
Faculty of Mathematics, Physics, and Informatics

Comenius University, Bratislava

How Much Information About
the Future is Needed?

S. Dobrev, R. Královič, D. Pardubská

TR-2007-007

0101001010
11011101 0 111001

011
0

0

1

Technical Reports in Informatics

How Much Information About the Future is Needed?⋆

Stefan Dobrev1, Rastislav Královič2, and Dana Pardubská2

1 Institute of Mathematics,
Slovak Academy of Sciences
Stefan.Dobrev@savba.sk

2 Department of Computer Science,
Comenius University, Bratislava, Slovakia
{kralovic,pardubska}@dcs.fmph.uniba.sk

Abstract. We propose a new way of characterizing the complexity of online prob-
lems. Instead of measuring the degradation of output quality caused by the igno-
rance of the future we choose to quantify the amount of additional global information
needed for an online algorithm to solve the problem optimally. In our model, the al-
gorithm cooperates with an oracle that can see the whole input. We define the advice
complexity of the problem to be the minimal number of bits (normalized per input
request, and minimized over all algorithm-oracle pairs) communicated between the
algorithm and the oracle in order to solve the problem optimally. Hence, the advice
complexity measures the amount of problem-relevant information contained in the
input.
We introduce two modes of communication between the algorithm and the oracle
based on whether the oracle offers an advice spontaneously (helper) or on request
(answerer). We analyze the Paging and DiffServ problems in terms of advice com-
plexity and deliver tight bounds in both communication modes.

1 Introduction

The term “online” is used to describe algorithms that operate without the full knowledge
of the input: a typical scenario would be a server that must continually process a sequence
of requests in the order they arrive. More formally, an online algorithm processing an input
sequence of requests x = 〈x1, x2, . . . , xn〉 produces an output sequence y = 〈y1, y2, . . . , yn〉
in such a way that each yi is computed as a function of the prefix 〈x1, x2, . . . , xi〉. On the
other hand, an algorithm computing the whole output sequence y from the entire input
sequence x is termed “offline”. The systematic study of online problems began in the late
sixties [16], and has received much attention over the years (see e.g. [3], [6]). The standard
measure used for evaluating online algorithms is the competitive ratio [20], [24], i.e. the
worst case ratio between the solution quality of the given online algorithm and that of
the optimal offline algorithm. The competitive complexity of an online problem is the best
competitive ratio attainable by an online algorithm solving the problem. Intuitively, this
measure describes the price, in terms of solution quality, that has to be paid for not knowing
the whole input from the beginning.

Consider, for example, the well known SkiRental problem [21]: a skier can rent a set
of skis for one day for a unit price, or buy them for a fixed price c. However it is only
the morning of each day when it becomes clear if the skier wants to continue skiing or

⋆ Supported by APVV-0433-06 and VEGA 1/3106/06. Preliminary version of this paper appeared
at SOFSEM 2008.

not. A classical result of the competitive analysis [21] shows that the optimal worst case
performance is achieved by first renting the skis for c − 1 days, and then buying them,
which gives a competitive ratio of 2 − 1/c. The interpretation of this result is that the
input carries a global information relevant to the problem; ignoring this information leads
to a degradation of the best possible solution quality by a factor 2 − 1/c.

In this paper we propose a new way of characterizing the complexity of online prob-
lems. The hardness incurred by the online setting comes from the fact that there is some
information about the future input that is not available to the algorithm. In our approach
we measure the amount of this hidden information. However, the input contains also in-
formation that is irrelevant to the problem at hand, and we have to find a way of distilling
the problem-relevant information from the input.

Our approach to measure the relevant information is inspired by the communication
complexity research. We consider, in addition to the algorithm itself, an oracle that sees the
whole input and knows the algorithm. When computing the i-th output yi, the algorithm
not only sees the sequence 〈x1, x2, . . . , xi〉, but can also communicate with the oracle. We
require that the algorithm always computes an optimal solution. The advice complexity of
the algorithm is the number of bits communicated between the algorithm and the oracle,
normalized per request. The advice complexity of an online problem is the minimum advice
complexity over all oracle–algorithm pairs that together solve the problem.

Apart from its theoretical significance, this measure can be of use in some semi-online
scenarios where the input is available, but has to be accessed sequentially by the algorithm.
As a motivation example, consider the scenario where a simple device (e.g. a remote robot)
is supposed to process a large amount of data (e.g. a series of orders) in an online fashion.
The data are stored and sequentially fed to the device from a powerful entity (base station)
over a (wireless) communication link. In order to guide the robot in the processing, the base
station may pre-process the data and send some additional information together with each
data item. However, since communication rapidly depletes the robots battery, the amount
of this additional communication should be kept as small as possible.

To return to the original example, the structure of the SkiRental problem is very
simple from the advice complexity point of view: the optimal offline solution is either to
buy the skis on the first day or rent them during all days. Hence, although the competitive
ratio of the SkiRental problem is 2, a single bit of information about the whole input is
sufficient for the online algorithm to achieve optimal performance. As we show later, there
are other problems, for which this amount of required information is much higher.

We are primarily interested in the relationship between the competitive ratio and the
advice complexity. If the competitive ratio measures the price paid for the lack of informa-
tion about future, the advice complexity quantifies for how much information is this price
paid.

Note that there are two ways to achieve trivial upper bounds on advice complexity: (1)
the oracle can send, in some compressed way, the whole input to the algorithm, which then
can proceed as an optimal offline algorithm, and (2) the oracle can tell the algorithm exactly
what to do in each step. However, both these approaches can be far from optimum. In the
first case all information about the future input is communicated, although it may not
be relevant3. In the second case, the power of the online algorithm is completely ignored.

3 Consider, e.g. the Paging problem. There may be a long incompressible sequence of requests
that do not result in a page fault; the information about the actual requests in this sequence is
useless for the algorithm.

Indeed, an online algorithm may be able to process large parts of the input optimally
without any advice, requiring only occasional help from the oracle.

In the paper, we define two modes of interaction with the oracle. In the helper mode,
the algorithm itself cannot activate the oracle; instead, the oracle oversees the progress
of the algorithm, and occasionally sends some pieces of advice. In the answerer mode the
oracle remains passive, and the algorithm may, in any particular step, ask for advice.

