
Event-Driven Message Passing

and

Parallel Simulation of Global Illumination

Tomáš Plachetka

2003

Event-Driven Message Passing
and

Parallel Simulation of Global Illumination
a dissertation

submitted to the faculty
of computer science, electrical engineering

and mathematics
of the university of paderborn

in partial fulfillment of the requirements
for the degree

doctor rerum naturalium
(Dr. rer. nat.)

by

Tomáš Plachetka

2003

Event-Driven Message Passing
and

Parallel Simulation of Global Illumination
dissertationsschrift

vorgelegt in der fakultät
für elektrotechnik, informatik und mathematik

der universität paderborn
zur erlangung des akademischen grades

doctor rerum naturalium
(Dr. rer. nat.)

von

Tomáš Plachetka

2003

c© Copyright 2003 by Tomáš Plachetka

All Rights Reserved

Acknowledgements

There are many people who supported this work. I can mention only a few of
them here but I am thankful to them all. Firstly I would like to express my
sincerest thanks to my advisor, Prof. Dr. Burkhard Monien from the University
of Paderborn, who was always very understanding when I was floating midway
between science and engineering and who always gave me enough freedom in
making decisions about what to do next.

I would like to thank Prof. Dr. Branislav Rovan and Prof. Dr. Peter Ružička
from Comenius University in Bratislava, who turned my attention to parallel and
distributed computing a long time ago. I would also like to thank Dr. Andrej
Ferko, Dr. L’udov́ıt Niepel and Dr. Eugen Ružický from Comenius University,
who showed me that computer graphics is an interesting area of research where
parallel processing can be very helpful.

I was lucky to meet many other people who would never say no when I
needed to discuss problems or ideas even though they did not directly match
their own research interests. In the last few years I consulted mostly with Dr. Ulf-
Peter Schroeder, Axel Keller, Prof. Dr. Friedhelm Meyer auf der Heide, Dr. Olaf
Schmidt, Dr. Jürgen Schulze, Dr. Thorsten Falle, Dr. Rainer Feldmann, Dr. Ulf
Lorenz and Dr. Adrian Slowik. Thank you.

My further thanks go to all my colleagues at the University of Paderborn,
Comenius University in Bratislava, Sheffield Hallam University, to the people I
worked with on various projects, and to my students and technical staff. They
all contributed to making our working days a joy. Special thanks to Geraldine
Brehony for the proofreading of a great part of this text.

I am obliged to all my friends who did not forget me when I was spending
more of my spare time with books and computers than with them. Finally, my
deepest gratitude goes to my whole family, especially to my parents and to my
little sister, for their love and patience.

vi

Contents

1 Introduction 1
1.1 Current parallel programming standards 2

1.1.1 Polling in non-trivial parallel applications 2
1.2 Photorealistic image synthesis . 4

1.2.1 Measures of photorealism 4
1.2.2 Photorealistic rendering systems 5
1.2.3 Light phenomena and their simulation 6

1.3 Outline of this thesis . 7

2 Event-driven message passing 11
2.1 Non-trivial parallel applications 12
2.2 Development of parallel programming 12

2.2.1 Occam programming language 14
2.2.2 Transputer . 21
2.2.3 Occam, Transputer and non-trivial parallel applications . . 23

2.3 Current message passing standards: PVM and MPI 24
2.4 Point-to-point message passing in PVM and MPI 26

2.4.1 Message assembling and sending 28
2.4.2 Message receiving and disassembling 31

2.5 Unifying framework for message passing 34
2.5.1 Components of the message passing framework 36
2.5.2 Application process . 38
2.5.3 Basic message passing operations 39
2.5.4 Message passing system 40
2.5.5 Language binding . 41
2.5.6 Operation binding . 43

2.6 Threaded non-trivial PVM and MPI applications 45
2.6.1 Threads and thread-safety 45
2.6.2 Polling in threaded non-trivial PVM and MPI applications 47
2.6.3 Polling in communication libraries 50
2.6.4 Limits of active polling . 54
2.6.5 Previous work related to thread-safety of PVM and MPI . 56
2.6.6 Quasi-thread-safe PVM and MPI 59

vii

viii CONTENTS

2.6.7 Towards a complete thread-safety of PVM and MPI 65
2.7 TPL: Event-Driven Thread Parallel Library 68

2.7.1 Concept . 69
2.7.2 Process startup and termination 70
2.7.3 Thread management . 72
2.7.4 Message passing . 74
2.7.5 Message handling and message callbacks 77
2.7.6 Message packing and unpacking 83
2.7.7 Error handling and debugging 84
2.7.8 Flow control . 85

2.8 Efficiency benchmarks . 87
2.8.1 ONE-SIDED THREADED PINGPONG 89
2.8.2 SYMMETRICAL THREADED PINGPONG 94
2.8.3 Summary of benchmarking results 96

2.9 Conclusions . 101
2.9.1 Overlapping of Communication and Computation 102

3 Global illumination 107
3.1 Physics of light . 108
3.2 3D modeling . 113

3.2.1 Modeling of colour spectrum 113
3.2.2 Modeling of surface geometry 114
3.2.3 Modeling of surface materials 117
3.2.4 Modeling of light sources 120
3.2.5 Modeling of camera . 121

3.3 The global illumination problem 121
3.3.1 Rendering equations . 122

3.4 Approaches to the global illumination problem 123
3.4.1 Direct methods . 124
3.4.2 Approximation methods 130

3.5 Conclusions . 137

4 Ray tracing 139
4.1 The basic ray tracing algorithm 140
4.2 Sequential optimisation techniques 141

4.2.1 Bounding volumes . 141
4.2.2 Bounding slabs . 142
4.2.3 Light buffers . 143

4.3 Persistence of Vision Ray Tracer 143
4.4 Parallel ray tracing . 144

4.4.1 Existing approaches . 144
4.4.2 Image space subdivision 146
4.4.3 Setting of parameters in the perfect load balancing algorithm152

CONTENTS ix

4.4.4 Distributed object database 155
4.4.5 Experiments . 157
4.4.6 Further extensions and improvements 162

4.5 Conclusions . 165

5 Radiosity 167
5.1 Southwell relaxation . 168

5.1.1 Shooting radiosity algorithm 169
5.2 Form factor computation . 169

5.2.1 Monte Carlo form factor computation 172
5.3 Discretisation of surface geometry 174
5.4 Illumination storage and reconstruction 175
5.5 Energy transfer . 177

5.5.1 Shooting radiosity algorithm using the ray tracing shader . 179
5.6 Visualisation . 183
5.7 Experiments . 184

5.7.1 Form factors . 184
5.7.2 Experiments with the box scene 186
5.7.3 Experiments with large scenes 189

5.8 Conclusions . 192

6 Summary 193
6.1 Towards portable 3D standards 195

A MPI progress rule tester 197

B Threaded pingpong benchmark 199
B.1 TPL 2.0 . 199
B.2 PVM 3.4 . 204
B.3 MPI (MPI 1, MPI 2) . 209

List of figures 215

Bibliography 221

x CONTENTS

Chapter 1

Introduction

One of the goals of computer graphics is a photorealistic image synthesis. There
are many applications which require photorealistic visualisation of three-dimen-
sional (3D) environments which often do not actually exist. Film production,
computer game production and architectural design are industrial areas in which
photorealism is very important and it is thanks to these areas that computer
graphics is flourishing today.

The requirements of the quality and speed of visualisation of 3D environments
strongly depend on the application. An engineer observing a flow of air around a
wing is more interested in the visualisation of air speed and air pressure than in a
photorealistic image of the wing. A mechanical engineer designing a screw is the
majority of the time interested in a simple flat-shaded projection of the screw on
the computer screen rather than in a visualisation with reflections and shadows.
Even when photorealism is desirable (e.g. in movies or in computer games),
there are several levels of it. The choice of an appropriate rendering engine is
always a matter of compromise. There is no “best” method, which is suitable for
everyone. This thesis concentrates on photorealistic image synthesis. Throughout
this thesis, rendering denotes the process of creating images and rendering system
(or rendering engine) denotes a system which implements this process. Images
rendered by a rendering system are visualisations of a 3D environment. The
process of rendering solves the global illumination problem.

Although all rendering algorithms used in computer graphics only compute
an approximation of real illumination, they are all computationally expensive.
The simplest ones (which compute either no illumination or only its very crude
approximation) are implemented in the hardware of graphics cards. More so-
phisticated rendering algorithms are implemented in the software and only use
the hardware of graphics cards in their final visualisation phases (if ever). This
thesis deals with parallelisations of photorealistic rendering algorithms which is
one way of speeding them up.

The following section sketches the problems of the efficient programming of
parallel applications using available standards. The next section informally ex-

1

2 CHAPTER 1. INTRODUCTION

plains how photorealism is measured and how photorealistic images are computed.
Formal definitions are given later. An outline of this thesis can be found in the
last section of this chapter.

1.1 Current parallel programming standards

Two standards for the support of programming of parallel applications are avail-
able today: Parallel Virtual Machine (PVM) [GBD+94] and Message Passing In-
terface (MPI) [MPI94], [MPI97], [Gro02]. PVM and MPI provide an application
programmer with an abstract layer of message passing, which hides differences
between various parallel system architectures. Both PVM and MPI assume that
a parallel application consists of (sequential) processes that communicate using
message passing. The processes do not share any memory.

The performance of the PVM and MPI implementations is measured using
a set of benchmarks, by reporting statistics on the measured throughput and
latency of message passing, speed of message assembly and decoding etc. The
performance of PVM and MPI can be compared to the performance of lower-
level communication libraries on some benchmarks. The loss of performance due
to the use of PVM or MPI on the top of a lower-level communication library
is usually not very high. Unlike the lower-level libraries, PVM and MPI can
be (and have been) ported to practically all architectures without changes in
their application programming interfaces. The porting of applications that build
on PVM or MPI is therefore much easier (only compiling and linking is usually
needed). The portability on the source code level pays out the slight performance
loss. However, the set of benchmarks is not complete. A benchmark is missing
which would reflect the needs of non-trivial parallel applications.

1.1.1 Polling in non-trivial parallel applications

Contemporary implementations of PVM and MPI do not allow for the efficient
implementation of many important parallel applications: shared-memory simu-
lation libraries, parallel databases, media servers, parallel simulations of global
illumination, . . . Although the applications look very different, two independent
activities can always be observed when focusing on one process:

• T1: a computation with an occasional communication

• T2: servicing of requests coming from other processes

We call applications with this pattern of behaviour non-trivial.1 When ex-
plaining to non-experts what non-trivial applications are, we use the following
analogy:

1All non-trivial parallel applications belong to the class of irregular parallel applications.
Communication patterns in irregular applications cannot be predicted.

1.1. CURRENT PARALLEL PROGRAMMING STANDARDS 3

Imagine a large building with many windows. All the windows must
be cleaned. There are, say, four workers to complete the task. If
cleaning the windows was their only responsibility, each worker would
simply choose a dirty window, clean it and then look for another dirty
window.

In addition to cleaning the windows, the four workers must build a
brick wall behind the corner. The wall must be four layers high and
each worker is responsible for building one whole horizontal layer—
worker one lays bricks on the ground (layer one), worker two lays
bricks on top of the bricks in layer one etc. Notice the dependencies
between the workers. For instance, worker two cannot begin until
worker one has first laid at least two bricks on the ground.

Both tasks, cleaning the windows and building the brick wall must be
accomplished as soon as possible. The laying of the bricks clearly has
a higher priority than cleaning the windows because a worker laying
bricks creates work for the workers who are responsible for the higher
layers.

There are several ways how cleaning the windows can be interleaved
with building the brick wall. Here is an example of an inefficient one.
All workers begin with cleaning the windows. From time to time,
each worker interrupts the cleaning of the windows and walks to the
wall to see whether he can add a brick to his layer. If so, he adds
a brick and returns to cleaning the windows. If not, he immediately
returns to cleaning the windows. This is called active polling (or busy
waiting). Obviously, if “from time to time” means often (say, every
one minute), then all the workers waste time and energy by walking
to the wall (also when there is no work for them on the wall) and back
to the windows. If “from time to time” means seldom (say, once an
hour), then a worker who has just returned to cleaning the windows
will continue cleaning them for the next hour—even though in the
meantime there may be a more important work to be done on the
brick wall.

A more efficient work organisation would keep the workers busy with
laying the bricks whenever possible. When a worker who is laying
bricks creates work for some other worker, he should shout at the other
worker to stop cleaning the windows and come lay bricks instead.
When a worker who is laying bricks cannot continue laying them, he
should return to cleaning the windows and should keep cleaning the
windows until he is called to the wall again. Such a work organisation
is called demand-driven.

4 CHAPTER 1. INTRODUCTION

PVM and MPI are highly optimised for the performance of a single task
(cleaning windows or building a brick wall) by several workers. However, active
polling must be used when two (or more) tasks are combined. Our goal was to
understand where the active polling originates from and how it can be avoided.
The problem is related to a lack of thread-safety in existing PVM and MPI im-
plementations and to an imprecise semantics of asynchronous communication in
the MPI Standard.

1.2 Photorealistic image synthesis

This section gives a brief introduction to the computer synthesis of photorealis-
tic images. Before arriving at a design of photorealistic rendering systems and
algorithms implemented in the systems, several philosophical questions must be
answered.

1.2.1 Measures of photorealism

Why do we say that some images look realistic whereas others do not? An
important aspect of measuring the degree of realism involves human perception.
A healthy human eye together with the nature around it make a perfect rendering
system. The images produced by this system are real. If we replace the human
eye with a good photographic camera, we get another rendering system which is
similar to the original one in the sense that the images produced by this system
are indistinguishable (by a human eye) from the real images. We might replace
both nature and the human eye with a piece of software and compute the images
on a computer—and the images might still be undistinguishable from the real
ones! A photorealistic rendering system, no matter how it works, should produce
images that a human eye cannot distinguish from real (or photographic) images
of a real environment. The harder it is for a human eye to distinguish an image
from a real one, the more photorealistic the image is.

This intuitive measure of realism has a flaw. If we compute an image of a non-
existing environment on a computer, we have nothing to compare the picture to.
The computed image usually corresponds to a photograph of some environment
which might exist and which we can recognise. However, also in this case we
must use our imagination and experience instead of a direct visual comparison
to judge the quality of the computed picture.

Another flaw of the above definition of realism is that a human eye (or rather
the human visual perception system) is easy to fool. Nice unreal pictures some-
times appear “realistic”. Synthetic beasts in movies can appear real at first
glance even though a closer study of the images reveals that they are in fact
not. An untrained eye is very tolerant even of very obvious mistakes, especially
in movies. For instance, the movie Indecent proposal (with Robert Redford and

1.2. PHOTOREALISTIC IMAGE SYNTHESIS 5

Demi Moore) [Lyn93] contains at least two relatively long image sequences which
contain a forgotten microphone hanging from above. (None of the people we
have asked noticed the hanging microphone.) It is interesting to note that it
also works the other way around—ugly “non-realistic-looking” pictures may be
real! There is a strange shadow above the staircase in Café Central in the ger-
man city of Paderborn. People who work with computer graphics must be saying
to themselves: “This shadow is too sharp to be realistic.” (None of the people
we have asked noticed the surprising appearance of the shadow.) Further ex-
amples of where our visual perception is likely to fail are the wonderful images
of M. C. Escher’s work [EBe92], stereograms [Ent93] and other optical illusions
[Per85].

The previous discussion suggests that the measuring of photorealism based
on the visual impression is unreliable and should be replaced by a more formal
model. Such mathematical models do exist but their practical use implies the
simplification of assumptions on the behavior of light. In other words, the quality
of images can be evaluated with respect to a chosen mathematical model but not
against the reality which they represent. Also, a comparison of software imple-
mentations of different rendering systems is usually impossible due to different
simplifying assumptions made during the implementation of the systems. This is
why mathematical quality measures are sometimes combined with a subjective
perception of images, even if it means a retreat to the imprecise “psychological”
definition of realism [McN00].

1.2.2 Photorealistic rendering systems

The final result of the rendering of a 3D environment is an image. The image
can be created using a number of methods. It can be taken by a camera, painted
by an artist or computed by a program. These different rendering systems may
produce the same or similar images—however, they differ internally and their use
depends on the purpose of the images.

When we see a nice scenery, we might want to take a picture of it because we
are either not likely to be there again or the scenery is perhaps likely to change. A
camera or a painter can put the image into a form which can be stored practically
forever (a photographic film, a painting).

A painter is more flexible than a photographic camera. A painter does not
need to see the scenery while painting if he or she remembers what the scenery
looks like. The painter’s imagination can also produce images of a scenery as
seen from different perspectives or viewed under different lighting conditions.
Moreover, a painter can paint images of environments which do not exist. The
paintings can still be very realistic—comparable to photographic pictures. (How-
ever, realism is usually not what a painter tries to achieve because an artistic
perfection is different from the measures discussed in the previous section and
cannot be very well formalised.)

6 CHAPTER 1. INTRODUCTION

It is even more flexible to create and store a computer model of a 3D envi-
ronment and to postpone the rendering of images for later. The model consists
of surfaces, surface materials, atmosphere and light sources. Later on, (virtual)
cameras can be added into the model and a rendering program can be used to
render images of what the cameras “see”.

The task of a realistic 3D artist is to create a realistic 3D model. When we have
a perfect model of a 3D environment, we would also like the images taken by the
virtual cameras to be perfect. We do not want the artist to retouch the computed
images, to manually paint shadows on the floor or mirroring on a glass table or
to brush-up a brick wall to make it look like a brick wall. A 3D artist should
concentrate on the modeling, not on making images. A photorealistic rendering
system should correctly simulate all light phenomena (or at least phenomena which
are relevant to the given model).

All of the above examples of rendering systems (a passive observer, a camera,
a realistic painter, a rendering program) solve instances of the global illumination
problem. The task of a 3D artist is to set up an instance of the global illumination
problem.

1.2.3 Light phenomena and their simulation

The nature of light has been studied for many centuries. The most comprehensive
theory on the behaviour of light is quantum electrodynamics [Fey88]. The basic
assumption of this theory is that light is carried by particles called photons.
Photons are emitted from light sources and transport energy through a medium
(air, for instance) until they hit a surface. The interaction of a photon with a
surface results in the absorption of the photon and in its scattering (reflection,
refraction) which produces a new photon or photons. Photons do not travel along
straight lines from their origin to their destination—they travel along arbitrary
“crooked” paths in space. The intensity of light as measured at a point in space
is an integral of contributions of many photons traveling along all possible paths
between the light source and the destination.

Even though quantum electrodynamics is the best existing theory which ex-
plains the behaviour of light, it cannot be directly used in macro-scale computer
graphics—it is too expensive to simulate the transport of light on a subatomic
level. The modeling paradigms and algorithms used in computer graphics are
based on geometric optics (developed by Sir Isaac Newton [New52]) which makes
several simplifying assumptions.

The basic assumption of geometric optics is that photons only travel along
straight lines. Scattering is only allowed on surfaces. In other words, the inter-
action of photons with participating media is either ignored or only certain types
are allowed (in most algorithms it is easy to include media that only absorb light).

Another assumption is that light is monochromatic. This means, that all
emitted photons have a single frequency. This assumption is made in order

1.3. OUTLINE OF THIS THESIS 7

to simplify the representation of “colour” (computation with vectors is more
convenient than computation with continuous spectra).

Many light phenomena are completely ignored in computer graphics or are
handled in a special way (when they are important to the application): diffraction
(“bending” of light around obstacles), interference (an effect that can be observed
on thin surfaces such as oil films or soap bubbles), polarisation (the scattering of
light on surfaces such as water or glass depends on the orientation of the electric
vector of the incident light beam), fluorescence (molecules of some materials
absorb photons and then emit new photons at a different frequency, which makes
clothes “glow in the dark” under certain lighting conditions), etc.

Some computer graphics algorithms (e.g. the basic radiosity algorithm) only
assume an ideal diffuse reflection and no transmission, whereas others (e.g. the
basic ray tracing algorithm) only assume an ideal (indirect) specular reflection
and an ideal specular transmission.

Nevertheless, most of the light phenomena which are ignored are not rele-
vant to applications of computer graphics (the relevant phenomena can usually
be incorporated into the chosen rendering algorithm). Two important rendering
algorithms are ray tracing and radiosity. Ray tracing is a view-dependent algo-
rithm which traces rays (photons) from the observer’s eye to the light sources.
Radiosity is a view-independent algorithm which solves a linear equation system
in order to compute the distribution of light on a finite number of patches which
approximate surfaces of the 3D model. Even though ray tracing and radiosity are
incomparable in almost all respects, they both compute solutions of the global
illumination problem. The global illumination problem was formally defined by
James T. Kajiya [Kaj86] as a Fredholm integral equation of the second kind.
Ray tracing and radiosity algorithms solve special cases of Kajiya’s rendering
equation, using approximations which simplify the equation. Modern rendering
algorithms generally try to avoid approximations and directly solve the Kajiya’s
equation, using probabilistic methods.

