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Abstract

Communication complexity of language generation by Parallel Communi-
cating Grammar Systems (PCGS) is investigated. The only results on com-
munication complexity obtained till now are some hierarchies for PCGS with
some additional restrictions on the communication structure of PCGS. The
first results for PCGS with no restriction on their communication structure are
presented here. The main ones are:

(i) There is an infinite hierarchy of constant communication complexity for
PCGS without restrictions on their communication graph;i.e. k+ 1 com-
munications are more powerful than k.

(ii) There is a gap between the communication complexity O(1) and Q(logn)
and O(log n) is necessary and sufficient number of communications to get
a nonregular language over one-letter alphabet.

(iii) There is an infinite hierarchy of communication complexity functions

fe(n) = ¥n for k € IN.
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1 Introduction.

This paper is devoted to the computational aspects of Parallel Communicating Gram-
mar systems (PCGYS) introduced in [PS 89]. The concept of PCGSs differs from the
previous models of parallel derivation of words (languages) like Lindenmayer systems
[HR 75, RS 80] in that PC'GGSs can be viewed as typical distributive systems consist-
ing of a number of independent elements cooperating by the exchange of information
via communication links. Thus, the derivation of a PCGS is a sequence of parallel
derivation steps and communication steps. As typical for distributive systems there
are several complexity measures of importance for PC'G'S. The number of grammars
(elements) of PCGS (called the degree of PC'GS) has been considered as a descrip-
tional complexity measure already in [SK 92] and investigated in [HKK 93]. Another
descriptional complexity measures corresponding to the communication structure (a
directed graph whose nodes are elements of a given PC'GS and edges correspond to
the communication links between the elements of PCGS) has been introduced and
investigated in [HKK 93, Par 93].

Communication complexity as a computational complexity measure corresponding
to the number of communications between the component grammars of PCGS is
studied in this paper. The basic questions concerning the power of communication
complexity are investigated here. It is easy to see that only one communication is
sufficient to generate nonregular language {a"6" | n > 1}. In [HKK 93] the power
of PCGYS’s with special communication structures were studied from computational
complexity point of view. It was shown there, that there is an infinite hierarchy of
constant communication complexity for tree — PCGS and ¢ — PCGS (PCGS whose
communication structure is a tree, resp. tree with a sole nonleaf vertex). To get the
hierarchy for unrestricted communication structure has been left open there. Our first
result solves this problem by showing that £ + 1 communications are more powerful
than k& communications for unrestricted PCGS, and for dag — PCGS(PCGS whose
communication structure is a directed acyclic graph).

The situation is not the same considering only the generation of languages over

one-letter alphabet. We prove that every language over one-letter alphabet, that can



be generated with PC'GS with a constant communication complexity, is regular. We
know [San 90] that there are non-regular languages over one-letter alphabet generable
by PCGS. That means, there are languages, for which there is not any constant
bounding the amount of communication complexity necessary for their generation.
So, it is quite natural to ask, what is the less possible amount of the communication
complexity measure that allow the PCGS’s to generate nonregular language over
one-letter alphabet. The answer to this question is given here, too. We prove, that
if communication complexity cannot be bounded by any constant, then it is at least
Qlogn). In fact, we even prove the existence of the gap between O(1) and Q(logn)
for languages over arbitrary finite alphabet.

There have been only hierarchies of constant communication complexity obtained,
till now. But, in fact, the communication complexity is defined as a function depend-
ing on the length of the generated word. We give here first results showing that there
is hierarchy of communication complexity for some special class of functions. The
only known result of this kind has been established in [HKK 93], where a language
requiring linear £2(n) communication complexity to be generated by tree — PCGSs
is constructed.

The paper is organized as follows. Next section contains the basic definitions,
notions and denotations. The results referred to constant communication complexity
are presented in Section 3. Section 4 contains the results concerning nonconstant

communication complexity.

2 Preliminaries

We assume the reader to be familiar with basic definitions and notations in formal
language theory and we specify only some of them related to the PCGS. We denote
by ¢ the empty symbol (word) and, for any word z, |z| denotes the length of . For
a set K of symbols and a word z, |z|x denotes the number of occurrences of symbols
of K in x. Let R denote the set of regular languages.

First, we give the definition of Parallel Communicating Grammar System

(PCGS).



Definition 1 A PCGS of degree m, m > 1, is an (m+1)-tuple Il = (G4, ...,Gpn, K),

where
o (= (N,,T,S;, P,) are reqular grammars satisfying

- NNT =0 forallie{l,...,m}

— PCNxT*NUNxTT

o K C{Q1,...,Qn}NUZN; is a set of special symbols, called communication

symbols, K; = K N N; is the set of communication symbols of G;.

Now, we describe the work of PCGSs. The possible communications in PCGS

IT are determined by the communication graph. The vertices of this directed graph

G(II) corresponds to the individual component grammars and are labeled by their
names Gq,...,G,, . The directed edges describe the possibility of inquiry. The edge
(G;, ;) is presented in the G(II) iff the communication symbol @); belongs to the
nonterminal alphabet of (.

An m-tuple (z1,...,2,), ¥; = ;A;, a; € T*, A; € (N; U¢), is called configuration.
With every configuration C = (a1 As,...,anA;,) its nonterminal cut N(C) =

(A1, Az, ..., Ay) is associated. If the nonterminal cut of the configuration contains at
least one communication symbol, then so called communication cut, that is m-tuple
(B1,Ba,...,Bn), where B; = A; for A; € K and B; = ¢ for A; ¢ K, is associated

with it, too.

We say a configuration (z1,...,2,,) directly derives a configuration (y1,...,¥,) and
write (21,...,2m) = (Y1, .., Ym), if one of the next two cases holds:
I. |z|g = 0 for all i, 1 < ¢ < m, and either z; — y; in G; when z; contains

nonterminal or z; is the terminal word and y; = x; .

