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ABSTRACT

The communication structure of parallel comunicating grammar sysytems (PCGS) considered as
the descriptional complexity of PC'(GS is investigated here. The aim of the paper is to compare
computational power of PC'(GS’s with respect to their communication structure. Investigating the
generation of the languages over one-letter alphabet the communication structures dags(directed
acyclic graphs) and cycles are proved to be less powerful then complete graphs are. Moreover it is
shown that the increase of the number of component grammars of PC'(G.S’s cannot compensate for

a suitable communication structure.

1.Introduction

Parallel Communicating Grammar Systems (PCGS) representing a formal model
for parallel (distributive) generation of languages has been introduced by G.Paun
and L.Santean in . Informally, a PCGS of degree n consists of n separate grammars
generating synchronously words in derivations starting from their own axiom. The
cooperation is based on some communications realized in so called communication
steps. In one communication step one grammar G may via special nonterminals
require a string generated by another grammar G’ of PCGS. After receiving it ¢
includes this string in its own string and G’ continues derivation from its axiom.
There is special, output grammar G generating a string considered to be the output
of a whole PCGS. The precise, formal definition of PCGS follows in the next section.

In this paper we investigate the PCGSs where components are regular grammars
with the rules from N x T*N,N x T+
and the set of terminals respectively. This model of PCGS is one of the most studied
ones in the literature '=® because its components are the simpliest one (from the
Chomsky hierarchy point of view), and so such PCGS corresponds to a natural,
distributive system with simple processors. The aim of this paper is to investigate the

, where N and 7' are the set of nonterminals

generation power of these systems, their complexity measures, and the relationships
among them. The most investigated complexity measure for PCGS has been the
number of grammars the PCGS consists of, which is clearly a descriptional complexity

1This work has been done during the author’s stay at the Dept. of Mathematics & Informatics
of the University of Paderborn



measure. The hierarchy results claiming that cPCGS (centralised PCGS) of regular
n+1 grammars are more powerful than cPCGS of n regular grammars for any positive
integer n has been established in ®. Because the complexity of communication shows
generally to be the crutial one in parallel systems, Hromkovi¢ et.al.* proposed to
consider two communication complexity measures for PCGS. The first one is the
communication structure of PCGS (the shape of the graph consisting of the directed
communication links between the grammars of the system) which can be considered
as alternative descriptional complexity measure. As the classes of structures of a
principal interest, linear arrays (chains), rings, trees and directed acyclic graphs are
proposed in *. The second communication complexity measure introduced in %* and
studied also in ® is the number of exchanged messages (strings) during the generation
procedure. This complexity measure is clearly a computational complexity measure
which may be considered as a function of the length of the generated word.

The main aim of our paper is to investigate the power of different communication

4 some special lower bound techniques were developed for special

structures. In
communication structures as rings, trees and dags. These techniques have enabled
to show strong hierarchies on the number of grammars in these structures as well as
strong hierarchies showing that PCGS with k4 1 communications are more powerful
than PCGS with k& communication for chains and trees. Unfortunately, no result
showing that any type of communication structures is more powerful than another
one has been achieved there. Here, we give the first result of this kind. Showing
that rings and dags can generate only regular languages over one-letter alphabet
(independently of the number of component grammars used) we get that rings and
dags are weaker than arbitrary structures (complete graphs). Since a nonregular
language over one-letter alphabet can be achieved by 3 grammars, this shows that
the number of grammars cannot compensate for suitable communication structure.

2. Definitions and notations.

We assume the reader to be familiar with basic definitions and notations in formal
language theory and we specify only some of them related to the PCGS.

We denote by ¢ the empty symbol and by |z| the length of z. For a set K, |z|x
denotes the number of occurrences of symbols from K in z.

Definition 1 A PCGS of degree n,n > 1, is an n-tuple Il = (G4,...,G,), where
o G, =(N,,T,S;, P,) are reqular grammars satisfying
- NNT =0 forallic{l,...,n}
— P CNxT*NUNxTT

o there exists a set K C {Q1,...,Qn} of special symbols, called communication
symbols, used in communications as will be shown below.



