
On Parallel Communicating Grammar Systems
and Correctness Preserving Restarting Automata

Dana Pardubská�1, Martin Plátek��2, and Friedrich Otto3

1 Dept. of Computer Science, Comenius University, Bratislava
pardubska@dcs.fmph.uniba.sk

2 Dept. of Computer Science, Charles University, Prague
Martin.Platek@mff.cuni.cz

3 Fachbereich Elektrotechnik/Informatik, Universität Kassel, Kassel
otto@theory.informatik.uni-kassel.de

Abstract. This paper contributes to the study of Freely Rewriting Re-
starting Automata (FRR-automata) and Parallel Communicating Gram-
mar Systems (PCGS) as formalizations of the linguistic method of anal-
ysis by reduction. For PCGS we study two complexity measures called
generation complexity and distribution complexity, and we prove that a
PCGS Π , for which both these complexity measures are bounded by con-
stants, can be simulated by a freely rewriting restarting automaton of a
very restricted form. From this characterization it follows that the lan-
guage L(Π) is semi-linear, that its characteristic analysis is of polynomial
size, and that this analysis can be computed in polynomial time.

1 Introduction

This paper contributes to the analysis of Freely Rewriting Restarting Automata
(FRR-automata) and Parallel Communicating Grammar Systems (PCGS), see
[1,2]. Here the main goal is the quest for constraints for FRRs and PCGSs, under
which the corresponding classes of languages and their analysis by reduction are
of interest from the point of view of computational linguistics. For example,
this is the case if the languages obtained are semi-linear, and if their so-called
characteristic analysis can be computed in polynomial time.

Freely rewriting restarting automata create a suitable tool for modelling the
so-called analysis by reduction. In general, analysis by reduction explains basic
types of so-called dependencies in sentences of natural languages. The Functional
Generative Description for the Czech language developed in Prague (see, e.g., [3])
is based on this method.

In order to model analysis by reduction, FRR-automata work on so-called
characteristic languages, that is, on languages with auxiliary symbols (cate-
gories) included in addition to the input symbols. The proper language is ob-
tained from a characteristic language by removing all auxiliary symbols from
� Partially supported by the Slovak Grant Agency for Science (VEGA) under contract

“1/0726/09 - Algorithmic and complexity issues in information processing”.
�� Partially supported by the Grant Agency of the Czech Republic under Grant No.

405/08/0681 and by the program Information Society under project 1ET100300517.

2 D. Pardubská, M. Plátek, F. Otto

its sentences. We focus on restarting automata that ensure the correctness pre-
serving property for the analysis, that is, after any restart within a computation
starting with a word from the characteristic language, the content of the tape
is again from that language. This property is required in order to introduce
the notion of characteristic analysis in a linguistically adequate way. To achieve
our goal we use a technique that is based on the notion of skeletal set, which
is particularly useful for error recovery during a robust parsing or during a
grammar-checking procedure.

We study two complexity measures for returning PCGSs with regular com-
ponents: the generation complexity4, which bounds the number of generative
sections in a word generated by a PCGS, and the distribution complexity5, which
bounds the distribution of concurrently generated segments over the word gen-
erated. Our technical main result states the following. If Π is a PCGS, for which
the generation complexity is bounded by a constant g and the distribution com-
plexity is bounded by a constant d, then the language L(Π) generated by Π
is the proper language of a freely rewriting restarting automaton M of a very
restricted form: M is correctness preserving, and it only performs rewrite opera-
tions of a very restricted type. In addition, the number of rewrites per cycle and
the number of auxiliary symbols that occur in any word from the characteristic
language of M are both bounded by constants that depend on the bounds g and
d above. In fact, M even has a skeletal set of type (g, d). Based on these restric-
tions of M we obtain the following important results on the language L(Π): it
is semi-linear, its characteristic analysis is of the polynomial size, and it can be
computed in polynomial time, where the degree of the polynomial time-bound
also depends on the constants g and d. The latter two results answer questions
that were left open in [1,2].

The structure of the paper is as follows. In Section 2 we give the (informal)
definitions of FRR-automata, AuxRR-automata, and PCGS and present some ba-
sic facts about them. In Section 3, which constitutes the technical main part of
the paper, we present our simulation result described above, and we then intro-
duce the notion of skeletal set. Using this notion we derive the main results of
the paper from the simulation given in the first part of this section. This section
ends with some concluding remarks.

