
On the Correspondence between Parallel Communicating
Grammar Systems and Restarting Automata

Dana Pardubská?1, Martin Plátek??2, and Friedrich Otto3

1 Dept. of Computer Science, Comenius University, Bratislava
e-mail: pardubska@dcs.fmph.uniba.sk

2 Dept. of Computer Science, Charles University, Prague
e-mail: Martin.Platek@mff.cuni.cz

3 Fachbereich Elektrotechnik/Informatik, Universität Kassel, Kassel
e-mail: otto@theory.informatik.uni-kassel.de

Abstract This technical report integrates the results of [8] and [9] in which the study of the
relation between Parallel Communicating Grammar Systems (PCGS) and Freely Rewriting
Restarting Automata (FRR) has been initiated. Besides communication complexity we intro-
duce and study so-called distribution and generation complexity. It is shown that analysis by
reduction for a PCGS with distribution complexity bounded by a constant t and generation
complexity bounded by a constant j can be implemented by a strongly linearized deter-
ministic FRR-automaton with t rewrites per cycle. We show that, from a communication
complexity point of view, this implementation is almost optimal. As consequences we obtain
a pumping lemma for the class of languages generated by PCGS with communication com-
plexity bounded by a constant, and the fact that this class of languages is semi-linear. That
makes this class of languages interesting from the point of view of formal linguistics. Further,
we present infinite hierarchies of classes of languages based on the parameters t, j and on the
new notion of skeleton. Here we also consider non-deterministic linearized FRR-automata.

1 Introduction

The main goal of this paper is to study the relation between Freely Rewriting Restarting Automata
(FRR, [5]) and Parallel Communicating Grammar Systems (PCGS, [1,10]).Namely, the so-called
linearized FRR-automaton is introduced for this purpose. The motivation for our study is the
usefulness of both models in computational linguistics.

Freely rewriting restarting automata form a suitable tool for modelling the so-called analysis
by reduction. In general, analysis by reduction facilitates the development and testing of categories
for syntactic and semantic disambiguation of sentences of natural languages. The Functional Gen-
erative Description for the Czech language developed in Prague (see, e.g., [2]) is based on this
method.

FRR-automata work on so-called characteristic languages, that is, on languages with auxiliary
symbols (categories) included in addition to the input symbols. The proper language is obtained
from a characteristic language by removing all auxiliary symbols from its sentences. By requiring
that the automata considered are linearized we restrict the number of auxiliary symbols allowed
? Partially supported by the Slovak Grant Agency for Science (VEGA) under contract “Theory of Models,
Complexity and Algorithms”.

?? Partially supported by the Grant Agency of the Czech Republic under Grant-No. 405/08/0681 and by
the program Information Society under project 1ET100300517.

2 D.Pardubská , M. Plátek, and F. Otto

on the tape by a function linear in the number of terminals on the tape. We mainly focus on
deterministic restarting automata in order to ensure the correctness preserving property for the
analysis, i.e., after any restart within an accepting computation the content of the tape is a word
from the characteristic language, and after any restart within a non-accepting computation the
content of the tape is a word from the complement of the characteristic language. In fact, we
mainly consider strongly linearized restarting automata. This additional restriction requires that
all rewrite operations must be deletions.

Parallel Communicating Grammar Systems handle the creation of copies of generated strings
and their regular mappings in a natural way. This ability has a strong similarity to the generation of
coordinations in the Czech language (and some other natural languages). However, the synonymy
of coordinations has not yet been appropriately modelled.

In this paper the notions of distribution and generation complexity for PCGS are introduced and
studied. It is shown that analysis by reduction for a PCGS with distribution complexity bounded
by a constant t and generation complexity bounded by a constant j can be implemented by a
strongly linearized deterministic FRR-automaton with t rewrites per cycle. We show that this
implementation is almost optimal due to communication complexity. As consequences we obtain
a pumping lemma for the class of languages generated by PCGS with communication complexity
bounded by a constant, and the fact that this class of languages is semi-linear. Further, we present
infinite hierarchies of classes of languages based on the parameters t and j, and on the notion of
skeleton. Here we consider also the non-deterministic versions of linearized FRR-automata.

The notion of skeleton is introduced in order to model the borders of so-called segments in
(Czech) sentences (or in text). The elements of skeletons are called islands. They are used to
model the so-called separators of segments (see [3]).

2 Basic notions

A freely rewriting restarting automaton, abbreviated as FRR-automaton, is described by an 8-tuple
M = (Q,Σ, Γ, c, $, q0, k, δ). It consists of a finite-state control, a flexible tape, and a read/write
window of a fixed size k ≥ 1. Here Q denotes a finite set of (internal) states that contains the initial
state q0, Σ is a finite input alphabet, and Γ is a finite tape alphabet that contains Σ. The elements
of Γ r Σ are called auxiliary symbols. The additional symbols c, $ 6∈ Γ are used as markers for
the left and right end of the workspace, respectively. They cannot be removed from the tape. The
behavior of M is described by a transition function δ that associates transition steps to certain
pairs of the form (q, u) consisting of a state q and a possible content u of the read/write window.
There are four types of transition steps: move-right steps, rewrite steps, restart steps, and accept
steps. A move-right step simply shifts the read/write window one position to the right and changes
the internal state. A rewrite step causes M to replace a non-empty prefix u of the content of the
read/write window by a shorter word v, thereby shortening the length of the tape, and to change
the state. Further, the read/write window is placed immediately to the right of the string v. A
restart step causes M to place its read/write window over the left end of the tape, so that the first
symbol it sees is the left sentinel c, and to reenter the initial state q0. Finally, an accept step simply
causes M to halt and accept.

A configuration of M is described by a string αqβ, where q ∈ Q, and either α = ε (the empty
word) and β ∈ {c} ·Γ ∗ · {$} or α ∈ {c} ·Γ ∗ and β ∈ Γ ∗ · {$}; here q represents the current state, αβ
is the current content of the tape, and it is understood that the window contains the first k symbols
of β or all of β when |β| ≤ k. A restarting configuration is of the form q0cw$, where w ∈ Γ ∗.

PCGS & Restarting Automata 3

Any computation of M consists of certain phases. A phase, called a cycle, starts in a restarting
configuration. The window is shifted along the tape by move-right and rewrite operations until a
restart operation is performed and thus a new restarting configuration is reached. If no further
restart operation is performed, the computation necessarily finishes in a halting configuration –
such a phase is called a tail. It is required that in each cycle M performs at least one rewrite step.
As each rewrite step shortens the tape, we see that each cycle reduces the length of the tape. We
use the notation u `cM v to denote a cycle ofM that begins with the restarting configuration q0cu$
and ends with the restarting configuration q0cv$; the relation `c∗M is the reflexive and transitive
closure of `cM .

A word w ∈ Γ ∗ is accepted by M , if there is a computation which starts from the restarting
configuration q0cw$, and ends with an application of an accept step. By LC(M) we denote the
language consisting of all words accepted by M . It is the characteristic language of M .

By PrΣ we denote the projection from Γ ∗ onto Σ∗, that is, PrΣ is the morphism defined by
a 7→ a (a ∈ Σ) and A 7→ ε (A ∈ Γ r Σ). If v := PrΣ(w), then v is the Σ-projection of w, and w
is an expanded version of v. For a language L ⊆ Γ ∗, PrΣ(L) := {PrΣ(w) | w ∈ L }. Further, for
K ⊆ Γ , |x|K denotes the number of occurrences of symbols from K in x.