To model the impact of the timing of the communication, let the algorithm work in a
synchronous setting: in the i-th step, it receives the i-th input request xi, and possibly some
advice ai, based on which it produces the output yi. In a manner usual in the synchronous
distributed algorithms (see e.g. [26] and references therein) we count the number of bits
communicated between the oracle and the algorithm, relying upon the timing mechanism
for delimiting both input and advice sequences 4. We show that these two modes are
different, but are related by BH(P) ≤ BA(P) ≤ 0.92 +BH(P) where BH(P) is the advice
complexity of a problem P in the helper mode, BA(P) is the complexity in the answerer
mode. Moreover, we analyze two well studied online problems from the point of view of
advice complexity, obtaining the results shown in Figure 1. To conclude this section we

competitive ratio helper answerer

Paging K [28] (0.1775, 0.2056) (0.4591, 0.5 + ε)

DiffServ ≈ 1.281[11] 1
K

`

log K

2K
, log K

K

´

Fig. 1. Communication complexities of some online problems compared with competitive ratio
(asymptotics for large K).

note that there has been a significant amount of research devoted to developing alternative
complexity measures for online problems. The competitive ratio has been criticized for not
being able to distinguish algorithms with quite different behavior on practical instances, and
giving too pessimistic bounds [17]. Hence, several modifications of competitive ratio have
been proposed, either tailored to some particular problems (e.g. loose competitiveness [31]),
or usable in a more general setting. Among the more general models, many forms of resource
augmentation have been studied (e.g. [9], [19],[25]). The common idea of these approaches is
to counterbalance the lack of information about the input by granting more resources to the
online algorithm (e.g. by comparing the optimal offline algorithm to an online algorithm
that works k-times faster). Another approach was to use a look-ahead where the online
algorithm is allowed to see some limited number of future requests [2],[5],[19],[29]. The main
problem with the look-ahead approach is that a look-ahead of constant size generally does
not improve the worst case performance measured by the competitive ratio. Yet another
approach is based on not comparing the online algorithms to offline ones, but to other
online algorithms instead (e.g. Max/Max ratio [5], relative worst-order ratio [10]; see also
[8], [12]). Still another approach is to limit the power of the adversary as e.g. in the access
graph model [7, 18], statistical adversary model [27], diffuse adversary model [22], etc.

4 Alternatively, we might require that both the input requests, and the oracle advices come in a
self-delimited form. This would alter our upper bounds by a factor of at most 4, as discussed in
the appendix.

Finally, a somewhat similar approach of measuring the complexity of a problem by the
amount of additional information needed to solve it has been recently pursued in a different
setting by Fraigniaud, Gavoille, Ilcinkas, and Pelc [13], [14], [15].

2 Definitions and Preliminaries

An online algorithm receives the input incrementally, one piece at a time. In response to
each input portion, the algorithm has to produce output, not knowing the future input.
Formally, an online algorithm is modeled by a request-answer game [6]:

Definition 1 Consider an input sequence x = 〈x1, x2, . . . , xn〉. An online algorithm A
computes the output sequence y = A(x) = 〈y1, y2, . . . , yn〉, where yi = f(x1, . . . , xi). The
cost of the solution is given by a function CA(x) = COST (y).

In the competitive analysis, the online algorithm A is compared with an optimal offline
algorithm OPT , which knows the whole input in advance (i.e. y = f(x)) and can process
it optimally. The standard measure of an algorithm A is the competitive ratio:

Definition 2 An online algorithm is c-competitive, if for each input sequence x, CA(x) ≤
c · COPT (x)

Let us suppose that the algorithm A is equipped with an oracle O, which knows A,
can see the whole input, and can communicate with A. We shall study pairs (A,O) such
that the algorithm (with the help of the oracle) solves the problem optimally. We are
interested in the minimal amount of communication between A and O, needed to achieve
the optimality.

We distinguish two modes of communication: the helper mode, and the answerer mode.
In the helper mode, the oracle (helper) sends in each step i a binary advice string ai

(possibly empty), thus incurring a communication cost of |ai|. A can use this advice,
together with the input x1, . . . , xi to produce the output yi.

Definition 3 (Online algorithm with a helper) Consider an online algorithm A, an
input sequence x = 〈x1, x2, . . . , xn〉, and a helper sequence O(x) = 〈a1,a2, . . . ,an〉 of bi-
nary strings ai. The online algorithm with helper (A,O) computes the output sequence
y = 〈y1, y2, . . . , yn〉, where yi = f(x1, . . . , xi,a1, . . . , ai). The cost of the solution is
C(A,O)(x) = COST (y), and the advice (bit) complexity is

BH(A,O)(x) =

n
∑

i=1

|ai|

In the answerer mode, on the other hand, the oracle is allowed to send an advice only
when asked by the algorithm. However, this advice must be a non-empty string. For the
ease of presentation we define the answerer oracle as a sequence of non-empty strings.
However, only those strings requested by the algorithm are ever considered.

Definition 4 (Online algorithm with an answerer) Consider an algorithm A, an in-
put sequence x = 〈x1, x2, . . . , xn〉, and an answerer sequence O(x) = 〈a1,a2, . . . ,an〉 of
non-empty binary strings ai. The online algorithm with answerer (A,O) computes the
output sequence y = 〈y1, y2, . . . , yn〉 as follows:

1. in each step i, a query ri ∈ {0, 1} is generated first as a function of previous inputs
and advices, i.e. ri = fr(x1, . . . , xi, r1 ⋆ a1, . . . , ri−1 ⋆ ai−1)5

2. then, the output is computed as yi = f(x1, . . . , xi, r1 ⋆ a1, . . . , ri ⋆ ai)
The cost of the solution is C(A,O)(x) = COST (y), and the advice (bit) complexity is

BA(A,O)(x) =

n
∑

i=1

|ri ⋆ ai|

As already mentioned, we are interested in the minimal amount of information the
algorithm must get from the oracle, in order to be optimal. For an algorithm A with an
oracle (helper or answerer) O, the communication cost is the worst case bit complexity,
amortized per one step:

Definition 5 Consider an online algorithm A with an oracle O using communication mode
M ∈ {H,A}6. The bit complexity of the algorithm is

BM(A,O) = lim sup
n 7→∞

max
|x|=n

BM(A,O)(x)

n

The advice complexity of an online problem P is the minimum bit complexity of an
optimal pair (A,O):

Definition 6 Consider a problem P. The advice complexity of P in communication mode
M ∈ {H,A} is

BM (P) = min
(A,O)

BM(A,O)

where the minimum is taken over all (A,O) such that ∀x : C(A,O)(x) = COPT (x)

We start analyzing the advice complexity with an immediate observation that the an-
swerer model is more restrictive in the following sense:

Claim 1 For each problem P, BH(P) ≤ BA(P) ≤ 0.92 +BH(P).

Proof. The left-hand inequality is obvious. Consider an algorithm A with an answerer.
The same algorithm can be used with a helper with the same bit complexity: the helper
can simulate A and locally compute in each step, if the advice is requested. If so, it sends
the advice, otherwise it sends an empty string.

For the right-hand part, the inequality BA(P) ≤ 1+BH(P) is easy to see: an algorithm
with an answerer can ask a question in every step. The first bit of the answer indicates,
if a helper would send a non-empty advice, and the rest is the actual advice as would be
given by the helper.

Now we show how to reduce the constant to 0.92. In the first step, the algorithm asks
a question and receives, together with the “usual” advice also some initialization informa-
tion of o(n) bits. First of all, this information allows the algorithm to distinguish two cases:

Case 1: the number of empty strings sent by the helper is less than n/3 or more than 2n/3
The answerer can, in the initial information, encode the positions of the non-empty strings.

5 The function “⋆” is defined c ⋆ α =



empty string if c = 0
α otherwise

6 In the description of communication modes, H stands for helper and A for answerer.

Then, the algorithm asks only in those steps, in which the helper would send a non-empty
advice. To encode the positions of non-empty strings means to encode a binary string of
length n with at most n/3 ones. There are

n/3
∑

i=0

(

n

i

)

≤ n

3
·
(

n

n/3

)

≈ n

3
·
(

3

2
3
√

2

)n

· c · 1√
n

such strings so that asymptotically

log
n

3
·
(

3

2
3
√

2

)n

· c · 1√
n
≈ n log

(

3

2
3
√

2

)

≈ 0.9182n

bits are needed to encode the string. Hence the overhead is at most 0.92 bits per request.