2 Basic notions

Restarting automata. A freely rewriting restarting automaton (FRR-automa-
ton, for short) is a restarting automaton without rewriting constraints, that is, it
is a nondeterministic machine with a flexible tape, a read/write window of a fixed
size k ≥ 1 that can move along this tape, and a finite-state control. Formally, it
is described by an 8-tuple M = (Q, Σ, Γ, c, $, q0, k, δ). Here Q denotes a finite set
of (internal) states that contains the initial state q0, Σ is a finite input alphabet,
and Γ is a finite tape alphabet that contains Σ. The elements of Γ � Σ are
4 The generation complexity corresponds to the degree of (linguistic) independence.
5 The distribution complexity models the degree of (linguistic) dependence (valence).

PCGS and Restarting Automata 3

called auxiliary symbols. The additional symbols c, $ �∈ Γ are used as markers
for the left and right end of the workspace, respectively. They cannot be removed
from the tape. The behavior of M is described by a transition function δ that
associates a finite set of transition steps to each pair of the form (q, u), where q
is a state and u is a possible content of the read/write window. There are four
types of transition steps: move-right steps, rewrite steps, restart steps, and accept
steps. A move-right step simply shifts the read/write window one position to the
right and changes the internal state. A rewrite step causes M to replace a non-
empty prefix u of the content of the read/write window by a word v satisfying
|v| ≤ |u|, and to change the state. Further, the read/write window is placed
immediately to the right of the string v. A restart step causes M to place its
read/write window over the left end of the tape, so that the first symbol it sees
is the left sentinel c, and to reenter the initial state q0. Finally, an accept step
simply causes M to halt and accept.

A configuration of M is described by a string αqβ, where q ∈ Q, and either
α = ε (the empty word) and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$};
here q represents the current state, αβ is the current content of the tape, and it
is understood that the window contains the first k symbols of β or all of β when
|β| ≤ k. A restarting configuration is of the form q0cw$, where w ∈ Γ ∗.

Any computation of M consists of certain phases. A phase, called a cycle,
starts in a restarting configuration. The window is shifted along the tape by
move-right and rewrite operations until a restart operation is performed and
thus a new restarting configuration is reached. If no further restart operation is
performed, the computation necessarily finishes in a halting configuration – such
a phase is called a tail. It is required that in each cycle, M performs at least one
rewrite step that is strictly length-decreasing. Thus, each cycle strictly reduces
the length of the tape. We use the notation u �c

M v to denote a cycle of M
that begins with the restarting configuration q0cu$ and ends with the restarting
configuration q0cv$; the relation �c∗

M is the reflexive and transitive closure of �c
M .

A word w ∈ Γ ∗ is accepted by M , if there is a computation which starts from
the restarting configuration q0cw$, and ends with an application of an accept
step. By LC(M) we denote the so-called characteristic language of M , which
is the language consisting of all words accepted by M . By PrΣ we denote the
projection from Γ ∗ onto Σ∗, that is, PrΣ is the morphism defined by a �→ a
(a ∈ Σ) and A �→ ε (A ∈ Γ � Σ). If v := PrΣ(w), then v is the Σ-projection
of w, and w is an expanded version of v. For a language L ⊆ Γ ∗, PrΣ(L) :=
{PrΣ(w) | w ∈ L }. Further, for K ⊆ Γ , |x|K denotes the number of occurrences
of symbols from K in x.

Motivated by linguistic considerations to model the analysis by reduction
with parallel processing, we are interested in the so-called proper language of M ,
which is the set of words LP(M) := PrΣ(LC(M)). Hence, a word v ∈ Σ∗ be-
longs to LP(M) if and only if there exists an expanded version u of v such
that u ∈ LC(M). Realize that the main difference between the input and the
proper language lies in the way in which auxiliary symbols are inserted into the
(terminal) words of the language.

4 D. Pardubská, M. Plátek, F. Otto

An FRR-automaton M is called linearized if there exists a constant j such
that |w|Γ�Σ ≤ j · |w|Σ + j for each w ∈ LC(M) [1,2]. Since a linearized FRR-
automaton only uses linear space, we see immediately that the proper language
of each linearized FRR-automaton is context-sensitive.

In a real process of analysis by reduction of a sentence of a natural language
it is desired that whatever is done within the process does not change the cor-
rectness of the sentence. For restarting automata this property can be formalized
as follows: An FRR-automaton M is correctness preserving if u ∈ LC(M) and
u �c∗

M v imply that v ∈ LC(M), too. While it is easily seen that each determinis-
tic FRR-automaton is correctness preserving, there are FRR-automata which are
not correctness preserving.

Let M = (Q, Σ, Γ, c, $, q0, k, δ) be an FRR-automaton that is correctness
preserving, and let w ∈ Σ∗. Then AC(w, M) = {wC ∈ LC(M) | wC is an
extended version of w } is called the characteristic analysis of w by M .