1.3 Outline of this thesis

This thesis is organised as follows.
Chapter 2 deals with the efficient parallel programming using message pass-

ing. The current standard communication libraries, PVM (Parallel Virtual Ma-
chine) and MPI (Message Passing Interface) do not allow an efficient implemen-
tation of large parallel algorithms. The problem is not specific to parallel global
illumination—practically all larger parallel applications are forced to use active
polling (also known as busy waiting). Active polling not only diminishes perfor-
mance and destroys the natural structure of parallel programs but it also leads
to a non-deterministic message passing latency. The reason why active polling
cannot be avoided is that PVM and MPI implementations which are currently

8 CHAPTER 1. INTRODUCTION

available are either thread-unsafe or (even worse) they are thread-safe but active
polling is hidden inside the libraries. We extended both PVM and MPI libraries
by using a new interrupt mechanism which allows for the writing of parallel pro-
grams without active polling. The interrupt mechanism does not make the PVM
and MPI libraries completely thread-safe—nevertheless, it makes it possible to
write multi-threaded applications without active polling (we call this property
quasi-thread-safety). Moreover, we developed a communication library called
TPL (Thread Parallel Library) which builds upon the extended PVM and MPI
standards and which is thread-safe (on the set of its communication functions).
Thread-safety alone is not enough. We define a formal framework for message
passing which builds on the well-accepted parallel processing models and which
helps to explain the semantical drawbacks of the existing message passing models
such as PVM, MPI or CORBA. In particular, we explain how asynchronous com-
munication can be formally looked at and why the specification of asynchronous
communication in the above systems does not match the semantics defined in
fundamental abstract message-passing models. TPL is not just another commu-
nication library, it is a straightforward implementation of our framework. TPL
offers (unlike PVM, MPI or CORBA) asynchronous communication on parallel
systems using standard hardware and software components.

Chapter 3 presents and explains a formal definition of the global illumination
problem. Approaches to the global illumination problem are presented and their
advantages and limitations are discussed.

Chapter 4 is devoted to the ray tracing method and its parallelisation. A
novel perfect demand-driven load-balancing algorithm is presented, its optimal-
ity is proved and its exact message complexity is given. One disadvantage of a
straightforward demand-driven parallelisation of ray tracing is that the 3D model
must be replicated in the memories of all processors. We solve this problem by
using a distributed object database. Each processor “owns” a subset of objects
of the 3D model and besides that it maintains a memory for the storing of other
objects. If a processor needs an object which is currently not stored in its mem-
ory, it interrupts the computation, makes place for the object in its cache and
then sends an object-request to the object’s owner. The caching policy tries to
minimise the number of object-requests in order to reduce the communication
between processors. We compare the efficiency of several caching policies in or-
der to choose the most appropriate one. Most importantly, we experimentally
show that the performance of parallel ray tracing is strongly influenced by the
choice of the communication library. This result is not specific to parallel ray
tracing. An empirical comparison of the performance of parallel algorithms may
be very biased if polling is used in the implementation of the algorithms or the
communication library.

Chapter 5 deals with the radiosity method. We concentrate on an integration
of a two-pass algorithm which consists of a radiosity pass (which computes a
view-independent diffuse illumination) and a ray tracing pass (the second pass

1.3. OUTLINE OF THIS THESIS 9

adds some of the view-dependent illumination effects to the precomputed radios-
ity solution). For the radiosity pass we use the shooting algorithm (Southwell
relaxation) with a Monte Carlo form factor computation. The main goals behind
this choice are a correct handling of materials during the radiosity pass and a
seamless integration with the ray tracing pass. These ideas are not entirely new.
Our novel contribution is a combination of the energy transfer with a state of
the art Monte-Carlo form factor computation in one step. This combined step is
always performed on the top level of the subdivision hierarchy without a loss of
accuracy of the radiosity solution. An important positive aspect is an automati-
sation of the algorithm (minimisation of the number of parameters which control
the algorithm).

Chapter 6 gives a summary of the results presented.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Event-driven message passing

Parallel processing is a very common practice nowadays. Much of it is hidden
inside chips (general-purpose processors and graphics cards), inside schedulers
of operating systems which run processes on shared memory multiprocessor ma-
chines etc. This chapter focuses on efficient message passing parallel program-
ming on a larger scale. Most parallel applications on this scale use either PVM
(Parallel Virtual Machine) or MPI (Message Passing Interface).

One problem of the current implementations of the PVM and MPI standards
is that many of them are not thread-safe (there is no thread-safe implementation
of PVM and there is no freely available implementation of MPI). This forces appli-
cation programmers to use unnatural and inefficient active polling (also known as
polling or busy waiting) in many important applications which we call non-trivial.
(More precisely, there are several implementations of PVM and MPI which are
thread-safe, but the active polling is hidden inside the libraries—which is even
worse than the active polling inside applications!1) We explain where the ac-
tive polling comes from and present the previous approaches to the problem.
Then we present an interrupt mechanism which makes both PVM and MPI im-
plementations quasi-thread-safe. Quasi-thread-safety allows the programming of
multi-threaded parallel non-trivial applications without active polling. We also
sketch how PVM and MPI implementations can be made completely thread-safe,
without active polling.

The second (perhaps less apparent) problem of the above standards is a lack
of asynchronous communication (PVM) or its imprecise semantics (MPI), respec-
tively. This also leads to polling in the applications which require asynchronous
communication, although the form of this polling is slightly different. We explain
and solve this problem as well.

1MPI/Pro by MPI Software Technology, Inc. seems to be an exception. [DS02]

11

12 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

2.1 Non-trivial parallel applications

There are surprisingly many parallel applications (including simulation of global
illumination) which cannot be implemented in an efficient way using current
PVM or MPI implementations. These applications can be clearly characterised
and form a class of non-trivial parallel applications.

Definition. Non-trivial parallel application is a parallel application which con-
sists of parallel processes which do not share any memory and communicate via
message passing. Each process performs two independent activities, as depicted
in Fig. 2.1. T1 and T2 operate on the same data (shared memory). •

T1 CPU intensive computation, communicating occasionally with other pro-
cesses.

T2 Fast servicing of requests coming from other processes.

Figure 2.1: Two independent activities in one process of a non-trivial application

Practically all the larger parallel applications belong to this class. (There is
no more exaggeration in the previous sentence than in the sentence “Every larger
sequential application needs a dynamical memory management.”) Examples of
non-trivial parallel applications are distributed databases (or applications which
use a distributed database), media servers, shared memory simulation libraries,
parallel scientific computations which use application-independent load balancing
libraries etc.

2.2 Development of parallel programming

In order to explain what is missing in the modern parallel programming standards
(PVM, MPI) as regards active polling in non-trivial applications, we will shortly
look at the roots of parallel programming. Out of a large number of parallel
computers, programming paradigms and programming languages, we chose Inmos
Transputer and Occam as a representative sample. Even though Transputers
have not survived the technological progress of the last twenty years, many ideas
which were originally implemented in Transputers are still valid. Particularly,
the problem of non-trivial applications is solved in Transputers.

Many parallel computer architectures, parallel programming paradigms, par-
allel computer languages, parallel algorithms etc. have been developed over the
past 20 years. The demand came from the need to solve problems which re-
quired more computing power than single-processor computers could offer (e.g.

2.2. DEVELOPMENT OF PARALLEL PROGRAMMING 13

weather prediction, fluid dynamics simulation, simulation of global illumination).
These problems can usually be divided into subproblems which can be solved in-
dependently of one another and their results are then combined together. The
subproblems can be mapped onto independent processing elements (which can
exchange data). All processing elements simultaneously compute their subprob-
lems, thus reducing the total computational time required.

Long discussions on the choice of parallel programming model resulted in
questions such as:

• Should the parallelism be expressed explicitly (by a programmer) or should
a machine (a compiler or an operating system or a processor) automatically
generate a parallel program from a sequential one?

• Should the underlying hardware be a specialised hardware or just a collec-
tion of standard computers connected in a network?

• Should message passing or shared memory be used for communication?

• How fine grained should the parallelism be?

• Should the processing be synchronous or asynchronous?

• Should the communication be synchronous or asynchronous?

• What should the interconnection network look like?

• Should there be a special programming language for expressing parallel
algorithms or should existing ones be used?

• . . .

Some of these questions are important to developers of parallel computers,
operating systems and compilers, some to parallel application programmers and
some to theoreticians working on parallel algorithms. Almost any combination
of answers to the questions above is correct. The resulting models are equivalent
in the sense that they can be mapped onto each other. But who should do the
mapping?

The diversity of ways how parallel processing can be looked at may have been
one of the reasons why parallel applications are still so rare. Clearly, a standard
which would allow the writing of parallel programs which last longer than the
hardware and system software used was missing.

Transputers [GK90] and the Occam programming language [Gal96] were one
of the first historical attempts to establish a standard, which seamlessly con-
nects hardware, programming paradigm, programming language and parallel al-
gorithms. Transputers have not survived the technological progress, but in our
opinion they significantly influenced the development of parallel computing.

14 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

2.2.1 Occam programming language

Sir William of Occam (1284–1347) was an English philosopher. He advocated a
principle known as Occam’s Razor : “Pluralitas non est ponenda sine necessitate”.
(“Entities must not be multiplied beyond what is necessary.”) In other words,
“If there are several solutions or approaches to a problem then the simplest one
should be used.” The Occam programming language (named after William of
Occam) is indeed minimalistic. It is not our intention to formally or completely
describe the Occam language or the Transputer. We will only define a small sub-
set of Occam in order to demonstrate in an example how simple and at the same
time powerful the language is. We will also show how non-trivial applications are
supported by Occam and the Transputer.

Occam requires the programmer to explicitly express the parallelism. An
Occam program consists of a set of processes which can run either sequentially or
in parallel. Each of the processes can consists further of processes which can again
run either sequentially or in parallel. This nesting is potentially unlimited but
must end up with atomic processes. Processes running in parallel are not allowed
to share variables—they are only allowed to share communication channels and
explicitly exchange data using message passing.

The idea of the process nesting was introduced by Hoare. [Hoa85]. Occam is a
“materialisation” of Hoare’s CSP model (Communicating Sequential Processes).
It is easy to schematically visualise every Occam program, thanks to the process
nesting and channel declarations. The visualisation can only include the first
level of the program structure (or a few first levels) which is usually sufficient
to understand the idea of the parallelisation without going into implementation
details. (INMOS developer’s toolsets included an integrated editor which allowed
the programmer to browse the structure of the program and edit its code.)

The basic Occam concepts are:

• Data and data types. Occam provides the programmer with the usual
basic data types BOOL, BYTE, INT, REAL. Data can be organised in
arrays (this corresponds to replication in the Occam’s terminology). Array
indices are integers and begin with 0. A variable is local to the process
in which it was declared (and in its subprocesses). Processes running in
parallel are not allowed to share any variables—an exception to this is a
variable which is not altered by any of the parallel processes. Variables
must be declared and strongly typed.

• Processes. Processes are organised in a hierarchical manner. An Oc-
cam program is a single process. This single process consists of either one
atomic process (assignment, input, output, SKIP, STOP) or a constructor
(SEQ, PAR, IF, CASE, WHILE, ALT) which combines processes themselves are
either atomic processes or constructors. The structure is thus always a
tree. Indentation denotes process nesting in an Occam program. There is

2.2. DEVELOPMENT OF PARALLEL PROGRAMMING 15

no dynamic memory management in Occam (or in Transputer). Recursion
cannot be expressed in Occam (it must be simulated).

• Channels. Channel is the only means of communication between two
parallel processes (each channel must be shared by exactly two parallel
processes). Occam channels are uni-directional (a process is allowed to
either read from or write to a channel but not both) and synchronous (a
process which tries to read from or write to a channel becomes blocked
until the process on the other end of the channel is ready to communicate).
Channels, as with variables, must be declared and strongly typed. “Type”
of a channel is the protocol used on that channel (a description of the
sequence of data types passed through the channel). Timers are treated
as special channels with only one end which can be read. Timers are used
to either read the clock value or to block the reading process for a specified
time.

Occam defines 5 atomic processes:

Assignment. Assigns a value to a variable and terminates.
variable := value

Input (receive). Reads a value from a channel, stores it into a variable
and terminates. This process blocks until the process at the other side of
the channel is ready to write to the channel.
channel ? variable

Output (send). Writes a value to a channel and terminates. This process
blocks until the process at the other side of the channel is ready to read
from the channel.
channel ! value

No action. Does nothing and terminates. This process is used in some
constructors to explicitly express that no action should be taken.
SKIP

Stop. Does nothing and never terminates (blocks forever). This process is
usually used to indicate an error condition.
STOP

The atomic processes can be combined to more complex processes using con-
structors. Two of the most important constructors are:

SEQ, a chain of sequential processes. A process of this constructor
begins after the previous has terminated. The SEQ constructor terminates
when its last process has terminated.

16 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

SEQ

process1
process2
...

processN

PAR, a collection of parallel processes. All processes run in paral-
lel. The PAR constructor terminates when all its processes have terminated.
PAR

process1
process2
...

processN

The remaining constructors are IF, CASE, WHILE, and ALT, whereby the first
three correspond to the constructors which are known from other programming
languages. ALT is a special constructor which acts as an input multiplexor. It
allows a process to wait for a number of events and execute an action when an
event happens. When data can be received from several channels, then one of the
events is triggered (an arbitrary one). The following example involves a process
which blocks until it receives data either from channel1 (executing action1 in
this case) or from channel2 (executing action2 in this case):
ALT

channel1 ? variable1
action1

channel2 ? variable2
action2

Furthermore, each channel input can be accompanied by a boolean condition
(a guard). An event is triggered when a channel becomes readable and at the same
time the boolean condition guarding the channel is satisfied. Guarded inputs can
be combined with non-guarded ones. An ALT may also contain one special event,
TRUE, which is triggered when none of the other events is triggered.

All constructors can be replicated in Occam. A replicated SEQ corresponds
to a sequential loop. For instance, the program in Fig. 2.2 computes j = 210 (the
inner SEQ is replicated).

A replicated PAR starts a collection of parallel processes. The processes run
the same code. The program in Fig. 2.3 starts 10 parallel processes which are
connected to a pipeline. The value 1 is passed to the pipeline by a special source
process which is connected to the input end of the pipeline. The pipeline com-
putes 210 which is passed as a result to another special process, sink, which is
connected to the output end of the pipeline (the two special processes run in
parallel with the 10 pipeline processes).

2.2. DEVELOPMENT OF PARALLEL PROGRAMMING 17

INT j:

SEQ

j := 1

SEQ i = 1 FOR 10

j := 2 * j

Figure 2.2: An example of a replicated SEQ. The program computes j = 210

[11]CHAN OF INT chpipe:

PAR

chpipe[0] ! 1

PAR i = 0 FOR 10

INT value:

SEQ

chpipe[i] ? value

chpipe[i+1] ! 2 * value

INT j:

chpipe[10] ? j

Figure 2.3: An example of a replicated PAR. The program computes j = 210

A replicated ALT is usually used in the multiplexing of input from an array of
channels. Fig. 2.4 shows a very artificial example of a replicated ALT.

[10]CHAN OF INT ch:

PAR

PAR i = 0 FOR 10

ch[i] ! 2

INT j:

SEQ

j := 1

SEQ i = 0 FOR 10

ALT k = 0 FOR 10

ch[k] ? value

j := j * value

Figure 2.4: An example of a replicated ALT. The program computes j = 210

Processes can be assigned names in Occam. This improves the readability of
a program. Parameters can be passed to named processes. The pipeline which
computes 210 (Fig. 2.3) can be written as shown in Fig. 2.5.

An Occam program is independent of the underlying hardware. The hardware
is usually a Transputer or a network of Transputers. There are special language
extensions for the specification of the mapping of processes onto processors and

18 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

PROC pipe(CHAN OF INT in, CHAN OF INT out)

INT value:

SEQ

in ? value

out ! 2 * value

:

PROC source(CHAN OF INT out)

out ! 1

:

PROC sink(CHAN OF INT in)

INT j:

in ? j

:

[11]CHAN OF INT chpipe:

PAR

source(chpipe[0])

sink(chpipe[10])

PAR i = 0 FOR 10

pipe(chpipe[i], chpipe[i+1])

Figure 2.5: An example of named processes in Occam. The program computes
j = 210 in PROC sink

mapping of channels onto physical links, whereby parallel processes of the top-
most PAR constructor are typically mapped onto different processors. Mapping
a program onto several processors only influences the efficiency of the program,
not its semantics.

Example of an Occam program: Dining philosophers

The problem of dining philosophers [Dij71] is used in many textbooks as a mo-
tivating example of resource sharing. It helps in the understanding of the syn-
chronisation of parallel processes and solution strategies to the deadlock problem.
We chose this problem to show the power which is hidden in simplistic Occam
constructors:

Problem of dining philosophers

Five philosophers are sitting by a round table. They spend time
alternately philosophing and eating spaghetti. Each philosopher has
a plate in front of him. There is one fork between each pair of plates.

2.2. DEVELOPMENT OF PARALLEL PROGRAMMING 19

Each fork is shared by two neighbouring philosophers. In order to eat,
a philosopher needs both neighbouring forks, the left one and the right
one. A philosopher is not allowed to take both forks simultaneously,
he must decide which fork to acquire first.

“Philosophing” should be interpreted (in the context of this problem)
as doing nothing for a random length of time, while not holding any
fork in one’s hand. “Eating” should be interpreted as doing nothing
for a random length of time, while holding both forks.

The task is to write a program which simulates the life of the philoso-
phers. The program must guarantee a fairness—a hungry philoso-
pher must eventually get to eat. A problem which must be solved
is the prevention of deadlock and the consequent starvation of the
philosophers. A deadlock occurs for instance when all the philoso-
phers acquire their left forks, in which case no fork remains on the
table and all the philosophers will starve (unless at least one of them
voluntarily returns the fork he is holding).

One possible solution to the deadlock problem involves the breaking of the
symmetry among philosophers. For instance, if the philosophers are assigned
numbers from 1 to 5 and if odd philosophers acquire forks in a reverse order
to even ones, then deadlock will never occur. (There are also other solutions
as to how deadlock can be prevented but we shall continue with this particular
solution.)

It is very simple under these assumptions to write an Occam program which
simulates the situation at the table. Philosophers, as well as forks, are processes
which are connected to a ring (each philosopher communicates with the two forks
next to him and each fork communicates with the two philosophers next to the
fork). The program is shown in Fig. 2.6.

Note how the fork process is implemented. At the beginning a fork waits for
a signal from any of its two neighbouring philosophers. Once a signal arrives,
the fork is assigned to the philosopher who sent this signal and the fork begins
listening only to that philosopher. Another signal from the same philosopher
means that the philosopher returns the fork, and the fork begins listening to
both philosophers again.

The philosopher process which is trying to acquire a fork simply sends a
signal to the fork (in the IF constructor). The send will block when the fork is
not listening to the philosopher (all communication in Occam is synchronous). A
blocked send will unblock after the message has been received by the fork. Note
that the sends after eat() (used for returning forks) never block.

The main program starts five instances of the philosopher process and five
instances of the fork process in parallel, and connects the processes using chan-
nels to a circle. Fig. 2.7 shows a schematic visualisation (a process diagram) of

20 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

PROC fork(CHAN OF INT left, right)

INT signal:

WHILE TRUE

ALT

right ? signal

right ? signal

left ? signal

left ? signal

:

PROC philosopher(INT id, CHAN OF INT left, right)

WHILE TRUE

SEQ

think()

IF

(id REM 2) = 0

left ! 0

right ! 0

(id REM 2) = 1

right ! 0

left ! 0

eat()

right ! 0

left ! 0

:

[10]CHAN OF INT ph2fork:

PAR

PAR i = 0 FOR 5

philosopher(i, ph2fork[(2 * i + 9) REM 10], ph2fork[2 * i])

PAR i = 0 FOR 5

fork(ph2fork[2 * i], ph2fork[(2 * i) + 1])

Figure 2.6: Simulation of dining philosophers in Occam

the program in Fig. 2.6. Only the outermost PAR and the outermost channel
declarations must be followed in order to draw a process diagram of any Occam
program.

The Occam program is extremely short. (We did not go into any details con-
cerning an output to a terminal or the generation of a random delay in PROC

think as this is not important.) An equivalent program written in a conven-
tional (sequential) programming language such as C or Pascal would be much
bigger. Why? The reason being that the simulation of dining philosophers is

2.2. DEVELOPMENT OF PARALLEL PROGRAMMING 21

Figure 2.7: Simulation of dining philosophers, a process diagram

an inherently parallel problem. A sequential program written in a conventional
programming language must implement the scheduling hidden behind the Occam
PAR construction. A table with all process’ states must be maintained and the
independent executions of the processes must be simulated.

2.2.2 Transputer

Transputer was a processor (more precisely, a family of processors) introduced
by a British company INMOS Ltd (now SGS-Thomson Microelectronics Ltd)
in 1986. The processor (T414) was optimised to support parallel programming,
particularly programs written in the Occam language (all Occam’s constructors
and atomic processes have their counterparts in Transputer’s instructions). In
the three years which followed there were 10 processors in the Transputer family,
out of which T805 and T9000 were the most successful ones.

Fig. 2.8 shows a block diagram of the T805 Transputer. The features that
makes this architecture special are the four links used to connect several Trans-
puters to a network (pins LinkIn0. . . LinkIn3 and LinkOut0. . . LinkOut3) and
the 4 kB on-chip RAM. Transputers were often used in embedded systems—all
they required was power (pins GND and VCC) and an external clock (ClockIn).

22 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

Figure 2.8: Hardware block diagram of the T805 Transputer

The full technical description of Transputer processors can be found in [GK90].
In the following section we will only explain the process scheduling in the Trans-
puter, which is related to our work.

The basic concept of the Transputer low-level programming is a process.
Processes in Transputer correspond to Occam’s parallel processes which are cre-
ated in the outermost PAR constructor. Each process is assigned a priority (high
or low) and a fixed amount of memory (workspace) while it is being created. A
process can be either running or blocked (waiting on a channel or timer).

Only one process can run at a time in one Transputer. Transputer maintains
two priority queues, a high priority queue (HPQ) and a low priority queue (LPQ).
Each process which is neither running nor blocked is stored in one of these queues,
depending on the priority of the process. The process scheduling is micro-coded
in hardware and the process switching is extremely fast. The scheduling works
as follows:

• A running high priority process is never preempted. It runs until it termi-
nates or blocks. When a high priority process blocks, it is placed at the
end of the HPQ.