In recent papers (see, e.g., [4]) restarting automata were mainly used as acceptors. The (input)
language accepted by a restarting automatonM is the set L(M) := LC(M)∩Σ∗. Here, motivated by
linguistic considerations to model the analysis by reduction with parallel processing, we are rather
interested in the so-called proper language of M , which is the set of words LP(M) := PrΣ(LC(M)).
Hence, a word v ∈ Σ∗ belongs to LP(M) if and only if there exists an expanded version u of v
such that u ∈ LC(M).

For each type X of restarting automata, we use LC(X) and LP(X) to denote the class of all
characteristic languages and the class of all proper languages of automata of this type.

The following basic properties of FRR-automata are often used in proofs.

(Error Preserving Property) Each FRR-automaton M is error preserving, i.e., if u /∈ LC(M)
and u `c∗M v, then v /∈ LC(M), either.

(Weak Correctness Preserving Property) Each FRR-automaton M is weakly correctness
preserving, i.e., if u `c∗M v during an accepting computation of M , then u, v ∈ LC(M).

(Correctness Preserving Property) Each deterministic FRR-automaton M is correctness pre-
serving, i.e., if u ∈ LC(M) and u `c∗M v, then v ∈ LC(M), too.

(Cycle Pumping Lemma) For any FRR-automaton M , there exists a constant p such that the
following property holds. Assume that uxvyz `cM ux′vy′z is a cycle ofM , where u = u1u2 · · ·un for
some non-empty words u1, . . . , un and an integer n > p. Then there exist r, s ∈ N+, 1 ≤ r < s ≤ n,
such that

u1 · · ·ur−1(ur · · ·us−1)ius · · ·unxvyz `cM u1 · · ·ur−1(ur · · ·us−1)ius · · ·unx′vy′z
holds for all i ≥ 0, that is, ur · · ·us−1 is a “pumping factor” in the above cycle. Similarly, such a
pumping factor can be found in any factorization of length greater than p of v or z as well as in
any factorization of length greater than p of a word accepted in a tail computation.

We focus our attention on FRR-automata, for which the use of auxiliary symbols is less restricted
than in [5].

Definition 1. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be an FRR-automaton.
(a) M is called linearized if there exists a constant j ∈ N+ such that |w|Γ−Σ ≤ j · |w|Σ + j for

each w ∈ LC(M).

4 D.Pardubská , M. Plátek, and F. Otto

(b) M is called strongly linearized if it is linearized, and if each of its rewrite operations just deletes
some symbols.

Since a linearized FRR-automaton only uses linear space, we have the following:

Corollary 1. If M is a linearized FRR-automaton, then the proper language LP(M) is context-
sensitive.

In what follows we are mainly interested in strongly linearized FRR-automata and their proper
languages. We denote by (S)LnRR the class of (strongly) linearized deterministic FRR-automata,
by N(S)LnRR the class of non-deterministic (strongly) linearized FRR-automata, and, for t ∈ N+,
we use the prefix t- to denote types of FRR-automata that execute at most t rewrite steps in any
cycle.

2.1 Parallel Communicating Grammar Systems

A PCGS of degree m,m ≥ 1, is an (m+1)-tupleΠ = (G1, . . . , Gm,K), where, for all i ∈ {1, . . . ,m},
Gi = (Ni, T, Si, Pi) are regular grammars, called component grammars, satisfying Ni ∩ T = ∅, and
K ⊆ {Q1, . . . , Qm}

⋂⋃m
i=1Ni is a set of special symbols, called communication symbols.

A configuration of Π is an m-tuple C = (x1, . . . , xm), xi = αiAi, αi ∈ T ∗, Ai ∈ (Ni∪ε); we call xi
the i-th component of the configuration (resp. component). The nonterminal cut of configuration
C is the m−tuple N(C) = (A1, A2, . . . , Am). If N(C) contains at least one communication symbol,
it is denoted NC(C) and called an NC-cut.

We say that a configuration X = (x1, . . . , xm) directly derives a configuration Y = (y1, . . . , ym),
written as X ⇒ Y , if Y is derived from X by one generative or communication step (see below). In-
formally, in a communication step any occurrence of a communication symbolQi inX is substituted
by the i-th component of X (assuming that this component does not contain any communication
symbol).

1. (Generative step) If |xi|K = 0 for all i, 1 ≤ i ≤ m, then

xi
Gi⇒ yi for xi ∈ T ∗Ni, and

yi = xi for xi ∈ T+;
2. (Communication step) If |xi|K > 0 for some i, 1 ≤ i ≤ m, then for each k such that xk = zkQjk ,
zk ∈ T ∗, Qjk ∈ K, the following holds:
(a) If |xjk |K = 0, then yk = zkxjk and yjk = Sjk .
(b) If |xjk |K = 1, then yk = xk.

For all remaining indices t, for which xt does not contain a communication symbol and Qt does
not occur in any of xi’s, we put yt = xt.

Now we describe the derivations in a PCGS. A derivation of a PCGS Π is a sequence of configu-
rations D = C1, C2, . . . , Ct, where Ci ⇒ Ci+1 in Π. If the first component of Ct is a terminal word
w, then we usually write D(w) instead of D. Analogously, we denote by W (D) the terminal word
generated within the derivation D. Every derivation can be viewed as a sequence of generative
steps and communication steps.

If no communication symbol appears in any of the components, then we perform a generative
step consisting of rewriting steps synchronously performed in each of the component grammars
Gi, 1 ≤ i ≤ m. If any of the components is a terminal string, it is left unchanged. If any of the
components contains a nonterminal that cannot be rewritten, the derivation is blocked. If the first

PCGS & Restarting Automata 5

component is a terminal word w, the derivation finishes and w is the word generated by Π in this
derivation.

If a communication symbol is present in any of the components, then a communication step
is performed. It consists of replacing those communication symbols with the phrases they refer to
for which the phrases do not contain communication symbols. Such an individual replacement is
called a communication. Obviously, in one communication step at most m−1 communications can
be performed. If some communication symbol was not replaced in this communication step, it may
be replaced in one of the next communication steps. Communication steps are performed until no
more communication symbols are present or the derivation is blocked, because no communication
symbol can be replaced in the last communication step.

The (terminal) language L(Π) generated by a PCGS Π is the set of terminal words generated by
G1 (in cooperation with the other grammars):

L(Π) = {α ∈ T ∗ | (S1, . . . , Sm)⇒+ (α, β2, . . . , βm) }.

Let D = D(w) = C0, C1, . . . , Ct be a derivation of w by Π; D(w), Π, and w are fixed in
what follows. With derivation D(w), several notions can be associated which help to analyze the
derivation of Π and to unambiguously determine w.