The communication protocol in a PCGS 1I is determined by its communication
graph. The vertices of this directed graph G(II) are labeled by G4, . .., G,, and directed
edge (G;, ;) is presented in the G(II) iff the communication symbol @; belongs to
the nonterminal alphabet of G;.

An n-tuple (z1,...,2,), @, = a;A;, o € T* A; € (N; Ue), is called configura-
tion. The n-tuple (Aq, A, ..., A,) is called the nonterminal cut of the configuration
(z1,...,2,). If the nonterminal cut of the configuration (z1,...,2,) is such that it
contains at least one communication symbol, then so called communication cut, that
is n-tuple (By, Ba, ..., B,), where B; = A, for A; € K and B; =  for A; ¢ K, can be
associated with it.

We say (x1,...,x,) directly derives (y1,...,y,) and write (z1,...,2,) = (Y1, -, Yn),
if one of the next two cases holds:

I. Jz|g = 0 for all i, 1 < ¢ < n, and either z; — y; in G; when z; contains
nonterminal or z; is the terminal word and y; = x; .

2. if |z;|k > 0 for some i, 1 < ¢ < n, then for each such i we write z; = z,Q);,
where z; € T™.

(a) If |z;|k =0 then y; = zz; and y; = 5,
(b) If |zj|x > 0 then y; = ;.

For all remaining indexes t, for which x; does not contain communication symbol and
(); has not occured in any of x;’s, we put y; = xy.

A derivation consists of rewriting and communication steps.

If no communication symbol appears in any of the component grammars then
we perform a rewriting step consisting of rewriting steps synchronously performed in
each of the grammars. If some of the commponents is a terminal string, it is left
unchanged. If some of the component grammars contains nonterminal that cannot
be rewritten, the derivation is blocked.

If a communication symbol is present in any of the components, then a communi-
cation step is performed. It consists of replacing all communication symbols with the
phrases they refer to under condition these phrases do not contain communication
symbol. If some communication symbols are not satisfied in this communication step,
they may be satisfied in one of the next ones. Communication steps are performed
until no more communication symbols are present or the derivation is blocked because
no communication symbol has been satisfied in the last communication step.

The language generated by the system consists of the terminal words generated
in GG1 (in the cooperation with the other grammars).

Definition 2 L(Il) = {a € T*| (S1,...,5) =" (e, B, ..., Bn) }.

Now, to illustrate the definition of PCGS and to motivate some new notions, the
example of PCGS generating the language over one-letter alphabet follows.



Example 1 Let us have a PCGS 11 (unambiguously) given by the sets of rules of its
component grammars

P S = Qa2 — Z3, 73 — Zy, Zy — QQa]a}

Py { Sy = 75,7y — Q3,24 — Z3}

Ps3: { S35 — a*Qq, 2y — 73, 73 — Z4}.

D@  ©

communication graph

The derivation of PCGS II can proceed as follows.

(S1, 52, 55) = (Qa, Z2,0*Qa) 2> (Z2, 82,02 %) > (Zs, Za,a*Zs) 5 (Za, Qa, 02 Za)
(Z4,a*Z4, S3) A (Q2,a*Z5,a*Q)3) R (a*Zy, Sy,a*Zy) — ... — (a*Z4,a*Z5,53) —
(a®, a*Z4,a*Qy)

The first step is generative, because no communication symbol is presented in any
sequential form of any component grammar. After this step the first and third com-
ponent grammars contain communication symbol ¢);. Since the second component
grammar does not contain any communication symbol, the second -communication -
step of the derivation is succesfuly performed. During this step communication sym-
bol (), is replaced by the sequential form of the grammar G, while S; becomes the
new content of the component grammar (G5. Analogously, the derivation steps 3,4
and 6 are generative and the derivation steps 5 and 7 are communication ones.

We will show, that L(IT) = {a®**"*'|n > 1}. To do it, let us describe the deriva-
tion in another - more appropriate - form.