Case 2: the number of empty strings sent by the helper is between n/3 and 2n/3
For a given i, let µi be a binary string of length i, such that it is the least frequently
occurring string among the advices of length i given by the helper7. The initial information
includes the sequence µ1, µ2, . . . , µlog n, which is log2 n bits overall. The algorithm asks a
question in every step, and receives the same answer as the helper would give with the
exception that instead of empty string, the string µ1 is sent, and instead of µi, µi+1 is sent.
Obviously, since the string µlog n is the least frequent of all n strings of length logn, it is
never used by the helper, and so does not need to be re-mapped.

To bound the communication overhead, let there be x empty string sent by the helper.
These incur x additional bits in the answerer model. From the remaining n−x strings, there
may be at most (n− x)/2i occurrences of µi, thus incurring at most (n− x)/2i additional
bits. Obviously, the worst case is when all non-empty strings are of length 1, in which case
we get the overhead x+ (n− x)/2. Since x < 2n/3, the overhead is at most 5n/6 ≈ 0.83n.

⊓⊔
In the lower bound arguments, we shall use the notion of a communication pattern.

Informally, a communication pattern is the entire information that the algorithm receives
from the oracle. Since the algorithms are deterministic, the number of different communi-
cation patterns gives the number of different behaviors of the algorithm on a given input.

Definition 7 (Communication pattern – helper) Consider an algorithm with helper.
The communication pattern is defined as the sequence of advices given at each particular
step, i.e. 〈a1, . . . ,an〉, where ai is a, possibly empty, binary string.

Obviously, the input and communication pattern completely determine the behavior of
the algorithm.

Lemma 1 Consider an algorithm with helper, and let the input sequence be of length n+1.
For a fixed s, consider only communication patterns in which the helper sends in total at
most s bits over all n+ 1 advices. The number X of distinct communication patterns with
this property is at most

logX ≤ s

(

log(1 + α) + 1 +
1

ln 2

)

+
1

2

[

log

(

1 +
1

α

)

+ log s

]

+ c

where α = n
s > 1, and c is some constant.

7 If there is more than one such string, the choice is arbitrary but fixed.

Proof. For a particular number of bits a, a communication pattern is a string of a bits,
distributed among n+ 1 time slots. Hence there are

X =

s
∑

a=0

2a
(

a+ n

a

)

≤ s2s
(

s+ n

s

)

different communication patterns that use at most s bits. For the rest of the proof let us
suppose that s < n. Using Claim 3 we get

logX ≤ log s+ s+ log
(

s+n
s

)

≤ · · ·
≤ s+ (s+ n) log(s+ n) − s log s− n log n+ 1

2 [log(s+ n) + log s− log n] + c
(1)

for some constant c. Let, for x > 0, f(x) = x log x, and the derivatives f ′(x) = 1
ln 2 + log x,

f ′′(x) = 1
x ln 2 . Since f(x) is convex, it holds

(s+ n) log(s+ n) − n log n = f(s+ n) − f(n) ≤ s · f ′(s+ n) = s

(

log(s+ n) +
1

ln 2

)

(2)

Combining (1) and (2), we get

logX ≤ s

(

1 + log(s+ n) +
1

ln 2
− log s

)

+
1

2
[log(s+ n) + log s− log n] + c

Denote α = n
s > 1, then the previous equation becomes

logX ≤ s

(

log(1 + α) + 1 +
1

ln 2

)

+
1

2

[

log

(

1 +
1

α

)

+ log s

]

+ c

⊓⊔
The situation in the answerer mode is slightly more complicated due to the fact that

answers are delivered only when requested.

Definition 8 (Communication pattern – answerer) For each execution of an algo-
rithm with q queries to the answerer, the communication pattern is the sequence 〈a1, . . . ,aq〉
of non-empty answers.

The behavior of the algorithm is clearly completely determined by the input, the com-
munication pattern and a mapping that assigns to each ai the step ji in which the answer
was delivered (see Figure 2).

However, this mapping bears no relevant information: for a given input and commu-
nication pattern, the algorithm always receives identical answers, and hence it also asks
identical questions. We have the following:

Claim 2 The behavior of an algorithm with answerer is completely determined by its input
and communication pattern.

Lemma 2 Consider an algorithm with answerer. For a fixed q, and s ≥ q, consider only
communication patterns, in which the algorithm ask q questions, and s is the total number
of bits in all answers. Then there are

X =
1

3

(

22s+1 + 1
)

input

answers

n

q

Fig. 2. Communication pattern mapped to input.

different communication patterns with this property8.

Proof. Since each answer is non-empty, there are

2a ·
(

a− 1

q − 1

)

possible communication patterns with exactly a bits. So there are

X = 1 +

s
∑

q=1

s
∑

a=q

2a ·
(

a− 1

q − 1

)

= 1 +

s
∑

a=1

2a ·
a−1
∑

q=0

(

a− 1

q

)

= 1 +

s
∑

a=1

22a−1 =
1

3

(

22s+1 + 1
)

possible communication patterns.
⊓⊔

In the rest of the paper we assume that the algorithm knows the length of the input.
Indeed, it is always possible to alter the oracle in such a way that it sends the length of
the input9 in the first step. Since there are O(log n) additional bits sent, the normalized
contribution to one request is O(log n/n) which is asymptotically zero.

3 Paging

Paging and its many variants belong to the classical online problems. The virtual memory
of a computer is divided into logical pages. At any time K logical pages can reside in the
physical memory. A paging algorithm is the part of the operating system responsible for
maintaining the physical memory. If a program requests access to a logical page that is not
currently in the physical memory, a page fault interrupt occurs and the paging algorithm
has to transfer the requested page into physical memory, possibly replacing another one.
Formally, we define the paging problem as follows:

Definition 9 (Paging Problem) The input is a sequence of integers (logical pages) x =
〈x1, x2, . . . , xn〉, xi > 0. The algorithm maintains a buffer (physical memory) B = {b1, . . . , bK}
of K integers. Upon receiving an input xi, if xi ∈ B, yi = 0. If xi 6∈ B a page fault is
generated, and the algorithm has to find some victim bj, i.e. B := B \ {bj} ∪ {xi}, and
yi = bj. The cost of the solution is the number of faults, i.e. COST (y) = |{yi : yi > 0}|.
8 Note that the formula does not depend on q.
9 in self-delimited form to distinguish it from the possible advice

It is a well known fact [28] that there is a K-competitive paging algorithm, and that K
is the best attainable competitive ratio by any deterministic online algorithm. The optimal
offline algorithm is due to [4]. Let us consider the advice complexity of this problem for
both helper and answerer modes. We prove that for the helper mode the complexity is
between 0.1775 and 0.2056, and for the answerer mode the complexity is between 0.4591
and 0.5 + ε bits per request. Let us first analyze the helper mode. We start with a simple
algorithm that uses one bit per request:

Lemma 3 Consider the Paging problem. There is an algorithm A with a helper O, such
that O sends an advice of exactly one bit each step.

