by a constant
k and generation complexity bounded by some other
constant j can be implemented by strongly linearized
deterministic FRR-automata with k rewrites per cycle.
We show in�nite hierarchies of classes of languages
based on the parameters k, j and on the notion of
skeleton. The notion of skeleton is introduced in order
to model the principle of so-called segments in (Czech)
sentences (or in text). The elements of skeletons are
so-called islands, which serve to model the so-called
separators of segments (see [3]).

2 Basic notions
A freely rewriting restarting automaton, abbreviated
as FRR-automaton, is described by an 8-tuple M =
(Q,Σ, Γ, c, $, q0, k, δ). It consists of a �nite-state con-
trol, a �exible tape, and a read/write window of a
�xed size k ≥ 1. Here Q denotes a �nite set of (in-
ternal) states that contains the initial state q0, Σ is a
�nite input alphabet, and Γ is a �nite tape alphabet
that contains Σ. The elements of Γ r Σ are called
auxiliary symbols. The additional symbols c, $ 6∈ Γ

are used as markers for the left and right end of the
workspace, respectively. They cannot be removed from
the tape. The behavior of M is described by a transi-
tion function δ that associates transition steps to cer-
tain pairs of the form (q, u) consisting of a state q and
a possible content u of the read/write window. There
are four types of transition steps: move-right steps,
rewrite steps, restart steps, and accept steps. A move-
right step simply shifts the read/write window one po-
sition to the right and changes the internal state. A
rewrite step causes M to replace a non-empty pre�x u
of the content of the read/write window by a shorter
word v, thereby shortening the length of the tape, and
to change the state. Further, the read/write window
is placed immediately to the right of the string v. A
restart step causes M to place its read/write window
over the left end of the tape, so that the �rst symbol
it sees is the left sentinel c, and to reenter the initial
state q0. Finally, an accept step simply causes M to
halt and accept.

A con�guration of M is described by a string αqβ,
where q ∈ Q, and either α = ε (the empty word) and
β ∈ {c}·Γ ∗ ·{$} or α ∈ {c}·Γ ∗ and β ∈ Γ ∗ ·{$}; here q
represents the current state, αβ is the current content
of the tape, and it is understood that the window con-
tains the �rst k symbols of β or all of β when |β| ≤ k.
A restarting con�guration is of the form q0cw$, where
w ∈ Γ ∗.

Any computation of M consists of certain phases.
A phase, called a cycle, starts in a restarting con�gu-
ration. The window is shifted along the tape by move-
right and rewrite operations until a restart operation
is performed and thus a new restarting con�guration is
reached. If no further restart operation is performed,
the computation necessarily �nishes in a halting con-
�guration � such a phase is called a tail. It is required
that in each cycle M performs at least one rewrite
step. As each rewrite step shortens the tape, we see
that each cycle reduces the length of the tape. We use
the notation u `c

M v to denote a cycle of M that be-
gins with the restarting con�guration q0cu$ and ends
with the restarting con�guration q0cv$; the relation
`c∗

M is the re�exive and transitive closure of `c
M .

A word w ∈ Γ ∗ is accepted by M , if there is a
computation which starts from the restarting con�gu-
ration q0cw$, and ends with an application of an ac-
cept step. By LC(M) we denote the language consist-
ing of all words accepted by M . It is the characteristic
language of M .

By PrΣ we denote the projection from Γ ∗ onto Σ∗,
that is, PrΣ is the morphism de�ned by a 7→ a (a ∈ Σ)
and A 7→ ε (A ∈ Γ rΣ). If v := PrΣ(w), then v is the
Σ-projection of w, and w is an expanded version of v.
For a language L ⊆ Γ ∗, PrΣ(L) := {PrΣ(w) | w ∈ L }.

In recent papers restarting automata were mainly
used as acceptors. The (input) language accepted by a
restarting automaton M is the set L(M) := LC(M)∩
Σ∗. Here, motivated by linguistic considerations to
model the analysis by reduction with parallel process-
ing, we are rather interested in the so-called proper
language of M , which is the set of words LP(M) :=
PrΣ(LC(M)). Hence, a word v ∈ Σ∗ belongs to LP(M)
if and only if there exists an expanded version u of v
such that u ∈ LC(M).