2.2. DEVELOPMENT OF PARALLEL PROGRAMMING 23

• When a blocked high priority process unblocks (becomes ready to run),
three cases can arise:

1. No process is running. In this case the unblocked high priority process
is scheduled to run.

2. Another high priority process is running. In this case the unblocked
high priority process is placed at the end of the HPQ.

3. A low priority process is running. In this case the running low priority
process is preempted and placed at the end of the LPQ. The unblocked
high priority process is scheduled to run. (This is the only case where
the context of the running process must be saved.)

• A running low priority process runs until it is either preempted by a high
priority process or until it runs longer than 50 ms. The former case has al-
ready been discussed above. In the latter case, the scheduler waits until the
running process executes an instruction which leaves the process’ context
undefined (in doing so no context must be saved). In this situation there
are two possibilities:

1. The LPQ is empty. In this case the running process keeps running.

2. The LPQ is not empty. In this case the running process is placed at
the end of the LPQ and the first process of the LPQ is scheduled to
run.

The following section shows that this scheduling model corresponds to the
one needed for an efficient implementation of non-trivial applications which were
introduced in Section 2.1.

2.2.3 Occam, Transputer and non-trivial parallel applica-
tions

Each of the parallel processes of a non-trivial application (see Section 2.1) needs
to perform a local computation and at the same time quickly service requests from
all other processes. The design of the Transputer allows for an efficient imple-
mentation of this scenario if each top-most process of the non-trivial application
is mapped onto one Transputer.

A non-trivial application can be implemented in Occam as follows. Each top-
most process is a PAR which contains two subprocesses, T1 and T2. T1 does the
computation, while T2 carries out the servicing of incoming requests (Fig. 2.9).

A subtle problem must be solved when T1 and T2 share variables and when
T1 or T2 alters a shared variable (it must be recalled here that Occam forbids the
altering of variables shared by parallel processes). In such a case a third process,

24 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

PROC NONTRIVIAL([NR.IN] CHAN OF INT in, [NR.OUT] CHAN OF INT out)

PROC T1()

SEQ

...compute and occasionally communicate...

:

PROC T2()

INT request:

ALT i = 0 FOR NR.IN

in[i] ? request

...service request ...

:

PAR

T1(in, out)

T2(in, out)

:

Figure 2.9: Implementation of one process of a non-trivial application in Occam

DM (Data Manager) must run in parallel with T1 and T2. DM acts as a passive
server which listens to T1 and T2. Only DM manipulates the “shared” data. T1
or T2 are only allowed to indirectly access the “shared” data (read or write them),
via the passing of messages to DM—otherwise they work with local copies.

Presumably the incoming requests are sent by the processes which are blocked
until the requests are answered. In order to increase the efficiency of the whole
parallel program, the processes which are waiting for a response should be serviced
as fast as possible. T2 should therefore be prioritised over T1. If there are no
incoming requests, T2 sleeps (it is blocked in ALT) and thus it does not prevent
T1 from running. If there is a request, we want T2 to run immediately, possibly
preempting T1. T1 should never preempt T2. Note that all these requirements
are guaranteed by the Transputer hardware scheduling semantics if T2
runs with high priority and T1 with low priority (the priority of DM is
not important).

2.3 Current message passing standards: PVM

and MPI

There is a subtle difference between parallel and distributed computing. The
first term is used for computing on dedicated multi-processor machines which
fit into a single box (e.g. Transputer-based systems). Distributed computing

2.3. CURRENT MESSAGE PASSING STANDARDS: PVM AND MPI 25

usually denotes computing on a network of “ordinary” computers connected via
an “ordinary” network.

The current trend involves writing portable parallel applications. The differ-
ence between parallel and distributed computing disappears—at least from the
point of view of an application’s programmer. It is more important to minimise
the effort needed for the porting of a parallel application onto another architec-
ture than to maximise the application’s performance on a specialised hardware
platform. This goal is achieved by developing standards which provide appli-
cations with abstract message passing functions and which can be efficiently
mapped onto practically all the available parallel systems. PVM (Parallel Vir-
tual Machine) [GBD+94] and MPI (Message Passing Interface) [MPI94], [MPI98],
[MPI97] are parallel programming libraries (more precisely, specifications of ap-
plication programming interfaces) which have been established as standards for
parallel programming. The vast majority of parallel applications use either PVM
or MPI.

The porting of a PVM or MPI application onto a new system usually simply
means the compilation of the application on the new system. Most vendors of
parallel machines and operating systems have a tailored implementation of PVM
or MPI, optimised for their systems. The supported systems range from pro-
prietary parallel hardware through shared memory multiprocessors or (possibly
heterogeneous) workstation clusters to virtual computers which consist of loosely
coupled computers in wide-area networks (Internet).

Even though PVM and MPI significantly differ (in their implementations as
well as in their interfaces), they use common programming paradigms:

• The parallel machine which runs the program, regardless of what its ar-
chitecture looks like, is viewed as a virtual parallel machine with message
passing capabilities.

• A parallel application consists of parallel processes that do not share any
memory. Explicit communication must be used to exchange data between
processes.

• The actual implementation of the inter-process communication is transpar-
ent to the programmer. PVM and MPI provide the programmer with a set
of communication functions, most important of which are point-to-point
send and recv functions.

• PVM and MPI are libraries. A process of a parallel application is a sequen-
tial program written in a host language (e.g. C, C++, Fortran) and linked
to PVM or MPI.

• Neither PVM nor MPI try to be minimalistic (as opposed to Occam). They
provide the programmer with many functions which are not necessary in the

26 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

sense that they can be assembled from other functions. The additional func-
tions make (arguably) programming applications more comfortable. Also,
some of the functions can be implemented in a more efficient way inside the
library than in the application.

2.4 Point-to-point message passing in PVM and

MPI

PVM and MPI differ in their specifications of point-to-point communication.
Some differences are obvious, e.g. a function that sends a message is called
pvm send in PVM whereas in MPI it is called MPI Send. The functions also differ
in the numbers and types of arguments, in their return values, . . . This section
does not deal with similar differences, instead it focuses on differences concerning
the semantics of point-to-point communication.

Point-to-point message passing involves a message delivery between two par-
allel processes, sender and receiver. Each process is assigned a rank (called task
identifier in PVM terminology) which is an integer distinct to the process. Each
message is accompanied by a message tag, also an integer. The sender’s and
the recipient’s ranks together with the message tag form a message header.2 A
message can contain data. The data is stored in a message body. The body may
be empty (messages with an empty body are called zero-length messages).

The delivery of a message is regarded independently from the point of view
of the sender and the receiver processes. The sender initiates a send operation
(initiation of a send operation is sometimes called “posting a send”), which states
the receiver to which the message is to be delivered and the message tag which
will be used. The receiver initiates a receive operation (initiation of a receive
operation is sometimes called “posting a receive”), which states the sender (or
set of senders) from which a message is to be received and the message tag (or
tags) which the message must have. A message can be delivered when an initiated
(and not yet completed) send operation exists and when an initiated (and not
yet completed) receive operation exists that match. The delivery of a message
completes both the send and receive operations associated with the message.

Note that the existence of matching receive and send operations R and S does
not guarantee that a message will be passed from the process which initiated S to
the process which initiated R. There may be a third process in the system which
initiated a send operation S ′ which also matches R. Any of the send operations
S and S ′ may complete.

The communication library provides a somewhat weaker guarantee on the
message delivery. This guarantee is formulated as the progress rule in the Message

2Implementation of a communication library may store additional information in the header,
for example the size of the message in bytes.

2.4. POINT-TO-POINT MESSAGE PASSING IN PVM AND MPI 27

Passing Standard. [MPI94], [MPI98], [MPI97]:

Progress rule. If a pair of matching send and receives have
been initiated on two processes, then at least one of these two opera-
tions will complete, independently of other actions in the system: the
send operation will complete, unless the receive is satisfied by another
message, and completes; the receive operation will complete, unless
the message sent is consumed by another matching receive that was
posted at the same destination process.

Remark. The notions operation, initiation of an operation, completion of an
operation are not precisely defined in the MPI standard (e.g. a send operation
is defined as MPI Send, a receive operation is defined as MPI Recv). This leads
to misunderstandings among MPI implementors and MPI users. Particularly the
progress rule is often incorrectly interpreted. The progress rule not only applies
to MPI Send and MPI Recv as the text of the standard might suggest—it also
applies to all communication functions (to blocking as well as to nonblocking
ones). We give a more formal definition of these notions in Section 2.5. •

The reference book on MPI [SOHL+95] uses a slightly different formulation
of the progress rule:

Progress rule: blocking communication. If a pair of match-
ing send and receives have been initiated on two processes, then at
least one of these two operations will complete, independently of other
actions in the system. The send operation will complete, unless the
receive is satisfied by another message. The receive operation will
complete, unless the message sent is consumed by another matching
receive posted at the same destination process.

Progress rule: nonblocking communication. A communica-
tion is enabled once a send and a matching receive have been enabled
communication posted by two processes. The progress rule requires
that once a communication is enabled, then either the send or the
receive will proceed to completion (they might not both complete as
the send might be matched by another receive or the receive might be
matched by another send). Thus, a call to MPI Wait that completes
a receive will eventually return if a matching send has been started,
unless the send is satisfied by another receive. In particular, if the
matching send is nonblocking, then the receive completes even if no
complete-send call is made on the sender side.

Similarly, a call to MPI Wait that completes a send eventually
returns if a matching receive has been started, unless the receive is

28 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

satisfied by another send, and even if no complete-receive call is made
on the receiving side.

If a call to MPI Test that completes a receive is repeatedly made
with the same arguments, and a matching send has been started, then
the call will eventually return flag=true,3 unless the send is satisfied
by another receive. If a call to MPI Test that completes a send is
repeatedly made with the same arguments, and a matching receive has
been started, then the call will eventually return flag=true, unless
the receive is satisfied by another send.

2.4.1 Message assembling and sending

Prior to the initiation of a send operation, the sending process must tell the
communication library which data should be sent in the message body (unless
the message body is empty). This phase—which we call message assembling—can
consist of several function calls when using PVM or MPI. We will only explain
the so-called packing method here, the result of which is a contiguous memory
buffer which contains the data to be sent (the message body).4

Remark. The packing functions do slightly more work than simply copying
data from the user’s memory space into the send buffer when the communication
takes place in a heterogeneous system because the representations of data (e.g.
the byte order or the length of basic types) in different processes may be different.
There is a canonical encoding of all basic types defined in the POSIX standard
[ISO90], called XDR encoding. The data in the send buffer is stored in the XDR
encoding which guarantees their unique interpretation in the sender and receiver
processes. •

After a message has been assembled, it can be sent to a recipient. The initia-
tion of the send operation is implemented in send functions in the communication
library. If a call to a send function does not return until the send operation has
been completed, the function is called a blocking send (or a synchronous send).
If the function is allowed to return before the completion of the send operation,
it is called a nonblocking send (or an asynchronous send).

The crucial questions here are:

• Is the send buffer allocated and freed by the application or by the commu-
nication library?

3The argument flag is called completed in the next section.
4The packing method requires additional data copying. There are other methods of message

assembly provided by both PVM and MPI that do not require the storing of the data in a
contiguous buffer. However, our performance tests show that copying the data is not very
costly compared to other actions as regards sending a message on commodity systems such as
the hpcLine by Fujitsu-Siemens.

2.4. POINT-TO-POINT MESSAGE PASSING IN PVM AND MPI 29

• How large must the send buffer be in order to store the packed (XDR) data?

• When is it safe to reuse or free the send buffer?

PVM

The PVM library internally provides the send buffers. PVM can maintain several
send buffers at a time. There is always one active send buffer and all packing
functions pack (append) the data into the active send buffer. The application can
switch between buffers (by saving the current buffer and making another buffer
the active buffer).

The process which wants to pack a message either calls the function
int pvm initsend(int encoding)

which destroys the current active buffer and creates a new one, or

int pvm mkbuf(int encoding)

which creates a new buffer without destroying the active one.
The application does not need to specify the size of the buffer—the PVM

library is responsible for the provision of enough space to store the packed data.
After a buffer has been created, the message is assembled by calling one of

the packing functions (there is one packing function for each basic type). For
instance, this is a function that packs an integer (or an integer array) into the
active send buffer:
int pvm pkint(int *integer, int count, int stride)

After the message has been assembled in the active send buffer, it can be sent
using the function
int pvm send(int recipient, int tag)

This function sends the contents of the active message buffer to the recipient—
more exactly, it initiates a send operation. The PVM library does not specify
whether this function is a blocking or nonblocking send (it can safely be regarded
as a nonblocking send). The call may return before the send operation has been
completed. However, PVM guarantees that the active send buffer may be reused
or freed after the return from a pvm send() call, and it also guarantees progress
formulated in the progress rule.

MPI

The MPI library requires the application to allocate and free send buffers. No
buffer is necessary in the case of zero-length messages but if the message body is
not empty, the application must decide on the size of the buffer to be allocated
before packing data into it. The application does not know how large the packed
representation of the data is. Therefore MPI provides a function
int MPI Pack size(int n, MPI Datatype t, MPI Comm com, int *size)

30 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

which returns in size the number of bytes necessary to store n items of type
t sent via the communicator com (a communicator is a “channel” between the
sender and receiver processes).

There is only one packing function in MPI:

int MPI Pack(void *data, int n, MPI Datatype t, void *buf,

int size, int *offset, MPI Comm com)

which packs n items of type t from the memory location data to the buffer buf of
size size at offset offset. The buffer is intended to be sent via the communicator
com. Note that the value of offset is updated by MPI Pack. The new value of
offset is used by the next call to MPI Pack (offset must be set to 0 by the
application when packing data into an empty buffer).

There is a variety of send functions in MPI and any of them can be used
to send the data which is packed in a buffer—more precisely, to initiate a send
operation. The functions differ only in the conditions guaranteed when they
return.
int MPI Send(void*buf, int offset, MPI PACKED, int recipient,

int tag, MPI Comm com)

is a default send. Its semantics corresponds to the semantics of pvm send in PVM.
It is not specified whether the send operation is blocking or nonblocking, and so
the call to MPI Send may return before the send operation has been completed.
However, MPI guarantees that the send buffer can be freed or reused by the
application after the call has returned, and it also guarantees progress formulated
in the progress rule.

int MPI Ssend(void*buf, int offset, MPI PACKED, int recipient,

int tag, MPI Comm com)

is a synchronous send. This function does not return until the initiated send
operation has been completed. The completion of the send operation implies
that the send buffer can be freed or reused.
int MPI Isend(void*buf, int offset, MPI PACKED, int recipient,

int tag, MPI Comm com, MPI Request req)

is a nonblocking send which initiates the send operation and returns immediately,
without waiting for its completion. The application must not free or reuse the
send buffer until the send operation has been completed. In order to let the appli-
cation detect the completion, MPI Isend returns a handle to the send operation
(a request), req and provides functions that test whether the operation has been
completed:
int MPI Wait(MPI Request *req, MPI Status *status)

blocks until the operation pointed to by req has been completed. Hence a return
from the call implies that it is safe to free or reuse the buffer.
int MPI Test(MPI Request *req, int *completed, MPI Status *status)

returns immediately, indicating in completed whether the operation pointed to
by req has been completed or not.

2.4. POINT-TO-POINT MESSAGE PASSING IN PVM AND MPI 31

int MPI Bsend(void*buf, int offset, MPI PACKED, int recipient,

int tag, MPI Comm com)

is a buffered send. Note that its interface is the same as the interface of the default
MPI Send. The same applies to its semantics, with one difference: MPI Bsend first
copies the message data from buf to an extra buffer space and then immediately
returns. Note that it is safe for the application to reuse or free the buffer buf

after the return from a MPI Bsend() call. The extra buffer space is provided by
the application which (prior to a MPI Bsend() call) calls the function

int MPI Buffer attach(void *extra buf, int size)

where extra buf points to a block of memory which belongs to the application,
of size bytes. A pairwise function
int MPI Buffer dettach(void *extra buf, int size)

is used to reclaim the extra buffer space from MPI (so that the application can
free or reuse it). The extra buffer space must be large enough to store message
data of all buffered send operations that have not been completed at any one
time. The function MPI Buffer dettach() blocks until all buffered sends that
use the buffer complete.

Remark. There are other send functions in MPI which we have omitted here—
we just presented the most important and representative ones. Note that MPI is
much richer than PVM as regards the choice of send functions. However, as we
show in Section 2.6.3, the seemingly richer set of send functions does not mean a
richer functionality. The use of MPI functions which are related to asynchronous
or buffered communication (that means the use of all send functions except the
default and synchronous send) is in fact very limited. •

2.4.2 Message receiving and disassembling

Receiving a message differs from sending a message, even though there are certain
similarities. One difference is that a receive operation can, but does not have to
specify the sender from which it wants to receive a message. Similarly, a receive
operation can, but does not have to, specify the tag a message must have in
order to match the receive operation. This wildcard matching only applies to the
receive operations, not to the send ones.

Prior to initiating a receive operation, a buffer must be allocated to the re-
ceiving process. However, how does the receiving process know the size of the
buffer which must be allocated when it decides to receive any message? This is
another difference between sending and receiving—the sender can compute the
size of the buffer, whereas the receiver can not. It is also unclear at first glance
whether the application or the communication library should allocate the buffer.

After a message has been received, the receiver usually wants to disassemble

32 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

the data stored in the message body. This is one more asymmetry between send-
ing and receiving—the sender knows what the message body contains, whereas
the receiver must rely on the fact that the sender assembled the message using
an agreed method. In other words, the receiver relies on the fact that the sender
obeys the agreed protocol.

Similarly to sending, a question arises when the buffer can be freed or reused.
The answer is easy: the application (not the communication library) knows when
it has disassembled all the data which it needed from the receive buffer.

PVM

The PVM library internally provides the receive buffer and it automatically ad-
justs its size to the size of the incoming message. There are several receive func-
tions provided by PVM, the application can basically decide whether it wants
to block until a matching message arrives (this corresponds to an initiation of a
receive operation and waiting for its completion) or only probe whether there is a
matching message (this corresponds to a temporary initiation of a receive opera-
tion, checking whether it can be matched against a send operation and canceling
the receive operation after the check).

The blocking receive function
int pvm recv(int from, int tag)

initiates a receive operation and blocks until a message which matches from and
tag arrives. If the parameter from is set to −1, then a message coming from any
process is matched (ranks of all processes are positive, the value of −1 serves as
a wildcard). Similarly, tag set to −1 matches any message tag. The arrival of a
matching message completes the receive operation and the function call returns
to the application.

The nonblocking receive function
int pvm nrecv(int from, int tag)

initiates a receive operation and checks for a matching message. If there is one,
the message is delivered and the receive operation is completed. If there is none,
the receive operation is canceled. In both cases, the function call returns without
being blocked.

The probing function
int pvm probe(int from, int tag)

does not create a receive operation, it only checks whether there is a message
which matches from and tag. The function call returns without blocking. Note
that if pvm probe detects a matching message then a subsequent call to pvm recv

or pvm nrecv (with the same parameters) completes the receive operation initi-
ated by the call.

The functions pvm recv or pvm nrecv return an integer which identifies the
buffer where the delivered message is stored on the completion of the receive

2.4. POINT-TO-POINT MESSAGE PASSING IN PVM AND MPI 33

operation. Note that if a wildcard was used in a call to these functions, the
application still does not know which process sent the message and with which
tag. This information (the message header) can be obtained using the function

pvm bufinfo(int bufid, int *bytes, int *tag, int *from)

This function obtains the buffer identifier bufid which is returned by pvm recv

or pvm nrecv and returns information on the message header: the length of the
message (in bytes), the message tag and the rank of the sender (in from).

After a message which matches pvm recv or pvm nrecv has been delivered, the
buffer storing the message becomes the active message buffer. The data stored in
the active message buffer can be disassembled using unpacking functions (there
is one packing function for each basic type). For instance, this is a function that
unpacks an integer (or an integer array) from the active receive buffer:

int pvm upkint(int *integer, int count, int stride)

The application has the option to save the active message buffer and free it
later. If it does not, the contents of the active message buffer is simply overwritten
by a new message when a subsequent receive operation completes.

MPI

The MPI library does not automatically provide receive buffers. The applica-
tion is responsible for the allocation of a sufficiently large buffer to the incoming
message when initiating a receive operation. It is silently assumed that the ap-
plication already knows the contents of the message (types of the data stored
in the message) that can arrive before initiating a receive operation. To sim-
plify matters, we assume that the arriving messages have been assembled using
the packing method. The receiver can determine the size of the buffer using the
MPI Pack size function which we described when talking about message packing.

The default receive function is synchronous:5

int MPI Recv(void *buf, int count, MPI Datatype t, int from,

int tag, MPI Comm com, MPI Status *status)

initiates a receive operation and is then blocked until the receive operation is
completed. buf is the receiving buffer where the message data are stored, count
is the maximum number of data elements of type t that may be received and
stored in buf, t is the type of the data elements. The from and tag parameters
specify the messages which are allowed to be received. Wildcards can be used in
both from and tag: MPI ANY SOURCE in from means the accepting of messages
from all processes, MPI ANY TAG in tag means the accepting of all message tags.
A return from an MPI Recv call guarantees that a matching message has been
delivered and the buffer buf can be unpacked or freed or reused by the application.
The header of the message received is stored in status.

5MPI has no receiving counterpart to the synchronous send function MPI Ssend. There is
no receiving counterpart to the buffered send function MPI Bsend, either.