The trace of a (sub)derivation D is the sequence T (D) = N(C0)N(C1) . . . N(Ct) of the nonterminal
cuts of the individual configurations of D.
The NC-sequence is defined analogously; NCS(D) is the sequence of all NC-cuts in the (sub)deri-
vation D. Let us recall that any NC-cut contains at least one communication symbol.
A cycle in a derivation is a subsequence N(C), N(C1), . . . , N(Cj), N(C) of nonterminal cuts of the
derivation1 in which the first and last nonterminal cuts (N(C)) are identical. If N(C) is an NC-cut,
and none of the intermediate cuts N(Ci) is an NC-cut, then the cycle is called a communication
cycle. A generative cycle is defined analogously, we only require that none of its cuts is an NC-cut.

Note that, if there is a cycle in the derivation D(w), then manifold repetition of the cycle is pos-
sible and the resulting derivation is again a derivation of some terminal word. We call a derivation
D(w) reduced, if every repetition of each of its cycles leads to a longer terminal word ω; |w| < |ω|.
Obviously, to every derivation D(w) there is an equivalent reduced derivation D′(w).

A generative section is a non-empty sequence of generative steps between two consecutive com-
munication steps in D(w)2, resp. before the first and/or after the last communication steps in
D(w).

The degree of generation DG(D(w)) is the number of generative sections of D(w).
In what follows we only consider PCGS without communication cycles, i.e., DG(D(w)) is

bounded by a constant depending only on Π, since DG(D(w)) = 1+ number of communication
steps of D(w).

g(i, j) (g(i, j,D(w))) denotes the terminal part generated by Gi within the j-th generative section
of D(w), we call it the (i, j)-(generative) factor (of D(w));

n(i, j) (n(i, j,D(w))) denotes the number of occurrences of g(i, j) in w;
g(i, j, l) (g(i, j, l,D(w))) denotes the l-th occurrence of g(i, j) in w, we call it the (i, j, l)-(generative)

factor.
1 More precisely it is a subsequence of the trace of the derivation.
2 Note that if some communication cut contains more than one communication symbol, then there might
be no generative step between two communication steps.

6 D.Pardubská , M. Plátek, and F. Otto

The communication structure of D(w) CS(D(w)) captures the connection between the terminal
word w and its particular derivation D(w):

CS(D(w)) = (i1, j1, l1), (i2, j2, l2) , . . . , (ir, jr, lr), where w = g(i1, j1, l1), g(i2, j2, l2) . . . g(ir, jr, lr).
The set of these indices is denoted I(D(w)).

N(j,D(w)) = Σi n(i, j,D(w)), where the sum is taken over such i for which ∃s: i=is & (is, js, ls)∈
I(D(w)).

The degree of distribution DD(D(w)) of D(w) is the maximum over all (defined) N(j,D(w)).

Now we are ready to introduce the notions of distribution complexity and generation complexity.
First, the distribution complexity of a derivation D (denoted DD(D)) is the degree of distribution
introduced above.

Then the distribution complexity of a language and the associated complexity class are defined
in the usual way (always considering the corresponding maximum): distribution complexity of a
derivation distribution complexity of a language L (denoted DD(L)) as a function of the length
of the word f(n)−DD as the class of languages whose distribution complexity is bounded by
f(n). Analogously for the generation complexity.

Definition 2. Let f : N→ N+ be a function, Π be a PCGS, and w ∈ L(Π).
We say that Π is of distribution (generation) complexity f if, for any derivation D(w) by Π,

DD(D(w)) ≤ f(|w|) (DG(D(w)) ≤ f(|w|)). We say that a language L has distribution (generation)
complexity f , if there exists a PCGS Π of distribution (generation) complexity f such that L =
L(Π). In particular, if f(n) = k for each n ≥ 0, then we say that L has distribution (generation)
complexity k (resp. constant distribution (generation) complexity).

Here, we are mainly interested in the classes of languages with constant communication and/or
generation complexity. For natural numbers j, t we denote the corresponding complexity classes by
j-DG, t-DD, and j-t-DDG, respectively.

We also utilize the notion of communication complexity from [1,6]. Informally, the communica-
tion complexity of a derivation D(w) (denoted com(D(w))) is defined as the number of communi-
cations performed within the derivation D(w). For example, the communication complexity of the
derivation D1(w) in Example 1 is 2 (see Section 3 below).

Definition 3. Let f : N → N+ be a function, Π be a PCGS, and w ∈ L(Π). We say that Π is
of communication complexity f if, for any derivation D(w) by Π, com(D(w)) ≤ f(|w|). We say
that a language L has communication complexity f , if there exists a PCGS Π of communication
complexity f such L = L(Π).

We use com(Π) and com(L) to denote the communication complexity of a PCGS Π and a language
L, respectively. The corresponding complexity class is defined in the usual way:

COM(f(n)) = {L | com(L) ≤ f(n) }.

If f(n) = k for each n ∈ N, then we write COM(k) and speak about the class of languages with
constant communication complexity.

Relevant observations about the derivations of PCGS (see [6] for more information) are sum-
marized in the following fact.

Fact 1 Let com(Π) = k. Then every derivation by Π is without communication cycle, and there
are constants d(Π), `(Π), s(Π), e(Π) such that

PCGS & Restarting Automata 7

1. the number n(i, j) of occurrences of individual g(i, j)′s in a reduced derivation D(w) is bounded
by d(Π);n(i, j) ≤ d(Π);

2. the length of the communication structure for every reduced derivation D(w) is bounded by
`(Π);

3. the cardinality of the set of possible communication structures corresponding to reduced deriva-
tions by Π is bounded by s(Π);

4. if more than e(Π) generative steps of one generative section are performed in a reduced deriva-
tion D(w), then at least one g(i, j,D(w)) is changed (see Example 1 in the next section).

The following observation is a direct consequence of the corresponding definitions.

Observation 4 Let Π be a PCGS of degree m > 1. Then DD(Π) ≤ com(Π) + (m− 1)com(Π).

Proof. Let us recall that, for any derivation D(w) of Π, N(j,D(w)) = Σi n(i, j,D(w)), where
the sum is taken over such i for which ∃s : i = is & (is, js, ls) ∈ I(D(w)), and that the degree of
distributionDD(D(w)) is the maximum over all (defined)N(j,D(w)). Obviously, 0 ≤ j ≤ com(Π).
Since the number of realized communications in one communication step is bounded by m− 1, the
result follows. The augmenter com(Π) is added because of the case m = 2. 2

3 Bounded Degree of Distribution and Communication

We start this section by showing that a language generated by a PCGS Π with constant commu-
nication complexity can be analyzed (by reduction) by a t-SLnRR-automaton M .

The high-level idea is to merge the terminal word w with the information describing its reduced
derivation D(w) in a way allowing simultaneously the "simulation/reduction" of the derivation
D(w) and the correctness checking. Analysis by reduction is based on the deletion of the parts of
a (characteristic) word which correspond to parts generated within one generative cycle. We call
such a merged (characteristic) word a Π-description of w.

Let (α1A1, . . . , αmAm) be the configuration at the beginning of the j-th generative section, and
let

(A1, . . . , Am), (α1,1A1,1, . . . , α1,mA1,m), . . . (α1,1α2,1 . . . αs,1As,1, . . . , α1,mα2,m . . . αs,mAs,m)
be the sub-derivation corresponding to this generative section. Merging the description of this
sub-derivation into g(i, j, l) we obtain the extended version of g(i, j, l):

[b, i, j, l]

 A1

A2

· · ·
Am

α1,i

 A1,1

A1,2

· · ·
A1,m

α2,i

 A2,1

A2,2

· · ·
A2,m

 αs,i

 As,1

As,2

· · ·
As,m

 [e, i, j, l].