Gl . Sl Q2 Z2 Z3 Z4 Z4 Q2 a2Z2 CZQZ4 Cl3
G2 : SQ Z2 SQ Z2 Qg CL2Z4 Cl222 SQ T CZQZ4 Cl222
G3 . 53 G2Q2 a2Z2 CL2Z3 a2Z4 53 a2Q2 CL4Z2 53 a2Q2

It is easy to see that II works on a cycle that is the repetition of the derivation
steps 3,4, 5,6 ( indicated by marks ||| ||l ). The last derivation step differs from that
of 6 in the first component. The first component grammar aplies the rule Z; — a
instead of Z4; — ().



From the nonterminal cut point of view this derivation can be written as follows:

_|_
S1 Q2 Zy 3 Zy Z4 Q2 Zy 3 Zy €
S2 Zy S2 Zy QS Z4 Zy S2 Zy Z4 Zy
S3 Q2 Zy Z3 Z4 S3 Q2 Zy Z3 Z4 S3

L(IT) = {a™*+7+1} [ > 1} simply follows from the fact (provable by induction),
that after ¢ repetitions of the cycle the configuration of II is

P .
( CLZ —HZQ,SQ,CLQH—Q,ZQ ) .

Now, let us stress our attention in more details to the derivation of the PCGS.

Let D(w) = Cy,C1,Cy,...,Cs be a derivation of the word w. With this deriva-
tion two sequences of nonterminal cuts could be asociated. First one is that of all
nonterminal cuts of this derivation and the second one is a subsequence contain-
ing only those nonterminal cuts with at least one communication symbol in it. We
will call this second sequence the communication sequence of the derivation. Let
I ={t1,ts, ..., tp}, 11 <t < ... < 1k, be the set of all communication steps of D(w).

The communication sequence of the derivation from Example 1 is (Q2, Z2, Q2),

(Z47 Q37 Z4)7 (QQ; Z27 QQ)

Notation

e The i-th generative section of D(w), 1 <1 < k41, is the subsequence t,_1 +1,%;_1 +

2,...,t; — 1 of derivation steps, to = 0,t, — 1 =t.

e We denote by ¢(7,7) the string generated in (; during the j — th generative section

of D(w). More precisely: let C]’- = (a1A1, 2 A, ..., a,A,) be the configuration just

at the begining of the j — th generative section and let C; = (1 1By, 232 B3, . . .,

o, 3, By) be that at the end of this section. Then ¢(z, j) is the substring 3; of «;3;B;.
Now, it is not difficult to realize that the word w generated by PCGS II in deriva-

tion D(w) can be composed from some g(z, j)’s.

e Let n(z, ) be the number of ocurrences of ¢(¢,7) in w.

Some of actual values of n(7,5)’s and ¢(¢,7)’s from derivation mentioned in Example

Laren(l,1) =n(1,2) =n(1,3) =1

9(1,1) = g(1,2) = g(1,3) =¢

9(2,1) = 9(2,2) = g(2,3) = ¢

9(3,1) = g(3,3) a’.

Fact. Let k be the number of generative sections of a derivation. Then the value
p(t,7),1 < j < k, depend on communication sequence, not on the derivation at
whole.

The last notion we recall is the notion of communication complexity. This measure
corresponds to the number of communications between the component grammars



necessary to generate the language.

Let us denote by x-PCGS(n)-f(m) the PCGS of degree n with the communication
graph z and at most f(m) communications during the generation of any word of the
length m. As usual, £(Y) denote the class of languages that are generable by the
system of the type Y, Y € {PCGS,z — PCGS, PCGS — f(m),...}

3. Results.

In this section the results relating the computational power of PCGS to commu-
nication graphs and to communication complexity are presented. First, we separate
some communication structures by showing which properties are sufficient and nec-
essary for a communication graph to be able to generate a nonregular language over
one-letter alphabet.