Definition 1. An FRR-automaton M = (Q, Σ, Γ, c, $, q0, k, δ) is called aux-re-
writing if, for each of its rewrite operations (q′, v) ∈ δ(q, u), PrΣ(v) is obtained
from PrΣ(u) by deleting some symbols, and PrΓ\Σ(v) is obtained from PrΓ\Σ(u)
by replacing some symbol by another symbol.

By AuxRR we denote the class of aux-rewriting FRR-automata that are cor-
rectness preserving. For each type X of restarting automata and each t ∈ N+, we
use t -X to denote the class of X-automata that execute at most t rewrite steps
in any cycle.

Parallel Communicating Grammar Systems. A returning PCGS of de-
gree m (≥ 1) with regular components is an (m+1)-tuple Π = (G1, . . . , Gm, K),
where, for all i ∈ {1, . . . , m}, Gi = (Ni, T, Si, Pi) are regular grammars, called
component grammars, satisfying Ni ∩ T = ∅, and K ⊆ {Q1, . . . , Qm}⋂⋃m

i=1 Ni

is a set of special symbols, called communication symbols. A configuration of Π
is an m-tuple C = (x1, . . . , xm), where xi = αiAi, αi ∈ T ∗, and Ai ∈ (Ni ∪{ε});
we call xi the i-th component of the configuration. The nonterminal cut of con-
figuration C is the m-tuple N(C) = (A1, A2, . . . , Am). If N(C) contains at least
one communication symbol, it is called an NC-cut and denoted by NC(C).

A derivation of Π is a sequence of configurations D = C1, C2, . . . , Ct, where
Ci+1 is obtained from Ci by one generative step or one communication step. If
no communication symbol appears in any of the components, then we perform a
generative step. It consists of synchronously performing a rewrite step in each of
the component grammars Gi, 1 ≤ i ≤ m. If any of the components is a terminal
string, it is left unchanged, and if any of the components contains a nonterminal
that cannot be rewritten, the derivation is blocked. If the first component is a
terminal word w, then w is the word that is generated by Π in this derivation.
In this situation D is usually denoted as D(w). If a communication symbol is
present in any of the components, then a communication step is performed. It
consists of replacing those communication symbols with the phrases they refer to
for which the phrases themselves do not contain communication symbols. Such

PCGS and Restarting Automata 5

an individual replacement is called a communication. Obviously, in one commu-
nication step at most m− 1 communications can be performed. Communication
steps are performed until no more communication symbols are present, or until
the derivation is blocked because no communication symbol can be replaced. The
maximal sub-sequence of communication steps forms a communication section.

A generative section is a non-empty sequence of generative steps between two
consecutive communication sequences in D (or before the first or after the last
communication step). Thus, the communication steps divide the derivation into
generative and communication sections.

The (terminal) language L(Π) generated by Π is the set of terminal words
that appear in the component G1, which is called the master of the system:

L(Π) = {α ∈ T ∗ | (S1, . . . , Sm) ⇒+ (α, β2, . . . , βm) }.
Several notions are associated with the derivation D(w):

• g(i, j) (or g(i, j, D(w))) denotes the (i, j)-(generative) factor of D(w), which
is the terminal word that is generated by Gi within the j-th generative
section of D(w);

• n(i, j) (or n(i, j, D(w))) denotes the number of occurrences of g(i, j) in w.
• The communication structure CS(D(w)) of D(w) captures the connection

between the terminal word w and its particular derivation D(w)):
CS(D(w)) = (i1, j1), (i2, j2), . . . , (ir, jr), if w = g(i1, j1)g(i2, j2) . . . g(ir, jr).

• For j ≥ 1 let N(j, D(w)) =
∑m

i=1 n(i, j, D(w)). Then, the so-called degree of
distribution DD(D(w)) of D(w) is the maximum over all N(j, D(w)).

• The trace of a (sub-)derivation D is the sequence T (D) of nonterminal cuts of
individual configurations of D: T (D)=N(C0), N(C1), . . . , N(Ct). Note that
(in general) the trace does not unambiguously identify the derivation.

• The communication sequence, resp. the NC-sequence, is defined analogously:
NCS(D) is the sequence of all NC-cuts in the (sub-)derivation D. Realize
that the communication sequence NCS(D(w)) unambiguously defines the
communication structure of D(w). Moreover, the set of words with the same
communication sequence/structure might, in general, be infinite.
A cycle in a derivation D is a smallest (continuous) sub-derivation C =

C1, . . . , Cj of D such that N(C1) = N(Cj). If none of the nonterminal cuts
in C contains a communication symbol, then the whole cycle is contained in a
generative section; we speak about a generative cycle in this case. If the first
nonterminal cut contains communication symbols, which means that N(C1) =
N(Cj) are NC-cuts, then the cycle is called a communication cycle.