2. if 4|k > 0 for some i, 1 < ¢ < m, then, for each i such that z; = z;Q);,, for

some z; € T*,V(Q);, € K, the following happens:

(a) It |$ji

k = 0 then y; = z;z;, and y;, = 5},

(b) If |zj,|x > 0 then y; = ;.



For all remaining indeces ¢, for which z; does not contain communication symbol and
(); has not occured in any of x;’s, we put y; = x.

A derivation of a PCGS 1l is a sequence of configurations Xy, Xy, ..., X}, where
X; — X;;11 is in II. It can be viewed as a sequence of rewriting and communication
steps, too.

If no communication symbol appears in any of the component grammars then we
perform a rewriting step consisting of rewriting steps synchronously performed in each
of the grammars. If some of the commponents is a terminal string, it is left unchanged.
If some of the component grammars contains nonterminal that cannot be rewritten,
the derivation is blocked. If the first grammar ; contains a terminal word y, the
derivation is finished and y is the word generated by II in this derivation. If a com-

munication symbol is present in any of the components, then a communication step

is performed. It consists of replacing all communication symbols with the phrases
they refer to under condition these phrases do not contain communication symbol.
If some communication symbols are not satisfied in this communication step, they
may be satisfied in one of the next ones. Communication steps are performed until
no more communication symbols are present or the derivation is blocked because no
communication symbol has been satisfied in the last communication step.

The language generated by a PCGS consists of the terminal words generated in

(1 (in the cooperation with the other grammars).
Definition 2 For any PCGS 1L, L(Il) = { a € T*| (S1,..., %) =" (o, B2, ..., Bm) }

Now, to illustrate the definition of PCGS and to motivate some new notions, the

example of PCGS follows.

Example 1 Let us have a PCGS 11 (unambiguously) given by the sets of rules of its

component grammars

Gl N Sl — a51|aQ2, ZQ — CLZ2|CLQ3, Z3 — b
G2 N 52 — bZ2 Zz — bZ2

Gg N 53 — Z3 Z3 — ng



G2 Gl G3

Figure 1: communication graph of II.

The communication graph of II, G(II), is depicted on the Figure 1.

The derivation of PCGS II can proceed as follows.

(S1,52,85) = (aSy,bZy, Zs) 2 (a2Sy, 02 Zy,bZ3) = (aPQyq, b3 2y, 02 Z3)
(P65 7y, S, b2 7)) 2 (a®bPaZy, b2y, P Z3) 2 (a®b3a>Qs, b* 7y, b* Z5)

5 (a®6Pab* 23, 02 25, S5) > (aPV3a2V®, ¥ 2y, Zs)

The first, second and third steps of the derivation are generative, because their
nonterminal cuts do not contain any communication symbol. The fourth step is com-
munication because of (), in component grammar (7. Since component grammar Gy
does not contain communication symbol, this communicative step can be succesfuly
performed. Then the 5-th and the 6-th steps are generative and the 7-th step cor-
responds to the succesfuly performed communication between the grammars (G; and
(3. From the nonterminal cut point of view this derivation can be written as follows:

S S S Q2 Zy Zy Qs\ (%3 €

52 Z2 Z2 Z2 SQ Z2 Z2 Z2 Z2
53 Z3 Zg Z3 Z Z3 Z3 53 Zg

w

The described PCGS generates, as can easily be shown, the language
Ly = {a"ba2b1*2 |iy,1, € IN}.

Now, let us stress our attention in more details to the derivations of PCGSs. Let
D(w) = C1,Cy,...,Ci be a derivation of a word w. With this derivation two sequences
of nonterminal cuts could be associated. First one is that of all nonterminal cuts of this
derivation. The second one is a sequence containing only communication cuts of the

derivation. We will call the sequence of nonterminal cuts the trace of the derivation

(resp. trace) and denote T'(D(w)). The sequence containing only communication cuts
of the derivation will be called the communication sequence of the derivation and will

be denoted by C(D(w)).
Realize that for a given PCGS 1I it is meaningful to speak about the set of




all derivations of II - @, the set of all traces of II - @ and the set of all
communication sequences of Il - C(II). For a natural number &, C(II, k) denotes the
set of all communication sequences of Il with at most & communications in it. We
note that there is not one-to-one relation between the sets D(1I) and 7 (II). To every
d € D(II) the T'(d) € T(II) is given unambiguously. But, for any ¢t € 7(II), there
is a set T7!(t) such that for every d € 7-1(II)(¢) T'(d) = ¢. The cardinality of the
set 71(IT)(¢) can be bounded by a constant that depends on II and ¢. The relation
between the sets D(II) and C(II) is not unambiguous, too. For every d € D(II) there
exists precisely one C'(d) € C(II). But there are ¢ € C(II) for which the cardinality of
the set C™*(II)(c¢) = {d € D(IT)|C(d) = ¢} is bounded by infinity only.

The communication sequence of the derivation from Example 1 is (Q2,¢,¢),
(@s,6,¢). Let N(D(w)) = N(C1),N(C3),...,N(C;) be a sequence of nonterminal
cuts of a computation D(w). Let 7,5 € {1,2,...,t},¢ < j and N(C;) = N(C;) holds.
Then the sequence of steps corresponding to the subderivation C; — Ciqq,...,Ci1 —

C; form a cycle of the derivation. If none of the nonterminal cuts N(C;),..., N(C;)

contains a communication symbol, then the cycle of the derivation is called the

generative cycle of the derivation (resp. generative cycle).

Let I = {t1,19, ..., 1}, 11 <13 < ... < 1, be the set of all communication steps of
D(w).
e the i-th generative section of D(w), 1 < ¢ < k + 1, is the subsequence ¢, + 1,

tic1+2,...,t; — 1 of derivation steps, to = 0,441 — 1 = 1.

o Let Cy 41 = (a1 A1, 94, ..., Ay) be the configuration just at the beginning of
the j — th generative section (after the succesfuly performed j — th communication
step; resp. at the beginning of the derivation D(w)).