34 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

The nonblocking receive function

int MPI Irecv(void *buf, int count, MPI Datatype t, int from,

int tag, MPI Comm com, MPI Status *status, MPI Request *req)

initiates a receive operation and immediately returns, without blocking and with-
out canceling the receive operation. A return from the MPI Irecv() call does not
guarantee the completion of the receive operation. The meaning of all parameters
is the same as with MPI Recv. The additional req parameter is a handle of the
receive operation. The handle can be passed to MPI Wait or MPI Test functions,
which respectively wait for the completion of the receive operation (blocking) or
test whether the receive operation is completed (nonblocking).

The blocking probe function
int MPI Probe(int from, int tag, MPI Comm com, MPI Status *status)

blocks until a send operation that matches the parameters from and tag is found.
The return from this function guarantees the completion of a subsequent receive
operation with the same parameters. The MPI probe functions do not receive
the message.

The nonblocking probe function

int MPI Iprobe(int from, int tag, MPI Comm com, int *flag,

MPI Status *status)

does not create a receive operation, it only checks whether there is a message
which matches from and tag. The function call returns without being blocked
and the information as to whether a matching message has been received is stored
in flag. Note that if MPI Iprobe detects a matching message then the completion
of a subsequent receive operation with the same parameters is guaranteed.

2.5 Unifying framework for message passing

In this section we introduce a new framework for message passing. Our main
intention is not to introduce another formal model but to unify the existing ones.
Section 2.3 discussed the similarities and differences between the PVM and MPI
standards but it is perhaps not yet obvious as to whether a program which uses
PVM functions can also be written using MPI functions or vice versa.

Well-known models of parallel processing include PRAM (Parallel Random
Access Machine) [FW78], ATM (Alternating Turing Machine) [MS87], Cellu-
lar Automata [vNe66] etc. Widely accepted models of message passing are
CSP (Communicating Sequential Processes) by Hoare [Hoa85] and the “chan-
nel model” by Andrews [And91]. The formal message passing models as well as
the real-life message passing standards are apparently different even though they
all deal with communication between parallel processes. However, the models
are equivalent in the sense that a program in one model can be simulated in any
other model. We believe that the framework we propose covers all the existing

2.5. UNIFYING FRAMEWORK FOR MESSAGE PASSING 35

message passing models, formal ones as well as the real-life needs.
Another reason for the introduction of a unifying framework is that there is

no formal model that we know of which defines message passing, which can be
directly mapped onto contemporary networks and which reflects notions used in
the definitions of real-life message passing systems such as PVM or MPI. For
instance, the Hoare’s original model lacks asynchronous communication which
is used in all contemporary real-life message passing systems. The “channel
model” by Andrews defines the semantics of synchronous and asynchronous com-
munication but the underlying mechanism used for communication between two
processes is a channel shared between the two processes. A channel is an abstract
FIFO structure similar to a pipe in the UNIX operating system. A channel has
a capacity—it stores messages sent by the sender process. The receiver process
removes the messages from the channel. However, the wires in real-life computer
networks do not have a capacity—either the receiver or the sender processes store
messages, not the wire itself. Therefore the channel abstraction cannot be directly
applied to real-life networks. The insertion of a third process between the sender
and the receiver does not directly help because the question remains as to how
the sender and the receiver can communicate with the third process.

Our framework covers fundamental message passing concepts: synchronous
and asynchronous communication, buffering, flow control. The major novelty of
the framework is a strict separation of the interface between a parallel application
and the message passing system from the implementation of the message passing
system. This allows us to define minimal semantical requirements for the imple-
mentation of a message passing system which are independent of the hardware,
operating system, means of communication, programming language and other
similar factors used in the implementation of the communication system.

From a software engineering point of view, our message passing framework
defines an interface between application programmers and implementors of com-
munication systems in terms of basic message passing operations. This is what
existing message passing models also do but at the same time they bind the
semantics of the operations to mechanisms used in the implementations of the
message passing systems. This binding reduces the set of architectures onto which
the models can be directly mapped. Our framework avoids such a binding.

The binding of operations to mechanisms also makes a comparison between
message passing models which are based on different mechanisms difficult. For
instance, a reasoning in a model bound to a shared memory communication is
much different to a reasoning in a model bound to a channel communication.
These two apparently different models describe the same concept even though
the expression of, say, the proof of correctness of a program written in one model
in terms of the other model is not obvious. This is where our model helps. An
abstraction from a particular mechanism makes the reasoning valid for a whole
class of models which adhere to the semantics defined in our framework.

Our framework for message passing systems is in many ways similar to the

36 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

well-known framework for database systems used by academic researchers as well
as by the implementors of database systems. [BHG87], [BL93], [Bac98] It defines
an interface between the database application and a database system. The inter-
face consists of basic operations which work on database records: read and write,
insert and delete. (The last two operations are often omitted in database text-
books that silently assume that the database is non-empty and its cardinality does
not change.) The semantics of these basic operations is defined independently of
the actual binding of the primitives to a database programming language and in-
dependently of the implementation of the operations in the database system. On
the one hand, this allows the writing of database applications without any knowl-
edge as to how these operations are implemented—this means, independently of
other applications running in the system, independently of whether the database
system is a centralised or a distributed one and independently of the hardware or
the operating system. On the other hand, the clean interface definition gives rise
to development of important abstract theories such as serialisability and recovery
which help the implementors of database systems to optimise their systems while
adhering to the semantics of the basic operations. This all holds for the message
passing framework proposed in this paper, only the set of operations and their
semantics are different to those defined in database systems. The database op-
erations work on database records, whereas the message passing operations work
on messages.

A small step towards a similar separation of message passing operations from
their implementation can be observed in the definition of the Message Passing
Interface, MPI. However, the semantics of MPI is described quite informally on
more than 300 pages of text and notions used throughout the text are not consis-
tently used. This often causes confusion between both application programmers
and implementors of MPI. Particularly, we show that the MPI language binding
does not include asynchronous communication even though the MPI standard
claims to support it. The same holds for another standard, CORBA, Com-
mon Object Request Broker Architecture. [Gro98], [HV99] In Section 2.6.3, we
present code fragments crucial to irregular applications which need asynchronous
communication and which cannot be expressed in MPI or CORBA. The “asyn-
chronous communication” defined in MPI and CORBA is not equivalent to the
asynchronous communication defined in fundamental abstract models.

2.5.1 Components of the message passing framework

This section gives a formal definition of the message passing framework. Firstly
we introduce the components used in the framework and their roles. The com-
ponents and their relationships are depicted in Fig. 2.10.

• Application process is a component that needs to communicate with other
similar components. The application process is typically a process in the

2.5. UNIFYING FRAMEWORK FOR MESSAGE PASSING 37

Application process

Basic message passing operations

Message passing system

Language binding

Operation binding

Figure 2.10: Components of the message passing framework

POSIX sense but this framework does not require that. It is not important
whether the process is single- or multi-threaded, and in which programming
language the process is written or the communication primitives which the
process uses is also not important. What is important from the point of view
of this framework is that the communication primitives of the application
process can be expressed using the four basic message passing operations.

• Basic message passing operations are four abstract operations which are
provided by the message passing system: create, destroy, recv and send.
These operations are the interface between the application process and the
message passing system.

• Message passing system is a system that implements the semantics of the
basic message passing operations. The implementation does not need to be
hardware or software. An abstract theory defining protocols which imple-
ment the basic operations on shared memory architectures can also be seen
as a message passing system. A theory defining protocols which implement
the basic operations on distributed memory system can also be seen as a
message passing system.

In the database analogy, an application process corresponds to a transaction
which passes basic database operations to a database system. The process can
be written in an arbitrary programming language, for instance C or OCCAM
(similarly, a database transaction can be written for instance in SQL or embedded
C).

The language binding defines how constructions of the programming language
which is used for the implementation of the application process translate into se-
quences of basic passing operations. The language binding can be implemented
as a precompiler which generates function calls that generate the basic opera-
tions and pass them to the message passing system. The choice between syn-
chronous and asynchronous communication falls into the competence of the lan-

38 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

guage binding—this choice does not influence the semantics of the basic message
passing operations or the message passing system.

The set of the basic message passing operations is relatively small. We suggest
the set that consists of only four operations which cover the fundamental needs of
the exchange of information between processes. The four basic message passing
operations have their counterparts in database systems as shown in Table 2.1.

Message passing Databases

recv read

send write

create insert

destroy delete

Table 2.1: Basic message passing operations and their counterparts in database
systems

The operation binding specifies how the basic message passing operations are
mapped onto a specific architecture of the message passing system. A somewhat
artificial example of a message passing system architecture is a single process
which reads the basic operations from a file and interprets them. Another example
of an architecture is a ring which directly connects application processes. In this
case the message passing system must use an internal protocol which implements
the routing of messages in the ring. Such a protocol is called a mechanism in our
framework.

The message passing system processes the operations which arrive from appli-
cation processes. The processing of the operations in the message passing system
implicitly defines the semantics of the operations.

2.5.2 Application process

The application process passes basic message passing operations to the message
passing system. Each application process has a unique identifier. The set of
application processes can be either static or dynamic. We will consider the dy-
namic model in which the message passing system assigns the unique identifiers
to processes on-the-fly as the processes sign on and off. A static model is only a
special case of the dynamic model.

An application process does not need to be a single process in the POSIX
sense. It can for example be a collection of POSIX processes or a single thread of
control or even a group of people. However, from the message passing system’s
point of view one application process is regarded as one entity. The message
passing system does not need to know what an application process does or what

2.5. UNIFYING FRAMEWORK FOR MESSAGE PASSING 39

it looks like. The system only obtains basic message passing operations generated
by the application processes and performs them.

An application process can directly pass the basic message passing opera-
tions to the system. However, it can also use higher communication primitives
(e.g. a barrier synchronisation instruction) from which the basic operations are
generated. The message passing system does not see the higher communication
primitives. We call the mapping from higher communication primitives to basic
operations a language binding. Language binding does not affect the semantics
of the basic message passing operations.

2.5.3 Basic message passing operations

The basic message passing operations are the interface between the application
and a message passing system. The semantics of these operations is independent
of the higher communication primitives or of the implementation of the system.
Firstly we introduce some notions needed to informally explain the semantics of
the basic operations. An important notion is the scope of an application process.
Any object can only be manipulated by the application process in whose scope
the object exists.

Application processes use messages as the only means of communication. The
create operation creates a new message in the application process which issues
the create operation. An application process can only access a message (read or
write the contents of the message) that exists in its scope. Our framework does
not specify how messages are represented or what they contain. The language
primitives for reading or writing a message are not part of the interface between
the application process and the message passing system. The destroy operation
removes a message from the scope of the application process which issues the
destroy operation.

There are two basic operations in relation to point-to-point message passing
between two processes. The send operation creates a new send request in the
scope of the application process which issues the send operation. A send request
is a tuple < S, x, y,M >, where x is the identifier of the process which issues the
send operation, y is the identifier of the destination process (y can be equal to
x) and M is the identifier of a message which exists in the scope of the process
which issues the send operation. The completion of the send request means that
the message M has been removed from the scope of the process x and an exact
copy of M has been created in the scope of the process y.

Similarly, the recv operation creates a new receive request in the scope of
the application process which issues the recv operation. A receive request is a
tuple < R, x, y, >, where x is the identifier of the process which issues the recv
operation, y is either an identifier of the source process (y can be equal to x) or
∗ (∗ denotes any source process) and means that no message is associated with

40 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

the receive request.6 The completion of the receive request means that a new
message has been created in the scope of the process x. The message identifier is
returned upon the completion of the receive request. Right before the completion,
the exact copy of the message exists in the scope of the source process y if y 6≡ ∗,
or in some source process if y ≡ ∗.

A request is an abstract entity which is used in the formal definition of send
and recv operations. Some systems do not even have to explicitly represent
requests—provided that the formal semantics of recv and send operations are
correctly implemented.

Note that there are no operations removing requests from the system. They
are not needed. The message passing system takes care of the removal of requests
after their completion (if requests are explicitly represented in the implementation
of the system).

2.5.4 Message passing system

Basic message passing operations are input of the message passing system. The
message passing system processes the operations and looks for matching request
pairs. The matching algorithm implicitly defines the semantics of the basic mes-
sage passing operations.

Requests R1 ≡< S, x1, y1,M > and R2 ≡< R, x2, y2, > are a matching pair
iff y1 ≡ x2, and either y2 ≡ x1 or y2 ≡ ∗.

When the system finds a matching request pair

< S, x1, y1,M >,< R, x2, y2, >

it completes the request pair, by performing the following sequence of actions (the
message M is passed from the process x1 to the process y1):

• New message M ′ is created in the scope of the process x2. The contents of
M ′ is identical to the contents of the message M .

• Message M is removed from the scope of the process x1.

• Both the send and the receive requests are completed (removed from the
system).

A request that has been created remains in the system until it is matched
with some other request. The system guarantees that matching request pairs are
not ignored forever (weak progress): If there is a matching request pair at any one
time then the system eventually finds and completes some matching pair. This

6The semantics of the send and recv operation can be easily extended so that any set of
destination and source process identifiers is stored in send and receive requests. We only present
the one-destination and one-or-all-source semantics in order to simplify the notation.

2.5. UNIFYING FRAMEWORK FOR MESSAGE PASSING 41

guarantee can be strengthened (strong progress): If there is a matching request
pair at any one time then the system eventually completes at least one of the
requests of this matching pair.

The message passing system can work sequentially in discrete time steps. In
each time step it either reads a new message passing operation or completes a
matching request pair (if there is one). In this case the completion of request
pairs must be prioritised over the reading of new operations in order to guarantee
the strong progress. If the rate of incoming operations is higher than the rate of
completed request pairs, some request pairs can remain forever in the system.7

The system can complete several request pairs at the same time (if the system
works in discrete time steps, several request pairs can be completed in one time
step). However, the effect of the parallel completion must be equivalent to the
effect of some sequential completion.

2.5.5 Language binding

The application process does not need to know how to pass basic message pass-
ing operations to the message passing system. It does not even need to explicitly
use the basic operations, it can use collective message passing operations, broad-
casting and similar operations that are not included among the basic ones. The
process can be even written in a non-imperative programming language, e.g.
LISP or PROLOG. The language binding defines how sequences of the basic op-
erations are generated from the higher-level programming constructs used by the
application process and how the operations are passed to the message passing
system.

Synchronous and asynchronous message passing constructs

A particularly interesting issue as regards the definition of higher-level languages
for message passing is the support of synchronous and asynchronous message
passing constructs. Note that the semantics of the basic passing operations is
asynchronous in the sense that a completion of a request which is associated
with a basic operation (see the Section 2.5.3 and Section 2.5.4) is independent of
the intervention of the application process. Below we sketch what the message
passing constructs might look like in an imperative programming language such
as C.

An asynchronous send, Isend (the “I” stands for “immediate”), can be im-
plemented as a single function call which in turn produces a basic send operation

7Note that the pending requests and messages associated with them consume memory. In
order to keep the concepts clean, our framework assumes a potentially infinite amount of
memory available in processes. An incorporation of a flow control mechanism (which bounds
the amount of memory used by the pending requests) is possible in real-world implementations
of the framework.

42 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

that is passed to the system. The application process does not need to know
whether or when the request is completed. Note that this implies that the mes-
sage passing system is responsible for freeing the message buffer after the com-
pletion of the request. The MPI standard [MPI94], [MPI98], [MPI97] specifies
that the application is responsible for freeing the buffer, see Section 2.4. The
consequence of this is polling in the MPI applications, as we show Section 2.6.3.

A synchronous send, Ssend (the “S” stands for “synchronous”), can be im-
plemented as a single function call which produces a basic send operation that
is passed to the system. This function call blocks until the request which is
associated with the operation is completed. The application is not responsible
for freeing the message buffer after the completion of the request. (The MPI
standard states otherwise, see Section 2.4.)

An asynchronous receive, Irecv, can be implemented as a single function call
which in turn produces a basic recv operation that is passed to the system. An
asynchronous receive means that the application process is willing to receive a
message in the future but does not want to wait for it now. It is the responsibility
of the application to wait for the requested message when it needs it (the appli-
cation is not able ask the message passing system whether or not the message has
already arrived but the system can notify the application when the request has
been completed). The message passing system is responsible for the allocation
of memory for the incoming message, the application is responsible for freeing
the memory when the contents of the message is no longer needed. (The MPI
standard states that the application is responsible for the allocation of memory
for the incoming message, see Section 2.4.)

A synchronous receive, Recv, can be implemented as a single function call
which produces a basic recv operation that is passed to the system. The function
call blocks until the request which is associated with the operation is completed.
The message passing system is responsible for the allocation of memory for the
incoming message, the application is responsible for freeing the memory when the
contents of the message is no longer needed. (The MPI standard states that the
application is responsible for the allocation of memory for the incoming message,
see Section 2.4.)

Remark. The set of the four point-to-point functions can be reduced to two.
The relevant functions are the blocking Recv and the nonblocking Isend. This
choice is natural. A process (or a thread) wants to receive a message when it
cannot proceed without the message. A process (or a thread) which sends a
message does not usually need to know when or whether the recipient decided to
receive the message. •

Remark. The message passing primitives defined in MPI cannot be mapped to
our message passing framework. More precisely, it is impossible to extract the

2.5. UNIFYING FRAMEWORK FOR MESSAGE PASSING 43

basic message passing operations from the MPI functions so that their semantics
would correspond to the semantics defined in our message passing framework.
The reason is the wrong buffer allocation and deallocation policy defined in the
MPI standard. Roughly expressed, the MPI standard does not define message
passing.

The automatic buffering policy and the language primitives of PVM match
our framework. However, the lack of thread-safety in the current PVM imple-
mentations imposes restrictions to the use of the language primitives (i.e. to the
generation of sequences of message requests in a process). •

2.5.6 Operation binding

Operation binding specifies how the semantics of the basic message passing op-
erations is implemented on a specific architecture of a message passing system.
In other words, operation binding states how the system performs its steps, how
it finds the matching request pairs and how it completes them. An architecture
does not necessarily mean hardware. Examples of abstract architectures include
processors connected to a ring or a torus with channels, processors which share
memory, processors connected to an Ethernet network etc. A mechanism (a pro-
tocol) must be found for every architecture that at least simulates a sequential
message passing system with the weak progress guarantee.

Examples of protocols which may be useful for the definition of operation
binding for distributed memory architectures can be found in [Ray88]. The pro-
tocols include election algorithms for various topologies, decentralised deadlock
detection, termination detection, distributed data management, fault tolerance
algorithms etc.

Equivalence of our framework to Andrews’ message passing model

The channel model by Andrews is described in [And91] in Chapter 7, “Asyn-
chronous Message Passing”. Synchronous message passing is defined in Andrews’
book as asynchronous message passing with some additional constraints. We
will not repeat the whole formal semantics of Andrews’ model here (otherwise
we would have to repeat the definition of the programming logic which is used
throughout the book), we will only focus on the key concepts of the model.

Andrews’ model is based on the concept of channels. A channel is basically
a FIFO queue in which messages are stored. The queue can be extended by
appending a message to the tail of the queue and shortened by removing a message
from the head of the queue. The queue has a potentially unlimited capacity—that
means, a message can be appended to it at any one time.

Andrews defines the semantics of send and receive:
“The effect of executing send ch(expr1, . . . , exprn) is to evaluate the expressions

44 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

expr1, . . . , exprn, then append a message containing these values to the end of
the queue associated with channel ch.”
“The effect of executing receive ch(var1, . . . , varn) is to delay the receiver until
there is at least one message on the channel’s queue. Then the message at the
front of the queue is removed, and its fields are assigned to the vari. Thus, in
contrast to send, receive is a blocking primitive since it might cause delay. The
receive primitive has blocking semantics so that the receiving process does not
have to busy-wait polling the channel if it has nothing else to do until a message
arrives.”

Andrews further defines a property which ensures that if a receiver is blocked
on a channel and a message arrives on the channel, then the receiver will even-
tually consume the message.

Claim. If Andrews’ model is restricted so that each channel is read by exactly
one process (but several processes may write into the same channel), then the
semantics of an abstract message passing system is equivalent to the semantics
of the channel model defined by Andrews.

Proof. The only technical difficulty in the comparison of the two models is that
Andrews’ model silently assumes a dynamic allocation and deallocation in send

and receive (this is the memory which stores the elements of the channel FIFO
queue). In our model we assume an explicit dynamic allocation and deallocation
of memory which stores the messages—this allocation and deallocation is carried
out in create and destroy operations, separately from the recv and store

operations.
We will first show that Andrews’ channel model can simulate our model. Con-

sider a program which contains message passing operations create, destroy,
recv, send. Replace each recv in the program with receive ch(vars) where ch
is the only channel which is read by the receive (vars denotes now the contents
of the message which has been allocated by the corresponding create operation.
The semantics of the create operation remains unchanged—this operation per-
forms a dynamic allocation of memory for the message. Similarly, the semantics
of the destroy operation remains unchanged—this operation performs a dynamic
deallocation of the memory block which has been created by some create oper-
ation.) Replace each send in the program with send ch(expr) where ch is the
channel which is read by the recipient. It is easy to observe that the replacements
above do not change the semantics of the program in Andrews’ model.