For each type X of restarting automata, we use
LC(X) and LP(X) to denote the class of all character-
istic languages and the class of all proper languages of
automata of this type.

Following basic properties of FRR-automata are of-
ten used in proofs.
(Correctness Preserving Property.) Each deter-
ministic FRR-automaton M is correctness preserving,
i.e., if u ∈ LC(M) and u `c∗

M v, then v ∈ LC(M), too.
(Cycle Pumping Lemma.) For any FRR-automaton
M , there exists a constant p such that the following
property holds. Assume that uxvyz `c

M ux′vy′z is a
cycle of M , where u = u1u2 · · ·un for some non-empty
words u1, . . . , un and an integer n > p. Then there
exist r, s ∈ N+, 1 ≤ r < s ≤ n, such that
u1 · · ·ur−1(ur · · ·us−1)ius · · ·unxvyz `c

M

u1 · · ·ur−1(ur · · ·us−1)ius · · ·unx′vy′z
holds for all i ≥ 0, that is, ur · · ·us−1 is a �pumping
factor� in the above cycle. Similarly, such a pump-
ing factor can be found in any factorization of length
greater than p of v or z as well as in any factorization
of length greater than p of a word accepted in a tail
computation.

We focus our attention on FRR-automata, for which
the use of auxiliary symbols is less restricted than
in [4].

De�nition 1. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be an
FRR-automaton, |x|K denotes the number of occur-
rences of symbols from K in word x.
(a) The FRR-automaton M is called linearized if there

exists a constant j ∈ N+ such that |w|Γ−Σ ≤ j ·
|w|Σ + j for each w ∈ LC(M).

(b) M is called strongly linearized if it is linearized,
and if each of its rewrite operations just deletes
some symbols.
Since linearized FRR automata use linear space

only, we have the following:

Corollary 1. If M is a linearized FRR-automaton,
then the proper language LP(M) is context-sensitive.

In what follows we are mainly interested in strongly
linearized FRR-automata and their proper languages.

We denote by (S)LnRR the class of (strongly) linearized
deterministic FRR-automata, by N(S)LnRR the class of
non-deterministic (strongly) linearized FRR-automata,
and by t-A the subclass of A-automata which execute
at most t rewrite steps in any cycle.

2.1 Parallel Communicating Grammar
Systems

A PCGS of degree m, m ≥ 1, is an (m + 1)-tuple
Π = (G1, . . . , Gm,K), where for all i ∈ {1, . . . , m},
Gi = (Ni, T, Si, Pi), so-called component grammars,
are regular grammars satisfying Ni ∩ T = ∅ and K ⊆
{Q1, . . . , Qm}

⋂ ⋃m
i=1 Ni is a set of special symbols,

called communication symbols.
A con�guration is an m-tuple C = (x1, . . . , xm), xi =
αiAi, αi ∈ T ∗, Ai ∈ (Ni ∪ ε); we call xi the i-th com-
ponent of the con�guration (resp. component). The
nonterminal cut of con�guration C is the m−tuple
N(C) = (A1, A2, . . . , Am). If the nonterminal cut N(C)
contains at least one communication symbol, it is de-
noted NC(C) and called an NC-cut.

We say that a con�guration X = (x1, . . . , xm) di-
rectly derives a con�guration Y = (y1, . . . , ym), and
write X ⇒ Y , if Y is derived from X by one gener-
ative or communication step (see below). Informally,
in a communication step any occurrence of a commu-
nication symbol Qi in X is substituted by the i-th
component of X (assuming that this component does
not contain any communication symbol).

1. (Generative step) If |xi|K = 0 for all i , 1 ≤ i ≤ m,
then

xi
Gi⇒ yi for xi ∈ T ∗Ni and

yi = xi for xi ∈ T+.
2. (Communication step) If |xi|K > 0 for some i,

1 ≤ i ≤ m, then for each k such that xk = zkQjk
,

zk ∈ T ∗, Qjk
∈ K, the following is true:

(a) if |xjk
|K = 0, then yk = zkxjk

and yjk
= Sjk

;
(b) if |xjk

|K = 1, then yk = xk.