Let Cy;,, = (a11B1, 02828y, . .., 0,3, By) be that of the end of the j-th generative
section.

Then ¢(¢,7)(D(w)) is the substring 5; of «;3;B;. We prefer the abbreviation ¢(z, j)
if it is not misleading. The terminal word w generated in the derivation D(w) can
be composed using some of ¢(¢,7)(D(w))’s. Thus, for a given D(w) and ¢,5 € IN
one can speak about the number of occurrences of ¢(,7)(D(w)) in the word w. But,

in fact, this number does not depend on the whole derivation. It depends on the



"w = a’b*a’b’ ‘

g(1,1) =a?||g(2,1) = || g(1,2) = a*||g(3,1) = b*|]¢(3,2) = b*||g(1,3) = b

Figure 2: Values ¢(z,j) for the word a*b°a?b®

communication sequence C'(D(w)) only, so the following denotation is correct.

o Let CC = (C1,Cy,...,Cp), Cp € {,Q1,...,Qn}™ for some natural numbers
r,m,p (where m can be considered as the number of component grammars of some
PCGS and CC can be considered as communication sequence of PC'G'S mentioned).
Then we will denote by n(z,7)(CC) (resp. n(z,7)) the number of occurrences of
g(2,7)(D(w)) (resp. g(z,7)) in w for every D(w) with communication sequence equal
to C'C.

The situation for the word ab®a?b® from the Example 1 is described on the
Figure 2.

The last notion recalled here is the notion of communication complexity measure.
This measure corresponds to the number of communications between the component
grammars necessary to generate the language. In [San 90] this complexity measure
was defined as a number of communication symbols in the derivation. But, such defi-
nition does not reflect just the number of communications between the grammars. It
may differ from it by a constant factor (that is bounded by the number of component
grammars decremented by 1). This difference is caused by such “calls for a com-
munication” in which the “called grammar” obtains the communication symbol, too.
We prefer to count the number of realized communications here. There is one more
difference in the definition of communication complexity comparing that of [San 90]
and ours. In [San 90] it is defined as usual - minimizing over all derivations for a
given word and then maximizing over all words of the given length. We require all of
the derivations, not only the minimal one, to be bounded by the considered amount
of complexity. This definition is essential for our proof of the lower bound on noncon-
stant communication complexity. All other proofs works also for the above mentioned

definition. Now, the formal definition of communication complexity follows.



Definition 3 Let Il be a« PCGS(m) , L = L(I) and D(II) be the set of all deriva-
tions of II. Let D(Il,w) be the set of all derivations of a word w by II. Let
Dn(w) = Co,C1,Cay...,Cr,C; = (Cia, Ciay ..., Ci) be a derivation of a terminal
word w in I and I = {t;, 1y, ..., it <ty < ... < g} be the sel of those communi-
cation steps of the derivation Dy(w) for which the (t; — 1)-st step, 1 € {1,...,k}, is

generative. Then

com(Dp(w)) = Z; |Ci|k

com(w, 1) = max{com(D) | D € D(Il,w)}

com(n,Il) = max{com(w,Il) | |w| =n}.

Finally,
COM(f(n)) = {L(I)|¥Vn € IN : com(n,II) < f(n)}.

Let us denote by @ — PCGS(m) — f(n) the PCGS of degree m with the commu-

nication graph in the class of graphs z and at most f(n) communications during
the generation of any word of the length n. We consider @ € { tree, dag(directed
acyclic graph), one-way array, ¢} where c is a class of trees with only one non-leaf
node. ¢ — PCGSs are called centralized [San 90, HKK 93]. We use the notation
x — PCGS — k instead of @ — PCGS — g(n) if g(n) = k for every n € IN.

3 Constant communication complexity

The aim of this section is to show how powerful PCGSs are when only constant
number of communications are allowed. Here it is shown, that in general, there is an
infinite hierarchy of constant communication complexity. The situation is different
in the class of languages over one-letter alphabet. We will show that every language
over one-letter alphabet that is generated in PC'GS with a communication complexity
bounded by a constant is regular.

First, we stress our attention to the infinite hierarchy of constant communication
complexity. This problem was studied in [HKK 93] for PCGS’s with special commu-

nication graphs. It was shown there, that there is an infinite hierarchy of constant
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communication complexity for PC'GS whose communication graph are treesx or dags.

Here, we give the result for PCGS’s with no restriction on communication graph.
Theorem 1 Let k € N. Then L(PCGS-(k)) - L(PCGS-(k-1)) # 0.

Proof. To show the above infinite hierarchy of constant communication complexity,

the following language Ly is used for every natural k.
Ly = {a"b"a?b" 2 gttt e N

The language L, of Example 1 is a special case of Ly for k = 2. First, the PCGSII
generating the language L; is given by the rewriting rules of the following & + 1

component grammars of II :

Gp 51— aSi]aQ),
Zj = aZjlaQp
Z, — b
G, 85 —=0b7,_4
Z; — bZ;
Gry1 0 Sep1 — Zi
Zy — b7y, where 1 =2,--- k. j=1,---,k—1

As can be easily seen, assumed PCGS II is centralized. To prove L(II) = L is
left to the reader. Note only, that the first component grammar (G; generates the
groups of a’s, while the component grammar (7;,; generates the subword b"1F2F+i
J €4{1,2,..., k}.

We start the proof of the lower bound giving the following notations describing
some important features of the derivation of PCGS. For any PCGS(m) Il and any
constant h € IN, we define:

S(h,II) is the set of all traces of II with the following two propereties:

- there are at most A communications in every sequence of S(h,1I);

- each of the nonterminal cuts occurs at most once in one generative section of

any sequence of S(h,1I).

10



D(h,1I) is the set of all derivations of II which have their sequences of nonterminal

cuts in S(h, II).

It is clear that the cardinality of D(h,1I) can be bounded by some constant depend-
ing only on II and h, because the length of derivations of D(k,II) is bounded by
(h 4+ 1)- the number of different nonterminal cuts of II.