This description of g(i, j, l) is denoted ex-g(i, j, l). We use ex-g(i, j, l) to merge the (topological)
information about derivation D(w) into w. Obviously, we can speak about traces and factor cycles
in ex-g(i, j, l) similarly as we speak about traces and generative cycles in derivations.

Let w,D(w), ex-g(i, j, l), be as above. Replace any g(i, j, l) in w by ex-g(i, j, l); the result is
denoted ex-w. Then, concatenating the NC-sequence of D(w), the communication structure given
by D(w), and ex-w we obtain the Π-description of w:

Πd(D(w)) = NCS(D(w))CS(D(w))ex-w.

8 D.Pardubská , M. Plátek, and F. Otto

Example 1. For an illustration we give a PCGS Πab(2) generating the language

Lab(2) = { ai1bi1ai2bi1+i2 | ij ∈ N } :

G1 : S1 → aS1|aQ2, G2 : S2 → bZ2, G3 : S3 → Z3,
Z2 → aZ2|aQ3, Z2,→ bZ2, Z3 → bZ3.
Z3 → b,

Let us consider the following derivation D1(w):∣∣∣∣∣S1

S2

S3

∣∣∣∣∣ aS1

bZ2

Z3

∣∣∣∣∣a
2S1

b2Z2

bZ3

∣∣∣∣∣ a3Q2

b3Z2

b2Z3

∥∥∥∥∥a3b3Z2

S2

b2Z3

∣∣∣∣∣a
3b3aZ2

bZ2

b2bZ3

∣∣∣∣∣ a3b3a2Q3

b2Z2

b2b2Z3

∥∥∥∥∥ a3b3a2b2b2Z3

b2Z2

S3

∣∣∣∣∣a
3b3a2b2b2b

b2bZ2

Z3

∣∣∣∣∣
Then g(1, 1) = a3, g(1, 2) = a2, g(1, 3) = b,

g(2, 1) = b3, g(2, 2) = b2, g(2, 3) = b,
g(3, 1) = b2, g(3, 2) = b2, g(3, 3) = ε,

and w = a3b3a2b5 = g(1, 1, 1)g(2, 1, 1)g(1, 2, 1)g(3, 1, 1)g(3, 2, 1)g(1, 3, 1).

We see that the communication structure of D(w) has the following form:

CS(D1(w)) = (1, 1, 1)(2, 1, 1)(1, 2, 1)(3, 1, 1)(3, 2, 1)(1, 3, 1).

Hence, ex-g(1, 1, 1), ex-g(2, 1, 1), and ex-g(3, 1, 1) are defined as follows:

[b, 1, 1, 1]

(
S1

S2

S3

)
a

(
S1

Z2

Z3

)
a

(
S1

Z2

Z3

)
a

(
Q2

Z2

Z3

)
[e, 1, 1, 1],

[b, 2, 1, 1]

(
S1

S2

S3

)
b

(
S1

Z2

Z3

)
b

(
S1

Z2

Z3

)
b

(
Q2

Z2

Z3

)
[e, 2, 1, 1],

[b, 3, 1, 1]

(
S1

S2

S3

) (
S1

Z2

Z3

)
b

(
S1

Z2

Z3

)
b

(
Q2

Z2

Z3

)
[e, 3, 1, 1].

The NC-sequence given by D1(w) has the following form:

NCS(D1(w)) =

0@ Q2

Z2

Z3

1A 0@ Q3

Z2

Z3

1A.

The following derivation D2(w) is obtained by deleting the first generative cycle from D1(w):∣∣∣∣∣S1

S2

S3

∣∣∣∣∣ aS1

bZ2

Z3

∣∣∣∣∣a
2Q2

b2Z2

bZ3

∥∥∥∥∥ a2b2Z2

S2

bZ3

∣∣∣∣∣a
2b2aZ2

bZ2

bbZ3

∣∣∣∣∣ a2b2a2Q3

b2Z2

bb2Z3

∥∥∥∥∥a2b2a2bb2Z3

b2Z2

S3

∣∣∣∣∣ a2b2a2bb2b
b2bZ2

Z3

∣∣∣∣∣
As the structure of Πd(D(w)) illustrates, the relevant properties summarized in the next ob-

servation should be obvious.

Observation 5 Let Πd(D(w)) be a Π-description of w.

(a) When a reduced derivation D(w) is taken, then the length of Πd(D(w)) is bounded from above
by cΠ · |w|+ cΠ , where cΠ is a constant depending on Π only.

PCGS & Restarting Automata 9

(b) The terminal word w is easily obtained from Πd(D(w)) by deleting all symbols which are not
terminal symbols of Π.

(c) Let T (D(w)) be the trace of D(w), and T (Π) := {T (D(w)) | w ∈ L(Π) }. Then T (Π) is a
regular language, and the sets of NC-cuts and communication sequences of Π are finite. Note
that a finite automaton is also able to check whether a given string x is a correct ex-g(i, j, l),
NCS(D(w)), or CS(D(w)) given by Π.

The construction of a k-SLnRR-automaton M accepting the characteristic language LC(M) =
{Πd(D(w)) | w ∈ L(Π)} is outlined in the proof of the next theorem.

Theorem 1. Let k ∈ N be a constant. Then to every PCGS Π of degree m > 1 with communication
complexity k, there is a t-SLnRR-automaton M such that L(Π) = LP (M), and t ≤ k + (m− 1)k.

Proof. We outline the construction of a k-SLnRR-automaton M accepting the characteristic lan-
guage LC(M) = {Πd(D(w)) | w ∈ L(Π)}. Let ω be an input word to M . M starts to “simulate”
the derivation D(w) supposing ω = Πd(D(w)). The main idea is to reduce ω in a cycle of M to
ω1 ∈ LC(M) accordingly to a reduction (deleting) of a deterministically chosen occurrence of a
generative cycle of D(w); namely, the chosen generative cycle corresponds to the leftmost factor
cycle of ω. Let us denote the newly reduced derivation D(w1) (using the corresponding shortened
word w1 for that). This process can be repeated until a word with no factor cycle is obtained.
Since the length of a terminal word generated without a (generative or communication) cycle is
bounded by a constant depending on Π only, the set of these words is finite, and so is the set of
their Π-descriptions. It is therefore easy to check whether the Π-description of a “cycle free” word
belongs to LC(M) or not.

Simultaneously, we need to ensure that every ω′ 6∈ LC(M) is either directly rejected or reduced
to some ω′′ 6∈ LC(M). To check the mutual (in)consistency of NCS(D(w)), SC(D(w)), the syntax
of the factor part ex-w, and the individual factors of ex-w, M uses NCS(D(w)) and SC(D(w)).
In this way the correctness preserving property of M is ensured by the finite control of M .

The more detailed description of a computation of M follows. First, we give the description of
one cycle of M , and then the rejecting and accepting tail computations are described.