If there is a cycle in the derivation D(w), then manifold repetition6 of the
cycle is possible and the resulting derivation is again a derivation of some termi-
nal word. Observe, however, that the repetition or deletion of a generative cycle
does not change the communication structure of a derivation. We call a derivation
D(w) reduced, if every repetition of any of its cycles leads to a longer terminal
word ω; |w| < |ω|. Obviously, to every derivation D(w) there is an equivalent
6 Deletion of a cycle is also possible.

6 D. Pardubská, M. Plátek, F. Otto

reduced derivation D′(w) of the same word. In what follows, we consider only
derivations that are reduced.

Finally, we define several complexity measures for PCGS. Informally, the
communication complexity of a derivation D (denoted com(D)) is defined as
the number of communications performed within the derivation D; analogously,
the distribution complexity of a derivation D is the degree of distribution de-
fined above, and the generation complexity of the derivation D is the number
of generative sections in D. Then the communication/distribution/generation
complexity of a language and the associated complexity class are defined in the
usual way (always considering the corresponding maximum).

Here, we are mainly interested in those classes of languages for which all the
complexity measures considered above are bounded from above by a constant.
For natural numbers k, d, g, we denote the corresponding communication com-
plexity class by COM(k), and the distribution and/or generation complexity class
by d-DG, g-DD, and d-g-DDG, respectively. Some relevant observations charac-
terizing the derivations of a PCGS with constant communication complexity are
summarized in the following facts.

Fact 1 Let Π be a PCGS with constant communication complexity. Then there
are constants d(Π), 	(Π), s(Π), and e(Π) such that

1. the number n(i, j) of occurrences of individual g(i, j)’s in a reduced deriva-
tion is bounded by d(Π); that is, n(i, j) ≤ d(Π);

2. the length of the communication structure for every (reduced) derivation is
bounded by 	(Π);

3. the cardinality of the set of all possible communication structures correspond-
ing to a reduced derivation by Π is bounded by s(Π).

4. Let D(w) be a reduced derivation of a terminal word w in Π. If more than
e(Π) generative steps are performed in the j-th generative section of D(w),
then at least one factor g(i, j, D(w)) has been changed.

Based on pumping arguments the following observation now follows easily.

Proposition 1. Let Π be a PCGS with constant communication complexity.
Then the set of all derivations by Π without a generative cycle is finite.

3 Analysis by Reduction for PCGSs

In [1] it is shown how to transform a PCGS with constant communication com-
plexity into a deterministic linearized FRR-automaton. In what follows we will
reduce the number of occurrences of auxiliary symbols in the words from the
characteristic language of the corresponding restarting automaton to a constant
by utilizing nondeterminism. In fact, the resulting automaton will be an AuxRR-
automaton for which the positions at which rewrites are performed within a
cycle are severely restricted. These restrictions will be formalized through the
notion of a skeletal set in Definition 2.

PCGS and Restarting Automata 7

Theorem 1. For each L ∈ g-d-DDG, there is a d-AuxRR-automaton M such
that L = LP(M). Moreover, the number of auxiliary symbols in w ∈ LC(M) is
bounded from above by the constant 2 · g · d + 2.

Proof. Let L ∈ g-d-DDG, and let Π be a PCGS with m components that gen-
erates L with distribution complexity d and generation complexity g. Our con-
struction is based on the fact that Π has only a finite number σ of cycle-free
derivations. Let Cf = {D̂1(ŵ1), · · · , D̂σ(ŵσ)} be the set of these derivations.

We describe a d-AuxRR-automaton M that, given a certain extended version
wC of a word w, performs the analysis by reduction which starts by considering
a Π-derivation D(w) of the word w ∈ L, and ends by checking that the Π-
derivation D̂k(ŵk) obtained is one of the cycle-free derivations listed above.

Let w ∈ L, let D(w) be a derivation of w in Π , and let g(i, j) be the ter-
minal word generated by the component grammar Gi within the j-th gener-
ative section. Then w can be written as w = g(i1, j1)g(i2, j2) . . . g(ir, jr). As
Π has generation complexity g, there are at most g generative sections in the
derivation D(w), and as Π has distribution complexity d, there are at most d
occurrences of factors g(it, jt) such that jt = j for any j. Hence, we have r ≤ d·g.