For all remaining indices t, for which xt does not con-
tain a communication symbol and Qt has not occurred
in any of the xi's, we put yt = xt.

Now, we describe the derivations in PCGSs. A deri-
vation of a PCGS Π is a sequence of con�gurations
D = C1, C2, . . . , Ct, where Ci ⇒ Ci+1 in Π. If the
�rst component of Ct is a terminal word w, then we
usually write D(w) instead of D. Analogously, we de-
note by W (D) the terminal word generated within the
derivation D. Every derivation can be viewed as a se-
quence of generative and communication steps, too.

If no communication symbol appears in any of the
component grammars, then we perform a generative
step consisting of rewriting steps synchronously per-
formed in each of the component grammars Gi, 1 ≤

i ≤ m. If any of the components is a terminal string,
it is left unchanged. If any of the component grammars
contains a nonterminal that cannot be rewritten, the
derivation is blocked. If the �rst grammar G1 contains
a terminal word w, the derivation �nishes and w is the
word generated by Π in this derivation.

If a communication symbol is present in any of
the components, then a communication step is per-
formed. It consists of replacing those communication
symbols with the phrases they refer to for which the
phrases do not contain communication symbols. Such
an individual replacement is called a communication.
Obviously, in one communication step at most m − 1
communications can be performed. If some communi-
cation symbol was not replaced in this communication
step, it may be replaced in one of the next communi-
cation steps. Communication steps are performed un-
til no more communication symbols are present or the
derivation is blocked, because no communication sym-
bol can be replaced in the last communication step.
The (terminal) language L(Π) generated by a PCGS
Π is a set of the terminal words generated by G1 (in
cooperation with the other grammars):
L(Π) = {α ∈ T ∗| (S1, . . . , Sm) ⇒+ (α, β2, . . . , βm) }.

Let D = D(w) = C0, C1, . . . , Ct be a derivation of
w by Π; D(w), Π and w are �xed in what follows.
With derivation D(w), several notions can be associ-
ated which help to analyze the derivation of Π and to
unambiguously determine w.
The trace of a (sub)derivation D is the sequence T (D)
= N(C0)N(C1) . . . N(Ct) of the nonterminal cuts of
the individual con�gurations of D.
The NC-sequence is de�ned analogously; NCS(D) is
the sequence of the NC-cuts of the con�gurations in
the (sub)derivation D. Let us recall that any NC-cut
contains at least one communication symbol.
A cycle in a derivation is a subsequence N(C), N(C1),
. . . , N(Cj), N(C) of nonterminal cuts of the deriva-
tion4 in which the �rst and the last cuts (N(C)) are
the same. If N(C) is an NC-cut, and none of the in-
termediate cuts N(Ci) is an NC-cut, then the cycle
is called a communication cycle. A generative cycle is
de�ned analogously, we only require that none of its
cuts is an NC-cut.

Note that, if there is a cycle in the derivation D(w),
then manifold repetition of the cycle is possible and
the resulting derivation is again a derivation of some
terminal word. We call a derivation D(w) reduced, if
each repetition of each of its cycles leads to a longer
terminal word ω; |w| < |ω|. Obviously, to every deriva-
tion D(w) there is an equivalent reduced derivation
4 More precisely it is a subsequence of trace of the deriva-
tion.

D′(w).

A generative section is a non-empty sequence of gen-
erative steps between two consecutive communication
steps in D(w)5, resp. before the �rst and/or after the
last communication steps in D(w).
The degree of generation DG(D(w)) is the number of
generative sections of D(w). In the following we con-
sider only PCGS without communication cycles,
i.e., DG(D(w)) is bounded by a constant depending
only on Π.

g(i, j) (g(i, j,D(w))) denotes the terminal part gen-
erated by Gi within the j-th generative section of
D(w), we call it the (i, j)-(generative) factor (of
D(w));

n(i, j) (n(i, j,D(w))) denotes the number of occur-
rences of g(i, j) in w;

g(i, j, l) denotes the l-th occurrence of g(i, j) in w, we
call it the (i, j, l)-(generative) factor.

The communication structure CS(D(w)) of D(w) is
CS(D(w)) = (i1, j1, l1), (i2, j2, l2) , . . . , (ir, jr, lr),

where w = g(i1, j1, l1), g(i2, j2, l2) . . . g(ir, jr, lr). The
set of these indices is denoted I(D(w)).