Now, for every PCGS(m) II, h € IN and the word w, A(w,h) = {w | ID(w) €
D(h,11)}.

The constant D(h) bounding the length of words that can be generated by II with
at most A communications and without any repetition of nonterminal cuts during one
generative section of any derivation is:

D(h) = max |w|.
weA(w,h)

With respect to this fact, for every word w € L(II), |w| > D(h), the minimal
derivation using at most h communications has to contain a “cycle of nonterminal
cuts” corresponding to one generative section of the derivation.

Based on this idea we will show, that in those steps of the derivation D(w)
(of some Il with L(IT) = L) in which the part of a" is generated, subwords of
b btz o pitittie have to be generated in other grammar (or grammars), too.
Then, a simple consideration sufficies to realize that at least & communications are
needed to have all of this subwords in one -namely the first - component grammar of
I1.

Let PCGS 1, generating Lj have the communication complexity bounded by
some p € IN. We show that p > k.

Let u = atb'1ab1%2 | grbirtettie 4.5 D(p) for every j € {1,..., k}, 1, # i,
for r # s and D(u) be one of its minimal derivations containing at most p commu-

nications. In order to simplify the manipulation with u, let us write it as follows:

u=ohazfa. .. apB, a; =a, B; = brteTr

Since i1 > D(p) there exist j € {1,...,m} and the following part P of the gener-

ative section of the derivation D(u)

11



’
’Ll)lMl wlwlMl
’
P = ’w]‘M]‘ T w]-'w]-Mj

wy, M, Wy, 'w;n M,
such that w; # ¢ becomes a part of a;. So, we can write D(u) = XPY for some
parts of the derivation X, Y.
Let I = {s | w, be a part of u}.
By the repetition of the above mentioned part of the derivation (that is possible,
because from the nonterminal cut point of view this part forms a cycle), the following

derivation D(u‘)

7 I 1
‘LU1LM1 wl'wlMl 'wlwlwlMl
1 1 1 1
Du)=X| w;M; |- wjw, Mj |- | wjwiw, My | Y
; 1 I
W, M, wpw,, M, W w,, w, M,

of a terminal word u’ € L(I1) is obtained. According to our assumption L = L(Il;),

u' has to be of the form u' = a;ﬁia;ﬂ; .. .oz;cﬁ,;, where
lon] = laal = 1B1] = 181] > 0, || > lel, 18] > B, i € {2,...,m}.

Moreover, for every i € I, w; € {a}* U {b}*. (In the case it is not true, the unbounded
repetition of this cycle leads to the unbounded number of “borders” between the a’s
and b’s in the word generated and this contradicts to the structure of Ly.)

The only difference between these two words w, v’ is in the number of repetitions
of w;, i € I, in them. Whenever w;, i € I, is a part of u, (w;)? is the part of u’. Since

18| > 18,], r € {L,...,k}, for every r there is a j,, j, € {1,...,m} such that 'w;-r is

a part of f,.
’ 7. ’ 7 - . .
Because w; ( w; is a part of ay), w; ,...,w; are positioned in others grammars in
. ’ ’ 7 ’ . .
the configuration (wywyw; M, ..., wyw,,w,, M,) of D(u), at least k communications

are necessary for them to become a part of the word w. It implies that p > k, which

completes the proof.

12



Since we do not have any restriction on the type of the communication graph of
PCGS 1T in the lower bound part of the proof of Theorem 1, we have the following

corollary.

Corollary 1 Letk € IN, x be a type of communication graphs and 1l be a x— PCGS

generating Ly with communication complexity k. Then

L(z — PCGS — (k) — L(z — PCGS — (k — 1)) # 0.

Realize that the language Ly is generated in PCGS with communication graph that
is centralized, in our proof. Thus, Theorem 4 of [HKK 93] providing the hierarchy of
constant communication complexity for x — PCGS’s, where x € {tree, ¢} is a special

case of Corollary 1. Moreover, we have the following.
Corollary 2 Let k€ IN. Then, L(dag— PCGS(k)) — L(dag — PCGS(k—1)) # 0.

The next theorem contrasts with the infinite hierarchy proved above. It also
documents that, from communication complexity point of view, the gap between
regular and nonregular languages is greater when restricted to languages over one-

letter alphabet.
Theorem 2 For every k € IN,L(PCGS — (k)) Na* C R.

Proof. For a given PCGS — k generating a language over one-letter alphabet, the
construction of an equivalent regular grammar G is given. First we recall that, for
every derivation, ¢(7, j) denotes the terminal part = of the word generated in the i-th
component grammar during the j-th generative section of the derivation and n(z, j)
is the number of occurrences of z in resulting terminal word. Now, the construction

of a regular grammar is based on the following fact.

Fact 1 Vk € IN, PCGS 1l and t,j5 € IN there is a constant N(k,11) such that
n(t, 7)(CC) < N(k,II) for every CC € C(II) that contains at most k communications.

13



Let I = (G1,Gs,...,Gpn, K),G; = (N;, {a}, P;, S;), be a PCGS(m) — k. Then the
cardinality of the set of all possible communication sequences |S(k,II)| is bounded
by the number ([T, (|N; N K|+ 1))*. We can suppose there is some numbering on

elements of this set.

Informally, the idea of the simulation is the following one. At the beginning
G nondeterministically guesses the communication sequence C'C of the simulated
derivation by a choice of some rules for its axiom S. Note that it is possible because
the communication sequence is of a length bounded by a constant. Obviously, for
each symbol a generated by a component grammar in any generative section of the
computation, C'C' provides the information how many times a is included in the
resulting word. So, the generative steps of II can be directly simulated by regular
rules producing the corresponding number of a’s when the actual nonterminal cut of
IT is included in the nonterminal of G. The simulation of communication steps of 11
is used to check the correctness of the nondeterministic decision of G at the beginning
of the simulation.