To reconstruct the derivation of a factor g(i, j) in detail we utilize the fol-
lowing notion of an extended j-trace. Let

(A1, . . . , Am), (α1,1A1,1, . . . , α1,mA1,m), . . .
(α1,1α2,1 . . . αs,1As,1, . . . , α1,mα2,m . . . αs,mAs,m)

be the sub-derivation corresponding to the j-th generative section of D(w). It
yields the following extended version of the trace of the j-th generative section:

⎛
⎜⎜⎝

A1

A2

· · ·
Am

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α1,1A1,1

α1,2A1,2

· · ·
α1,mA1,m

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α2,1A2,1

α2,2A2,2

· · ·
α2,mA2,m

⎞
⎟⎟⎠

⎛
⎜⎜⎝

αs,1As,1

αs,2As,2

· · ·
αs,mAs,m

⎞
⎟⎟⎠ .

This description is denoted ex-T (D(w), j). It describes the sequence of generative
steps of the j-th generative section. Assume that D(w) has gk generative sections.
Then ex-T (D(w)) = ex-T (D(w), 1), ex-T (D(w), 2), . . . , ex-T (D(w), gk) is called
the extended trace of D(w). Let us note that ex-T (D(w)) can serve as an another
representation of D(w).

The restarting automaton M processes the word wC as follows. In each cycle
M first nondeterministically chooses an index j of a generative section, and then
it consistently removes the rightmost generative cycle from each of the factors
g(i, j) of w. Simultaneously, it checks the consistency of its guess and makes
necessary changes in the delimiters. M repeatedly executes such cycles until a
word is obtained that does not contain any generative cycles anymore. From
Proposition 1 we see that the set of words of this form is finite.

8 D. Pardubská, M. Plátek, F. Otto

Fig. 1. The situation before and after the execution of a cycle that makes rewrites
within the j-th generative section: the reduced parts are grey. Two occurrences of
g(1, j) were reduced to g′(1, j); one occurrence of g(2, j) was reduced to g′(2, j).

We show that we only need to store a constant amount of information in the
auxiliary symbols to realize this strategy. Accordingly, the word wC is chosen as

wC := ∆0,k∆1,k g(i1, j1)Λ1,k∆2,k g(i2, j2)Λ2,k . . .∆r,k g(ir, jr)Λr,k∆r+1,k,

where ∆0,k, . . . , ∆r+1,k and Λ1,k, . . . , Λr,k are auxiliary symbols. These symbols
are not only used to separate the individual factors g(i, j) from each other, but
also to store relevant information about the derivations D(w) and D̂k(ŵk). In
fact, the information stored in each symbol ∆t,k (0 ≤ t ≤ r + 1) will be fixed,
while the information stored in each symbol Λt,k (1 ≤ t ≤ r) is temporary. The
information stored in ∆t,k describes the factor g(it, jt) and the factor ĝ(it, jt).
The information stored in Λt,k will be changed whenever a deletion is executed in
the left neighborhood of the particular delimiter; it describes a suffix of the rele-
vant extended trace ex-T (D(w), jt). By Λt,k(D(w)) we will denote the particular
symbol that corresponds to this information.

� If M has decided to try to execute a cycle, then it nondeterministically chooses
a number j ∈ {1, . . . , gk} as the index of the generative section of D(w) that it
will reduce in this cycle. It stores j and ∆0,k in its internal state and moves its
head to the right until it reaches the first delimiter ∆t,k for which jt = j holds,
that is, the leftmost occurrence of a factor of the form g(i, j) is found. Then M
moves its window further to the right until ∆t,k becomes the leftmost symbol
inside the window. Now M is going to try to simulate a reduction of the factor
g(it, jt) as described above.

(1.) From the description of ex-T (D̂k(ŵk)) stored in ∆0,k, M determines the
nonterminal cut with which the extended j-trace ex-T (D(w), j) begins.

(2.) Moving from left to right across the factor g(it, j), M guesses the extended
j-trace ex-T (D(w), j) in such a way that it is consistent with the word g(it, j); if
no such guess is possible, the computation is blocked. Simultaneously, M always
remembers the current suffix 	t of length 2 · p(Π) of the part of ex-T (D(w), j)
considered so far. Here p(Π) is a constant that is sufficiently large to ensure that
any sub-word of any ex-T (D(w), j) of length at least p(Π) contains a generative
cycle.