N(j,D(w)) = Σi n(i, j, D(w)), where the sum is taken
over such i for which ∃s : i = is & (is, js, ls) ∈
I(D(w)).

The degree of distribution DD(D(w)) of D(w) is the
maximum over all (de�ned) N(j, D(w)).

Now, we are ready to introduce the notions of dis-
tribution complexity and generation complexity. First,
the distribution complexity of a derivation D (denoted
DD(D)) is the degree of distribution introduced above.

Then, the distribution complexity of a language
and the associated complexity class are de�ned in the
usual way (always considering the corresponding max-
imum): distribution complexity of a derivation Ã dis-
tribution complexity of a word Ã distribution com-
plexity of a language L (denoted DD(L)) as a function
of the length of the word Ã f(n)−DD as class of lan-
guages whose distribution complexity is bounded by
f(n).

The generation complexity is introduced analogous-
ly. Here, we are mainly interested in the classes of lan-
guages with t-DD and/or with j-DG for some natural
numbers j, t. We denote by j-t-DDG the class of lan-
guages such that, to any language L of this class, there
is a PCGS Π such that L(Π) = L, and DD(L(Π)) = t,
DG(L(Π)) = j.
5 Note that if some communication cut contains more
than one communication symbol, then there might be
no generative step between two communication steps.

Relevant observations about derivations of PCGS
(see [5] for more information) are summarized in the
following facts:

Fact 1 Let Π be a PCGS without a communication
cycle. Then there are constant d(Π), `(Π), s(Π) such
that

1. the number n(i, j) of occurrences of individual
g(i, j)′s in a reduced derivation D(w) is bounded
by d(Π); n(i, j) ≤ d(Π);

2. the length of the communication structure for ev-
ery reduced derivation D(w) is bounded by `(Π);

3. the cardinality of the set of possible communication
structures corresponding to reduced derivations by
Π is bounded by s(Π).

Fact 2 Let Π be a PCGS without a communication
cycle, D(w) a reduced derivation of a terminal word w.
Then there is a constant e(Π) such that, if more than
e(Π) generative steps of one generative section are
performed, then at least one g(i, j, D(w)) is changed
(see Example 1 in [7]).

3 Bounded Degree of Distribution

We start the section showing that a language gener-
ated by a PCGS Π with constant distribution com-
plexity can be analyzed (by reduction) by a t-SLnRR-
automaton M .

In fact, the result follows from the analysis of the
proof of Theorem 1 ([7]). For better understanding and
to motivate the notions de�ned below we sketch the
mentioned proof (from [7]).

The high-level idea is to merge the terminal word w
with the information describing its reduced derivation
D(w) in a way allowing simultaneously the "simula-
tion/reduction" of the derivation D(w) and the cor-
rectness checking. Analysis by reduction is based on
the deletion of the parts of a (characteristic) word
which correspond to parts generated within one gen-
erative cycle. We call such a merged (characteristic)
word Π-description of w.
Let (α1A1, . . . , αmAm) be the con�guration at the be-
ginning of the j-th generative section,
(A1, . . . , Am), (α1,1A1,1, . . . , α1,mA1,m), . . .

(α1,1α2,1 . . . αs,1As,1, . . . , α1,mα2,m . . . αs,mAs,m)
the sub-derivation corresponding to this generative sec-
tion. Merging the description of this sub-derivation
into g(i, j, l) we obtain the extended version of g(i, j, l):

[b, i, j, l]
(

A1
A2
· · ·
Am

)
α1,i

(
A1,1
A1,2
· · ·

A1,m

)
α2,i

(
A2,1
A2,2
· · ·

A2,m

)
. . .

. . . αs,i

(
As,1
As,2
· · ·

As,m

)
[e, i, j, l].

Such a description of g(i, j, l) is denoted ex-g(i, j, l).
We use ex-g(i, j, l) to merge the (topological) infor-
mation about derivation D(w) into w. Obviously, we
can speak about traces and factor cycles in ex-g(i, j, l)
similarly as we speak about traces and generative cy-
cles in derivations.