Theorem 1 Let Il be a PCGS with the following three properties:
(i) G(II) contains at most one cycle

(it) if G(II) contains a cycle, then this cycle involves the grammar Gy
(t11) G(I1) generates a language over one-letter alphabet .
Then L(I1) is a regular language.
Proof. Let I1 = (G4, Gy, ..., G,) be a PCGS satisfying (i),(ii), and (iii). We shall de-

scribe a nondeterministic TM M simulating an derivation of Il in a constant memory.
Let w € L(Il),D(w) = Cy,C1,...,C, be a derivation of w. Let s be the number of

generative sections of D(w). Then

jwl = > n(i,j)lg(i,j)l,

0<i<m
0<j<s

where n(z,7) is the number of the occurrences of the generative section g¢(z,5) in w.
First, let us describe a possible simulation of II provided all n(i,j)’s are known.

Each state of M contains (A1, Az, ..., A) - an actual nonterminal cut of II. Accord-

ing to this nonterminal cut, either generative step or a communication step will be

simulated as follows:

e a generative step in the j-th generative sequence

Let A; — a'"M; € P; for some A; # ¢, then M reads 3_n(s,j) - l; symbols from the

input and sets the new state to (M, Ms, ..., M,,), where M; = A; for those i, A, = «.

e a communication step

A communication step is simulated by setting a new state, that corresponds to the
nonterminal cut of I just after communication step of II performed.



So, the crutial part of the simulation is nondeterministic guessing and determin-
istic checking of n(¢,7) in constant memory. In order to show how this works,we
introduce the following formalism.

o Let C'S(2,7) = t1,t2,...,1;, be a sequence of those time steps of the derivation
D(w) that correspond to communication steps in which some occurrence of ¢(z, j)
is succesfuly transformed from one component grammar to onother one. Then the
graph G(z, j) representing motion of ¢(7,j) during the computation D(w)according to
CS(i,7) can be built up as follows:

1. take one vertex labeleld by i to G(i, 7), and call this node the source of C'S(z, 7)
2. for I =t1,1y,...,t; do

for every leaf f of G(7,7) set Q(f)= { r|the communication nontermi-
nal Q¢ is at the r-th possition present at C };

for every r €Q(f) put a new node v, with the label r to G(7,5) as a
son of f.

Observation 1 n(i,j) is equal to the number of leaves of G with the label 1.

e W.lo.g. one can assume Gy,Gs,...,G¢ are the vertices that form (unique)
cycle in G(IT). Every path in G(7, ) leading from the vertex 7 to the leaf 1 - so called
p(i)-path, or i — 1 path - can be written in the following form:
pli)=t,t2,...,1, (1,2,...,C)*, 1, where 15 # 1,15 # ¢, for s,r € {1,...,p}.

Now, let G(i, ) be the graph that is obtained from G(i, ) in such a way, that every
p(i) is rewriten to p(i)=t,1s,...,1,,(1,2,...,C), 1.

Realizing that G (1, j) is at most m-ary tree (where m is the number of component

grammars) with the depth at most 2m, the following observations simply follow.

Observation 2 G(i,7) and G(i,7) have the same number of leaves labelled by 1.

Observation 3 Vi 3d; bounding the number of different G(v,7)’s. Moreover, ¥t 3D;
n(i,j) < D;. Constants d;, D; depend on G(11), and are independent of D(w) (i.e.,
independent of the length of the word generated).

Now, we are ready to describe the NTM aquivalent to G(II).
e The set of states of M consists of pairs (NC,0), where
NC is from the set of all possible nonterminal cuts of II, and

0=(01,02,...,0,) € {0,1,...,d}"™ . This last m-tuple o expresses actual
values of n(z, j) guessed.



e Simulation The computation of M corresponds to the following step-by-step sim-
ulation of II.