(3.) When the delimiter ∆t+1,k occurs as a rightmost symbol in M ’s window,
then M tries to execute a reduction of the suffix of g(it, j); if none is possible,
then the computation is blocked. To perform a reduction M checks whether the
current suffix 	t of ex-T (D(w, j)) contains a (generative) cycle, that is, whether
the suffix 	t,2 of 	t of length p(Π) has the following form:

PCGS and Restarting Automata 9

⎛
⎜⎜⎝

α1,1A1,1

α1,2A1,2

· · ·
α1,mA1,m

⎞
⎟⎟⎠ . . .

⎛
⎜⎜⎝

αγ,1Aγ,1

αγ,2Aγ,2

· · ·
αγ,mAγ,m

⎞
⎟⎟⎠ . . .

⎛
⎜⎜⎝

αγ+ν,1Aγ+ν,1

αγ+ν,2Aγ+ν,2

· · ·
αγ+ν,mAγ+ν,m

⎞
⎟⎟⎠ . . .

⎛
⎜⎜⎝

αs′,1As′,1
αs′,2As′,2

· · ·
αs′,mAs′,m

⎞
⎟⎟⎠

such that Aγ,µ = Aγ+ν,µ for all µ = 1, . . . , m. If that is the case, and if 	t,2

coincides with the information stored in the symbol Λt,k(D(w)), then M re-
moves the factor αγ+1,it · · ·αγ+ν,it from g(it, j), it removes the corresponding
cycle from 	t, which yields the suffix 	′t of an extended j-trace, and it replaces
the information stored in Λt,k by the suffix of 	′t of length p(Π). Observe that
the factor αγ+1,it · · ·αγ+ν,it may well be empty, implying that this rewrite step
simply replaces the symbol Λt,k by a new symbol Λ′

t,k. Further, M stores 	t in its
finite control, in order to be able to verify at later occurrences of factors of the
form g(., j) that a consistent reduction is performed, and then M moves further
to the right.

If no further factor of the form g(., j) is encountered, then M restarts at the
right end of the tape. If, however, another factor g(it′ , jt′) = g(i′, j) is found,
then M tries to reduce this factor in a way consistent with the reduction applied
to g(it, j). Essentially, M processes the factor g(i′, j) in the same way as g(it, j).
However, on reaching the symbol Λt′,k it checks whether the current suffix 	t′

of the extended j-trace simulated coincides with the suffix 	t stored in its finite
control. In the affirmative it can then perform the same replacement in Λt′,k that
it performed on Λt,k, and it can reduce the factor g(i′, j) in a way consistent
with this replacement; otherwise, the computation is blocked.

� In an accepting tail M simply checks whether the current content w′
C of the

tape belongs to the finite set of “shortest” characteristic words.

From the description above it follows that M is a nondeterministic aux-
rewriting FRR-automaton, that the number of auxiliary symbols occurring in
any restarting configuration of an accepting computation of M is bounded from
above by the constant 2 ·g ·d+2, and that M performs at most d rewrite steps in
any cycle of any computation. Further, it is quite clear that LP(M) = L holds.

Finally, observe that M is in fact correctness preserving. For two different
factors g(it, j) and g(it′ , j) it may guess different extended j-traces, but because
of the information stored in Λt,k = Λt′,k, the suffixes of length 2 · p(Π) of these
traces coincide. Thus, as long as the corresponding suffix of the extended j-
trace considered coincides with Λt,k, the reduction performed is consistent with
a valid derivation D(w). Further, if an inconsistency is discovered by M , then
the computation is blocked immediately, that is, no further restart is performed.
It follows that w′

C ∈ LC(M) if wC ∈ LC(M) and wC �c
M w′

C hold, that is, M is
indeed correctness preserving. This completes the proof of Theorem 1. �

A detailed example with some additional explanations can be found in the
technical report [4].

10 D. Pardubská, M. Plátek, F. Otto

The AuxRR-automaton M described in the proof of Theorem 1 processes a
given input by first choosing a particular derivation without cycles (and its com-
munication structure) from among the finite set of possible derivations without
cycles by inserting delimiters. Then, in each cycle a specific generative section
j is chosen nondeterministically, and the rightmost generative cycle is removed
from each factor g(i, j). In fact, each rewrite operation of each cycle executed
by M replaces an auxiliary symbol of the form Λ(D(w)) by another auxiliary
symbol of the form Λ(D′(w′)), and there is at least one rewrite operation in
each cycle that removes a non-empty factor consisting of input symbols7. These
observations motivate the following definition of a skeletal set.