Proof. Consider an input sequence x, and an optimal offline algorithm OPT processing
it. In each step of OPT , call a page currently in the buffer active, if it will be requested
again, before OPT replaces it by some other page. We design A such that in each step i,
the set of OPT ’s active pages will be in B, and A will maintain with each page an active
flag identifying this subset. If A gets an input xi that causes a page fault, some passive
page is replaced by xi. Moreover, A gets with each input also one bit from the helper telling
whether xi is active for OPT . Since the set of active pages is the same for OPT and A, it
is immediate that A generates the same sequence of page faults.

⊓⊔
Now we are going to further reduce the advice complexity. The algorithm will still

receive the required one bit for every input, however, it is possible to encode the bits in a
more efficient way using larger strings as advice:

Lemma 4 For r large enough, the helper can communicate a binary string of length αr
using r bits over a period of αr steps, where α ≈ 4.863876183.

Proof. Let f(x) = (1 + x) log(1 + x)− x log x− x+ 1. f(x) is decreasing, and has exactly
one positive root x0 ≈ 4.863876183. For any ε > 0, let α = x0 − ε.

There are

X = 2r
(

αr + r − 1

r

)

= 2r
α

α+ 1

(

r(α+ 1)

r

)

possible tuples 〈a1, . . . ,aαr〉 of advices containing r bits in total. Using Claim 3, we get

X ≥ 2r
(1 + α)r(1+α)

αrα
1

1.052

α

α+ 1

√

1 + α

2πrα

We show that limr 7→∞(logX − αr) = ∞ which means that for large enough r, X ≥ 2αr.
After some calculations we get

logX − αr ≥ r ((1 + α) log(1 + α) − α logα− α+ 1) +O(log r) > r +O(log r)

thus finishing the proof.
⊓⊔

Theorem 1 BH(Paging(K)) ≤ 1
α , where α ≈ 4.863876183.

Proof. Divide the input into frames of length α log n. The helper sends the first α log n
bits at the beginning. During ith frame, logn bits are used to communicate the string of
α log n for the next frame using Lemma 4. Overall, there are α log n+ n

α bits.
⊓⊔

On the lower bound side, we can prove the following:

Theorem 2 For every fixed K, there is a constant αK < 20.742 such that BH(Paging(2K)) ≥
1
αK

. Moreover, αK is a decreasing function in K and limK 7→∞ αK ≈ 5.632423693

Proof. We shall consider a particular subset of input sequences x = {xk}K(2+3i)
k=1 for

some i. Each input sequence consists of the sequence S0 = 〈1, 2, . . . , 2K〉 followed by i
frames, each of length 3K, where the jth frame has the form Dj · 〈dj〉 · Sj . The first part
of each frame, Dj is of length K − 1 and contains unused pages that generate page faults:
Dj = 〈(j + 1)K + 1, . . . , (j + 2)K − 1〉. The next request dj = (j + 2)K is again an unused
page. The last part, Sj is a sequence of length 2K consisting of any subsequence10 of
Sj−1 ·Dj of length 2K − 1, followed by dj .

1
D D

21
d

2
dS

1
S

2
S

0

1 2 3 4 5 6 7 8 9 2 3 5 6 7 9 3 6 710 11 12 10 129

Fig. 3. An example of first two frames for K = 3, i.e. with buffer of size 6. The arrows indicate
which pages are replaced during faults.

Clearly, since Dj , dj contain values that have never been used before, any algorithm
must generate at least K page faults in each frame. Moreover, there is an algorithm that
generates exactly K page faults in each frame as follows. Suppose that after 3Kj steps the
buffer contains exactly elements from Sj . The following 2K steps do not generate any page
faults. The next K steps generate a page fault every request, and because from among the
3K − 1 elements of Sj ·Dj+1 only 2K − 1 are used in Sj+1, the buffer always contains at
least one element not in Sj+1. Hence, after 3K(j + 1) steps the buffer contains elements
from Sj+1.

From the above reasoning it follows that no optimal algorithm can generate a page fault
in Sj , which means that at the beginning of Sj , the content of the buffer of any optimal
algorithm is uniquely determined.

Now we show that for two different inputs, the communication patterns of an optimal
algorithm must be different. Consider two executions of an optimal algorithm with the
same communication patterns. We claim that the inputs must have been the same, too. By
contradiction, let j be the first frame in which the inputs differ. By the construction of the
input sequence, the first two components (Dj , dj) of the frame are identical. Hence, after
3Kj steps (i.e. at the beginning of Sj) the executions are in the same state. However, since
the algorithm is optimal, the buffer of both executions contains exactly Sj . Hence the jth
frame is identical in both inputs – a contradiction.

For each Sj , there are
(

3K−1
2K−1

)

different possible Sj+1, hence there are

Y =

(

3K − 1

2K − 1

)i

=

[

2

3

(

3K

K

)]i

different inputs of length 2K + 3Ki, and thus

10 note that Sj is always an increasing sequence

log Y ≥ i

[

K(3 log 3 − 2) − logK

2
− c1

]

where c1 = log(1.052 ·
√

3π) ≈ 1.759 (3)

Since any optimal algorithm needs a different communication pattern for each input, there
must be at least Y different communication patterns. However, using Lemma 1, we get
that there are at most X different communication patterns of length n + 1 using at most
s bits, where

logX ≤ s

(

log(1 + α) + 1 +
1

ln 2

)

+
1

2

[

log

(

1 +
1

α

)

+ log s

]

+ c (4)

Using (3), and the fact that

i =
n+ 1 − 2K

3K
=

αs

3K
− 2K − 1

3K

we get

log Y ≥
(

αs

3K
− 2K − 1

3K

) [

K(3 log 3 − 2) − logK

2
− c1

]

(5)

Combining (4) and (5), we get

logX− log Y ≤ s

[

log(1 + α) + 1 +
1

ln 2
− α

(

3 log 3 − 2

3
− logK

6K
− c1

3K

)]

+O(log s) (6)

Since limn 7→∞(logX − log Y) ≥ 0, it must hold (possibly for large enough α)

F (α, κ) := log(1 + α) + C − ακ ≥ 0 (7)

where

C = 1 +
1

ln 2
≈ 2.443

κ =
3 log 3 − 2

3
− logK

6K
− c1

3K
≈ 0.918 − logK

6K
− 0.586

K

Consider a fixed K (and hence κ) and examine the function Fκ(α) = F (α, κ). We have
Fκ(0) = C > 0, and the derivative is F ′

κ(α) = 1
ln 2(1+α) − κ. Hence, Fκ(α) is increasing

up to some point αmax and then decreasing, and because 0.332 ≤ κ ≤ 0.918 there is a
single positive root αK . Moreover, since log(1 + α) + C is increasing, αK is a decreasing
function in κ. Because κ as a function of K is increasing (the derivative is positive), αK is
decreasing in K, and by numerically solving for α1 we get αK ≤ 20.741.