Now, the formal description of the regular grammar G is given in two steps. First,

the set of nonterminal symbols of G follows, then the set of rewriting rules of G is

described.

Nonterminals of G

The set of nonterminals is composed from the following three subsets:
- {S}, where S is the axiom of G
- N
- {[NC,NN,CC, p|, where

NC e (N Ueg)x (NaUe)x...x (N, Ueg)
NN € {0,1,...,N(k,10)}™
CCe{Kue}

p€{07177k+1}}

14



The meaning of a nonterminal [NC, NN, CC, p| describing an actual configura-

tion of II is

NC is a nonterminal cut of II just simulated

NN is an m-tuple of n(7,j)'s corresponding to the generative section of

the derivation of II just simulated

CC is the sequence of communication cuts of the derivation of II just

simulated;

p is the number of the generative section of the derivation of 11 just simu-

lated

Rewriting rules of the grammar G

The set of rules P of G consists of the following sets:

- {S = [(51, 52, .+, Sm), (n1,n2, ... ), CCL 0] | CC € C(ILL k),
n; € {0,...,N(k,1I)} for 7z € {1,...,m} and n; is the value of n(z,0) for the
communication sequence C'C' and t is the length of CC}.
This corresponds to guessing the communication sequence of the derivation of 11
generating the terminal word. The derivation with this communication sequence

will be simulated by the grammar G.

- A{l(My, My, ..., M), (n(1,p),n(2,p),...,n(m,p)), CC,t,p| —
a’[(My, M,,...,M ), (n(1,p),n(2,p),...,n(m,p),CC,t,p] € P
for every pe{0,...,t}, CCeC(Il,k), s€ IN and nonterminal cuts
(My, My,...,M,,),(M,, M,,..., M) such that the next five conditions are ful-
filed:

The nonterminal cut (My, My, ..., M,,) does not contain any communica-

tion symbol,
- n(i,p) = n(i,p)(CC) for i € {1,...,m}
- M; — a"M; € P;,
-s= ) (n(p,j) i), and

M;eN;—K

15



- M, =M, for M, =e}.

This corresponds to the simulation of one generative step in Il according to the

nonterminal cut (M, My, ..., M,,).

{l(My, My, ..., M), (n(1,p),n(2,p),...,n(m,p)),CC,t,p| —
[(My, My, ..., M), (n(1,p+1), (2, p+1), ... ,n(m, p+1)), CC, t, p+1] for every
p € {0,...,t} and nonterminal cuts (M, My, ..., M,,),(M,;, M,,..., M, ) such

m

that the next five conditions are fulfiled:

- n(t,p) = n(t,p)(CC) for i € {1,...,m}
- the nonterminal cut (My, My, ..., M,,) corresponds to the p — th member

of the communication sequence CC,

- M, =M, if (M; € {N;Ue} & M, # Q;Vs),

J

- M =S;if3s M, =Q; & M, ¢ K, and

J

- M

J

=M, if M;=Q, & M, ¢ K}.

This corresponds to the succesfuly performed communication step of the simu-

lated derivation of II.

{[(My, My, ..., M), (n(1,p),n(2,p),...,n(m,p)),CC,t,t+ 1] — a’* M, |a’ for
every p € {0,...,t},CC € C(Il, k) and nonterminal cut (My, Ms, ..., M,,) such
that the following is true:

- n(t,p) = n(t,p)(CC) for i € {1,...,m}

- My — a" M;|a” € P,}

This corresponds to the simulation of the first generative step in the last gen-

erative section of the derivation simulated.

{lle, My, ..., Mp),(n(1,t 4+ 1),n(2,t+1),...,n(m,t+1)),CC,t,t + 1] — ¢ for
CC eC(Il,k), nonterminal cut (e,Ms,...,M,,) and n(,t+1)=
n(e,t+ 1)(CC), i € {1,...,m}}.
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This corresponds to the situation that the derivation finishes with a communi-
cation step in which the communication symbol of the first component grammar

is replaced by a terminal word.
- Py

iFrom the above construction of the grammar G it is clear that L(G) = L(II)
holds. Hence, PCGS’s with constant communication complexity and one terminal
symbol can generate only a subclass of regular languages.

O

Since every regular language can be generated by some PCGS(1), we have the

following.

Corollary 3 Uy L(PCGS — (k)) Na* = RNa*.

4 Nonconstant communication complexity

In this subsection we are interested in the communication complexity that cannot be
bounded by any constant. First, the bound separating the regular and nonregular
languages over one-letter alphabet in terms of communication complexity, is given.
This bound - Q(logn) - is shown to be the sufficient and necessary condition to ob-
tain a nonregular language that cannot be generated with communication complexity
bounded by any constant.

We stress our attention to a derivation of PCGS in order to make clear the
relation of individual ¢(¢,7)’s to the terminal word generated. For our purposes
the most important moments of the derivation are the communication steps. In
every communication step some of g(z,7)’s change their position by moving from one
component grammar to another one, some of them multiply their occurrences (when
moved to at least two component grammars in one communication step). Moreover, in
every component grammar the new one g(¢,7) starts its existence.The terminal word
is composed from those g(z,7)’s (resp. their manifold copies) that are positioned at

the first component grammar when the derivation of the terminal word finishes.

17



For a given derivation D(w) the motion of a single ¢(7, j)’s during D(w) can be
expressed by the directed graph. The graph containing the motion of all g(z,7)’s
during D(w) is an analogy to that of a computational tree. On the level [ the vertices
of the graph correspond to individual occurrences of ¢(7,5)’s. The names of the
vertices reflect to the number of component grammar at which the represented ¢(z, j)
is located after [ — th communication step ( during the ({ 4 1) — st generative section
of the derivation D(w) ). Since after every communication step the new g¢(¢,j) starts
to be generated in every component grammar, new m vertices are added to this graph
on every level. For every vertex v with the name new(z), @ € IN the path from v
to a leaf vertex corresponds to a path in the communication graph of Il and reflects
to the movement of that ¢(¢,j) thats creation is represented by v according to the
derivation D(w).