Let w,D(w), ex-g(i, j, l), be as above. Replace any
g(i, j, l) in w by ex-g(i, j, l); the result is denoted ex-w.
Then, concatenating the NC-sequence of D(w), the
communication structure given by D(w), and ex-w we
obtain the Π-description of w:

Πd(D(w)) = NCS(D(w))CS(D(w))ex-w.

Observations. Let Πd(D(w)) be the Π-description
of w.

(a) When a reduced derivation D(w) is taken, then
the length of Πd(D(w)) is bounded from above
by cΠ · |w|+ cΠ , where cΠ is a constant depending
on Π only.

(b) From Πd(D(w)) the terminal word w is easily ob-
tained by deleting all symbols which are not ter-
minal symbols of Π.

(c) Let T (D(w)) be the trace of D(w), and T (Π) :=
{T (D(w)) | w ∈ L(Π)}. Then, T (Π) is a regular
language, and the sets of NC-cuts and communi-
cation sequences of Π are �nite. Note that a �nite
automaton is also able to check whether a given
string x is a correct ex-g(i, j, l), NCS(D(w)), or
CS(D(w)) given by Π.

Analyzing the proof of Theorem 1 from [7] we have
the following consequence. The construction of a k-
SLnRR-automaton M accepting the characteristic lan-
guage LC(M) = {Πd(D(w)) | w ∈ L(Π)} is outlined
in [7].

Corollary 2. For all k ∈ N, k-DD ⊆ LP(k-SLnRR).

For t ∈ N+, separation of PCGSs of distribution
complexity t from the proper languages of nondeter-
ministic linearized FRR-automata with at most t − 1
rewrites per cycle, is done with the help of the lan-
guage

Lt := { c1wd · · · ctwd | w ∈ {a, b}∗ },

where Σ1 := {c1, . . . , ct, d} is a new alphabet disjoint
from Σ0 := {a, b}.
Proposition 1. For all t ∈ N+,

Lt ∈ L(t-DD)r LP((t− 1)-NLnRR).

Proof. It is not hard to show that Lt ∈ L(t-DD). We
use a PCGS with t + 1 component grammars for that:
(S1, S2, . . . , St+1) ⇒∗

⇒∗ (c1Q2, c2Q3, . . . , ctQt+1, wd)

⇒∗ (c1wdc2wd . . . ctwd, S2, . . . , St, St+1).

For the lower-bound part we use a similar tech-
nique as in [4].

Let M = (Q,Σ, Γ, c, $, q0, k, δ) be a nondetermin-
istic linearized FRR-automaton that executes at most
t − 1 rewrites per cycle, where Σ := Σ0 ∪ Σ1. As-
sume that LP(M) = Lt holds. Consider the word w :=
c1a

nbnd · · · cta
nbnd ∈ Lt, where n is a large integer.

Then there exists an expanded version W ∈ Γ ∗ of w
such that W ∈ LC(M). Let W be a shortest expanded
version of w in LC(M). Consider an accepting com-
putation of M on input W . Clearly this cannot just
be an accepting tail, and hence, it begins with a cycle
of the form W `c

M W1. From the Correctness Pre-
serving Property it follows that W1 ∈ LC(M), which
implies that w1 := PrΣ(W1) ∈ Lt. As |W1| < |W |,
we see from our choice of W that w1 6= w, that is,
w1 = c1x1d · · · ctx1d for some word x1 ∈ Σ∗

0 of length
|x1| < 2n. However, in the above cycle M executes
at most t − 1 rewrite steps, that is, it cannot possi-
bly rewrite each of the t occurrences of anbn into the
same word x1. It follows that w1 6∈ Lt, implying that
Lt 6∈ LP((t− 1)-NLnRR). 2

As L(t-DD) ⊆ LP(t-SLnRR), we obtain the follow-
ing hierarchies from Proposition 1, where LP(t-DD)
just denotes the class L(t-DD).

Theorem 1. For all X ∈ {DD, LnRR,SLnRR,NLnRR,
NSLnRR}, and all t ≥ 1,

LP(t-X) ⊂ LP((t + 1)-X) ⊂
⋃

t≥1

LP(t-X) ⊂ LP(X).