We will show that our message passing model can simulate the (slightly re-
stricted) Andrews’ channel model. Consider a program which contains send

and receive statements with the channel semantics. Replace each channel send
ch(exprs) statement with the sequence of two message passing operations create;
send. The former creates a message which is large enough to store the values
of exprs. The latter creates a send request which addresses this message to the

2.6. THREADED NON-TRIVIAL PVM AND MPI APPLICATIONS 45

process which reads the channel ch. The program which issues these operations
is further extended with the filling of the newly created message with exprs in
the time period after it has issued the create operation and before it has issued
the send operation. Replace each channel receive ch(vars) statement with the
sequence of two message passing operations recv; destroy. The first creates a
receive request which matches all messages (a wildcard is used in this request).
The second frees the memory used by the incoming message. The program which
issues these operations is extended with the filling of its local variables with vars
before it has issued the destroy operation. It is easy to observe that the eventual
consumption of the message by the receiver is guaranteed by our model (by the
progress rule). •

Remark. Note that the restriction in the Andrews’ model (each channel is read
by exactly one process) is only made in order to simplify the operation binding for
distributed memory architectures. If we allow wildcards in send requests in our
model then this restriction is not necessary. (Only the definition of the request
matching must be extended in our model in this case. The rest of the model
remains unchanged.) •

2.6 Threaded non-trivial PVM and MPI appli-

cations

2.6.1 Threads and thread-safety

The process model implemented in the Transputer is—as expressed in contem-
porary terms—a restricted concurrent thread model. An Occam program which
is executed in a Transputer can be seen as a process that consists of several
independent threads of control.

All modern operating systems support the concept of threads. A process is
a program which can consist of several threads. [ISO90] The threads share the
same memory space (except for the stack—each thread has its own stack) but
each has its own flow of control. An “ordinary” sequential program runs as a
process with one thread.

Definition. Thread is an encapsulation of the flow control in a program. •

Particular care must be taken when writing multi-threaded programs. There
is only one running thread at any one time (on a single-processor system), but the
running thread can be descheduled and replaced with some other thread anytime
(unless the thread scheduling policy states otherwise). Any thread which is not

46 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

blocked at any one time can be scheduled to run. The interleaving of threads is
equivalent to a quasi-parallel execution of the threads.

An explicit synchronisation is needed when threads share resources (e.g. vari-
ables).8 There are many examples of so-called racing conditions (an unwanted
phenomenon caused by an unforeseen order of the execution of running threads)
in concurrent programming textbooks. [And91] A popular example is a linked
list which is manipulated by two threads, whereby one thread adds an item to
the list and the other thread removes an item. The linked list becomes corrupted
when the two threads are interleaved in a certain way. Processors and operating
systems provide mechanisms for the synchronisation of threads, such as mutexes
and semaphores.

Several threads often need to call the same function. I/O functions such as
open, read, write are very common examples. A problem may occur when a
function needs to maintain a global state. For instance, the implementation of
the open function may add the newly opened file to a global linked list. In such
a case a racing condition can occur when a thread calls open() while another
thread is manipulating the linked list in its open() call. A function is regarded
as thread-safe when its implementation avoids racing conditions.

Definition. Thread-safe function (reentrant function) is a function that can be
concurrently called from several threads, providing the same semantics to each
individual thread. •

Thread-safe function can thus be called from several threads without cor-
rupting memory (without destroying internal memory structures used by that
function) and without thread-interference (the semantics of the function does
not change from the point of view of the calling thread if at the same time the
function is concurrently called from another thread).

Functions are usually collected in libraries. Even if each of the functions is
thread-safe, a racing condition may occur when different functions of a library are
concurrently called from different threads. A library is regarded as thread-safe if
such a racing condition cannot occur.

Definition. Thread-safe library is a library in which all functions can be con-
currently called from several threads without memory corruption and without
thread-interference. •

Practice shows that the programming of thread-safe libraries is difficult. How-
ever, thread-safety is so important for many applications that vendors of oper-
ating systems invest the effort into making at least the low-level system libraries
[ISO90] thread-safe, and carefully document those which remain thread-unsafe.

8Note that no synchronisation is needed when multiple threads only read a shared variable.

2.6. THREADED NON-TRIVIAL PVM AND MPI APPLICATIONS 47

System calls which may eventually block deserve special attention—a blocked
system call must only block the calling thread, not the entire process.

A natural scenario of the implementation of a non-trivial application (Sec-
tion 2.1) involves running two threads in each process as shown in Fig. 2.11. The
heavy computation is hidden in the function compute() of the thread T1. We
restrict the occasional communication of the thread T1 to only sending messages
to other processes (later it becomes clear why this restriction is not important).
The thread T2 services the incoming requests. The recv function is a blocking
receive (pvm recv in PVM, MPI Recv in MPI). This means that if there are no
requests to be serviced, the thread T2 is blocked in the recv() call, leaving the
full CPU power for the computation in T1.

thread T1()
{

while (not done)

{
compute();

send();

}
}

thread T2()
{

while (not done)

{
recv();

service request();

}
}

Figure 2.11: Natural threaded implementation of one process of a non-trivial
application: it only works if the communication library is thread-safe

The natural scenario of Fig. 2.11 only works if the communication library is
thread-safe (because of the concurrent send and recv() calls). We are aware of
no thread-safe implementation of PVM. There are some MPI implementations
that are thread-safe but internally use active polling, see Section 2.6.3—the only
two exceptions we know about is the IBM implementation for IBM RS/6000 SP
[Tre97] and MPI/Pro implementation by Software Technologies, Inc. [DS02]

Observation. Most existing implementations of PVM and MPI are not thread-
safe. This means that (most) PVM/MPI functions can not be concurrently called
from several threads. The natural scenario of Fig. 2.11 does not work for all these
implementations. •

2.6.2 Polling in threaded non-trivial PVM and MPI ap-
plications

When the communication library is not thread-safe, thread T1 in Fig. 2.11 must
not call send() when the thread T2 is inside the recv() call. The easiest way of

48 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

guaranteeing the mutual exclusion of calls to the communication library involves
the protection of each call to the library with a mutex (this protection can also be
hidden in the library). This approach is suggested in [HR03b], [HR03a] in order
to overcome thread-unsafety of PVM or MPI implementations. It avoids racing
conditions but it does not solve the problem of non-trivial (irregular) applications
(although the cited works aim to become a framework for development of irregular
applications). If the recv() and send() calls are mutually excluded and the
thread T2 is blocked in the recv() call then the send() call in the thread T1
will block until a message from some other process arrives, which would unblock
T2. However, if no message arrives, then the whole process will remain blocked
forever.

A general approach which guarantees the mutual exclusion of calls to a thread-
unsafe communication library and at the same time a progress in a non-trivial
application is active polling (also known as busy waiting or for short polling).

Fig. 2.12 shows a polling implementation of one process of a non-trivial appli-
cation. The shared mutex comm is used for the protection of the communication
library calls in T1 and T2. This mutex can only be locked (acquired) by one thread
at any one time. A thread which attempts to lock an already locked mutex be-
comes blocked until the thread which holds the mutex unlocks it. The thread
T2, after having locked the mutex comm, calls a nonblocking probe() to check
whether there is an incoming message. If there is a message, it is received in the
recv() call and processed. If there is no message, T2 unlocks the mutex and falls
asleep for some time. The sleep() call before entering the loop is necessary in
order to give some CPU time to the computation in T1. Before falling asleep, T2
unlocks the mutex in order to allow T1 to call send().

The pseudo-code of Fig. 2.12 can be expressed in different ways when using
a (thread-unsafe) PVM or MPI library. Some of the alternatives include:

1. The nonblocking recv (pvm nrecv in PVM, MPI Irecv followed by MPI Test

in MPI) can be used in the thread T2 instead of the nonblocking probe

(pvm probe in PVM, MPI Iprobe in MPI) and the blocking recv (pvm recv

in PVM, MPI Recv in MPI).

2. All actual communication with other processes can be moved to the thread
T2. The send() in the thread T1 can be replaced with an insertion of the
message to a send queue (together with a message header which stores the
recipient’s address, message tag, . . .). Inside the polling loop, the thread
T2 checks whether the send queue is empty. If the queue is not empty, T2
sends the messages in the send queue to the recipients.

3. If the structure of the function compute in the thread T1 is simple and if
the application itself does not require multiple threads, then the polling
from the thread T2 can be moved to the thread T1. An example of a simple
structure of the compute function is a loop which is repeated many times.

2.6. THREADED NON-TRIVIAL PVM AND MPI APPLICATIONS 49

thread T1()
{

while (not done)

{
compute();

lock(comm);

send();

unlock(comm);

}
}

thread T2()
{

while (not done)

{
lock(comm);

arrived=probe();

if (arrived)

{
recv();

service request();

}
unlock(comm);

sleep(time);

}
}

Figure 2.12: Polling implementation of one process of a non-trivial application:
a thread-safe communication library is not required for the application to work
correctly—on the other hand, polling makes the application inefficient and non-
portable

In this case the thread T2 can be eliminated, which reduces the program
to the single thread T1 running the sequential loop (this loop contains a
computation which is mixed with nonblocking send() calls). In addition,
after every few executions of the loop a nonblocking probe is called to
check for incoming requests. If there are requests, they are serviced—
otherwise the computation continues. The problem with this solution is
that it assumes a regular application structure. Moreover, the tuning of
the number of loop executions after which the probe is executed is strongly
machine-dependent.

The choice of the right alternative can improve the efficiency of a certain
application on a certain system. However, when the application is ported onto a
new system, the tuning procedure must be repeated in order to find the optimal
polling parameters. Even worse than that, the optimal setting of the polling
parameters can also depend on the inputs to the application, in which case an
empirical tuning does not help.

Claim. Every non-trivial application which builds on a thread-unsafe communi-
cation library is forced to use active polling (busy waiting). •

50 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

2.6.3 Polling in communication libraries

When avoiding polling in an application, one must ensure that none of the li-
braries used by the application uses polling. If a polling library function is called
from a thread, then all other application threads are slowed down by the polling
thread.

Section 2.6 shows that the problem with non-trivial applications is a lack of
thread-safety of libraries which are used for inter-process communication. To the
best of our knowledge, there is no thread-safe implementation of the PVM li-
brary. The MPI-2 standard [MPI97] defines four levels of thread-safety (whereby
the highest one, MPI THREAD MULTIPLE is needed for efficient non-trivial appli-
cations). Some MPI implementations are thread-safe (MPI THREAD MULTIPLE).
However, the MPI developers did not keep in mind the reason why the thread-
safety is important—they “solve” the problem using active polling inside the
library ! The original problem with non-trivial applications is thus only dug one
level deeper. Such an approach can be found in MPICH2 [Gro02].

Claim. If active polling is used to solve thread-safety problems inside a com-
munication library, it is impossible for an application using the library to avoid
active polling. Even worse than this, the application does not even have the free-
dom of choice between the alternative polling implementations as described in
Section 2.6.2—it is forced to use the one implemented in the library. •

A thread-safe communication library that does not internally use threads but
uses polling instead must keep a table of pending send and receive requests.
The polling thread-safe scenario may work as follows (similarly to the program
in Fig. 2.12):

• A mutex is used inside the library to ensure a mutual exclusion of send()
and recv() calls.

• Blocking send() and recv() calls do not internally block. The library polls
on behalf of all pending requests in the implementation of each “blocking”
send or receive. The global mutex is locked during the time needed to
detect progress and it is unlocked during the sleep() call used in the polling
loop.

Some research papers on communication libraries [Fer98], [KHS96] do not
mention their implicit use of active polling, thus hiding the source of a significant
performance loss.

Polling related to asynchronous communication

Another potential source of active polling in communication libraries involves
using optimisation techniques for single-threaded communicating processes. We

2.6. THREADED NON-TRIVIAL PVM AND MPI APPLICATIONS 51

will focus on the implementation of the asynchronous (nonblocking) MPI Isend in
MPICH [GL96]. As we will show, the implementation is wrong because it violates
the progress rule defined in the MPI standard [MPI94], [MPI98], [MPI97]. An
MPI program which demonstrates this weakness is given in Appendix A. We
will also show that even if the implementation of MPI Isend was correct, the
application using the nonblocking send would suffer from polling.

An MPI Isend() call returns immediately to the caller. The MPI tutorial
book [GLS95] (Chapter 4, Section “Using Nonblocking Communication”, page
81) says: “The buffer containing the message to be sent using MPI Isend must
not be modified until the message has been delivered (more precisely, until the
operation is complete, as indicated by one of the MPI Wait or MPI Test rou-
tines).” (MPI Wait is a blocking MPI function which blocks until the correspond-
ing MPI Send has been completed. MPI Test is a nonblocking MPI function which
returns immediately with the information on the completion of the corresponding
MPI Send.)

A question arises: Under what circumstances can an MPI Isend complete
before MPI Wait or MPI Test has been called? (If no such circumstances exist,
then MPI Isend loses its reason for existence.)

In order to complete an MPI Isend, the sender’s side must push the message
to the network (this pushing corresponds to writing to a socket). The pushing
itself can either be blocking (blocks until the recipient’s side is ready to receive) or
nonblocking (tests whether the recipient’s side is ready to receive). The pushing
must be hidden in the MPI library. However, MPI Isend returns the control to
the application after some initial nonblocking pushing at the latest.

If the message can not be delivered to the network during the initial pushing,
the next opportunity to retry the pushing is when the MPI library regains control
again. This happens when the application calls an MPI function. The pushing of
pending MPI Isend messages can be (and usually is) implemented as a side effect
of most MPI functions. An eventual delivery of pending MPI Isend messages
is only guaranteed if the application either regularly calls MPI functions or the
control in the application gets to the MPI Wait() call paired with the MPI Isend.

The hidden pushing of pending MPI Isend messages which is implemented as
a side-effect of any MPI function works well with single-threaded applications but
causes problems when either the application is multi-threaded (not necessarily
non-trivial in the sense of Section 2.1) or when the application’s processes run on
multi-user operating systems. Consider the following sequence of MPI calls in one
process: MPI Isend(); MPI Recv(), and assume that the initial pushing during
the MPI Isend() was not successful (the receiver’s side was not ready to receive
the message at that time). The MPI Recv() call blocks until a matching message
arrives. But the arrival of the matching message may depend on the delivery
of the pending MPI Isend() message. For this reason the MPI library must not
passively block in the MPI Recv() call. Instead of this the implementation of
MPI Recv() must either block while waiting for both events (the pushing of the

52 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

pending outgoing message which has been sent using MPI Isend() and the arrival
of a message in MPI Recv()) or the polling for the matching message must be
interleaved with the pushing of the pending MPI Isend() message. The second
option—interleaved polling—can be found e.g. in MPICH [GL96]. The use of
the interleaved polling may be advantageous for a single-threaded application or
an application which runs on a single-user operating system. However, a multi-
threaded application which uses the above mechanism in one of its threads will
spin until a matching message arrives and the control returns from the MPI Recv

call. This spinning means that the thread which is inside the interleaved polling
unnecessarily consumes up to 100% of the CPU time, blocking the other threads
or other user’s processes (if the process is running on a multi-user operating
system) which may make better use of the wasted CPU time.

Also, the interleaved polling only guarantees progress when the control in the
application process regularly reaches an MPI call. In a general case, no progress
is guaranteed.

Claim. MPICH violates the progress rule defined in the MPI standard. In other
words, MPICH does not comply with the MPI standard.

Proof. Consider a program that consists of two parallel processes, P1 and P2.
The program performs the following actions (in this order):

1. P1 calls MPI Isend(), sending a message to P2.

2. P1 runs an infinite loop (followed by MPI Wait()).

3. P2 calls MPI Recv() which matches the message sent by P1.

The progress rule states that the message sent by P1 will eventually be deliv-
ered once it is matched by the MPI Recv() in P2 (the MPI standard states that
this must occur independently of the other actions in P1). The message sent by
P1 will never be delivered to P2 in MPICH. •

A common workaround involves the insertion of an MPI Test() call (or some
other MPI call) into the infinite loop in the process P1. However, sometimes this
workaround cannot be directly applied. For instance, the text “P1 runs an infinite
loop” in step 2 can be replaced with “P1 makes an I/O call which can block”. This
causes application programmers to look for other workarounds, which generally
destroy the natural organisation of the code.

Remark. The default MPI Send can be safely implemented as a synchronous
MPI Ssend. However, MPICH does not implement MPI Send as MPI Ssend—
MPI Send in MPICH can return before the message has been delivered to the re-
ceiver. This means that the progress rule is also violated for the default MPI Send

in MPICH. •

2.6. THREADED NON-TRIVIAL PVM AND MPI APPLICATIONS 53

The MPI standard requires the application to free the send buffer used in
MPI Isend. The application can free the buffer after it made sure that an
MPI Isend() call has completed. The functions MPI Wait or MPI Test can (or
rather, must) be used to detect the completion of the MPI Isend. This is another
source of polling—this time in the application, not inside the MPI library:

Claim. The semantics of asynchronous (nonblocking) communication in MPI
forces the application to use polling in order to avoid using an unbounded amount
of memory.

Proof. Consider a program with an unpredictable flow of control. The pro-
gram calls MPI Isend() unpredictably many times. Each of these calls must
be paired with an MPI Wait() at some point in order to free the buffer used
in MPI Isend(). However, the unpredictability of the flow of control makes it
impossible to place the MPI Wait() anywhere but at the end of the program
(right before MPI Finalize()). This is undesirable because the buffers of all
MPI Isend() calls are not freed until the end of the program (even though they
are no longer needed). •

A general workaround assumes running a separate thread which polls for com-
pletion on behalf all pending MPI Isend() calls. Another workaround involves
preceding each MPI Isend() call with an MPI Wait() call. However, this reduces
the maximum number of pending MPI Isend() calls to one, which can lead to
unexpected deadlocks in applications which relies on a higher number of concur-
rent MPI Isends. A more general solution of this kind involves preceding each
MPI Isend() call with an MPI Testany() call with the intention to control the
amount of pending MPI Isends—but this is equivalent to polling.

The consequence is that an efficient use of the nonblocking communication
defined in the MPI standard is restricted to the applications in which communi-
cation and computation phases alternate and are strictly separated. The commu-
nication in one phase can then overlap with the computation in the next phase.
Such a model is studied in [LAB93].

The CORBA standard [Gro98] explicitly prescribes polling in applications
that use asynchronous communication. This is a quotation from the tutorial
book [OPR96] on using CORBA (Section 8.2.2, Deferred Synchronous Commu-
nication):

“What CORBA refers to as the deferred synchronous communi-
cation style is a form what the non-CORBA world calls asynchronous
communication. When an application invokes a deferred synchronous
request, the application does not wait for the request to complete
before it continues with other work. However, the application must

54 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

periodically check to see if the request has completed by polling using
the CORBA Request get response operation on the
CORBA get next response routine.

The deferred synchronous style of communication is most appro-
priate when you do not want your application to have to wait for
the current request to complete before sending the next request. For
example, if you do not know how long the operation may take, you
may not want your application to wait for the request to complete.
This will almost always be the case when you write a CORBA client
to connect to someone else’s framework or server.”

2.6.4 Limits of active polling

This section explains why active polling diminishes the performance of non-trivial
parallel applications and to what extent. Consider the polling implementation
of a non-trivial application (Fig. 2.12, Section 2.6.2). The only parameter which
allows the tuning of the implementation is the time argument of the sleep(time)
call in the thread T2. The setting of time determines the tradeoff between the
latency of the servicing of incoming requests and the wasted CPU cycles:

• If time is a short time period, say, 1 millisecond, then the latency of request
servicing is 0.5 millisecond on average. On the other hand, CPU cycles
are unnecessarily wasted every 1 millisecond if there are no requests to be
serviced. The computation in the thread T1 is slowed down.

• If time is a long time period, say, 1 second, then the CPU cycles are wasted
only once a second. However, the average latency of request servicing is
0.5 seconds.

The setting of the time constant is dependent on many factors: application’s
computation/communication ratio, input data, operating system, network speed,
network latency, buffering scheme in the communication library, . . . The time

constant must therefore be experimentally tuned. The need for tuning makes the
polling approach non-portable, but a closer look at the implementation of sleep
in operating systems reveals an even a more serious polling deficiency.

The POSIX standard [ISO90] defines a high resolution version of the sleep

system call, nanosleep(time), which is supported by all contemporary operating
systems. nanosleep(time) puts the caller asleep for the specified time whereby
time is given in nanoseconds. A typical implementation of nanosleep(time) in
the kernel of an operating system is shown in Fig. 2.13.

Sleeping for a time shorter than the threshold of the kernel does not cause
the descheduling of the calling thread—the calling thread is “actively” sleeping.
In other words, other threads or processes do not get scheduled while the cur-
rent thread is sleeping (in fact, the current thread is burning CPU cycles). For

2.6. THREADED NON-TRIVIAL PVM AND MPI APPLICATIONS 55

nanosleep(time)

{
if (time < VERY SHORT TIME PERIOD)

...run idle CPU cycles for the given time...
else

...set an alarm and deschedule the current process/thread...

}

Figure 2.13: Implementation of nanosleep in the kernel of an operating system

this reason time which is shorter than the threshold must be avoided in polling
implementations of non-trivial applications (Fig. 2.12).

Sleeping for a time longer than the threshold causes the calling thread to be
descheduled and rescheduled again after time has elapsed. However, it turns
out that without a special tuning of the kernel (which leads to many unwanted
consequences) the minimal duration of nanosleep(time) is 0.02 seconds in all
systems available to us (Solaris, Linux, Ultrix). We measured this value by
calling nanosleep(time) many times in a loop. (Alternative system calls such
as usleep or select behave similarly. This behaviour is caused by the clock
granularity in the operating systems which is set to 10 ms. As the clock ticks are
discrete, this value is often increased with additional 10 ms.9) In other words,
nanosleep(time) can be called at most 50 times per second. This has a worrying
implication for all non-trivial applications using the polling scheme of Fig. 2.12:

Claim. The upper bound on the number of serviced requests in a polling process
of a non-trivial application of Fig. 2.12 is 50 per second. This number does not
depend on the speed of the processors or the network connecting them. •

Remark. The loss of performance is not the only negative consequence of polling.
Another negative consequence (sometimes even worse than performance loss) is
a non-determinism. A request that needs attention can be created at any time
during the sleep() call of the thread T2 (see Fig. 2.12). The process which sent
the request usually waits for a reply—in other words, it is idle. The length of its
idling interval depends on the length of time the recipient’s thread T2 will sleep
from the moment at which the request was created. As the need for a request is
randomly created, the request servicing times are random. The expected servicing
time is a half of the polling time interval (0.01 seconds or more, as we have shown
above). If a process of a communication-intensive non-trivial application sends

9We experimentally found that the select system call adds the additional 10 ms penalty
least frequently on Linux 2.4.20-xfs i686.