Since limK 7→∞ κ = 3 log 3−2
3 , we have limK 7→∞ αK = α∞, where α∞ is the positive root

of

log(1 + α) + 1 +
1

ln 2
− α

3 log 3 − 2

3
= 0

Numerically solving, we get
α∞ ≈ 5.632423693

⊓⊔

There is one issue connected with the previous proof, namely that the number of logical
pages in the constructed sequence was unbounded (since every frame used new values, the
number of values depended on n). We argue that this feature can be avoided by reusing the
values after a constant number of frames, since every optimal algorithm has to replace all
pages from a given frame within the next three frames. Assume the contrary, and consider
an optimal algorithm that leaves a page p from a frame i in the buffer during frames i+ 1
and i+ 2. Obviously, there must be at least K + 1 faults in both of them. However, having
p in the buffer for frame i+ 3 can save at most one page fault.

Let us proceed now with the analysis of the answerer mode. First, we give an upper
bound by refining Lemma 3:

Theorem 3 For each ε > 0, BA(Paging(K)) ≤ 1
2 + ε

Proof. Let k = 2
2ε+1 . Without loss of generality, let n = 2ks. Following Lemma 3, there

is an optimal helper algorithm which receives 1 bit of advice each request. Obviously, the
same algorithm works also in the answerer mode. We show how to supply this information
using 2s bits.

In the first step, the algorithm asks, and receives O(log n) bits of information containing
s and n. Amortized, these O(log n) bits will contribute O(log n

n) bits per request, and thus
can be neglected.

During each of the first s steps, the algorithm asks, and receives a non-empty string
of advice. Let 〈a1, . . . ,as〉 be the s-tuple of advices, such that

∑s
i=1 |ai| = 2s. Because

each ai is non-empty, the concatenation of ai’s provides one bit every step for the first 2s
steps. The remaining n− 2s bits are encoded in the lengths of ai’s as follows: consider all
s-tuples of integers 〈i1, . . . , is〉 such that

∑s
j=1 ij = s, ordered lexicographically. Let z be

the number of the tuple 〈|a1| − 1, . . . , |as| − 1〉 in this ordering, then the representation of
z as a (n− 2s)-bit-long binary string gives the remaining n− 2s bits.

What remains to be shown is that there are enough possible combinations of lengths
to encode all 2n−2s possible binary strings for the last n− 2s = 2s(k− 1) steps. There are

X =

(

2s− 1

s

)

=
1

2

(

2s

s

)

possible s-tuples 〈i1, . . . , is〉 such that
∑s
j=1 ij = s. Using Claim 3 it follows

X ≥ 22s 1

2 · 1.052 · √πs

for s large enough, it holds

X ≥ 22s 1

2s
8ε

2ε+1

= 22s(1− 4ε

2ε+1) = 22s(k−1)

The bit complexity of the algorithm is

BA,O = lim sup
n 7→∞

max
|x|=n

BA(x,O(x))

n
= lim
s 7→∞

2s

2ks
=

1

2
+ ε

⊓⊔
To conclude this section, the same technique as used in Theorem 2 can be employed to

deliver the corresponding lower bound:

Theorem 4 BA(Paging(2K)) ≥ 0.4591 −O
(

logK
K

)

Proof. Consider the same input sequences as in the proof of Theorem 2. For each Sj ,

there are
(

3K−1
2K−1

)

different possible Sj+1, hence there are

Y =

(

3K − 1

2K − 1

)i

=

[

2

3

(

3K

K

)]i

different inputs of length 2K + 3Ki.
Let the answerer use s bits overall. Using Lemma 2, there are

X =
1

3

(

22s+1 + 1
)

possible communication patterns, and obviously it must hold X ≥ Y . Using Claim 3 we
get that

log Y = i log

[

2

3

(

3K

K

)]

≥ i log

[

33K

22K
√
K

1

1.052 ·
√

3π

]

= i

[

K(3 log 3 − 2) − logK

2
− c1

]

for some constant c1. Because

logX ≤ 2s+ c2 for some constant c2

from the fact that logX ≥ log Y it follows that

s ≥ i

[

K
3 log 3 − 2

2
− logK

4
− c1

2

]

− c2
2

The bit complexity of any optimal algorithm is then

BA,O = lim supn 7→∞ max|x|=n
BA(x,O(x))

n ≥ limi 7→∞
i[K 3 log 3−2

2
− log K

4
−

c1
2]− c2

2

2K+3Ki =

= 3 log 3−2
6 − 1

12
logK
K − c1

6K

⊓⊔

4 Diff-Serv

DiffServ is another problem widely studied using competitive analysis (see [11],[23] and
references therein). The setting involves a server processing an incoming stream of packets
of various values. If the processing speed of the server is slower than the arrival rate, some
packets must be dropped, ideally those least valuable. For our purposes, following [23],
the packets arrive in discrete time steps. In each step a number of packets can arrive, one
packet can be processed, and at most K packets can be stored in a buffer. Moreover, it
is required that the packets are processed in FIFO manner. The formal definition is as
follows:

Definition 10 (Diff-Serv problem) Consider a sequence of items 〈p1, . . . , pm〉, par-
titioned into a series of subsequences, called requests. The input is the sequence of re-
quests x = 〈x1, . . . ,xn〉, where each xi = 〈pji−1+1, . . . , pji〉 is a (possibly empty) request.

Each item pi has a value v(pi). In each step i, the algorithm maintains an ordered buffer
Bi = 〈b1, . . . , bK〉 of K items. Upon receiving a request sequence xi, the algorithm discards
some elements from the sequence Bi · xi, keeping some subsequence B′

i � Bi · xi of length
at most K + 1. The first item (if B′

i is nonempty) of B′
i is submitted, and the remainder

of the sequence forms the new buffer, i.e. B′
i = yi · Bi+1. The process ends if there are no

more requests11 and the buffer is empty.
The cost of the solution is the sum of the values of all submitted elements, i.e. COST (y) =

∑

i>0 v(yi).

For the remainder of this section we shall consider only the case of two distinct item
values; we shall refer to them as heavy and light items. Without loss of generality we may
assume that each request contains at most K + 1 heavy items.

It was shown by Lotker and Patt-Shamir [23] that Algorithm ?? is optimal for the
DiffServ problem:

Algorithm 1 OPT

1: sort all items by decreasing value, within each value class by increasing time
2: S ← empty schedule
3: while the list is non empty do

4: p← head of the sorted list
5: if S ∪ {p} is a feasible schedule then S ← S ∪ {p}
6: remove head of the list
7: output S

We first present another optimal offline algorithm, and then show how to transform it
to an online algorithm with a helper.

Let us start with a simple greedy algorithm that never discards more items than nec-
essary (Algorithm 1 without line 4). This algorithm is not optimal in situations where it
is favorable to discard leading light items even if the buffer would not be filled12. These
situations, however, can be easily recognized:

Definition 11 Consider a buffer B at time t0 and the remainder {xt0+i}ni=1 of the input
sequence. Let a0 be the number of heavy elements in B (before xt0+1 has arrived), and
ai ≤ K + 1 be the number of heavy elements in xt0+i. The remainder of sequence x is
called critical (w.r.t. B), if there exists t > 0 such that

∑t
i=0 ai ≥ K + t, and for each t′

such that 0 < t′ ≤ t it holds
∑t′

i=0 ai ≥ t′.