4 Skeletons
In this part we de�ne the notions of skeleton and is-
lands whose introduction has been motivated by our
attempt to model two basic kinds of coordinated seg-
ments in (Czech, German, Slovak) sentences. The is-
lands in a level of skeleton serve to denote places of
coordinated segments which are coordinated in a mu-
tually dependent (bound) way. The di�erent levels of
islands serve for modelling the independence of seg-
ments. A technical example how to construct skeletons
is given by the construction in the proof of [7] Theo-
rem 1. In fact, skeletons are only de�ned for t-SLnRR-
automata that ful�ll certain additional requirements.

De�nition 2. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be a t-
SLnRR-automaton for some t ∈ N+, and let s ∈ N+.
Let SK(s) = { ci,j | 1 ≤ i ≤ t, 1 ≤ j ≤ s } be a
subalphabet of cardinality t · s of Γ ′ = Γ ∪ {c, $}. For
each j ∈ {1, . . . , s}, let SK(s, j) = {c1,j , . . . , ct,j} be
the j-th level of SK(s). We say that SK(s) is an s-
skeleton (skeleton) of M if the following holds:

1. For all w ∈ LC(M) and all c ∈ SK(s), |w|c ≤ 1,
that is, w contains at most one occurrence of c.

2. Each rewrite operation of M deletes a single con-
tinuous factor from the actual contents of the win-
dow, and at that point the window must contain
exactly one occurrence of a symbol from SK(s).
This symbol is either in the �rst or in the last po-
sition of the window.

3. If a cycle C of M contains a rewrite operation
during which a symbol ci,j ∈ S(s, j) is in the �rst
or last position of the window, then every rewrite
operation during C is executed with some element
of S(s, j) in the �rst or last position of the window.

4. If w ∈ LC(M), w = xyz, such that |y| > k, and y
does not contain any element of SK(s), then start-
ing from the restarting con�guration corresponding
to w, M will execute at least one cycle before it ac-
cepts.
The elements of SK(s) are called islands of M . We

say that SK(s) is a left skeleton of M , if M executes
rewrite operations only with an island in the leftmost
position of its window.

Thus, in each cycle M performs up to t rewrite
(that is, delete) operations, and during each of these
operations a di�erent island ci,j of the same level SK(j)
is inside the window. As there are s such levels, we see
that there are essentially just s di�erent ways to per-
form the rewrite steps of a cycle.

By LP(t-SK(s)) (resp. by LP(t-LSK(s))) we denote
the class of proper languages of t-SLnRR-automata
with s-skeletons (resp. with left s-skeletons). The cor-
responding classes of characteristic languages are de-
noted by LC(t-SK(s)) (resp. by LC(t-LSK(s))).

Observe that the symbols of the form [b, i, s, l] in
the construction of an s-SLnRR-automaton M accept-
ing the language LC(M) = {Πd(D(w)) | w ∈ L(Π) }
play the role of islands for M , and their complete set
is a left skeleton for M . This observation serves as
the basis for the proof of the next corollary. Recall
that s-t-DDG denotes the class of PCGSs that have
simultaneously generation degree s and distribution
degree t.
Corollary 3.
For all s, t ∈ N+, L(s-t-DDG) ⊆ LP(t-LSK(s)).

To separate PCGSs of generation complexity t and
distribution complexity s from the class of proper lan-
guages of (t− 1)-LSK(s)-automata we de�ne language
L(t,s). This language is based on a kind of bounded
concatenation of Lt. For s, t ∈ N+ and i ≤ s, let
L(t) := { c1wd · · · ctwd | w ∈ {a, b}∗, ci ∈ Σi, d ∈ ∆ },
where Σ1, . . . Σs,∆ are new alphabets with empty in-
tersection with {a, b}. Then,

L(t,s) := (L(t))s.

Proposition 2. For all s, t ∈ N+,

(a) L(t,s) ∈ L(s-t-DDG),
(b) L(t,s) /∈ LP(t-SK(s− 1)) for s > 1, and
(c) L(t,s) /∈ LP((t− 1)-SK(s)) for t > 1.