Definition 2. Let M = (Q, Σ, Γ, c, $, q0, k, δ) be a t-AuxRR-automaton, r, s ∈
N+, and let SP be a subalphabet of Γ of cardinality |SP | ≤ s · r · t. We call
SP a skeletal set of type (r, t), if there is an injection φ : SP → {1, . . . , s} ×
{1, . . . , r} × {1, . . . , t} such that the properties below are satisfied:

1. Elements of SP are neither inserted, nor removed, nor changed during any
computation of M ; accordingly, we call them islands.

2. For all w ∈ LC(M) and all χ ∈ SP , |w|χ ≤ 1, that is, w contains at most
one occurrence of χ.

3. For 1 ≤ i ≤ s, let SP (i) = {χ ∈ SP | φ(χ) = [i, a, b] } be the i-th skeleton
of SP . For each word w ∈ LC(M), there exists a unique index i ∈ {1, . . . , s}
such that PrSP (w) ⊆ SP (i) holds. Thus, w only contains islands of a single
skeleton.

4. Each rewrite operation O of M has the form xyzγχ → xzγ′χ, where xyz ∈
Σ∗, |y| ≥ 0, γ, γ′ ∈ (Γ �(Σ∪SP)) are auxiliary symbols that are not islands,
and χ ∈ SP is an island. The symbol χ is called the island visited by O.

5. For 1 ≤ i ≤ s and 1 ≤ j ≤ r, let SP (i, j) = {χ ∈ SP | φ(χ) = [i, j, b] },
which is the j-th level of the i-th skeleton of SP . Within a cycle of a computa-
tion of M , the level of a skeleton is kept fixed, that is, if a rewrite operation
O is applied in a cycle such that the island visited by O is from SP (i, j),
then for every rewrite operation executed during this cycle the island visited
belongs to SP (i, j).

6. There exists a constant 	(M) such that, for each w = xyz ∈ LC(M), where
|y| > 	(M) and y does not contain any island, then starting from the restart-
ing configuration corresponding to w, M will execute at least one cycle before
it accepts.

If SP is a skeletal set of type (r, t), then the auxiliary symbols in Γ �SP are
called variables of M . Thus, Γ is partitioned into three disjoint subsets: the set
of input symbols Σ, the skeletal set SP , and the set of variables.

Based on the properties of a skeletal set the following result can be derived
similarly as in [1].

Corollary 1 (SP semi-linearity). Let t ∈ N be a positive integer, and M be a
t-AuxRR-automaton with a skeletal set. Then the languages LC(M) and LP(M)
are semi-linear, that is, their Parikh images are semi-linear (see [5]).
7 All derivations considered are reduced.

PCGS and Restarting Automata 11

Observe that the copy language Lcopy = {ww | w ∈ {a, b}∗ } can be gener-
ated by a returning PCGS with regular components and constant communication
complexity, but that it cannot be generated by any centralized returning PCGS
with regular components. Thus, Corollary 1 is not a special case of the corre-
sponding result for the latter class of PCGSs given in [5].

Obviously, with almost no change the delimiters ∆0,k and ∆1,k in the proof
of Theorem 1 can be shifted just before the delimiter ∆2,k. Thus, the set of
delimiters of the form Θ1,k = (∆0,k, ∆1,k, ∆2,k), and Θt,k = ∆t+1,k for t > 1, can
serve as a skeletal set for a newly constructed automaton M ′. The characteristic
word wC from LC(M ′) will then be of the following form:

wC := g(i1, j1)Λ1,kΘ1,k g(i2, j2)Λ2,kΘ2,k . . . g(ir, jr)Λr,kΘr,k.

Corollary 2. For each L ∈ g-d-DDG, there exists a nondeterministic d-AuxRR-
automaton M with a skeletal set SP of type (g, d) such that L = LP(M). Each
variable of w ∈ LC(M) is positioned immediately to the left of an element of SP .

The d-AuxRR-automaton M in Corollary 2 is inherently nondeterministic.
To avoid this nondeterminism we now consider a slight generalization of the un-
derlying FRR-automaton: the FRL-automaton. The FRL-automaton is obtained
from the FRR-automaton by introducing move-left steps. For example, such an
automaton can first scan its tape completely from left to right, then move back
to the left end of the tape, and then perform some rewrite operations during
a second left-to-right sweep. A d-AuxRL-automaton is an FRL-automaton that
is aux-rewriting, correctness preserving, and that performs at most d rewrite
operations in any cycle.

Obviously, the d-AuxRR-automaton M from Corollary 2 can be seen as a d-
AuxRL-automaton of a restricted form. Hence, Theorem 3.4 in [6] applies, which
states that there exists a deterministic d-FRL-automaton Mdet that accepts the
same characteristic language as M . In fact, if w �c

Mdet
w′, then also w �c

M w′

holds, and if w �c
M w′, then w �c

Mdet
w′′ for some word w′′. Since the transfor-

mation from M to Mdet in the proof of Theorem 3.4 in [6] does not change the
existence of a skeletal set, we can restate Corollary 2 as follows.