56 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

1000000 requests, the expected polling overhead is 10000 seconds (which add to
the parallel application time). However, the actually measured polling overhead
of one run can theoretically be anything between 0 seconds and 20000 seconds
(ca. 5 hours). •

2.6.5 Previous work related to thread-safety of PVM and
MPI

Thread-safety of PVM and MPI has been studied for many years but the prob-
lem remains unsolved. We know of none implementation of thread-safe PVM
and only about two successful implementations of thread-safe MPI which do not
use polling (an inofficial IBM implementation and the implementation by MPI
Software Technology, Inc.). This section presents a few key research works in the
field.

PVM

The LPVM (Lightweight-process PVM) system was introduced in [ZG98]. LPVM
is designed for shared-memory machines. PVM tasks are implemented as threads
in LPVM. The authors recognise two main issues that have to be dealt with
in order to make PVM multi-thread-safe: global state and reentrancy. LPVM
removes global states from the PVM library by assigning receive and send buffers
(and other resources) to each task. The user interface of PVM 3.3 is only slightly
modified but a major redesign of libpvm is needed. Our implementation is simple
and does not require the removal of global states.

TPVM [FS98] takes a different approach which assumes a thread to be the
basic unit of parallelism in a distributed system. There is a thread server which
registers all threads running in the system. This fine-grained model is mapped
onto the coarse-grained process model of PVM for the purpose of message pass-
ing. Rather than going into technical details, we will explain the problem of
TPVM from the point of view of a non-trivial application. There is a global
message queue accessible to all threads in each process. A thread which wants to
receive a message follows the following protocol. Firstly it looks for the message
in the global message queue. If the message is there, the thread continues; if not,
the thread attempts to receive a message from another TPVM task using a non-
blocking receive. If a message is there, but it is addressed to another thread, the
thread stores the message in the global message queue and retries the nonblock-
ing receive (and later wakes up threads which are waiting for those messages);
otherwise it falls asleep. The following is the weakness of the protocol: When a
thread falls asleep, then another thread must attempt to receive a message in
order to wake up the sleeping thread. If no such thread exists, the sleeping thread

2.6. THREADED NON-TRIVIAL PVM AND MPI APPLICATIONS 57

will sleep forever—even though there may be a message addressed to the sleep-
ing thread which was sent by some other TPVM process. This situation can be
resolved by running a special thread that regularly polls for incoming messages
and wakes other threads up. Our mechanism does not require the running of a
polling thread.

A misleading attempt by PVM developers to support non-trivial applications
was the introduction of message handlers in the version PVM 3.4. A function
pvm addmhf(int src, int tag, int ctx, int (*func)(int mid))

was added to the PVM library. This function registers a user’s message handler
func. The handler is fired (the function func is called) when a matching message
arrives (the message header must match the parameters src, tag and ctx). An
elegant implementation of a non-trivial application would involve registering a set
of message handlers instead of running the thread T2 of Fig. 2.11. The program
would remain single-threaded, executing only the thread T1. However, the manual
to pvm addmhf says (note the marked text): “. . . pvm addmhf specifies a function
that will be called whenever libpvm copies in a message whose header fields
of src, tag and ctx match those provided to pvm addmhf.” In other words, the
message handlers are only called when the application requests it—a thread which
regularly calls e.g. pvm probe() must be running, which forces pvmlib to copy in
the arriving message. This is equivalent to active polling and contrasts to what is
stated in [GKPS97]: “. . . these message handlers are invoked internally without
any user intervention.”

PVM allows the delivery of signals between tasks. Signals, in combination
with message handlers (see previous paragraph) may be used to get rid of the
polling thread in a non-trivial application. A non-trivial application would be
implemented as a single-threaded application which executes the code of T1 of
Fig. 2.11. The thread T2 of Fig. 2.11 would be implemented as a set of message
handlers. The message passing protocol would be extended as follows (the actual
implementation can be very complex):

1. Process A sends a message to process B

2. Meanwhile, process B runs T1, without taking the incoming message into
account.

3. Process A sends a signal to process B, saying “Get up, you have a message!”

4. Process B receives the signal and fires a signal handler. The signal handler
calls pvm probe which fires a message handler which receives the message
and performs an appropriate user’s action handle message.

A similar idea was used in [SKH96] for the implementation of active messaging
in PVM. No polling occurs in the above scenario. However, technical issues make
this approach inefficient and non-portable and restrict its use to homogeneous
parallel machines.

58 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

MPI

There are only two existing implementations of MPI which are thread-safe and
do not use polling:

• An experimental (inofficial) implementation by IBM [Tre97] was developed
for IBM RS/6000 SP machines and has never been ported on other systems.
The official IBM implementation of MPI uses polling to solve the problem
of thread-safety.

• MPI/Pro, a commercial MPI implementation by MPI Software Technology,
Inc. (MSTI), which claims to be fully thread-safe. [DS02] It also claims
to implement asynchronous communication without polling. However, the
product description states that MPI/Pro implements the MPI 2.0 standard
[MPI97], therefore it is unclear how the problem of completion described in
Section 2.6.3 is tackled in MPI/Pro.

MiMPI [GCC99] claims to be fully thread-safe but the authors do not explain
how they solve this problem in their paper. According to our brief personal
communication with the authors, MiMPI uses a socket pair between all pairs of
processes and avoids sharing any other resources through threads. This socket
replication only makes this approach scalable up to a certain number of processes
because of the memory and other system limitations of processors.

ScaMPI [HOB+99] is a commercial implementation of MPI by Scali. ScaMPI
uses polling to implement thread-safety.

A multi-threaded implementation of MPI is proposed in [PS98]. This pro-
posal has never been implemented. The authors address efficiency issues in this
paper (note the marked text): “. . . It should be mentioned that switching be-
tween threads and using synchronisation primitives also incurs a finite overhead.
Hence, communication benchmark results obtained with a multi-threaded commu-
nication software will probably be not as good as the results of a single-threaded
implementation that burns CPU cycles in busy waiting for incoming data and
delivers low communication latency. However, this latency can be hidden with
the overlap of communication and computation, so in a real-life situation, well-
designed applications that use multi-threaded communication software will reveal
better overall performance than their single-threaded counterparts even though
the communication benchmarks show the opposite.” The reasoning behind the
marked text is wrong. In fact just the opposite is true for many important appli-
cations (all non-trivial applications)—a very high communication latency is the
main flaw of the polling approach!

Some works assume a so-called active device support such as hardware in-
terrupts triggered by a message arrival. [BMR02], [GRS97], [LRBB96] However,
this assumption makes the approach non-portable to other architectures which do
not support active devices. Moreover, even when active devices are available, the

2.6. THREADED NON-TRIVIAL PVM AND MPI APPLICATIONS 59

coupling of the devices, operating system and the communication library remains
unclear.

Another concept of thread-safe message passing using P4 and MPI is proposed
in [CSD94]. The authors identify non-reentrant functions in P4 and sketch a
threaded implementation of MPI which may lead to the solving of the problem
of thread-safety of MPI. These ideas have never been implemented.

A possible impact of threads on new generation MPI implementations is stud-
ied in [HSS+98]. The MPI implementations based on polling (such as MPICH)
are referred to as “first generation” implementations, the implementations based
on threads are referred to as “second generation” implementations. Arguments
are given which support both the polling and threaded approaches. An impor-
tant issue throughout the paper is the interpretation of the progress rule, see
Section 2.4. The authors recognise two interpretations, a “liberal” one (progress
depends on whether the application periodically calls certain MPI functions) and
a “strict” one (progress does not depend of actions in the system). In our opinion,
the “liberal” interpretation is simply wrong. Also statements such as “Perhaps
the strongest argument for polling is that it minimizes latency.” are very dis-
putable because they may only apply to a certain class of MPI programs (the
trivial ones).

2.6.6 Quasi-thread-safe PVM and MPI

It is not particularly frustrating that PVM and MPI implementations are not
thread-safe. What is frustrating is that non-trivial applications cannot be effi-
ciently implemented using these libraries. This section describes a mechanism of
an interruptable blocking recv which is missing in the libraries [Pla02b]. This
mechanism does not make the libraries thread-safe (see Section 2.6.1) but it al-
lows an efficient and portable implementation of non-trivial applications. We
concentrate on a socket-based inter-process communication in the sequel but the
mechanism can also be applied to the shared memory implementation of message
passing (or even to a mix of shared memory and socket communicators).

The reasons why the natural threaded implementation of a non-trivial appli-
cation of Fig. 2.11 cannot be implemented without active polling are:

1. Tasks T1 and T2 must be implemented as threads.

2. The thread T2 must run a blocking recv.

3. The thread T1 cannot send any messages while the thread T2 is blocked
in the blocking recv because the communication library (PVM or MPI) is
not thread-safe (the recv and send functions cannot be concurrently called
from two threads).

60 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

4. PVM and MPI are not thread-safe because it seems to be very difficult
from a software engineering point of view to implement all their interface
functions in a reentrant and portable way without active polling.

The mechanism of the interruptable blocking recv addresses point 3. In terms
of concurrent programming, the thread T2 is blocked in the critical section of the
blocking recv when at the same timeT1 needs to call the send function.

The reason why the concurrent send() call leads to problems strongly depends
on the implementation of the communication library. For instance:

• PVM 3.4 uses a single buffer for incoming and outgoing messages. The
buffer state is manipulated by both send and recv functions. (More pre-
cisely, the buffer state is manipulated by the mxfer function which is used
for both sending and receiving messages. The mxfer function is called from
both send and recv functions.) The send() call in the thread T1 destroys
the buffer state which was set up for the thread T2 executing the recv()

call.

• MPICH 1.2.4, driver ch p4 uses distinct buffers for the send() and recv()

calls. The memory corruption results from the implementation of the in-
ternal communication protocols used by the ch p4 driver. For instance, the
implementation of send involves a bidirectional communication for the so-
called rendez-vous protocol. The rendez-vous protocol is used for transfer of
large messages which are sent in chunks, not as a whole. In the rendez-vous
protocol the recipient sends an acknowledging message to the sender after
having received a chunk, telling the sender “I am ready to receive another
chunk”. These acknowledging messages either get mixed with the regular
messages which are being awaited by the thread T2 executing the blocking
recv (which puts them into the unexpected queue and these never reach
the thread T1) or they are received (and processed) by both threads T1 and
T2 which also leads to an inconsistent state of the library. Upon an arrival
of a message, the MPI library is not able to decide which thread is supposed
to process the message—the MPI library does not even know that there are
several threads.

Interruptable blocking receive

Implementations of the PVM and MPI libraries are very different (the imple-
mentations of the MPI standard itself are very different). Nevertheless, a more
detailed study of the low-level implementations of the recv function reveals a
certain regularity. On the very lowest level of the implementation of a blocking
recv there is a select() call.10 This is a system call defined by the POSIX

10A polling loop can be used instead of the select() call. However, such an implementation
would be poor for the reasons discussed in Section 2.6.3 and Section 2.6.4.

2.6. THREADED NON-TRIVIAL PVM AND MPI APPLICATIONS 61

standard [ISO90] which waits on a number of file descriptors to change status.11

It is important to note that select can be (and is) efficiently implemented in
kernels of operating systems—the calling process or thread sleeps until an event
occurs, therefore not consuming any CPU cycles. The file descriptors in the case
of the blocking recv are reading file descriptors bound to the sockets on which a
message may arrive. Fig. 2.14 shows the situation.

Sockets

File descriptors

selectKernel

Thread T2

PVM/MPI

select(fd1, fd2, ..., fdN)

NETWORK

recv

recv()

...

Figure 2.14: Implementation of the blocking recv in a socket-based communica-
tion library

The thread T1 wants to send a message while the thread T2 is blocked in the
blocking recv (that means, inside a select() system call which is transparent to
the user). T2 remains blocked until a message from some other process arrives. T1
cannot wait until the recv() call in T2 unblocked (not for efficiency reasons—the
arrival of a message at T2 may depend on sending the message from T1). The
basic idea of the interruptable blocking recv involves sending a “fake message”
from the thread T1 to the thread T2 whenever T1 needs to send a message to some
other process. The function of this “fake message” is to interrupt the recv in T2
for the amount of time needed for T1 to send the message to the other process.
The interrupt mechanism must ensure that it is safe for T1 to make the send()

call during the interrupt.
However, we assumed that the communication library is not thread-safe—it

does not allow a thread to send a message while another thread is blocked in
the recv. How does T1 send the “fake message” to T2? In order to solve this
problem, we exploit the fact that the communication between the threads T1 and

11The select() call is similar to the Occam’s ALT constructor (see Section 2.2.1). The
functions select() and poll() are the only POSIX system calls which implement an efficient
(non-polling) multiplexing on several file descriptors. (The name of the poll() function is a
little misleading—poll() and select() are almost identical in their semantics and efficiency).

62 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

T2 takes place on one processor, more precisely, in the scope of one operating
system’s kernel. The “fake message” bypasses the network and directly fires the
select in the kernel, making the thread T2 think that it has received a message
from the network.

If the thread T1 writes into a file descriptor which is being used for the purpose
of communication with some other process, it must emulate the message passing
protocol used by the communication library in order for the message to be cor-
rectly received by T2. Furthermore, a message can arrive from the network on
the file descriptor which is being written by T1. In order to avoid these problems,
the set of reading file descriptors in the select in T2 is extended with a special
file descriptor, intr fd. The intr fd is the reading end of a POSIX pipe. The
thread T1 writes to the writing end of the pipe, intr wfd, in order to interrupt the
blocking receive in T2. There is no need to emulate the message passing protocol
on the pipe because intr fd is exclusively used for the purpose of interrupting
the thread T2. The only information T2 needs is that it has been interrupted.
The code of the blocking recv is therefore extended so that it can detect which of
the file descriptors has been fired—if intr fd has been fired, T2 knows that it is
being interrupted by some other thread. Fig. 2.15 depicts the scenario.

Sockets

File descriptors

selectKernel

Thread T2

PVM/MPI

select(fd1, fd2, ..., fdN, intr_fd)

NETWORK

recv

recv()

Thread T1

...

write(intr_wfd)

Figure 2.15: Scenario of the interruption of a blocked recv. The intr fd file
descriptor is the reading end of a POSIX pipe. The thread T1 writes to the
writing end of the pipe (intr wfd), firing the blocked select in T2

Encapsulation of the interruptable blocking receive mechanism

There are several ways as to how the interruptable blocking receive can be inte-
grated in the implementations of PVM and MPI. The cleanest way would involve

2.6. THREADED NON-TRIVIAL PVM AND MPI APPLICATIONS 63

hiding the mechanism in the communication library in order to make the library
completely thread-safe. However, a performance-optimised implementation of
complete thread-safety would probably require a complete rewrite of some li-
brary modules. This would probably be an extensive uncreative work. We chose
another way. We extended the interfaces of the PVM and MPI libraries with
two new functions. The following are the C interface and semantics of the new
functions:

void interrupt recv(void)

Blocks until the thread which had been blocked in the critical recv’s section
has been blocked outside of the critical recv’s section. Following this the
interrupt recv() call returns. (If there is no thread blocked in the critical
recv’s section, the interrupt recv() call never returns.)

void resume recv(void)

Makes the thread which was blocked outside of the critical recv’s section
reenter the critical recv’s section and block there. After this resume recv()

returns. (If there is no thread blocked outside of the critical recv’s section,
the resume recv() call never returns.)

The sole addition of these new functions does not of course make the PVM or
MPI library thread-safe—a random sequence of concurrent library calls from a
multi-threaded application results in an undefined behaviour of the application.
However, it is safe for a multi-threaded application to concurrently call some of
the library functions in a certain defined order. Most importantly, a sequence of
concurrent calls which are needed for a polling-less implementation of non-trivial
applications is safe.

Definition. A library is called thread-safe on a set of sequences of concurrent
calls when none of the sequences of the set leads to memory corruption or to
thread interference. We call such sequences safe.

A communication library is called quasi-thread-safe when a safe sequence of
concurrent calls which allows a thread to send a message exists while another
thread is blocked in a blocking recv(). •

Claim. Both PVM and MPI libraries extended with the interrupt recv and
resume recv functions are quasi-thread-safe.

Proof. The sequences of concurrent calls to a communication library that must be
safe in order to allow a thread T1 to send a message while a thread T2 is blocked
in a blocking recv() are:
{T2: recv(); T1: interrupt recv(); T1: send(); T1: resume recv()}

64 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

{T1: interrupt recv(); T2: recv(); T1: send(); T1: resume recv()}
A process of a non-trivial application which uses a quasi-thread-safe com-

munication library (thread-safe on the above set of sequences) is depicted in
Fig. 2.16. It is obvious that the program only produces safe sequences of calls to
the communication library. •

thread T1()
{

while (not done)

{
compute();

interrupt recv();

send();

resume recv();

}
}

thread T2()
{

while (not done)

{
recv();

service request();

}
}

Figure 2.16: Threaded event-driven implementation of one process of a non-trivial
application using a quasi-thread-safe communication library. This program does
not contain any polling

Remark. A technical detail is the termination of the process in Fig. 2.16 (the
setting of the not done conditions in the while loops). In order for the process
in Fig. 2.16 to work correctly, it is important that there is a matching recv()

call in T2 to each send() call in T1 (otherwise the thread T1 would block forever
in interrupt recv() preceding the send() call). On the other hand, a correct
termination requires than the number of recv() calls in T2 is equal to the number
of send() calls in T1 (in other words, the number of the executions of the while
loop in T1 is equal to the number of the executions of the while loop in T2). One
way of guaranteeing this involves sending a special finalising message from T1 to
T2 (the process addresses the finalising message to itself using the usual sequence
{interrupt recv(); send(); resume recv()} in the thread T1) when T1 is
sure that it will not send any more messages. •

Implementation of the interruptable blocking receive mechanism in a
(thread-unsafe) communication library

The implementation of the two newly introduced functions interrupt recv and
resume recv requires changes to the original implementation of a (thread-unsafe)
communication library. However, the extent of these changes is not very large.

2.6. THREADED NON-TRIVIAL PVM AND MPI APPLICATIONS 65

Only the implementation of the blocking recv is affected (in the case of PVM only
minor changes in pvmlib are needed—the pvmd remains unchanged). Fig. 2.17
shows the inner workings of the communication library functions. We use a
synchronous POSIX pipe [intr wfd, intr fd] for the orchestration inside the
communication library. This means that a write to the writing end of the pipe
intr wfd becomes blocked until the reading end intr fd has been read; and vice
versa, a read from intr fd becomes blocked until some data has been written to
intr wfd. A synchronous pipe is not the only synchronisation mechanism that
can be used in this scenario (it is also perhaps not the most efficient one)—but
it is portable (pipes are defined in the POSIX standard [ISO90]) and it can later
be replaced with any equivalent mechanism.

A look at Fig. 2.16 and Fig. 2.17 reveals the idea behind the implementation
described in the previous paragraph. The thread T2 eventually becomes blocked
in the recv() call. The blocking is caused by the select() system call in recv.
Now the thread T1 needs to call a send(). It cannot do so immediately be-
cause the thread T2 is blocked in a critical section of recv. T1 therefore calls
interrupt recv() first which in turn writes to the pipe whose reading end is
connected to one of the file descriptors in T2’s select(). The select() in T2
is fired. (Note that T1 is blocked at this moment in the write() and remains
blocked until T2 reads the intr fd.) The thread T2 takes over, bails out of the
critical section of the recv12 and reads intr fd which unblocks the write() in T1
(T1 can now safely call send()). Then T2 becomes blocked in the second read().
After T1 has returned from its send() call, it calls resume recv() which writes
to intr wfd. This unblocks the second read() in T2 which reenters the select()
in the critical recv’s section. T1 returns from resume recv() to the application
code.

2.6.7 Towards a complete thread-safety of PVM and MPI

The mechanism of the interruptable blocking receive can make any communica-
tion library completely thread-safe without any loss of efficiency caused by active
polling. The communication library should be structured as follows:

• Each process runs a thread (let us call it main thread) which is exclusively
used for receiving all messages addressed to the process. When a message
arrives, it is stored by the main thread in a global message queue. The
main thread is automatically started during the initialisation of the library.

• Access to the message queue is protected by a mutex.

12The implementation of “bailing out” of the critical recv’s section may be tricky. The code
shown in Fig. 2.17 is only an abstraction of actual solutions. At the time of writing we have
solutions for socket-based PVM 3.4 and MPI 1.2.4 (driver ch p4).

66 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

interrupt recv()

{
write(intr wfd);

}

resume recv()

{
write(intr wfd);

}

recv()

{
do

{
/* BEGINNING OF CRITICAL SECTION */
...original recv code preceding select() is inserted here...

select(original set of file descriptors, intr fd);

if (some of the original file descriptors was fired)

{
interrupted = FALSE;

...original recv code following select() is inserted here...

}
else

{
interrupted = TRUE;

}
/* END OF CRITICAL SECTION */
if (interrupted)

{
read(intr fd);

read(intr fd);

}
} while (interrupted);

}

Figure 2.17: Implementation of the interrupt mechanism inside a communication
library. intr fd is the reading end of a synchronous pipe, intr wfd is the writing
end of the pipe

2.6. THREADED NON-TRIVIAL PVM AND MPI APPLICATIONS 67

• All send() calls are mutually excluded using a mutex. (The acquiring and
releasing of the mutex are hidden in the implementation of send.) The send
function calls interrupt recv() at the beginning and resume recv() at
the end.