Sketch of the proof. Note that Lt = L(t) = L(t,1)

when |Σ1| = · · · = |Σt| = |∆| = 1.
(a) For the upper-bound part we use a PCGS with
(t+s) component grammars, which realize s phases
corresponding to s generative sections. The group of
grammars Gs+1, . . . , Gs+t plays the role of G2, . . . ,
Gt+1 from the proof of Proposition 1, while the compo-
nent grammars G1, . . . , Gs play the role of grammar
G1 from that proof. At the end of the p-th genera-
tive section, there is a word ωpi present in component
grammar Gs+1, where ωp = c1,pwpdp . . . ct,pwpdp is a
terminal word and i, 1 ≤ i ≤ s, is a nonterminal
symbol indicating that Gi is the grammar into which
ωp should be communicated. Finally, the synchronized
communication concatenates all ω's in an appropriate6
way in component grammar G1.
(b) Assume that M is a t-SK(s−1)-automaton such
that LP(M) = L(t,s). Thus, M has a (s − 1)-skeleton
SK(s − 1) = { ci,j | 1 ≤ i ≤ t, 1 ≤ j ≤ s − 1 }.
Now assume that, for i = 1, . . . , s, wi ∈ Lt,i, that
is, w := w1w2 · · ·ws ∈ L(t,s). Further, let W be an
expanded version of w. For each cycle of M in an ac-
cepting computation on input W , there exists an in-
dex j ∈ {1, . . . , s − 1} such that each rewrite step of
this cycle is executed with an island ci,j in the left-
or rightmost position of the window. From the proof
of Proposition 1 we see that, for each of the factors
Lt,j , t rewrite steps per cycle are required. Thus, each
of the factors Wi must contain t islands, that is, W
must contain at least t · s islands. However, as the
word W ∈ LC(M) contains at most a single occur-
rence of each symbol of the set SK(s − 1), and as
|SK(s−1)| = t·(s−1), W can contain at most t·(s−1)
islands. This contradicts the observation above, im-
plying that L(t,s) is not the proper language of any
t-SK(s− 1)-automaton.
(c) For the lower-bound part recall Proposition 1
where Lt 6∈ LP((t− 1)-NLnRR) is shown to hold. From
the proof it follows that L(t,s) 6∈ LP((t− 1)-NLnRR).
As (t−1)-SK(s)-automata are a special type of (t−1)-
SLnRR-automata, the non-inclusion result in (c) fol-
lows. 2

Next we consider the language Lpe := {wcwR |
w ∈ {0, 1}∗ }. By taking the symbol c as an island, we
easily obtain the following result.
6 The construction of PCGS heavily utilizes nondetermin-
ism. In case of �wrong� nondeterministic choices the
derivation is blocked.

Proposition 3. Lpe ∈ LP(2-SK(1)).

On the other hand, this language cannot be ac-
cepted if we restrict our attention to left skeletons.

Proposition 4. ∀s, t ∈ N+ : Lpe 6∈ LP(t-LSK(s)).

Proof. Assume that M is a t-LSK(s)-automaton such
that LP(M) = Lpe, that is, M has a left skeleton
SK(s) = { ci,j | 1 ≤ i ≤ t, 1 ≤ j ≤ s }. Let w =
(anbn)m, where n,m ∈ N+ are su�ciently large, and
let z = wcwR ∈ Lpe. Then there exists a (shortest)
expanded version Z ∈ Γ+ of z such that Z ∈ LC(M).
Hence, the computation of M on input Z is accepting,
but because of the Pumping Lemma it cannot just
consist of an accepting tail, that is, it begins with a
cycle Z `c

M V , where V ∈ LC(M) and |V | < |Z|.
Thus, v = PrΣ(V) ∈ Lpe, but v 6= z. In this cy-
cle M performs up to t delete operations that each
delete a continuous factor of Z to the right of an is-
land ci,j for some level j ∈ {1, . . . , s}. It follows that
v = w1cw

R
1 for some word w1 ∈ {a, b}∗ satisfying

|w1| < |w|, and that w1 is obtained from w by deleting
some factors, and wR

1 is obtained from wR by delet-
ing the corresponding reverse factors. When deleting
a factor x within the pre�x w to the right of an is-
land ci,j , then this means that this island �moves� to
the right inside w, that is, from ci,jxy the factor ci,jy
is obtained. Here we just consider the projection of Z
onto (SK(s, j)∪{a, b})∗. Now when the corresponding
factor xR is deleted from wR, then it is to the right of
an island ci′,j , that is, from yRci′,jx