We call this graph the communication dag of the derivation. For a PCGS of m
components, the communication dag is acyclic with only m vertices on each “level”
with the input degree greater than one. We use the notion “root” to indicate the
(unique) vertex with the indegree 0, and the notion “leaf” when refering to the vertex
with zero outdegree.

Now, we explain the meaning of some denotations used in the following formal
definition of the communication dag. All verteces, except of the root, are named
by natural numbers resp. by new(s),s € IN. Then, num(u) indicates the number
assigned to the vertex u, resp. value s in the case u is named new(s). As usual,

d(z,y) denotes the distance from a vertex z to a vertex y.

Definition 4 Letll = (G41,Gs,...,Gp, K) be a PCGS, and let D(w) be a derivation
of a terminal word w € L(I1). Let CC(w) be the sequence of communication cuts of
D(w) and |CC(w)| = l(w). Then the communication dag of the derivation D(w) -
cdag(D(w)) is the directed graph (with the edges directed from the fathers to the sons)

obtained by the following procedure:
input: D(w), resp. CC(w)
output: the communication dag cdag(D(w))

1 take a new vertex r and assign the name root to it;
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2 make m new verteces vy, vy, . .., U, with the names new(1), new(2),...,new(m)

the sons of the vertex r(with the name root);
3 for h:=1 to l(w)

do
S(h) = {v | d(v,r) = h};
{(C1n,Can, ..., Cmp) be the h-th member of the sequence CC(w)}
for every u € S(h)

do
then Vk € K(u) make new vertex with the name k a son of the
verter u
else make new vertex with the name num(u) a son of u

od;

)

for s:=1tom

do
- take the new one vertex v(s) and assign the name new(s) to it;
- Yu € S(h) : num(u) = s make u a father of v(s)

od
od

How are the g(z,7)’s related to the terminal word generated and the communica-
tion dag described? Every leaf with the name 1, resp. new(1), corresponds to some
g(t,7), that is a part of the terminal word generated. The appropriate values 7, j can

be found as follows:

Let v be a leaf with the name new(1). Then it corresponds to unique occurrence

of g(1,1(w) + 1).
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Let v be a leaf with the name 1 and v = vj(w)41, Vi(w), - - - , V¢ be the shortest possible
sequence of the vertices such that
- v; is named new(s) for some s € {1,2,...,m}.
- v; is a father of v, 41 in edag(D(w)),: € {t,...,l[(w)}.

Then v corresponds to one of the occurrences (possible not unique) of g(s,1).

cdag(D(w)) is the graph with the distance from the leaf to the sole root bounded
by the number of communication steps. The uotdegree of every vertex of edag(D(w))
is bounded by the number of components grammar increased by one. Hence, the

following observation holds.

Observation 1 Let Il be a PCGS(m) — f(n) and let D(w) be one of its deriva-
tion of the terminal word w. Then there are at most (m + l)f(|w|)+1 leaves in the

communication graph cdag(D(w)).

Lemma 1 Let Il be a PCGS(m)— f(n), f(n) € o(logn). Then there is ng € IN such
that for every word w € L(1I),|w| > ng each its derivation of D(1l,w) uses at least

one generative cycle.

Proof. We start the proof of the lemma by bounding the maximal length of the word
that can be generated in the generative sequence without the repetition of nontermi-
nal cuts.
Let n; denote the number of noncommunication nonterminals in the : — th compo-
nent grammar of II. By d we denote the maximal length of the right side of the
rewriting rules taken over individual component grammars. Since B = [T, (n; + 1)
is the number of all nonterminal cuts, B is the maximal number of generative steps
without repetition of some nonterminal cut, too. So, the length of the word generated
in one component grammar during one generative section without the repetition of
nonterminal cuts is bounded by

d-TL (e + 1), 1)

i=1

The length of the terminal word generated can be expressed as follows:

wl =" > n(i5) g5l (2)

i=1,...,m
=0, l(w)+1
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With respect to (1), |w| can be bounded by

m

[w] < | oo (i) (d-T[(ni+1)) = | > n(i,5)-D. (3)
im0, i =t PR
D

According to the Observation 1 >~ n(i,7) is bounded by (m + 1)/ (D41 So we
i=1,...,m
7=0,..,l(w)+1

have

n<D-(m+ 1)/ D= ag T (ni + 1) (4)

logn <log D+ (f(n)+1)-log(m+1)<2- (lo_gD +log(m+1))- f(n)
R < fn) )

2 (log D +logm)
The following fact follows from (5). If the derivation contains only f(n) communi-

cations and every nonterminal cut is at most once in one generative section, then

f(n) € Qlogn). Hence, if f(n) € o(logn), then 3 ng € IN such that Vn > ng
n>D-(m+4 1)fMH

and there is no way to generate the word with the length at least n without any

generative cycle.

Now, we are able to show that there are no languages with the nonconstant com-

munication complexity in COM (o(logn)).

Theorem 3 For every PCGS(m) — f(n) generating a language L ¢ COM(O(1)) ,
f(n) € Qlogn).

Proof. To prove Theorem 3 we use the idea used to show, that there is a gap between
SPACE(1l) and SPACE(loglogn) [HU 69]. Let Il be a PCGS generating a lan-
guage L(I1) ¢ COM(O(1)). In what follows only minimal derivations of II, i. e. the
derivations for which every repetition of any cycle of nonterminal cuts leads to a
longer terminal word, are considered.

Since L(II) ¢ COM(O(1)), L is an infinite language. Moreover, for every k € IN

there exists at least one word w € L(II) such that one of its derivations contains at
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least k& communications. For every k € IN one can fixed one of them in the following

way:

wy is one of the shortest words with D(II, wy) involving a derivation D(wy,) containing

at least k£ communications .