A cycle by M :
Consider a cycle C ofM on ω = NCS(D(w)) CS(D(w)) ex-w. In order to check the consistency

of ω, M stores NCS(D(w)) and SC(D(w)) in its finite control, and then it deterministically finds
the leftmost factor cycle in ex-w. Realize that, for a correct input toM , this leftmost factor cycle is
located within some extended factor ex-g(i, j, 1). Let us denote this (occurrence of the) generative
cycle c(i, j). Since c(i, j) is derived in the j-th generative section of D(w) by the i-th grammar of
Π, within the cycle C
– machine M has to delete the first occurrence of c(i, j) in all extended factors ex-g(i, j, 1), ex-
g(i, j, 2), · · · , ex-g(i, j, l(i, j));

– because of the correctness preserving property M also has to delete the first occurrence of
the factor cycles with the same trace as c(i, j) placed in an (extended) (iI , j, lL)-factor (ex-
g(iI , j, lL)’s) such that (iI , j, lL) is an item from CS(D(w)) and i 6= iI .

It is not hard to see that the described construction guarantees that the number of rewrite opera-
tions within one cycle of M to be bounded from above by k, the communication complexity of the
PCGS Π.

More precisely:

10 D.Pardubská , M. Plátek, and F. Otto

1. Let ex-g(i, j, 1) = [b, i, j, 1]β`,i NC1α1,iNC2α2,i . . . NCs−1αs,iNC1︸ ︷︷ ︸
c(i,j)

βR,i[e, i, j, 1], where β`,i does

not contain any factor cycle, and αi := α1,i . . . αs,i is the (possibly empty) terminal part gener-
ated within c(i, j). M stores [j,NC1 . . . NC1], [(i, j), β`,i, αi)] in its finite control and replaces
c(i, j) by NC1 in ex-g(i, j, 1). The stored information enables M to check the requested cor-
rectness of the other extended sub-words starting with [b, iI , j, lL]. Namely, for iI = i the prefix
has to be exactly of the form [b, i, j, 1]β`,ic(i, j), while for iI 6= i, it should only fit the trace of
the prefix.

2. M thereafter moves its head to the right until the next occurrence of [b, iI , j, lL] or the right
sentinel is found.
– If the visited symbol is of the form [b, iw, j, 1], where iI 6= i, then M proceeds in the same
way as in the case for [b, i, j, 1].
– If the visited symbol is of the form [b, iI , j, lL], where lL ≥ 2,M should have some information
for (i′, j) stored in its state and is therefore able to check the desired correctness of the prefix.
If the prefix fits the stored patterns, M reduces the relevant cycle in the same way as in the
case for [b, iI , j, 1].

– If the visited symbol is the right sentinel and no inconsistence has been found,
then M restarts.

Rejecting tail computation:
M computes in the same way as described for a cycle until some inconsistency (error) is found;

in this situation M rejects. Let us recall that ω is a correct word belonging to LC(M) iff it has the
form ω = NCS(D(w))CS(D(w))ex-w. The (main) inconsistencies are of the following types:

a) There is no prefix of ω which corresponds to a NCS(D) by Π.
b) Let ω = NCS(D)α. There is no prefix of α which corresponds to a CS(D) by Π.
c) Let ω = NCS(D)CS(D1)α. D and D1 cannot be equal.
d) Let ω = NCS(D)CS(D)α. The string α disturbs the (regular part of) the syntax of a sequence

of factors given by NCS(D) and CS(D).
e) Some factor F of α does not contain a factor cycle which should be deleted accordingly to the

other factors of α (see the cycle part).

Using its finite control M is able to check all inconsistencies of the previous types.

Accepting tail computation:
An accepting tail computation occurs when none of the above described cases occurs. In this

situation, M only checks whether the word on the tape ωc is a correct member of the finite subset
of LC(M) which does not contain any factor cycle.

It is not hard to see that M is a deterministic k-SLnRR-automaton accepting the language
LC(M) described above. 2

Let M be as in the proof of Theorem 1. Obviously, we can obtain LP (M) from LC(M) by a
projection of LC(M) onto the terminal symbols of Π. That means LP (M) = L(Π).

Corollary 2. Let k ∈ N be a constant. Then to every PCGS Π of degreem > 1 with communication
complexity k, there is a t-SLnRR-automaton M such that L(Π) = LP (M), and t ≤ k + (m− 1)k.

PCGS & Restarting Automata 11

Considering the previous proof,
– the length of a terminal word generated without a (generative or communication) cycle is
bounded by a constant depending on Π only;
– whenever there is a generative cycle in the derivation D(w) for w ∈ L(Π), then that cycle can
be iterated. This yields the following pumping lemma for PCGS.

Corollary 3. (PCGS Pumping and Cutting Lemma) Let k ∈ N be a constant. Then to every
PCGS Π of degree m > 1 with communication complexity k, there are constants t, p, 0 < t ≤ mk,
such that any w ∈ L(Π), |w| > p, can be written in the form w = y0x1y1 · · ·xtyt, where p ≥
|x1x2 · · ·xt| > 0, and y0xi1y1 · · ·xityt ∈ L(Π) for any non-negative integer i.

The next corollary follows directly from the cutting part of the previous corollary.

Corollary 4. (PCGS semi-linearity) Let k ∈ N be a constant, and Π is a PCGS with commu-
nication complexity k. Then the language L(Π) is semi-linear.

The constant communication complexity of PCGSΠ is important to guarantee the semi-linearity
of L(Π). As demonstrated by Example 2 (taken from [7]), unconstrained PCGSs are able to generate
also non-semi-linear languages.

Example 2. This example illustrates how a communication cycle can be used to generate the lan-
guage L = { a2n | n ∈ N }. Note that the only generated symbol a is generated within the first
generative section:

P1 : {S1 → aB | Q2, B1 → B |ε},
P2 : {S2 → Q1, B → Q3},
P3 : {S3 → Q1, B → B1},

G1 : S1 aB S1 Q2 Q2 aaB1 aaB S1 Q2 Q2 aaaaB1 aaaa
G2 : S2 Q1 aB aQ3 aaB1 S2 Q1 aaB aaQ3 aaaaB1 S2 Q1

G3 : S3 Q1 aB aB1 S3 S3 Q1 aaB aaB1 S3 S3 Q1 2

Let Lk−copy := { (w#)k# | w ∈ {a, b}+ }. We use Lk−copy to show that the result of Theorem 1
is not far from optimal concerning the number of rewrites per cycle.

Proposition 1. Lk−copy ∈ L(k-SLnRR)− L((k-1)-NLnRR), while Lk−copy ∈ COM((log k)).

Proof. First, we sketch the upper bound part for PCGS. Using quite a sophisticated construction
that involves nondeterminism and timing we obtain a PCGS Πcopy that generates Lk−copy with
communication complexity O(log k).

The PCGS generating Lk−copy consists of several groups of grammars:

G2 is used to generate w;
C1,C2,C3 are used to prepare strings of the form (w#)2

i

Wi one-by-one:
(w#)2

i

Wi (w#)2
i+1
Wi+1;

Pi is used to store (w#)2
i

Wi, 0 ≤ i ≤ blog kc+ 1;
Stop3 is used to restart grammar C3 whenever necessary.

12 D.Pardubská , M. Plátek, and F. Otto

Let bm . . . b0,m = blog kc+ 1, be the binary representation of k. Then, ω = (w#)k is composed in
grammar G1 with the help of communication as a concatenation of "pieces" stored in those Pij ’s
for which the corresponding value of bij is 1.