(1) At the beginning of the simulation M nondeterministically sets its state to

((S1,52, .+, Sm), (01,02, ...,0n)).
(2) Let P(2) = {p(7)|p(¢) is the i-1 path}

e Vi suchthat o, =0 M writes Vp(z) €P(i) ‘N-path p(i)’on the i -th memory
tape with the first vertex marked Vp(z) € P(7)

e V¢ such that o, #0 Let P'(:),P"(i) is a (nondeterministically guessed)
decomposition of P(i), with |P'()| = o;.
M writes “Y-path p(i)’ Vp(¢) € P'(¢) and
M writes ‘N-path p(i)’ Vp(z) € P”(¢) to its memory tape.

The above described nondeterministic guess partitioning P(7) into P’(¢) and P"(¢)
means that M guesses n(z,1) by guessing n(¢,1) i-1 pathes which have to be realized
in the communication steps of D(w).

Generative step

Let ((A1, Az,..., An), (01,09,...,04)) be a state of M indicating the generative step
will be performed. Let A; — a'*M; € P; for A; # . Then M sets new state of M to
(My, My, ..., My),(01,02,...,0n)), where M; = A, for A; = ¢, and M reads }_ 0; *[;
symbols from the input. When the reading cannot be succesfuly performed (because
of the absence of input symbols), M stops and rejects.

Communication step

Let CC = (¢1,92,--.,¢m) be a communication cut associated with a communication
step. Let ¢; = @;,.

The simulation of this step by M is described as follows:

e Modification of N-pathes

M has to distinguish four possibilities

o the first vertex on an N-path is [ # j; - no action

e the first vertex on an N-path is j;
action: M removes j; from N-path and if the next vertex is 1, then it
rewrites this symbol by (1,.5)

e the first vertex on an N-path is (1,.5), what indicates, the (only) cycle
follows on this N-path and the g(a,b) corresponding to this N-path is just
located in (77 at this moment.

action: M rewrites (1,5) by (1,%) and rewrites the next vertex to the
same one with the mark S



e the first vertex on an N-path is (1,#), what indicates, this N-path is
in other component grammar located at the moment just simulated. The
grammar, it is located in, is by (¢, S) marked.

action: M reads this N-path until (/,.5) is found. If [ = j; then it rewrites
this symbol by (/,*) and marks the next (according to a cycle) vertex by

S.

e Modification of Y-pathes
There are two possibilities:

e There is at least one symbol j; resp.(j;,.5) on some of the memory tapes
present.

action: M removes the first vertex j from every memory tape, resp.
rewrites (j;, 5) by (j;, *) and markes the next (according to a cycle) vertex
with S. Since the new generative section starts for j;-th grammar, M has
to guess new value for o;, and sets Y-pathes and N-pathes according to

2).

e There is no symbol j; resp.(j;, S) on any of the memory tapes present -
no action.

End of the simulation
M accept iff the next four conditions hold:

there is no nonterminal symbol present in component grammar G, resp. first
component of nonterminal cut stored in the state of M

the input tape was succesfuly read
no N-path is empty, resp. with symbol (1,.5) on it
every Y-pathes are empty, resp. with symbol (1,.5) on them.

Since NTM working in the constant memory is equivalent to NFA, that recognize just

the class of the regular languages, our proof is done.
O

Corollary 1 Let I be a z-PCGS, x € {cycle,dag}, generating a language over one-
letter alphabet. Then L(I1) is a regular language.

Corollary 2 L(PCGS) - L(x-PCGS) # (), = € {cycle,dag}.



Proof. The language of Example 1 demonstrates that PCGS II with G(II) containing
only one cycle but Gy outside it is able to generate nonregular language over one-letter
alphabet.

According to ? the language L = {a*'|n € N} can be generated by the following

PCGS 1II:

P13{51—>GB|Q2,B1_>B731_)€} @ @

P23{S2—>Q1aB—>Q3}

PS:{SS_)QlaB_)Bl}

The communication graph G(II) is the simplest one with two cycles.
O
Since there are examples of PCGS generating nonregular language over one-letter
alphabet with G(1I) containing two cycles, resp. one cycle that doesnot contain Gj,
we have separated regular and nonregular languages over oneletter alphabet in terms

of PCGS.
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