Informally, an input sequecne is critical w.r.t. an initial buffer if the buffer gradually
fills with heavy items even if the algorithm submits a heavy item in each step.

Our algorithm processes requests sequentially. Each request is processed as shown in
Algorithm 1, and it can be proven that this algorithm is optimal.

Lemma 5 Algorithm 1 is optimal.

11 in this case some number of virtual empty requests is added until the buffer is emptied
12 Consider a situation with a buffer of size 3 containing one light and two heavy items. If there

are no more requests, the best solution is to submit all three of them in the next three steps.
However, if there is another request coming, containing two heavy items, the best solution is to
discard the light one and submit heavy items in the next four steps.

Algorithm 2 Processing of a request xi with a buffer B

1: B′ ← B · xi

2: starting from left, discard light items from B′ until |B′| = K + 1 or there are no light items
left.

3: if |B′| > K + 1 then discard last |B′| −K − 1 (heavy) items
4: if the remainder of the input sequence is critical and there are some heavy items in B′ then

discard leading light items from B′

5: submit the first item of B′ (if exists)
6: B ← remainder of B′

Proof. First, we prove that if Algorithm 1 does not submit any item in step i, no optimal
algorithm can submit anything in step i. Consider a step i such that Algorithm 1 does
not submit (i.e. has empty buffer). Let j be the last time before i when the algorithm had
full buffer (or, j = 0 if the buffer has never been full). We argue that during the steps
j, j+ 1, . . . , i, no items have been discarded by the algorithm. The algorithm only discards
items in such a way that the length of the resulting buffer is less than K only if the input
is critical. Moreover, if the buffer is shorter than K in the case of critical input, only light
items are discarded. However, starting from a critical input, the buffer eventually (after t
steps) fills with heavy items, and is never emptied in-between (if the buffer is shorter than
K, no heavy items are discarded). Since j was the last time before i when the buffer was
full, clearly there was no critical input between j and i, and hence no item was discarded
(since the length of the buffer has always been strictly less than K).

Now consider an arbitrary optimal algorithm A. It is easy to see that during steps
j, j + 1, . . . , i, the length of the buffer of A is not longer than that of Algorithm 1. Hence,
A has empty buffer in step i, too.

Second, we prove that the number of submitted heavy items is optimal. Consider the
ordering of the heavy items as they appear in the input sequence. Let an item p be dis-
carded. Let Sp be the set of submitted items ordered before p. We show that it is not
possible to submit all items from Sp ∪{p}. Let i be the arrival time of the item p. Because
p was discarded, the buffer was full of heavy items after step i, and the algorithm submit-
ted a heavy item. Consider the longest sequence of steps j, j + 1, . . . , i such that in each
step a heavy item was submitted. At the beginning of the sequence, the buffer contained
no heavy elements: the input was critical, so a heavy element would have been submitted.
Because in all consecutive steps, heavy items were submitted, it is not possible to submit
all Sp ∪ {p} items. Hence, Algorithm 1 maintains for the heavy items the same optimality
property as Algorithm ??, and the number of submitted heavy items is optimal.

We have proved that Algorithm 1 submits the maximal possible amount of heavy items,
and moreover, for an optimal algorithm A, if A submits in some step, Algorithm 1 submits
in this step, too. So it follows that Algorithm 1 gives the optimal cost.

⊓⊔
Now we turn this offline algorithm into an online algorithm with helper. We are going to

simulate Algorithm 1 with an algorithm and a helper. The only place where the algorithm
needs information about the future is on line 4, where the algorithm tests the criticality
of the input. Clearly, one bit per request (indicating whether the input is critical or not)
is sufficient to achieve optimality. However, we show that situation in which a bit must be
sent can occur at most once in every K + 1 steps.

Theorem 5 BH(DiffServ(K)) ≤ 1
K+1

Proof. The presented algorithm will operate in two modes: standard and critical. It starts
in standard mode and behaves the same way as Algorithm 1 (leaving out line 4). If it
receives a bit from the helper (indicating that the current input forms a critical sequence),
it switches into critical mode where it always discards leading light items and submits only
heavy items. Once the buffer is full of heavy items, it switches back into standard mode.
Obviously, this algorithm is optimal.

Moreover, the helper has to send a bit only when the algorithm is in standard mode,
the input is critical and there are leading light items. How often a bit can be sent? Clearly,
after the algorithm switches into critical mode, the buffer eventually fills with heavy items.
Then there are at least K requests where there are no leading light items so no bit is sent.
Hence, the bit is sent at works every K + 1 steps.

⊓⊔
Using a technique similar to the proof of Theorem 2, we can show the following:

Theorem 6 For K ≥ 4 it holds BH(DiffServ(K)) ≥ 1
γK ·K , where γK ≤ 6.13 and

limK 7→∞ γK = 1

Proof. Consider a sequence of frames of two types. Both types start with a request with
one light item followed by one heavy item. The frame of type A continues with a request
with K + 1 heavy items and K empty requests. The type B frame continues with one
empty request. The input consists of β frames of type A and (c − 1)β frames of type B
for some c > 1, so the length of the input is β(K + 2c). First note that for two different
inputs the communication patterns have to be different: if this is not the case consider two
different inputs with the same communication pattern, and focus on the first frame where
the inputs differ. Clearly, the algorithm is in the same state in both executions and since
it is deterministic, it must make the same decision. However, the optimal decision in frame
A is to discard the initial light item, and submit K + 2 heavy items in the whole frame,
whereas the only optimal decision in frame B is to submit the light and heavy item.

Hence, we have

Y =
(cβ)!

β! ((c− 1)β)!

different inputs of length n+ 1 = β(K + 2c), each of them requiring a different communi-
cation pattern. Using Claim 3 we get

log Y ≥ β (c log c− (c− 1) log(c− 1)) +
1

2
(log c− log(c− 1)) − 1

2
log β + r

for some constant r. Let us denote

ψc = c log c− (c− 1) log(c− 1) (8)

Since log c− log(c−1) < 1 we get log Y ≥ βψc− 1
2 log β+r′ for some constant r′. Replacing

the parameter β by the length of the input we get

log Y ≥ n+ 1

K + 2c
ψc −

1

2
log

n+ 1

K + 2c
+ r′ (9)

However, following Lemma 1 there are at most

X =

s
∑

a=0

2a
(

a+ n

a

)

≤ s2s
(

s+ n

s

)

different communication patterns that use at most s bits, and

logX ≤ n

α

(

log(1 + α) + 1 +
1

ln 2

)

+
1

2

[

log

(

1 +
1

α

)

+ log
n

α

]

+ r′′ (10)

where α = n
s and r′′ is a constant. Since X ≥ Y , by combining (??) and (??) we get

0 ≤ n

α

[

log(1 + α) + 1 +
1

ln 2
− αψc
K + 2c

]

+
1

2
[log n+ log(n+ 1) + log(α+ 1) − 2 logα]+QK,c

(11)
where QK , c does not depend on n. Since n is the leading term in this expression and α is
positive, it must hold

0 ≤ F (α) := log(1 + α) + 1 +
1

ln 2
− α

ψc
K + 2c

(12)