Suppose, for the contradiction, f(n) = o(logn). Then, according to Lemma 1,
there is a constant ng € IN such that Yw € L(II), |w| > ng, every derivation of w has
to contain at least one generative cycle.

So, let kg € IN be such that |wy,| > ng. Then D(wy,) has to contain a generative
cycle. Since only minimal derivations are considered, removing one repetition of the
mentioned cycle the word wy that is shorter than wy, is generated. But its derivation
-not necessary the maximal one- contains the same number of communications as
D(wg,). This contradicts to the assumption that wg, is one of the shortest words

using kg communications in one of its derivations.

Corollary 4 Let Il be a PCGS(m) — f(n) generating a nonregular language over
one-letter alphabet. Then f(n) € Q(logn).

To show hierarchy of nonconstant communication complexity the following lan-
guage L(k) is used:
L(k) = {w € {a}* | |w| = d*,d € IN}

Theorem 4 For every k € IN and every function f(n) € o(/n),
L(k) ¢ COM(f(n)).

Proof: Suppose, for a contradiction, f(r) = o(¥/n), and there is a PCGS(m) —
f(n) II generating the language L(k). For a long enough word w = a?" let D(w) =
Co,C1,...,C; be the sequence of the configurations that corresponds to one of its
derivations. Denote by T' = {i1,43,...,14} the sequence of those time units that

i; = min{t |C;_; — C; is a communication step and |C¢|, > j*} (we denote here by
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|C'|a the number of a’s in the configuration C'). T' can be composed from f(n) (not

necessary nonempty) sets T4, ..., Ty, for which
-1 = {it17it1+17 s 7it1+At}

- ih = it1+At
-te{l,..., f(n)}

is true. Since f(n) = o(¥/n) = o(d), it is not possible to bound A, ¢t € {1,..., f(n)}
and n € IN, by some constant that depends on k& only. Hence, for every ¢ € IN there
exists d € IN such, that

gt € {1,..., f(d*)} : Ty = {i;,...,i;4a,} and By > c.

It implies that
Ci, il < 5% and |Cyla > (54 o)F. (6)

Since in one communication step the number of symbols in PCGS can be increased
by at most (m — 1)- the length of the longest component of the configuration just
before this step, |Cila < (m — 1) - |Ci;_,|o. With respect to this it follows from ( 6 )
that, there were some generative steps between the time units ¢;_; and ¢;. In these
generative steps at least (j + ¢)¥ — m - () symbols where generated. If D is the
constant bounding the right side of the rewriting rule of II, then it is possible to
choose the constant ¢ in such a way that

(+)f =m-(5")

D-m

> number of different nonterminal cuts of 1I. (7)

iFrom ( 7) it follows that there is generative cycle contained in the derivation D(w).

This cycle lies somewhere between the configurations C;,_, and C;;. One repetition of

1

this cycle increases the length of the terminal word generated by /. Hence, for every
p € IN, the word a?+72 belongs to L(IT). But 3pg " +ro-t ¢ Li. This contradiction

completes our proof.

Theorem 5 For every k € IN, L(k) € COM(O({/n)).
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To prove this theorem some new notions and technical lemmas are given.

Definition 5 Let f(p) be an increasing function from IN to IN. We say f(p) is
PCGS-countable if there exists a PCGS 11 such that the following conditions are true:

1, L(IT) = {a/® |p € IN}
2, Vp € IN there is unique derivation D(p) of the word a?(?)

3, there exists r € IN such that for every p > r
D(p) = Fo, Fl, Ce 7]75, (Ol, ey Cd)p—r’ Eo, E117 ey Ee, where
- Iy is starting configuration of PCGS 11
- Ko F Eo, Ey, ... E. and Cy,...,Cy are nonterminal cuts
- s,d,e € IN are constant dependidng on 11, f
4, There is a constant z such that after ¢ repetitions of the cycle (Cq,...,Cy) of
D(p) satisfying 3, the terminal part of the component grammar Gy is af(+7)=%,
The mentioned PCGS is said to count the function f(p).

Informally, there is a possibility for II to “decide” to finish the derivation of the
word without the next repetition of the cycle or to continue in the derivation of the
“longer” terminal word with the repetition of the cycle. The sequence of nonterminal
cuts [y, ...,1;, causes the terminal part of component grammar ; will be prolonged

by z symbols and become the terminal word of the right length.

Fact 2 Let f(p) is PCGS — countable function and 11 is a PCGS, that counts f(p).
Then there is a constant d(I1, f) such, that for every a™, n = f(p), number of com-
munications in the derivation D(w,11) is bounded by d(I1, f) - p.

Lemma 2 Let Il be the PCGS counting the function f(p) and k € IN be a constant.
Then the function g(p) = k- f(p) is PCGS-countable.

Proof: It is sufficient to replace every rewriting rule of II of the form A — a'B by the

rule A — a**B, where A, B are nonterminals and a is the terminal of II.
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Lemma 3 Let f(p) be a PCGS-countable function and g(p) be the function given by
the following prescription:

g(1) =c

g(p+1)=g(p) + f(p) + d, for some c,d € IN.
Then the function g(p) is PCGS-countable.

Proof. Since the formal description of the PCGS 1I, would be confusing we omit
it here. We prefer to informally describe how such a system can be constructed.
Let Iy = (GY,...,G" . K) be a PCGS(m), that counts the function f(p). We shall
describe the PCGS(m) 11, that counts the function g(p). The work of this system will
simulate the system Il in one group of the grammars, in other group of the grammars
the actual value of g(p) will be remembered, the third group of the grammars will
secure the addition of f(p) + g(p) and the fourth one helps the grammars to contain

their starting symbol at the moment it is necessary, as described on the Figure 3.

G is the grammar for remembering the value of ¢(p)

.o 0 F, are the grammars simulating the modificated work of the system Il
PP are the grammars used to remember the value of f(p)

Cy,....Cy are the grammars used to secure some of the component grammar

to contain its starting symbol

LL represents the terminal string a”
name indicates the communication symbol that implies the communi-
cation with the commponent grammar name (analogous for
nonterminal symbols)
nonterminals are depicted only in the case, they are necessary.