Corollary 3. For each L ∈ g-d-DDG, there exists a deterministic d-AuxRL-
automaton M with a skeletal set SP of type (g, d) such that L = LP(M). More-
over, in each wC ∈ LC(M) each variable is positioned immediately to the left of
an element of SP .

Let M be a deterministic d-FRL-automaton. Given an input w of length n,
M will execute at most n cycles, before it either accepts or rejects. Each of
these cycles requires a number of steps that is linear in n. It follows that the
membership problem for the language LC(M) is decidable in quadratic time.

If M is a deterministic d-AuxRL-automaton with a skeletal set SP of type
(g, d), then an input word w of length n belongs to the proper language LP(M),
if there exists an extended variant wC of w that is in the characteristic lan-
guage LC(M). From the form of the skeletal set we see that wC is obtained from

12 D. Pardubská, M. Plátek, F. Otto

w by inserting at most g · d factors of the form λδ, where λ is a variable and δ is
an island. Hence, there are O(|Γ � Σ|2·g·d · ng·d) many candidates for wC . They
can all be enumerated systematically, and then for each of them membership in
LC(M) can be tested in time O((n + 2 · g · d)2). Thus, we obtain the following.

Proposition 2. Let M be a deterministic d-AuxRL-automaton with a skeletal
set SP of the type (g, d) such that each variable in wC ∈ LC(M) is positioned
immediately to the left of an element of SP . Then, for each w ∈ Σ∗, the size of
AC(w, M), the characteristic analysis of w by M , is at most O(|Γ �Σ|2·g·d ·ng·d),
and this set can be computed in time O(|Γ � Σ|2·g·d · ng·d · (n + 2 · g · d)2).

This proposition together with Corollary 3 has the following consequence.

Corollary 4. For each language L ⊆ Σ∗, if L ∈ g-d-DDG, then there exists a
d-AuxRR-automaton M such that L = LP(M), and for each w ∈ Σ∗, the size of
the set AC(w, M) is at most O(|Γ � Σ|2·g·d · ng·d), and it can be computed in
time O(|Γ � Σ|2·g·d · ng·d · (n + 2 · g · d)2).

Concluding remarks. Similar results as in this paper can be derived for
PCGSs with linear-grammar components. On the other hand, that will surely not
be the case for PCGSs with context-free components. Let us note that a poly-
nomial upper bound for the (simple) membership problem for returning PCGSs
with regular components already follows from [7]. Some results illustrating the
generative power of the classes of PCGSs considered here are given already in [2]
by the use of a deterministic variant of FRR-automata.

References

1. Pardubská, D., Plátek, M.: Parallel communicating grammar systems and analy-
sis by reduction by restarting automata. In Bel-Enguix, G., Jimenez-Lopez, M.,
eds.: ForLing 2008, Proc. Research Group on Mathematical Linguistics, Universitat
Rovira i Virgili, Tarragona (2008) 81–98

2. Pardubská, D., Plátek, M., Otto, F.: On PCGS and FRR-automata. In Vojtáš, P.,
ed.: ITAT 2008, Proc. Pavol Jozef Šafárik University, Košice (2008) 41–47

3. Lopatková, D., Plátek, M., Sgall, P.: Towards a formal model for functional gen-
erative description - analysis by reduction and restarting automata. The Prague
Bulletin of Mathematical Linguistics 87 (2007) 7–26

4. Pardubská, D., Plátek, M., Otto, F.: On parallel communicating grammar sys-
tems and correctness preserving restarting automata. Kasseler Informatikschrif-
ten, Universität Kassel (2008) https://kobra.bibliothek.uni-kassel.de/bitstream/
urn:nbn:de:hebis:34-2008111825149/3/Technicalreport2008_4.pdf.

5. Czuhaj-Varjú, E., Dassow, J., Kelemen, J., Pǎun, G., eds.: Grammar Systems:
A Grammatical Approach to Distribution and Cooperation. Gordon and Breach
Science Publishers (1994)

6. Messerschmidt, H., Otto, F.: On determinism versus nondeterminism for restarting
automata. Information and Computation 206 (2008) 1204–1218

7. Cai, L.: The computational complexity of PCGS with regular components. In
Dassow, J., Rozenberg, G., Salomaa, A., eds.: DLT 1995, Proc. World Scientific,
Singapore (1996) 209–219