While w is generated in G2 at the beginning of the derivation, all other grammars are "idling",
nondeterministically choosing SX → SX as long as necessary:

G2 S2 w1S2 w#W1 S2

C1 SC1 SC1 QG2 w#W1

C2 SC2 SC2 · · · SC2 QC1 · · ·
C3 SC3 SC3 SC3 QC1

Then G2 decides to idle and all the other grammars start working in a cycle:

C1 (w#)2
i

Wi SC1 QC2 QC2 (w#)2
i+1

W ′
i+1 (w#)2

i+1
Wi+1

C2 QC1 (w#)2
i

Wi (w#)2
i

QC3 (w#)2
i+1

W ′
i+1 SC2 QC1

C3 QC1 (w#)2
i

Wi (w#)2
i

W ′
i+1 SC3 SC3 QC1

Pi QC2 QC2 (w#)2
i+1

W ′
i+1 (w#)2

i+1
Wi+1

Stop3 QC3

At the end G1 nondeterministically wakes up and finishes generation by concatenating parts that
are necessary to be concatenated. For an illustration let k = 5; written in binary k = 101

G1 QP1 (w#)2
0
W0 (w#)2

0
QP2 (w#)2

0
(w#)2

2
W2 (w#)2

0
(w#)2

2
= (w#)101#

P0 (w#)2
0
W0 SP1 SP1 SP1 SP1

P1 (w#)2
1
W1

P2 (w#)2
2
W2 (w#)2

2
W2 (w#)2

2
W2 SP2 SP2

Now we analyze the recognition of Lk−copy by FRR automata. It is not hard to construct an
k-SLnRR-automaton Mcp such that LP (Mcp) = Lk−copy. In fact, a very similar construction was
presented by [5].

For the lower-bound part let k > 1. Assume that M is a (k − 1)-NSLnRR-automaton on Γ
such that LP(M) = Lk−copy. Let A(m,n, k) := ((ambm)n#)k#, where m,n ∈ N+ are sufficiently
large numbers. Obviously, A(m,n, k) ∈ Lk−copy. Hence, there exists an expanded version w ∈ Γ ∗
of A(m,n, k) such that w ∈ LC(M). Assume that w is a shortest expanded version of A(m,n, k)
in LC(M) and consider an accepting computation C of M on input w. Based on the Pumping
Lemma it is easily seen that this computation cannot just consist of an accepting tail computation.
Thus, it begins with a cycle of the form w `cM x. From the Weak Correctness Preserving Property
[Section 2] and from the assumption that C is accepting it follows that x ∈ LC(M), which in
turn implies that PrΣ(x) ∈ Lk−copy. As all rewrite steps of M are length-reducing, |x| < |w|
follows. Thus, our choice of w ∈ LC(M) as a shortest expanded version of A(m,n, k) implies
that x is not an expanded version of A(m,n, k). Since C executes at most k − 1 rewrite steps in
the above cycle, it follows that PrΣ(x) 6∈ Lk−copy. Hence, LP(M) 6= Lk−copy, which implies that
Lk−copy 6∈ LP((k − 1)-NSLnRR). 2

3.1 Other Separation Results

In what follows we show several results relating communication and distribution complexity of a
language to the number of rewrites in one cycle used to recognize it as a proper language.

PCGS & Restarting Automata 13

First, the language Lab(k) := { ai1bi1ai2bi1+i2 . . . aikbi1+...+ik | i1, . . . , ik ≥ 1 } is used to show
hierarchies for both PCGS and SLnRR automata. While an infinite hierarchy of communication
complexity is known [7], a new infinite hierarchy for linearized FRR-automata is given in Propo-
sition 3.

Proposition 2. [7] For all j ∈ N+, Lab(j) ∈ COM(j)− COM(j-1).

Proposition 3. For all j ∈ N+, Lab(j) ∈ LP(j-SLnRR)− LP((j − 1)-NLnRR)

Proof. The construction of a strongly linearized deterministic j-FRR-automaton M
(j)
ab that rec-

ognizes Lab(j) is obvious. In its cycles, moving from left to right, the automaton (i) finds the
leftmost substring aabb, (ii) rewrites it with ab, (iii) deletes one b from all following groups of b’s,
(iv) while checking that the word considered has the form (a+b+)j . The only word accepted by
this automaton in a tail computation is ababb . . . abj .

We see that M (j)
ab is able to work in the way outlined above with a window of the size 4, and

that M (j)
ab recognizes LC(M (j)

ab) by using at most j rewritings in a cycle. From that it easily follows
that Lab(j) ∈ LP(j-SLnRR).

Now let j > 1, and assume that M is nondeterministic (j − 1)-NLnRR-automaton on Γ such
that LP(M) = Lab(j). Let us consider words of the shape C(m, j) := ambmamb2m · · · ambj·m where
m ∈ N+ are sufficiently large. Obviously, C(m, j) ∈ Lab(j). Hence, there exists an expanded version
ω ∈ Γ ∗ of C(m, j) such that ω ∈ LC(M). Assume that ω is a shortest expanded version of C(m, j)
in LC(M). Then there is an accepting computation C of M on input ω, but based on the Pumping
Lemma it is easily seen that this computation cannot just consist of an accepting tail computation.
Thus, it begins with a cycle of the form ω `cM x. From the Weak Correctness Preserving Property
it follows that x ∈ LC(M), which in turn implies that PrΣ(x) ∈ Lab(j). As all rewrite steps of
M are length-reducing, |x| < |ω| follows. Thus, our choice of ω ∈ LC(M) as a shortest expanded
version of C(m, j) implies that x is not an expanded version of C(m, j). Since M executes at most
j − 1 rewrite steps in the above cycle, it follows that PrΣ(x) 6∈ Lab(j). Hence, LP(M) 6= Lab(j),
which implies that Lab(j) 6∈ LP((j − 1)-NLnRR). 2

For t ∈ N+, separation of PCGS with distribution complexity t from the proper languages of
nondeterministic linearized FRR-automata with at most t − 1 rewrites per cycle is done with the
help of language Lt

Lt := { c1wd · · · ctwd | w ∈ {a, b}∗ },

where Σ1 := {c1, . . . , ct, d} is a new alphabet disjoint from Σ0 := {a, b}.

Proposition 4. For all t ∈ N+, Lt ∈ L(t-DD) r LP((t− 1)-NLnRR).

Proof. To show Lt ∈ L(t-DD) it is enough to take the following PCGS with t + 1 component
grammars:

(S1, S2, . . . , St+1)⇒∗ (c1Q2, c2Q3, . . . , ctQt+1, wd)⇒∗ (c1wdc2wd . . . ctwd, S2, . . . , St, St+1).