On the Figure 3 only those parts of the derivation are described that are nec-
essary to explain the derivation as a whole. Since the rewriting rules of the type
A — B, where A, B are nonterminals, are often refered in what follows, we will say
the grammar is active standing when applying the rewriting rule of that type.

The derivation of the terminal word a?¢*) (resp.a’()) can be according to the Fig-

ure 3 described as follows:
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Figure 3: Schema of a derivation of II,,.

‘Fpartl ‘ ‘ Fcycle‘ " ‘FpartQ ‘

‘gpartl ‘ ‘ gcycle‘ ) ‘gpartQ

- Gpartl(Fpartl) corresponds to the sequence of nonterminal cuts Fo, Fi,. ..

, where

QF1
QF1

I

- Geycle(Feycle) corresponds to the sequence of nonterminal cuts creating the cycle

Co,Ch,...,Cy4

- Gpart2(Fpart2) corresponds to the sequence of nonterminal cuts Fo, Fy, ...

from the Definition 5.

 Ee

While on the Figure 3 the last repetition of the Geycle is depicted, the more pre-

cise description of the derivation of the word a?® is following:
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‘gcyclengartZ‘ .

After the Gpartl Gy contains (g(1) — 1) a’s, Fi,..., F, have the same contents as
G, ..., G generating in II, e.g. Fy has (f(1) — r) a’s generated. The grammars
P, Py, Cq,...,C; are active standing during this steps.

Synchronization is a part of the derivation in which all grammars are active stand-
ing. This part of the derivation is used to obtain nonterminal cut corresponding to
the beginning of the Geyele. This nonterminal cut is indicated by 1.

Gceycle is composed from two parts. The first one - G1 - corresponds to the adition
of g(n) and f(n). The second one - G2 - guarantees the system of grammars Fi, ..., F,
work in such a way, that the result of this part of the derivation is the same as the
repetition of the cycle Feycle in the derivation of IIy.

The last step of the derivation (that is named Gpart2) is generative and leads to
a final terminal word.

Now, let us go to the F'ecycle, Pparts and Cparts in more details.

Why the grammars Fi, ..., F,, have to work in a different way during the Feycle’
than during the Fcycle? The reason is, that whenever the grammar F is called
(the nonterminal Q) p, is present in a nonterminal cut) the rewriting rule Sy, — Qp, is
apllied according to the G1. But this rewriting step was not present in the F'eyele and
we have to change the rewriting rule of the PCGS 1l Sgr — Z] to Sp, — Qp,. To
be able to continue in the modified Feycle (in Figure 4 it is Feycle'), the grammar
P, has to contain exactly the string Z as its phrase at that moment. This can
be guaranted by active standing of the grammar P, (that is active standing whole
derivation) and the group of the grammars C4,...,C;, that are active standing all
the time, too. When it is necessary, calling P;, resp. P,, they caused Pj, resp. P,
to start from its starting symbol. All others grammars F5,..., F,, must have their
rewriting rules changed (in comparison with GY,...,G" ), too. Let (S1,Z2,...,Zn)
is the nonterminal cut corresponding to the situation G contains its nonterminal

during the Feyele and (77, 7),...,7! ) the next one. Let in this generative step

27



rewriting rules Z; — a’Z!,i € {2,....,m} Z; # ¢ and j; € IN were applied. Then
those of the grammars Fy,..., F,, for which Z; # ¢ will have the rewriting rules
Zi — Z!' 7! — a’ Z! instead of mentioned rules of PCGS Iy, where ZY, ..., Z" are
new (with respect to the nonterminals of G%,j € {1,...,m}) nonterminals.

During the Geycle r a’s are generated in Gy.

O

Fact 3 There are PCGS’s Zy,resp. Z1, counting the function f(p) = p ,resp. f(p) =
2p.

Proof of the Theorem 5. Now, for a given k£ € IN, we are ready to describe the
PCGS — h(n) Zi generating the language L. Then, the function h(n) bounding
the communication complexity of the constructed Z; will be shown to be in O(¥/n).

The inductive construction of Z; is based on the binomial theorem:
(p+ 1)k+1 _ pk—l—l + alpk 4+ dagp+la; = c<—1|_1>

According to this theorem the value of the function z**! at the point z = p + 1 can

k1 gk ..,z at the point z = p.

be count knowing the values of the functions =

For & = 1 we have (p + 1)> = p* + 2p + 1. Use the Lemma 3 with f(p) =
2p,c = 1,d = 1. Then there is a PCGS Z, counting the function p*. Suppose, the
systems Zy, Zs, ..., Z,_q are those counting the functions p, p?, ..., p*~!, respectively.
Based on the Lemma 2 there are PCGS’s Z],7),...,Z;_, counting the functions
(kil) pFt (k:'zl) pi2o Gﬁ:%) p, respectively. Following the Lemma 3 the system

k+1 can be obtained.

Zr+1 counting the function p

With respect to the Fact 2 the number of communications during the derivation
of the terminal word linearly depends on the number of the repetition of the cycle.
In the case of our language the cycle is repeated (d — 1) times, where d = {/n. So the

communication complexity can be bound by some function h(n) € O(¥/n).

Theorems 4 and 5 show we cannot find the function bounding the communication

complexity of all languages that are PC'GS-generable. Nor in the general nor in the
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case of the languages over one-letter alphabet. But we see the number of compo-
nent grammars rapidly increases with k. It would be interesting to show a hierarchy
of communication complexity inside the L(PCGS(m)) for some m € IN. Another
one problem that remains open is to show that there is (if any) such condition «
that for arbitrary two functions fi(n), fa(n) satisfying a (e.g. fa(n) = o fi(n)))
COM(O(fi1(n))) — COM(O(f2(n))) # 0 holds.
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