First, we try to find a value of c such that the term ψc

K+2c is maximized. Let

h(c) :=
ψc

K + 2c
=
c log c− (c− 1) log(c− 1)

K + 2c
>

log(c− 1) + 1
ln 2

K + 2c
=: g(c)

The last inequality is due to the fact that f(c)− f(c− 1) > f ′(c− 1) where f(x) = x log x
and f ′(x) = log x+ 1

ln 2 . Since

g′(c) =
K + 2 − 2(c− 1) ln(c− 1)

ln 2(K + 2c)2(c− 1)

the maximum is attained for

c− 1 = exp

[

W
(

K + 2

2

)]

where W is the Lambert function.13 Taking into account first few terms in the series, we
set

c :=
K + 2

2 ln K+2
2

+ 1

Summarizing, we get

h(c) >
log(c− 1) + 1

ln 2

K + 2c
=

ln(K + 2) − ln
(

2 ln K+2
2

)

+ 1

ln 2(K + 2)
[

1 + 1
2 ln K+2

2

]

In the sequel, we would like the value h(c) > logK
εK for some ε. By solving

ln(K + 2) − ln
(

2 ln K+2
2

)

+ 1

ln 2(K + 2)
[

1 + 1
2 ln K+2

2

] ≥ logK

εK

13 The Lambert function W is the inverse function of y 7→ y · ey, i.e. W(x) · eW(x) = x. The
asymptotics is given by

W(x) = ln x− ln ln x +
ln ln x

ln x
−

ln ln x− (ln ln x)2

2

(ln x)2
+ O

ln

„

1

x

«−3
!

we get

ε ≥
lnK(K + 2)

(

1 + 1
2 ln K+2

2

)

K
[

ln(K + 2) − ln
(

2 ln K+2
2

)

+ 1
]

The right hand side converges to 1; it is increasing for K < 11 and then decreasing (the
actual position of the maximum is around 9.929), and is always smaller than 1.6003.

Now, since h(c) > logK
εK , we can write

0 ≤ F (α) < log(1 + α) + 1 +
1

ln 2
− α logK

εK

Let us substitute α = t ·K for some t > 1 and consider a function

G(t) := log(1 + tK) + 1 +
1

ln 2
− t

ε
logK

Since the derivative

G′(t) =
K

ln 2(tK + 1)
− logK

ε

and G(0) > 0, we have that G(t) is increasing up to some point and then monotonically
decreasing into −∞. Hence, if we find any t0 such that G(t0) < 0, if must follow that
α < t0K.

Using the fact that log(1 + x) ≤ log x+ 1
x ln 2 we compute

G(t) ≤ log t+ logK

(

1 − t

ε

)

+
1

ln 2

(

1

tK
+ 1

)

+ 1

and, in order to ensure G(t0) < 0, we want to find t0 such that

t0 ≥ ε

lnK
ln t0 + ε

[

1

lnK

(

1 +
1

tK

)

+
1

logK
+ 1

]

Since t0 > 1, we can write
t0 ≥ P ln t0 +Q

where

P =
ε

lnK
and Q = ε

[

1

lnK

(

1 +
1

K

)

+
1

logK
+ 1

]

It holds

2P +Q = ε

[

1

lnK

(

3 +
1

K

)

+
1

logK
+ 1

]

Since K ≥ 4 and ε < 1.6003 it holds

2P +Q < 6.13 < e2

Let t0 = 2P +Q; we verify that

2P +Q ≥ P ln(2P +Q) +Q

From this we know that α < (2P +Q)K < 6.13, and that the bit complexity is at least
1/α. Moreover the value of t0 is a decreasing function in K which converges to 1.

⊓⊔
In a similar fashion, the following results can be shown for the answerer mode:

Theorem 7 BA(DiffServ(K)) ≤ 1+log(K+1)
K+1

Proof. Consider the helper algorithm from Theorem 5, in which the helper sends one bit
at certain time intervals that are at least K + 1 steps apart. Modify the algorithm in such
a way that, initially, the algorithm asks in which step t1 the helper would send a bit for the
first time. In step t1 the algorithm asks for the next step t2 in which the helper would send
the next bit etc. Let t0 = 0 and δi = ti − ti−1. Then clearly the number of communicated
bits is

Bn ≤
r

∑

i=1

⌈log δi⌉ ≤ r +
r

∑

i=1

log δi

where r is the number of ”critical decisions”.14 Clearly, it holds

r
∑

i=1

δi = n

and
r ≤ n

K + 1
+ 1

Given these constraints, the function
∑r
i=1 log δi is maximized when all δi are equal, and

r is biggest possible. The maximum value is

Bn ≤ r + r log
n

r
≤

(

1 +
n

K + 1

) (

1 + log
n(K + 1)

n+K + 1

)

Taking the limit limn 7→∞Bn/n, the proof is concluded
⊓⊔

Theorem 8 For each fixed K ≥ 4 there exists a γK ≤ 3.822 such that

BA(DiffServ(K)) ≥ log(K+2)
γK(K+2) Moreover limK 7→∞ γK = 2.

Proof. By copying the proof of Theorem 6, and using Lemma 2 we get

0 ≤ logX − log Y ≤ n

α

[

2 − αψc
K + 2c

]

+O(log n) +QK,c

So it must hold

α ≥ 2(K + 2c)

ψc

Minimizing the same way as in Theorem 6 we set

c :=
K + 2

2 ln K+2
2

+ 1

from which follows

α ≤
2

(

K + K+2

ln(K+2
2)

+ 2

)

log(K + 2) − log
(

ln
(

K+2
2

))

+ 1
ln 2 − 1

≤ γK(K + 2)

log(K + 2)

14 In order to simplify things let us consider also the end of input as a critical decision point.

where

γk =
2

(

1 + 1
ln(K+2)−ln 2

)

1 − ln ln(K+2)
ln(K+2) − α

log(K+2)

for

α = 1 − log ln 2 − 1

ln 2
≈ 0.086

Since K ≥ 4, it holds γK ≤ 2(1 + 0.911) = 3.822.
⊓⊔

5 Conclusion

We have proposed a new way to evaluate online problems, based on the communication
complexity. While the competitive analysis is an algorithmic measure evaluating the output
quality degradation incurred by the requirements to produce the output online, our measure
is a structural one quantifying the amount of additional information about the input needed
to produce optimal output in an online fashion. The study of the relation between those
two measures can lead to a deeper understanding of the nature of online problems. We have
shown that there are problems like Paging and DiffServ where the advice complexity
(in the helper mode) is proportional to the competitive ratio. On the other hand, there are
problems with simple structure like SkiRental [21], which has competitive ratio 2 − ε,
but a single bit of information is sufficient to solve the problem optimally (i.e. it has zero
advice complexity).

Studying advice complexity of a problem can lead to exposure of the critical decisions
to be made (like in Algorithm 1 for DiffServ) and subsequently to better understanding
of the problem and possibly more efficient algorithms. Moreover, we expect that in certain
situations involving cooperating devices of uneven computational power communicating
over a costly medium (as e.g. in sensor networks), the advice complexity might be of
practical interest.

The proposed topic presents a number of intriguing open questions. Is it, for example,
possible to characterize a class of problems where the competitive ratio is proportional to
the advice complexity? Another whole research area is to study the tradeoff between the
amount of communicated information and the achieved competitive ratio.