For the lower-bound part we use a technique similar to that in [5]. LetM = (Q,Σ, Γ, c, $, q0, k, δ)
be a nondeterministic linearized FRR-automaton that executes at most t − 1 rewrites per cycle,
whereΣ := Σ0∪Σ1. Assume that LP(M) = Lt holds. Consider the word w := c1a

nbnd · · · ctanbnd ∈
Lt, where n is a large enough integer. Then there exists an expanded version W ∈ Γ ∗ of w such
that W ∈ LC(M). Let W be a shortest expanded version of w in LC(M). Consider an accepting
computation of M on input W . Clearly this cannot just be an accepting tail, and hence, it begins

14 D.Pardubská , M. Plátek, and F. Otto

with a cycle of the form W `cM W1. From the Correctness Preserving Property it follows that
W1 ∈ LC(M), which implies that w1 := PrΣ(W1) ∈ Lt. As |W1| < |W |, we see from our choice
of W that w1 6= w, that is, w1 = c1x1d · · · ctx1d for some word x1 ∈ Σ∗0 of length |x1| < 2n.
However, in the above cycle M executes at most t − 1 rewrite steps, that is, it cannot possibly
rewrite each of the t occurrences of anbn into the same word x1. It follows that w1 6∈ Lt, implying
that Lt 6∈ LP((t− 1)-NLnRR). 2

As L(t-DD) ⊆ LP(t-SLnRR), we obtain the following hierarchies from Proposition 4, where
LP(t-DD) just denotes the class L(t-DD).

Theorem 2. For all X ∈ {DD, LnRR, SLnRR,NLnRR, NSLnRR}, and all t ≥ 1,

LP(t-X) ⊂ LP((t+ 1)-X) ⊂
⋃
t≥1

LP(t-X) ⊂ LP(X).

4 Skeletons

In this part we define the notions of skeleton and islands, whose introduction is motivated by our
attempt to model two basic kinds of coordinated segments in (Czech, German, Slovak) sentences.
The islands in a level of skeleton serve to denote places of coordinated segments which are coor-
dinated in a mutually dependent (bound) way. The different levels of islands serves for modelling
of the independence of segments. A technical example how to construct skeletons is given by the
construction in the proof of Theorem 1. In fact, skeletons are only defined for t-SLnRR-automata
that fulfill certain additional requirements.

Definition 6. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be a t-SLnRR-automaton for some t ∈ N+, and let
s ∈ N+. Let SK(s) = { ci,j | 1 ≤ i ≤ t, 1 ≤ j ≤ s } be a subalphabet of cardinality t · s of
Γ ′ = Γ ∪ {c, $}. For each j ∈ {1, . . . , s}, let SK(s, j) = {c1,j , . . . , ct,j} be the j-th level of SK(s).
We say that SK(s) is an s-skeleton (skeleton) of M if the following holds:

1. For all w ∈ LC(M) and all c ∈ SK(s), |w|c ≤ 1, that is, w contains at most one occurrence
of c.

2. Each rewrite operation of M deletes a single continuous factor from the actual contents of
the window, and at that point the window must contain exactly one occurrence of a symbol
from SK(s). This symbol is either in the first or in the last position of the window.

3. If a cycle C of M contains a rewrite operation during which a symbol ci,j ∈ S(s, j) is in the
first or last position of the window, then every rewrite operation during C is executed with some
element of S(s, j) in the first or last position of the window.

4. If w ∈ LC(M), w = xyz, such that |y| > k, and y does not contain any element of SK(s),
then starting from the restarting configuration corresponding to w, M will execute at least one
cycle before it accepts.

The elements of SK(s) are called islands of M . We say that SK(s) is a left skeleton of M , if
M executes rewrite operations only with an island in the leftmost position of its window.

Thus, in each cycle M performs up to t rewrite (that is, delete) operations, and during each of
these operations a different island ci,j of the same level SK(j) is inside the window. As there are
s such levels, we see that there are essentially just s different ways to perform the rewrite steps of
a cycle.

PCGS & Restarting Automata 15

By LP(t-SK(s)) (resp. by LP(t-LSK(s))) we denote the class of proper languages of t-SLnRR-
automata with s-skeletons (resp. with left s-skeletons). The corresponding classes of characteristic
languages are denoted by LC(t-SK(s)) (resp. by LC(t-LSK(s))).

Observe that the symbols of the form [b, i, s, l] in the construction of an s-SLnRR-automaton
M accepting the language LC(M) = {Πd(D(w)) | w ∈ L(Π) } play the role of islands for M ,
and their complete set is a left skeleton for M . This observation serves as the basis for the proof
of the next corollary. Recall that s-t-DDG denotes the class of PCGSs that have simultaneously
generation degree s and distribution degree t.

Corollary 5. For all s, t ∈ N+, L(s-t-DDG) ⊆ LP(t-LSK(s)).

To separate PCGSs of generation complexity t and distribution complexity s from the class of
proper languages of (t− 1)-LSK(s)-automata we define language L(t,s). The language is based on
a kind of bounded concatenation of Lt. For s, t ∈ N+ and i ≤ s, let

L(t) := { c1wd · · · ctwd | w ∈ {a, b}∗, ci ∈ Σi, d ∈ ∆ },

where Σ1, . . . Σs, ∆ are new alphabets disjoint from {a, b}. Then we take L(t,s) := (L(t))s.

Proposition 5. For all s, t ∈ N+,

(a) L(t,s) ∈ L(s-t-DDG),
(b) L(t,s) /∈ LP(t-SK(s− 1)) for s > 1, and
(c) L(t,s) /∈ LP((t− 1)-SK(s)) for t > 1.

Sketch of the proof. Note that Lt = L(t) = L(t,1), when |Σ1| = · · · = |Σt| = |∆| = 1.
(a) For the upper-bound part we use a PCGS with (t+s) component grammars, which realize s
phases corresponding to s generative sections. The group of grammars Gs+1, . . . , Gs+t plays the
role of G2, . . . , Gt+1 from the proof of Proposition 4, while the component grammars G1, . . . , Gs
play the role of the grammar G1 from that proof. At the end of the p-th generative section, there
is a word ωpi present in component grammar Gs+1, where ωp = c1,pwpdp . . . ct,pwpdp is a terminal
word and i, 1 ≤ i ≤ s, is a nonterminal symbol indicating that Gi is the grammar into which
ωp should be communicated. Finally, the synchronized communication concatenates all ω’s in an
appropriate3 way in component grammar G1.

(b) Assume thatM is a t-SK(s−1)-automaton such that LP(M) = L(t,s). Thus,M has a (s−1)-
skeleton SK(s−1) = { ci,j | 1 ≤ i ≤ t, 1 ≤ j ≤ s−1 }. Now assume that, for i = 1, . . . , s, wi ∈ Lt,i,
that is, w := w1w2 · · ·ws ∈ L(t,s). Further, letW be an expanded version of w. For each cycle ofM
in an accepting computation on input W , there exists an index j ∈ {1, . . . , s − 1} such that each
rewrite step of this cycle is executed with an island ci,j in the left- or rightmost position of the
window. From the proof of Proposition 4 we see that, for each of the factors Lt,j , t rewrite steps
per cycle are required. Thus, each of the factorsWi must contain t islands, that is,W must contain
at least t · s islands. However, as the word W ∈ LC(M) contains at most a single occurrence of
each symbol of the set SK(s− 1), and as |SK(s− 1)| = t · (s− 1), W can contain at most t · (s− 1)
islands. This contradicts the observation above, implying that L(t,s) is not the proper language of
any t-SK(s− 1)-automaton.

3 The construction of PCGS heavily utilizes nondeterminism. In case of “wrong” nondeterministic choices
the derivation is blocked.