• The user’s code runs as a thread (or several threads if the user’s code is
multi-threaded).

• The blocking recv function (as well as all other functions accessing the
network) is implemented in such a way that it only accesses the global
message queue, not the network. If there is no matching message in the
queue, the recv function becomes blocked on a conditional variable. The
main thread is responsible for waking up a blocked thread when a message
for the blocked thread arrives.

• Thread addressing should not be part of the communication library’s in-
terface. This means that messages can only be addressed to processes, and
not to threads inside a process. It is up to the user to develop a thread
addressing scheme if it is needed in the application.

There are two main objections against implementing the above scenario in-
side communication libraries such as PVM or MPI. [HSS+98] The first objection
is that developers of the communication libraries generally try to avoid using
threads inside their libraries. This objection is not fully justified because most
contemporary operating systems do support threads. The porting of communi-
cation libraries onto systems which are not POSIX compliant is more a political
rather than a technical issue. (Moreover, there may be two versions of a com-
munication library contained in a distribution—one for systems which support
threads and another version for systems which do not.)

The second objection is related to the efficiency of existing single-threaded ap-
plications (which are not non-trivial in the context of Section 2.6). The latency of
a recv in such applications may increase in the above scenario. The reception of
a message in the application involves a thread switching between the main thread
and the application thread. If the implementation of the thread switching is slow
on certain systems then this additional overhead cannot be neglected. However,
there is also an argument which supports the use of the proposed scenario even
for single-threaded applications—the message matching the recv() call may al-
ready be available in the message queue before the call to recv() (if the other
process has already issued the corresponding send() call and the message has
been received by the main thread). This latency hiding can compensate for the
overhead incurred by the thread switching.

Even if the second objection were justified, a communication library should
also support non-trivial applications. If the use of threads inside the communi-
cation library is not feasible (the first objection), users of the library must be

68 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

given the possibility to implement non-trivial applications without polling. The
extension of the libraries’ interfaces (for instance as described in Section 2.6.6) is
the least intrusive way of achieving quasi-thread-safety.

The next section shows how the above scenario can be implemented on the top
of (outside of) quasi-thread-safe PVM and MPI—in a library which is between
PVM/MPI and the user’s application. We call this library TPL, Thread Parallel
Library.

2.7 TPL: Event-Driven Thread Parallel Library

TPL is a communication library which provides an application programmer with
functions which are needed for efficient programming of non-trivial parallel appli-
cations (as usual, distributed memory and message passing are assumed). TPL
is thread-safe (more precisely, thread-safe on the set of function sequences that
perform message passing). The ideas described in Section 2.6.6 and Section 2.6.7
are implemented in TPL in a way which is transparent to the user. An applica-
tion which builds on TPL can be multi-threaded (a single-threaded application
is just a special case of a multi-threaded one) and communication functions can
be safely called from multiple threads. Threads can be dynamically created and
destroyed in each process of the application.

TPL is not only another communication library, TPL is a rigorous implemen-
tation of the message passing framework introduced in Section 2.5 on systems
which are based on commodity hardware and system software. TPL efficiently
implements active messages and message handlers.

Unlike PVM or MPI, TPL tries to be minimalistic. There are two good
reasons for keeping the design minimal (in this order of importance): portability
and efficiency.

There are two degrees of portability. The first degree is an adherence to the
POSIX standard [ISO90] in the implementation of the TPL library. (An essential
part of the POSIX standard which the library depends upon is the concept of
threads.) The second degree is the portability of TPL applications. PVM and
MPI are two message passing standards available today. A mapping onto both
PVM and MPI is implemented in the TPL library. A positive consequence is
that an application written in TPL can be linked and run with either PVM or
MPI without changing a single line of the application’s code.

The minimalistic design of TPL simplifies the tuning of the library for a
specific system. We did not invest much effort into the tuning. Our main goal
was to prove that the event-driven mechanism outperforms the polling one.

Claim. To the best of our knowledge, TPL is the first thread-safe communication
library which is portable and at the same time allows the efficient implementation
of non-trivial parallel applications (without active polling in the application or in

2.7. TPL: EVENT-DRIVEN THREAD PARALLEL LIBRARY 69

the library itself). The system running the application can be heterogeneous.13 •

Claim. To the best of our knowledge, TPL is the first communication library
which allows an application to link and run with an arbitrary (quasi-) thread-safe
implementation of PVM or MPI without changing the application’s code. •

2.7.1 Concept

A TPL application consists of processes which communicate via explicit message
passing. The processes do not share memory (the message passing can but it does
not need to be implemented as shared memory communication on a lower level).
Each process is assigned a unique rank. The code of every process is identical
except for their ranks.14 The rank is usually used at the very beginning of each
process to assign the process its role. A role is the code executed by a process
with a dependence on the rank of the process. (For example, in a process farm
there are two kinds of processes: one master and several workers. MASTER and
WORKER are roles.)

TPL uses an underlying communication library for message passing. This
underlying communication library can be any implementation of PVM or MPI
or any other communication library which is at least quasi-thread-safe (or com-
pletely thread-safe).15 The choice of the underlying communication library does
not influence the functionality of the application16 and does not require any
change in the application (the interface of TPL remains intact). The layered
software architecture is shown in Fig. 2.18.

TPL implements the bindings of its interface to PVM as well as to MPI
interfaces. We implemented two versions of TPL. The major differences between
the two versions is the message queueing model and the thread management.
The first version, TPL 1.0, contains a simple thread management and a queuing
model based on so-called message subscription. The second version, TPL 2.0,
fixes some problems of TPL 1.0 and directly implements the message passing
framework of Section 2.5. There is no internal thread management in TPL 2.0
and the message queueing model is simplified.

13The commercial implementation MPI/Pro claims to have the desired properties—however,
we could not confirm this. We asked the technical support team at MPI Software Technology,
Inc. for more information but the reply we received did not answer our questions.

14The concept of all processes having an identical code is known for example from MPI or
PARIX. [Par94] Most PVM implementations do not require all processes to run an identical
code.

15A lack of thread-safety (or quasi-thread-safety) in the underlying communication library
would result in a retreat to active polling in TPL which we decided not to support.

16The choice of the underlying communication library influences the efficiency of the appli-
cation.

70 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

(Quasi-) Thread-safe
PVM, MPICH, ScaMPI, ...

Thread-safe
TPL

Multi-threaded
Application

Figure 2.18: TPL layered software architecture

2.7.2 Process startup and termination

All processes are started once at the beginning and they cannot be dynamically
created later.17 Even if this simplification has been made, the hiding of different
startup mechanisms in TPL and the way of making them transparent to a TPL
application is not easy. Neither MPI nor PVM specify how the processes are ini-
tially created. For instance, MPICH uses a script mpirun to start the processes.
The manual starting of processes from the console is allowed in some PVM im-
plementations whereas in other PVM implementations only the first process is
started manually (this first process is then responsible for starting the remaining
processes using pvm spawn()).18 The process startup also remains system specific
in TPL. However, from an application programmer’s point of view the startup
procedure always looks the same.

Each process’ entry point is the function main in TPL. The command line
arguments argc and argv are passed to the main function in all processes:
int main(int argc, char *argv[]);

As the command line arguments argc and argv can be used by the system
specific startup mechanisms, each TPL process must call the function
void tpl initialize(int *argc, char **argv[])

at the very beginning. This function initialises TPL’s internal memory structures,
makes initial calls which are required by the underlying communication library
and restores the original contents of argc and argv in the first process (if all
processes have been spawned at this point then all processes obtain the same
argc and argv).

It is still unclear whether all processes are running at this point. In the case

17The static process spawning was a design decision which was made to conform to the
available implementations of PVM and MPI.

18The startup mechanism can be “hard-wired” in higher-level environments like cluster man-
agement systems (e.g. CCS [KRR94], [KR98]).

2.7. TPL: EVENT-DRIVEN THREAD PARALLEL LIBRARY 71

of e.g. MPICH they are (the mpirun script spawns all processes). However, in
some implementations of PVM there may be only one process running whose
responsibility is the spawning of the remaining processes. TPL takes care of this
difference in the implementation of the additional two functions that must follow
tpl initialize():
void tpl world info(int *nr procs, int *nr tasks)

returns information on the parallel machine running the program. The number of
nodes of the parallel machine is returned in nr procs and the recommended num-
ber of processes which should started on the machine is returned in nr tasks.19

Note that if the processes have already been started, TPL returns the actual
number of running processes.

The last function related to startup is tpl spawn which must also be called
when the processes have already been started by the underlying system:
void tpl spawn(int *nr tasks, int *rank, int *argc, char **argv[])

The function tpl spawn has several responsibilities. Firstly, it spawns all pro-
cesses if they have not yet been spawned and it initialises the underlying com-
munication library. nr tasks specifies the number of processes that should be
started. tpl spawn modifies nr tasks so that it contains the actual number of
tasks that have been successfully spawned. Secondly, it restores the original con-
tents of argc and argv (if this has not yet been done) and it also sets the working
path of all processes to the working path of the process which was spawned first
(PVM implementations do not do this).20 The rank of the calling process is
returned in rank.21

After the sequence
{tpl initialize(); tpl world info(); tpl spawn();}
has been called as explained above, TPL guarantees the following:

• All nr procs processes are running (one process per processor).

• All processes have identical argc and argv and working directories. (The
environment of all processes is identical to the environment of the first
process on systems where only the first process is started manually.)

• Each process is assigned a unique rank which is an integer from 0 to
nr procs− 1.

19The recommended number of processes is usually equal to the number of nodes. However,
if TPL detects that the nodes are e.g. double-processors, it recommends starting two processes
per node (that means one process per processor).

20The underlying communication library is already actively involved in this phase—the initial
process of synchronisation requires message passing.

21The ranks used in TPL applications are integers from 0 to nr tasks − 1. These ranks
may differ from the actual process identifiers which are used by the underlying communication
library. TPL takes care of the translation of the ranks to actual process identifiers and vice
versa. This translation is transparent to the application.

72 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

Remark. It is not possible to control the mapping of processes onto processors
in TPL. TPL relies on the default mappings of underlying libraries. If the number
of processes is equal to the number of processors, the default mappings always
map one process to each processor. It is very seldom that an application needs
to map more than one process onto one processor or to place a certain process
onto a certain processor. Therefore this is not regarded as a real limitation. •

Each process must call
void tpl deinitialize()

before it terminates. tpl deinitialize blocks until all running threads which
are registered to TPL (tpl add thread, see Section 2.7.3) have terminated (more
precisely, the call blocks until all threads which are registered to TPL have been
unregistered using tpl del thread, see Section 2.7.3.).22

Remark. All the functions above must be called once, from the main thread.
•

2.7.3 Thread management

A process of a TPL application consists of threads. One of these threads is special
and is called the main thread. In a typical application the main thread spawns
other threads at the beginning and then serves as a message dispatcher until the
process terminates. The main thread is identical to the function main which is
started by the operating system.

There are many implementations of the thread concept: Solaris threads,
POSIX threads (pthreads) OpenMP, GNU threads, . . . TPL internally uses the
POSIX pthreads library because it is available on most systems. It is not really im-
portant which of the libraries is used as they all support the same mechanisms—
only their interfaces are different.

Threads are not separately addressable entities in the TPL message passing
model (a message can only be addressed to a process, using the process’ rank).
TPL provides a means of delivering a message to a specific thread in a process—
however, the thread addressing scheme must be implemented in the application.

Remark. The rest of this section only applies to TPL 1.0. TPL 2.0 does not
implement any bookkeeping for the running threads. •

TPL carries out a basic bookkeeping of the running threads. It does not keep
a record of each running thread—instead it maintains an internal thread counter

22The blocking of tpl deinitialize only applies to TPL 1.0.

2.7. TPL: EVENT-DRIVEN THREAD PARALLEL LIBRARY 73

in order to ensure the correct termination of the process (TPL must be sure that
there are no running threads when it decides to clean up its memory structures).
TPL also stores the ID of the main thread for internal purposes.

The application can freely use any functions provided by the thread library
but it must assist TPL in its book-keeping task. TPL must be informed of
events such as the creation or termination of a thread. In order to ensure the
correct synchronisation of pthreads and TPL, a few rules must be obeyed in the
application:23

• Each thread (with the exception of the main thread) must call

tpl add thread(pthread self())

after it has been created (prior to any further calls to TPL). TPL creates
a message queue for this thread at this point (see Section 2.7.4).

• Each thread (with the exception of the main thread) should call

tpl signal new thread()

after it has been created. This unblocks the thread that created the cur-
rent thread. tpl signal new thread() does not need to immediately fol-
low the call to tpl add thread(). In the meantime, the newly created
thread usually subscribes messages that it wants to receive in the future
(see Section 2.7.4).

• Each thread (with the exception of the main thread) must call

tpl del thread(pthread self())

once, before it terminates (the thread must not make any other calls to
TPL after this).24 TPL destroys the thread’s message queue and decreases
the internal thread counter at this point.

• Each thread that creates another thread must call
tpl prepare new thread()

before the call to pthread create(). TPL increases the internal thread
counter at this point.25

23All these rules can be hidden inside TPL. However, this may limit the application in the
use of other functions of the pthreads library. The approach proposed here is more flexible.

24A thread can terminate another thread in which case the destroyed thread does not have
an opportunity to call tpl del thread(). In such a case tpl signal new thread() must be
called from the other thread, with the ID of the destroyed thread (instead of pthread self()).

25Increasing the internal thread counter in tpl add thread would lead to a racing condition
as regards tpl deinitialize which takes care of the correct process termination. (Recall
that tpl deinitialize should block until all started threads have called tpl del thread.)
However, there may be a thread that has been created but has not yet called tpl add thread.
In this case TPL does not know about that thread and a call to tpl deinitialize returns
although it should be blocked.

74 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

• Each thread that creates another thread should call
tpl wait new thread()

after the call to pthread create(). This call blocks until
tpl signal new thread() has been called by the created thread.

A generic structure of a multi-threaded TPL process is depicted in Fig. 2.19.

2.7.4 Message passing

There are two layers of message passing in TPL. The coarse layer is message pass-
ing between processes. This coarse layer is covered by PVM and MPI and TPL
implements the mappings of abstract send and recv functions onto PVM and
MPI functions. The fine layer is message passing involving threads in processes.

In TPL, each process (or rather, each thread of the process) can send a mes-
sage to any other process or to a set of processes. Each process (or rather, each
thread of the process) can receive a message from any other process (or a thread
of that process). A message cannot be addressed to a specific thread of a process.
However, any thread can receive an incoming message (even several threads can
receive the same incoming message).

A message consists of a header and a message body. The header consists of
the sender’s rank, recipient’s rank and a message tag (an integer defined by the
user). The message body is a contiguous buffer containing data. (TPL provides
functions for packing and unpacking the data, see Section 2.7.6. These functions
take care of different representations of basic data types in different systems.)
The message body can be empty. A process can address a message to itself.

Remark. This section focuses on sending and receiving messages in any thread
except of the main thread. The main thread can also send and receive messages
but it acts as a message dispatcher for all other threads. The mappings of TPL
communication functions to PVM or MPI are different to the main thread. The
role of the main thread is explained in Section 2.7.5. •

Sending

Sending a message to a process involves a sequence of calls
{tpl begin send(); ...packing...; tpl send(); tpl end send();}
The ...packing... part is used for assembling the message and is explained in
Section 2.7.6.

The following sending sequence implements the mutual exclusion of the PVM’s
or MPI’s send calls sketched in Section 2.6.7:
void tpl begin send()

locks a mutex which protects a PVM’s or MPI’s send() and then calls

2.7. TPL: EVENT-DRIVEN THREAD PARALLEL LIBRARY 75

void *thread 1(void *arg)

{
tpl add thread(pthread self());

/* ...subscribe messages... */

tpl signal new thread();

/* ...compute and communicate... */

tpl del thread(pthread self());

}

/* ...definition of other threads... */

int main(int argc, char *argv[])

{
int nr procs;

int nr tasks;

int my rank;

pthread t thread id;

/* PROCESS STARTUP */

tpl initialize(&argc, &argv);

tpl world info(&nr procs, &nr tasks);

tpl spawn(&nr tasks, &my rank, &argc, &argv);

/* THREAD STARTUP */

/* Start thread 1 */

tpl prepare new thread();

if (pthread create(&thread id, NULL, thread 1, NULL) == 0)

tpl wait new thread();

else

tpl error("Could not start thread 1\n");
/* ...start other threads... */

/* THREAD AND PROCESS TERMINATION */

tpl deinitialize();

return(0);

}

Figure 2.19: Generic structure of a multi-threaded TPL process (TPL 1.0)

76 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

interrupt recv() which interrupts the blocking recv of the main thread. Note
that it is safe for the current thread to perform a send after this call has returned.
Other threads can continue in their computations but become blocked on the
locked mutex when they attempt to send messages.26

void tpl send(int *recipients, int nr recipients, int tag,

*void message, int offset)

performs the actual send (pvm send or MPI Send). When nr recipients is equal
to one, TPL uses pvm send or MPI Send in the implementation of tpl send.
Multiple recipients can also be specified in recipients and nr recipients in
which case TPL uses the multicast functions of PVM or MPI.
void tpl end send()

unlocks the mutex acquired in tpl begin send, allowing other threads to send
messages.

Remark. A call to tpl send must eventually return—otherwise the process
would not be able to receive or send any further messages. Therefore the send

function of the underlying communication library must be asynchronous (non-
blocking). In the case of PVM, the semantics of pvm send fulfills this requirement.

In the case of MPI, the semantics of MPI Isend also fulfills this requirement
but the buffer used by the message must unfortunately be freed after the com-
pletion of the MPI Isend (in other words, asynchronous send is missing in MPI,
see Section 2.6.3). In order to overcome this problem, we extended the MPICH
library with a new function. This function, MPI Asend, is almost identical to
MPI Isend but the MPICH library frees the message buffer automatically after
the request has been completed. •

Receiving

TPL only supports a blocking receive even though it would be easy to implement a
nonblocking receive as well. In a multi-threaded program any nonblocking receive
can be replaced with an additional thread running a blocking receive.

Receiving a message involves of a sequence of calls
{tpl begin recv(); tpl recv(); ...unpacking...; tpl end recv();}
The ...unpacking... part is used for disassembling the message and it is ex-
plained in Section 2.7.6.
void tpl begin recv()

does nothing. It is reserved for underlying communication libraries other than

26An attempt to send a message blocks when another thread is sending at the same time.
However, a thread is allowed to receive a message while another thread is performing a send

because receiving a message in a thread is the same as accessing a local message queue in TPL
which is not in conflict with the send. (This holds for all threads except for the main thread.)

2.7. TPL: EVENT-DRIVEN THREAD PARALLEL LIBRARY 77

PVM and MPI.
void tpl recv(MATCHING FUNC *match, int *sender, int *tag,

void **message))

blocks until a message matching the specified criteria is available. match is a
user-defined function which obtains the sender’s rank and the message tag on
input and decides whether there is a match. If there is (if the function match

returns TRUE) tpl recv unblocks and returns the sender’s rank, message tag and
the packed message body. The message body must be unpacked before a call to
tpl end recv().
The following is the interface of the function match:

int match(pthread t thread id, int sender, int tag,

void *message)

The function match is called internally by TPL to determine whether the header
of an incoming message matches the user-specified header. The function returns
TRUE if there is a match and FALSE otherwise.
void tpl end recv(void *message))

frees the memory used by the packed message.

Remark. The use of a matching function is a generalisation of PVM’s or MPI’s
matching. PVM and MPI allow either the testing of whether the rank and tag
of a message is equal to the given sender’s rank and tag, or the specification of a
wildcard in the rank or the tag or both. TPL can additionally test for a range of
senders’ ranks (for instance). •

2.7.5 Message handling and message callbacks

TPL relies on the existence of a main thread in an application which serves as
a message handler and dispatcher. The main thread is the function main which
is started by the operating system.

After the main thread has initialised and started other threads, it calls (usu-
ally right before tpl deinitialize())

void tpl handle messages(HANDLING FUNC *message handler)

Under normal circumstances the termination of this function results in a termi-
nation of the application. This function serves several purposes:

• It receives all messages from other processes. The main thread is the only
thread which physically receives the messages from the network using a
blocking receive function of PVM or MPI that matches all incoming mes-
sages.

• Upon the arrival of a message, it unpacks the message, performs a user-
defined action (a callback) and inserts the unpacked message into other

78 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

threads’ (message subscribers’) message queues.

• It controls the termination of the whole process. Upon the arrival of a
user-defined termination message, tpl handle messages stops listening to
the network and returns.

Message queueing model, message subscription and message callbacks
in TPL 1.0

Fig. 2.20 shows the message queueing model of TPL 1.0. The understanding
of this model is crucial to the understanding of the purpose of the function
message handler which is a user-defined function passed as a parameter to
tpl handle messages.

Each thread except for the main thread has its own message queue. None of
the threads except for the main thread receives messages from the network. The
messages are only looked for in the local message queue. All local message queues
are protected by a mutex because they are also accessed by the main thread which
inserts messages into them as they arrive. There is also a conditional variable
associated with each queue. If a thread tries to receive a message which is not in
its queue, it blocks on the conditional variable until it is woken up by the main
thread (this happens when a thread is blocked on the conditional variable and a
matching message has just been inserted into the queue).