R the factor yRci′,j
is obtained. Thus, while for deleting the factor y of w
the same island ci,j could be used in a later cycle, an
island di�erent from ci′,j is needed for yR. The same
argument applies to the case that the roles of w and
wR are interchanged. This means that in the process of
synchronously processing w and wR, the same island
can be used repeatedly in subsequence cycles within
one of the two parts, but the corresponding deletions
in the other part require new islands in each cycle. If
w is of su�cient length, then it follows that t ·s islands
will not su�ce. Hence, Lpe 6∈ LP(t-LSK(s)). 2

The results above yield the following consequences.

Theorem 2. For all X ∈ {LSK, SK}, and all s, t ≥ 1,
we have the following proper inclusions:

(a) s-t-DDG ⊂ (s + 1)-t-DDG.
(b) s-t-DDG ⊂ s-(t + 1)-DDG.
(c) LP(t-X(s)) ⊂ LP((t + 1)-X(s)).
(d) LP(t-X(s)) ⊂ LP(t-X(s + 1)).
(e) s-t-DDG ⊆ LP(t-LSK(s)) ⊆ LP(t-SK(s)).
(f) LP(t-LSK(s)) ⊂ LP(t-SK(s)) for t ≥ 2.

5 Conclusion
The study of the relation between PCGS and FRR was
motivated by computational linguistics; both models
seem to be useful in this �eld. While in [6] the basic
relation between the computational power of these two
models was established, the aim of this paper was to
introduce and study the relevant complexity measures
of PCGS and restrictions on computation of FRR.

We have succeeded in showing in�nite hierarchies
both for PCGSs and FRRs. The question of whether
j-k-DDG is equal to LP(j-LSK(k)) or not remains open.

We also believe that properly using nondetermin-
ism the next conjecture can be shown.
Conjecture 1. For any L ∈ j-k-DDG, there is a correct-
ness preserving k-NSLnRR-automaton M with a left
j-skeleton SK(j) such that L = LP (M), and M has
no auxiliary symbols outside of SK(j).

References
1. J. Hromkovi£, J. Kari, L. Kari, and D. Pardub-

ská. Two lower bounds on distributive generation of
languages. In Proc. 19th International Symposium
on Mathematical Foundations of Computer Science
1994, LNCS vol. 841, Springer-Verlag, London, 423�
432.

2. M. Lopatková, M. Plátek, and P. Sgall. Towards
a formal model for functional generative descrip-
tion: Analysis by reduction and restarting automata.
The Prague Bulletin of Mathematical Linguistics 87
(2007) 7�26.

3. V. Kubo¬, M. Lopatková, M. Plátek, and P. Pognan.
Segmentation of Complex Sentence. In:Lecture Notes
In Computer Science 4188, 2006, 151-158.

4. F. Otto and M. Plátek. A two-dimensional taxonomy
of proper languages of lexicalized FRR-automata.
Pre-proc. LATA 2008, S.Z. Fazekas, C. Martin-Vide,
and C. Tirn�auc�a (eds.), Tarragona 2008, 419 � 430.

5. D. Pardubská. Communication complexity hierarchy
of parallel communicating grammar system. In: De-
velopments in Theoretical Computer Science. Yver-
don: Gordon and Breach Science Publishers, 1994. -
115�122. - ISBN 2-88124-961-2.

6. D. Pardubská and M. Plátek. Parallel Communicat-
ing Grammar Systems and Analysis by Reduction by
Restarting Automata. Submitted to ForLing 2008.

7. Dana Pardubská, Martin Plátek, and Friedrich
Otto. On the Correspondence between Par-
allel Communicating Grammar Systems and
Restarting Automata. Technical Reports in In-
formatics, TR-2008-015, Comenius University,
Bratislava(http://kedrigern.dcs.fmph.uniba.sk/reports/)

8. Gh. P�aun and L. Santean. Parallel commu-
nicating grammar systems: the regular case.
Ann. Univ. Buc. Ser. Mat.-Inform. 37 vol.2 (1989)
55�63.