16 D.Pardubská , M. Plátek, and F. Otto

(c) For the lower-bound part recall Proposition 4, where Lt 6∈ LP((t− 1)-NLnRR) is shown. From
that proof it follows that L(t,s) 6∈ LP((t− 1)-NLnRR). As (t−1)-SK(s)-automata are a special type
of (t− 1)-SLnRR-automata, the non-inclusion result in (c) follows. 2

Next we consider the language Lpe := {wcwR | w ∈ {0, 1}∗ }. By taking the symbol c as an
island, we easily obtain the following result.

Proposition 6. Lpe ∈ LP(2-SK(1)).

On the other hand, this language cannot be accepted, if we restrict our attention to left skele-
tons.

Proposition 7. ∀s, t ∈ N+ : Lpe 6∈ LP(t-LSK(s)).

Proof. Assume that M is a t-LSK(s)-automaton such that LP(M) = Lpe, that is, M has a left
skeleton SK(s) = { ci,j | 1 ≤ i ≤ t, 1 ≤ j ≤ s }. Let w = (anbn)m, where n,m ∈ N+ are sufficiently
large, and let z = wcwR ∈ Lpe. Then there exists a (shortest) expanded version Z ∈ Γ+ of z
such that Z ∈ LC(M). Hence, the computation of M on input Z is accepting, but because of the
Pumping Lemma it cannot just consist of an accepting tail, that is, it begins with a cycle Z `cM V ,
where V ∈ LC(M) and |V | < |Z|. Thus, v = PrΣ(V) ∈ Lpe, but v 6= z. In this cycleM performs up
to t delete operations that each delete a continuous factor of Z to the right of an island ci,j for some
level j ∈ {1, . . . , s}. It follows that v = w1cw

R
1 for some word w1 ∈ {a, b}∗ satisfying |w1| < |w|,

and that w1 is obtained from w by deleting some factors, and wR1 is obtained from wR by deleting
the corresponding reverse factors. When deleting a factor x within the prefix w to the right of an
island ci,j , then this means that this island “moves” to the right inside w, that is, from ci,jxy the
factor ci,jy is obtained. Here we just consider the projection of Z onto (SK(s, j) ∪ {a, b})∗. Now
when the corresponding factor xR is deleted from wR, then it is to the right of an island ci′,j ,
that is, from yRci′,jx

R the factor yRci′,j is obtained. Thus, while for deleting the factor y of w the
same island ci,j could be used in a later cycle, an island different from ci′,j is needed for yR. The
same argument applies to the case that the roles of w and wR are interchanged. This means that
in the process of synchronously processing w and wR, the same island can be used repeatedly in
subsequence cycles within one of the two parts, but the corresponding deletions in the other part
require new islands in each cycle. If w is of sufficient length, then it follows that t · s islands will
not suffice. Hence, Lpe 6∈ LP(t-LSK(s)). 2

The results above yield the following consequences.

Theorem 3. For all X ∈ {LSK, SK}, and all s, t ≥ 1, we have the following proper inclusions:

(a) s-t-DDG ⊂ (s+ 1)-t-DDG.
(b) s-t-DDG ⊂ s-(t+ 1)-DDG.
(c) LP(t-X(s)) ⊂ LP((t+ 1)-X(s)).
(d) LP(t-X(s)) ⊂ LP(t-X(s+ 1)).
(e) s-t-DDG ⊆ LP(t-LSK(s)) ⊆ LP(t-SK(s)).
(f) LP(t-LSK(s)) ⊂ LP(t-SK(s)) for t ≥ 2.

5 Conclusion

The study of the relation between PCGS and FRR is motivated by computational linguistics, as
both models are useful in that field. Here we have established the basic relation between the compu-
tational power of these two models, and we have studied the relevant complexity measures of PCGS

PCGS & Restarting Automata 17

and restrictions on computation of FRR. In fact, we have succeed in showing infinite hierarchies
both for PCGSs and FRRs. However, the question of whether j-k-DDG is equal to LP(j-LSK(k)) or
not remains open.

We also believe that properly using nondeterminism the next conjecture can be shown.

Conjecture 1. For any L ∈ j-k-DDG, there is a correctness preserving k-NSLnRR-automaton M
with a left j-skeleton SK(j) such that L = LP (M), and M has no auxiliary symbols outside of
SK(j).

In the close future we will use PCGS, and the corresponding models of restarting automata,
to express formal translations (transformations). In this way we will support the more precise
characterization of the basic task of a formal description of a natural language, namely of the
Formal Generative Description (of the grammar of Czech), see, e.g., [2]. The basic task of such a
system is to exactly describe the so-called synonymy-homonymy relation (characteristic relation).
This is a relation between the sentences of a natural language (e.g. Czech) and their encoded
meanings. How to create such a relation by the method of analysis by reduction is described in [2].
But in [2] the important phenomenon of coordinations in (Czech) sentences is not fully considered.
We believe that PCGS and the corresponding models of restarting translators are very promising
tools for the description of the synonymy (and homonymy) of coordinations, one of the most recent
tasks connected with the Formal Generative Description.

References

1. J. Hromkovič, J. Kari, L. Kari, and D. Pardubská. Two lower bounds on distributive generation of
languages. In Proc. 19th International Symposium on Mathematical Foundations of Computer Science
1994, LNCS vol. 841, Springer-Verlag, London, 423–432.

2. M. Lopatková, M. Plátek, and P. Sgall. Towards a formal model for functional generative description:
Analysis by reduction and restarting automata. The Prague Bulletin of Mathematical Linguistics 87
(2007) 7–26.

3. V. Kuboň, M. Lopatková, M. Plátek, and P. Pognan. Segmentation of Complex Sentence. In:Lecture
Notes In Computer Science 4188, 2006, 151-158.

4. F. Otto. Restarting automata. In: Z. Ésik, C. Martin-Vide, and V. Mitrana (eds.), Recent Advances in
Formal Languages and Applications, Studies in Computational Intelligence, Vol. 25, Springer, Berlin,
2006, 269–303.

5. F. Otto and M. Plátek. A two-dimensional taxonomy of proper languages of lexicalized FRR-
automata. Pre-proc. LATA 2008, S.Z. Fazekas, C. Martin-Vide, and C. Tirnǎucǎ (eds.), Tarragona
2008, 419 – 430.

6. D. Pardubská. Communication complexity hierarchy of parallel communicating grammar system. In:
Developments in Theoretical Computer Science. Yverdon: Gordon and Breach Science Publishers,
1994. - 115–122. - ISBN 2-88124-961-2.

7. D. Pardubská. Communication complexity hierarchy of parallel communicating grammar system. TR
University Paderborn, 93 – 133.

8. D. Pardubská and M. Plátek. Parallel Communicating Grammar Systems and Analysis by Reduc-
tion by Restarting Automata. Submitted to Second International Workshop on NON-CLASSICAL
FORMAL LANGUAGES IN LINGUISTICS 2008.

9. Dana Pardubská, Martin Plátek, and Friedrich Otto. On PCGS and FRR-automata. Accepted for
ITAT 2008.

10. Gh. Pǎun and L. Santean. Parallel communicating grammar systems: the regular case.
Ann. Univ. Buc. Ser. Mat.-Inform. 37 vol.2 (1989) 55–63.