There is also a number of variations of the model that could be investigated. One
potential modification would be to limit the size of advice given in one step. In our model
this size is unbounded, and this fact is heavily relied upon (sending the length of the input
in one step). However, for modelling potentially infinite inputs it would be more appealing
to limit the size of advice to be independent of the input size.

References

1. D. Achlioptas, M. Chrobak, J. Noga: Competitive Analysis of Randomized Paging Algorithms.
Theor. Comp. Sci. 234 , pp. 203 - 218, 2000

2. S. Albers: On the influence of lookahead in competitive paging algorithms. Algorithmica 18,
pp. 283-305, 1997

3. S. Albers: Online algorithms: A survey. Mathematical Programming 97, pp. 3-26, 2003
4. L.A. Belady: A study of replacement algorithms for virtual storage computers. IBM Systems

Journal 5, pp. 78-101, 1966

5. S. Ben-David, A. Borodin: A new measure for the study of on-line algorithms. Algorithmica
11(1), pp. 73-91, 1994

6. A. Borodin, R. El-Yaniv: Online Computation and Competitive Analysis. Cambridge Univer-
sity Press, 1998

7. A. Borodin, S. Irani, P. Raghavan and B. Schieber: Competitive paging with locality of refer-
ence. In Proc. 23rd Annual ACM Symp. on Theory of Computing, pp. 249-259, 1991

8. J. Boyar, M.R. Ehmsen, and K.S. Larsen: Theoretical Evidence for the Superiority of LRU-2
over LRU for the Paging Problem. In Fourth Workshop on Approximation on Online Algo-
rithms, Lecture Notes in Computer Science. Springer-Verlag. Accepted for publication.

9. J. Boyar, K.S. Larsen, and M.N. Nielsen: The Accommodating Function: a generalization of
the competitive ratio. SIAM Journal on Computing 31(1), pp. 233-258, 2001

10. J. Boyar, L.M. Favrholdt: The Relative Worst Order Ratio for Online Algorithms, Algorithms
and Complexity, 5th Italian Conference, CIAC 2003, Rome, Italy, Lecture Notes in Computer
Science 2653, pp.58-69, 2003

11. M. Englert and M. Westermann: Lower and Upper Bounds on FIFO Buffer Management in
QoS Switches. In Proc. ESA 2006, LNCS 4168, pp. 352-363, Springer Verlag, 2006

12. A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D. Sleator, N. E. Young: Competitive Paging
Algorithms. J. Algorithms 12, pp.685-699, 1991

13. P. Fraigniaud, C. Gavoille, D. Ilcinkas, A. Pelc: Distributed computing with advice: infor-
mation sensitivity of graph coloring, In Proc. 34th International Colloquium on Automata,
Languages and Programming (ICALP 2007), 2007

14. P. Fraigniaud, D. Ilcinkas, A. Pelc: Tree exploration with an oracle,In Proc. 31st International
Symposium on Mathematical Foundations of Computer Science, (MFCS 2006), LNCS 4162,
pp. 24-37, 2006

15. P. Fraigniaud, D. Ilcinkas, A. Pelc: Oracle size: a new measure of difficulty for communica-
tion problems, In Proc. 25th Ann. ACM Symposium on Principles of Distributed Computing
(PODC 2006), pp. 179-187, 2006

16. R.L. Graham: Bounds for Certain Multiprocessing Anomalies. Bell Systems Technical Journal
45, pp. 1563-1581, 1966

17. S. Irany, A.R. Karlin: Online Computation. In: D.S. Hochbaum, Ed.: Approximation Algo-
rithms for NP-Hard Problems, pp. 521-564, PWS Publishing Company, 1997

18. S. Irani, A.R. Karlin and S. Phillips. Strongly competitive algorithms for paging with locality
of reference. In Proc. 3rd Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 228-236,
1992

19. B. Kalyanasundaram, K. Pruhs: Speed is as Powerful as Clairvoyance. IEEE Symposium on
Foundations of Computer Science, pp. 214-221, 1995

20. A.R. Karlin, M.S. Manasse, L. Rudolph, D.D. Sleator: Competitive Snoopy Caching. Algo-
rithmica 3, pp.79-119, 1988

21. R. Karp: On-line algorithms versus off-line algorithms: how much is it worth to know the
future? Proc. IFIP 12th World Computer Congress, Vol. 1, pp. 416-429, 1992

22. E. Koutsoupias and C.H. Papadimitriou. Beyond competitive analysis. In Proc. 34th Annual
Symp. on Foundations of Computer Science, pp. 394-400, 1994.

23. Z. Lotker, B. Patt-Shamir: Nearly Optimal FIFO Buffer Management for DiffServ. PODC
2002, pp. 134-143, 2002

24. M.M. Manasse, L.A. McGeoch, D.D. Sleator: Competitive Algorithms for Online Problems.
In Proc. 20th Annual Symposium on the Theory of Computing, pp. 322-333, 1988

25. C.A. Philips, C. Stein, E. Torng, J. Wein: Optimal Time-Critical Scheduling via Resource
Augmentation. In Proc. 29th Annual ACM Symp on the Theory of Computing, pp. 140-149,
1997

26. U.M. O’Reilly, N. Santoro: The Expressiveness of Silence: Tight Bounds for Synchronous Com-
munication of Information Using Bits and Silence. In Proc. of 18th International Workshop
on Graph-Theoretic Concepts in Computer Science, pp. 321–332, 1992

27. P. Raghavan. A statistical adversary for on-line algorithms. In On-Line Algorithms, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pp. 79-83, 1991

28. D.D. Sleator, R.E. Tarjan: Amortized Efficiency of Update and Paging Rules. Comm. of the
ACM 28(2), pp. 202-208, 1985

29. E. Torng: A Unified Analysis of Paging and Caching. Algorithmica 20, pp. 175-200, 1998
30. N. Young: On-line Paging against Adversially Biased Random Inputs. J. Algorithms 37,

pp.218-235, 2000
31. N. Young: The k-server dual and loose competitiveness for paging, Algorithmica 11, pp. 525-

541, 1994

Appendix

In this section we show how the requirement of self-delimited advice strings would alter
our upper bounds. The following inequality comes from the Stirling formula:

Claim 3 For each n ≥ 4 it holds

√
2πn

(n

e

)n

< n! < 1.05 ·
√

2πn
(n

e

)n

Now consider an algorithm A with an oracle O, and an input sequence x of length n.
Let O send B bits in n0 different strings a1, . . . , an0

. Now consider an algorithm A′ with
oracle O′ such that all the advice strings are in a self-delimited form: ⌈log |ai|⌉ ones, one
zero, then a string of ⌈log |ai|⌉ bits encoding the length |ai| in binary, and, finally, ai itself.
Hence, A′ communicates

B′ =

n0
∑

i=1

|ai| + 2⌈log |ai|⌉ + 1 ≤ B + 3n0 + 2

n0
∑

i=1

log |ai| ≤ B + 3n0 + 2n0 log(B/n0)

bits. Since n0 ≤ B, the maximum is attained for n0 = B, so B′ ≤ 4B.