Remark. Note the difference between the sending and receiving of messages in
threads (not the main thread). tpl send sends a message directly to the network,
whereas tpl recv only accesses a local message queue. •

The thread message queues only contain pointers to messages. One message
can appear in several message queues, therefore several pointers can point to the
same message data structure. Each message data structure contains a reference
counter. After a thread (not the main thread) has read a message from its local
queue (tpl recv) and unpacked the message data, the corresponding message
pointer is deleted from the thread’s message queue and the reference counter in
the message data structure is decreased (tpl end recv takes care of this). The
message data structure is freed when the reference counter reaches zero.

Each thread must subscribe the messages that it wants to receive in the fu-
ture. This usually happens immediately after the thread has been started (see
Fig. 2.19), but messages can be subscribed and unsubscribed at any time.

void tpl subscribe(pthread t thread id, MATCHING FUNC *match)

adds a subscription of the thread thread id to a list of subscriptions.27 Whenever

27The functions tpl wait new thread and tpl signal new thread (see Section 2.7.3) are
used to ensure that a newly created thread has made its subscriptions before the main thread
continues. Without this synchronisation a message “addressed” to the newly created thread

2.7. TPL: EVENT-DRIVEN THREAD PARALLEL LIBRARY 79

recv()

Main thread
(message handler)

tpl_recv()

Thread1

tpl_recv()

Thread2

tpl_recv()

ThreadN

network

...

msg

msg

msg

msg

msg

msgdata
(1)

data
(2)

data
(1)

data
(2)

Figure 2.20: Message queueing model of TPL 1.0. Upon the arrival of a message,
the main thread inserts messages into the queues of the threads which subscribed
the message. In order to avoid a replication of the (possibly large) data stored
in the message bodies, only the message headers are inserted into the message
queues. The message data is stored only once and referenced by the message
headers. The main thread also signals the semaphore associated with the message
queue into which it is inserting a message (in order to wake up the thread which
may already be waiting for the message)

a message arrives, the main thread matches the message against all subscriptions
in the list and when it finds a match, it inserts the message into the message queue
of the corresponding thread. If there is no match, the message is discarded.

void tpl unsubscribe(pthread t thread id, MATCHING FUNC *match)

removes a subscription from the list. (If match is a NULL pointer, all subscriptions
of the thread thread id are removed from the list.)

might get lost before the new thread can subscribe it.

80 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

Remark. The termination of a process is an example of a situation where several
threads want to subscribe the same message (more precisely, a message with the
same tag is reserved for termination). Upon the arrival of a termination message,
all threads are notified. •

Message callbacks are user-defined actions which are triggered when a message
from the network arrives. The idea of callbacks is not to disturb computing
threads with events that can be serviced by the main thread.

A typical example of a callback is the servicing of a request from some other
process for data stored in the recipient’s memory. A recipient’s thread can be
running a computation in one of its threads while the request for data is received
by its main thread. The request does not need to be inserted into the computation
thread’s message queue. Instead of this the main thread replies with the data
and discards the message afterwards.

Callbacks are implemented in the function message handler which is passed
to the main thread as an argument of tpl handle messages. This function is
called every time a message arrives. tpl handle messages terminates when the
user-defined function message handler returns TRUE. The implementation of the
function tpl handle messages which is called from the main thread is sketched
in Fig. 2.21.

Message queueing model, message subscription and message callbacks
in TPL 2.0

The queueing model in TPL 2.0 is depicted in Fig. 2.22. There is one global queue
of incoming messages (similar to the unexpected queue in the implementation of
MPICH and in other MPI implementations). Threads do not need to subscribe
and unsubscribe messages in TPL 2.0. Any thread can decide to receive or send
a message at any one time. Unlike in TPL 1.0, in TPL 2.0 each message arriving
from the network is delivered to only one thread (or consumed by the message
handler).

Another difference between TPL 1.0 and TPL 2.0 is that there is no thread
management in TPL 2.0. The TPL 2.0 library does not know which threads
are running (the library only knows which thread is the main thread—the main
thread acts as the message handler). The thread synchronisation is left to the
application.

The function
tpl handle messages(HANDLING FUNC *message handler)

internally calls the user-supplied function message handler upon the arrival of a
message. The function message handler processes the message and returns one
of the following values:

• TPL ACTION ENQUEUE indicates that the message should be enqueued in the

2.7. TPL: EVENT-DRIVEN THREAD PARALLEL LIBRARY 81

void tpl handle messages(HANDLING FUNC *message handler)

{
int sender;

int tag;

MESSAGE *msg;

void *packed data, *unpacked data;

int quit;

quit = FALSE;

while (! quit)

{
tpl begin recv();

/*

Note:

tpl recv receives from network when called from main thread

*/

tpl recv(pthread self(), &sender, &tag, &packed data);

quit = msg handler(sender, tag, packed data, &unpacked data);

tpl end recv();

/* ...initialise the message structure msg ... */

msg->sender = sender;

msg->tag = tag;

msg->data = unpacked data;

/*

...match msg against all subscriptions and

insert msg into message queues of subscribers...

*/

/* ...if no subscriber found then discard msg ... */

}
}

Figure 2.21: Implementation of tpl handle messages in TPL 1.0

82 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

recv()

Main thread
(message handler)

network

msg msg msg msg msg

Messsage queue

tpl_recv(match1)

Thread1

tpl_recv(match2)

Thread2

...

...

Waiting thread queue

match or insert message

tpl_recv(matchcurrent)

Threadcurrent

match and remove message

insert if no match

Figure 2.22: Message queueing model of TPL 2.0. Upon the arrival of a message,
the main thread first looks for a match among the threads waiting in the thread
queue. If there is a match, the message is passed to the waiting thread (and the
thread is woken up). If there is no match, the message is inserted into the message
queue. A thread (which is not the main thread) which is calling tpl recv() first
looks into the message queue. If it finds a matching message in the message
queue, it removes it from the queue. If there is no matching message in the
message queue, the thread inserts itself into the waiting thread queue

2.7. TPL: EVENT-DRIVEN THREAD PARALLEL LIBRARY 83

message queue.

• TPL ACTION DROP indicates that the message has already been processed by
the message handler and it should be forgotten without being enqueued.

• TPL ACTION EXIT indicates that the function tpl handle messages should
terminate (without the insertion of the message into the message queue).

The return value of TPL ACTION EXIT is used to terminate the main thread.
The application must take care about the correct termination of the remaining
threads before the main thread terminates. Note that after the termination
of the main thread no messages can be sent or received. A useful trick in the
implementation of a termination protocol is to run a communication round which
ensures that all processes are ready to terminate. After this round every process
sends a termination message to itself.

In TPL 2.0, the user-supplied function message handler is not responsible for
unpacking the message body (unless the handler is willing to process the message
itself and drop it afterwards).

2.7.6 Message packing and unpacking

TPL supports heterogeneous systems in the extent of the underlying communica-
tion library. Processors that run the processes may be different or run different
operating systems. Data types (e.g. int, float) can have different lengths on
two processors or their binary representation can differ.

This has some implications for message passing. It is desirable that if a
process 0 sends a message containing an integer 7 to process 1, then the process
1 should see the same value 7 in its local copy of the integer, despite the different
representations of 7 in both processes.

Both PVM and MPI solve this problem using datatypes. A datatype corre-
sponds to a simple data type of a programming language: char, int, float, long
etc.28 The communication library must have information on datatypes stored in
messages. It can then translate the data to the XDR format which is defined by
POSIX on the receiver side and encode the XDR representation to the sender’s
format on the sender side.

PVM and MPI offer packing and unpacking functions for all simple datatype.
The assembling of a message in a contiguous buffer in the sender is a sequence
of calls to packing functions. The disassembling of a message in the receiver is
a sequence of corresponding calls to unpacking functions.29 Finding a common

28MPI also uses more complex datatypes (derived datatypes) which correspond to higher
level memory structures in programming languages (struct, array, . . .). They are convenient
but not necessary.

29PVM and MPI also offer other possibilities for message assembly which do not require the
copying of data in a contiguous buffer (“data in place”). This is not supported in TPL.

84 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

interface which maps well to both PVM and MPI is not easy because of the
differences between these two libraries. The main difference is that PVM uses
an internal global buffer for storing the packed data, whereas MPI uses buffers
allocated by the application. A consequence of this is that in MPI the applica-
tion has to determine in advance (before packing a message on the sender side
or before receiving a message on the receiver side) how much space the send-
ing and receiving buffers will require. PVM adjusts the buffer sizes on the fly,
transparently to the application.

TPL must be able to emulate the packing and unpacking of both PVM and
MPI without changing the interfaces of the libraries. The interfaces of TPL’s
packing/unpacking functions correspond to the interface of MPI. However, TPL
internally uses a global sending buffer and a global receiving buffer. The use
of global buffers, which is dictated by the need to map onto PVM, is the reason
why threads in TPL must already be mutually excluded during the packing phase
(see Section 2.7.4)30. This can be a potential source of inefficiency in TPL in the
situation when several threads attempt to pack and send messages at the same
time.

MPI requires the receiving process to allocate the buffer for an incoming
message. TPL allocates buffers of a default size during the initialisation phase of
each process. If the application sends a message that is larger than size of the the
default buffer, the buffer in the receiver must be adjusted. TPL uses an internal
protocol to ensure that there is enough space in the receiver. When the sender
detects that it is sending a message that might exceed the receiver’s buffer size,
it first sends a controlling message telling the receiver to increase its buffer size.31

This leads to an additional communication overhead for large messages but the
additional overhead can be avoided by setting the default buffer size sufficiently
large.

2.7.7 Error handling and debugging

Error handling in TPL is very strict. It is assumed that the application is correct
(for instance, it is assumed that a message is always addressed to an existing
process)—there are no sanity checks inside TPL which would significantly influ-
ence efficiency. Internal sources of problems such as an unsuccessful attempt to
allocate memory lead to the termination of the process.32

30Although PVM 3.4 can work with multiple buffers, it is not thread-safe on the set of packing
and unpacking functions.

31Note that the representation of the data can require more memory in the receiver than
in the sender (for instance, a float can be coded using 4 bytes in the sender but 8 bytes in
the receiver). TPL uses a pessimistic upper bound to estimate the ratio of different lengths of
simple types.

32At the time of writing, the implementation of TPL does not attempt to “correctly” termi-
nate all the processes of the application. A future version of the TPL library may implement

2.7. TPL: EVENT-DRIVEN THREAD PARALLEL LIBRARY 85

Debugging facilities provided by the underlying communication libraries can
be used with TPL. TPL does not provide any additional debugging tools.

2.7.8 Flow control

Some implementations of MPI (e.g. MPICH) use the so-called flow control mech-
anism. This mechanism avoids the flooding of a process with messages which
arrive from other processes. There is a certain fixed amount of memory allocated
for the buffering of unexpected incoming messages (an unexpected message is a
message for which no receive operation has been posted). Once this buffer is
full, the process begins to only receive messages for which a receive operation is
posted.

The buffering at receiver can increase efficiency of message passing appli-
cations in some scenarios. Consider the following sequence of message passing
operations which involves three processes, A, B and C:

1. A posts a receive operation which matches any message from B.

2. C sends a message to A.

3. B sends a message to A.

4. A posts a receive operation which matches any message from C.

What happens in step 2? The message being sent by C either remains in C or
it is passed to A even though there is no matching receive operation in A. In the
latter case the message is stored in the unexpected message queue of A (without
the completion of the send operation) and it is retrieved from the unexpected
queue in step 4. The retrieval from the unexpected message queue is usually
much faster than the transfer of the message from C to A. Hence, the costs of
the transfer are amortised in the latter case.

However, if the message being sent in step 2 was larger than the buffering space
available in the process A, then the flow control mechanism would not allow the
transfer of the message to A in step 2—the transfer would be postponed to step 4.

Note that the scenario above works correctly in both cases. Its result does not
depend on whether the process A buffers the message sent in step 2 or not. The
following scenario is more dangerous as it may sometimes result in a deadlock:

1. A sends a message to B.

2. B sends a message to A.

a global handling of internal fatal errors (if the underlying communication library provides an
error handling).

86 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

The MPI standard states that this scenario will result in a deadlock if the
synchronous send (MPI Ssend) is used in either A or B. The MPI standard also
states that the scenario will not result in a deadlock if the nonblocking send
(MPI Isend) is used in both A and B. Finally, the standard states that the
scenario may result in a deadlock (depending on the implementation of the MPI
library) if the default send (MPI Send) is used in both A and B (the same holds
for the combination of MPI Send and MPI Isend). The whole truth is even much
worse—the second scenario may sometimes deadlock and sometimes not with the
same MPI implementation if MPI Send is used in both A and B! The buffer
spaces in A and B may be large enough to store one message. In this case both
A and B will make progress if their buffers are empty. However, a third process
C may already have sent an unexpected message to both A and B before and the
unexpected message may already have consumed the entire available buffering
space in A and B. In this case the scenario will result in a deadlock. No deadlock
occurs if the third process does not participate in this communication scenario.

Remark. The second scenario can often be found in practice, especially in par-
allel finite-element methods. For instance, consider an application which consists
of parallel processes connected to a ring. All the processes run an identical code.
The parallel computation runs in rounds. In one round each process sends a
value to its two neighbours and receives a value from its two neighbours. The use
of the synchronous send results in deadlock unless the symmetry in the ring is
broken (see the example solution of the Problem of Dining Philosophers in Sec-
tion 2.2.1). As the breaking of the symmetry usually involves structural changes
in the application code, a solution is preferred which preserves the symmetry. A
solution which involves the use of the nonblocking send MPI Isend is given in the
MPI tutorial book [GLS95]. This solution is independent on the amount of the
buffering space at receiver. •

The previous discussion suggests that flow control mechanism in the combi-
nation with buffering at receiver is very useful because it speeds up applications
if there is enough buffer space at receiver and at the same time takes care of not
exceeding the available buffer space in the processes. As the flow control does
not apply to the nonblocking send (MPI Isend), the problem of deadlock in sym-
metrical scenarios seems to be solved. However, the amount of memory at sender
is also limited. If there is no throttle on the amount of memory taken by the
pending nonblocking sends, then a process which issues too many nonblocking
sends runs out of memory.

Flow control is a pessimistic solution to the problem of finite memories of the
processes. Flow control assigns a fixed amount of the buffering space to every
process. There are scenarios which result in a deadlock even though there may be
more available memory in the processes involved than the fixed amount of buffer
space.

2.8. EFFICIENCY BENCHMARKS 87

Active messages

TPL uses an optimistic approach to the problem above. All the incoming mes-
sages are buffered at receiver. This approach attempts to amortise as much la-
tency and message transfer overhead as possible. The disadvantage is that one
of the processes can be overflooded with messages for which no matching receive
has been posted at that process.33 However, this disadvantage is only illusory for
the following reasons:

• The communication scenarios of many applications guarantee that no pro-
cess is overflooded with unexpected messages.

• The applications in which a process may be overflooded with unexpected
messages result in a deadlock if flow control is used.

• The implementation of flow control is fairly easy in TPL. Hence, TPL gives
the application the possibility to decide whether flow control should be used.
Unlike in MPI implementations, the buffer spaces taken by the incoming
and outgoing messages can be separately controlled in TPL.

Remark. The flow control mechanism which is implemented in MPICH is a
source of inefficiency in TPL if MPICH is used as the underlying communication
library. The flow control mechanism of MPICH must be overcome in order to
implement the optimistic approach in TPL. A part of this overcoming is hidden in
the implementation of the function MPI Asend (see Section 2.7.4). The problem
of the overcoming of the MPICH’s flow control mechanism is only tackled in
TPL 2.0 (TPL 1.0 does not work correctly with an underlying MPI library which
uses flow control).

PVM 3.4 uses buffering at receiver but it uses no flow control. This simplifies
the design of the TPL’s operation binding to PVM. •

2.8 Efficiency benchmarks

This section presents comparison of efficiency of the original PVM and MPI
implementations against TPL based on the same libraries. We used an “out of the
box” build of PVM 3.4 and MPICH 1.2.4 with the quasi-thread-safe extensions
described in Section 2.6.6 (the extensions have no impact on the efficiency of
applications that do not use them).

33The matching receive must be either posted by a thread which is different from the main
thread or the message must be consumed by a callback in the main thread. Otherwise the
message is inserted into the “unexpected queue” of the receiving process. The growth of this
“unexpected queue” beyond the available memory is called overflooding.

88 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

All the measurements were run on the Fujitsu-Siemens hpcLine cluster in the
Paderborn Center for Parallel Computing (PC2) at the University of Paderborn,
Germany. The cluster consists of 96 Siemens Primergy double-processor nodes.
The nodes have two independent network interfaces: SCI (500 MBit/second Scal-
able Coherent Interface by Scali/Dolphin) and Fast Ethernet (100 MBit/sec).
We used the Fast Ethernet network which is supported by both “out-of-the-box”
PVM 3.4 and MPICH 1.2.4 libraries. Each node of hpcLine is a double-processor
850 MHz Intel Pentium III with 512 Mbytes RAM, running Linux Redhat.

We observed various aspects of polling and event-driven approaches on two
benchmarks:

• ONE-SIDED THREADED PINGPONG and

• SYMMETRICAL THREADED PINGPONG.

These benchmarks are new. They cannot be found among standard bench-
mark programs for PVM and MPI although their structure, especially the struc-
ture of SYMMETRICAL THREADED PINGPONG, directly corresponds to the
structure of all irregular parallel programs. The traditional PINGPONG bench-
mark involves two parallel processes, whereby one of the processes acts as a server
which awaits “PING” messages and responds with “PONG” and the other pro-
cess generates the “PING” and waits for the “PONG” replies. In our benchmarks,
especially in the SYMMETRICAL THREADED PINGPONG, both processes act
as client and servers at the same time.

Both benchmarks involve two parallel processes, PING and PONG, whereby
the process PING consists of two threads, T1 and T2. The thread T1 sends a num-
ber of messages to the process PONG and the thread T2 only receives the same
number of messages from the process PONG. The two benchmarks only dif-
fer in the implementation of the PONG process. In ONE-SIDED THREADED
PINGPONG, the PONG process is single-threaded. It first waits for a mes-
sage arriving from the process PING and after the reception of the message it
sends an answer back to the process PING. In SYMMETRICAL THREADED
PINGPONG, the PONG process also consists of two threads, T1 and T2. The
thread T1 of the process PONG does nothing. The messages are only received
and sent in the thread T2. However, T2 must be aware of that T1 may also want
to communicate. This implies that T2 must not use a blocking recv unless the
communication library is thread-safe.

Polling and event-driven versions of both benchmarks (Fig. 2.11 and Fig. 2.12)
were implemented and compared in the measurements. The functions compute
and service request are empty. We did not use the generic polling scheme
from Fig. 2.12 for the measurements but an optimised one. Fig. 2.23 shows the
optimised pseudo-code of PING. The difference between this one and the generic
version from Fig. 2.12 is that the optimised version avoids calling sleep(time)

2.8. EFFICIENCY BENCHMARKS 89

when there is a continuous flow of messages arriving in PING. (Each sleep()

call costs at least 0.02 sec, see Section 2.6.4.)

thread T1()
{

while (not done)

{
lock(comm);

send();

unlock(comm);

}
}

thread T2()
{

while (not done)

{
lock(comm);

arrived=probe();

while (arrived)

{
recv();

arrived=probe();

}
unlock(comm);

sleep(time);

}
}

Figure 2.23: An optimised polling implementation of the PING process. The op-
timal setting of time in the sleep(time) call is 50 milliseconds (see Section 2.6.4).
This optimal setting was used in the measurements

All event-driven measurements with ONE-SIDED THREADED PINGPONG
were performed using TPL 1.0 and all measurements with SYMMETRICAL
THREADED PINGPONG were performed using TPL 2.0. However, the in-
fluence of the differences between TPL 1.0 and TPL 2.0 on the measurements is
neglectable.

In the following, MPICH/TPL refers to benchmarks which use the even-driven
version of TPL based on quasi-thread-safe MPICH. Similarly, PVM/TPL denotes
the even-driven version of TPL based on quasi-thread-safe PVM. PVM/polling
and MPICH/polling denote the polling versions of the benchmarks based on the
official PVM 3.4 and MPICH 1.2.4 libraries.

2.8.1 ONE-SIDED THREADED PINGPONG

In each run of the ONE-SIDED THREADED PINGPONG program, 100000
messages were sent from PING to PONG and 100000 messages were sent in the
opposite direction. Each run was repeated using message sizes from 1 Byte to
1 MByte (steps of powers of 2). Moreover, each of these rounds was repeated
10 times in order to exclude external factors related to the operating system and
the network.

90 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

The absolute running time of one experiment was measured. The timer
was started in the process PING right before the while (not done) loop and
stopped right after the loop. In order to exclude a possible initial message pass-
ing latency of PVM and MPICH, the loop was preceded by a “warmup” phase
during which the PING and PONG processes exchanged a few messages. We
also measured the number of sleep() calls in each run of the polling version of
the benchmark.

1 hpcLine node

The graph in Fig. 2.24 shows the average measured throughput over the 10
rounds. Throughput is the total size of all messages sent during a run, divided
by the duration of the run (messages in both directions count). Throughput
is a measure which is strongly correlated to the efficiency of communication-
intensive parallel applications. In this set of measurements, the processes PING
and PONG were run on the same node (a loopback was used for the physical
communication, avoiding the networking overhead).

0

10

20

30

40

50

60

70

80

90

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/TPL

0

10

20

30

40

50

60

70

80

90

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/TPL
MPICH/TPL

0

10

20

30

40

50

60

70

80

90

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

0

10

20

30

40

50

60

70

80

90

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

10

20

30

40

50

60

70

80

90

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

10

20

30

40

50

60

70

80

90

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

10

20

30

40

50

60

70

80

90

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

10

20

30

40

50

60

70

80

90

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

Figure 2.24: Average throughput, 1 node hpcLine

The PVM/polling graph must be compared to the PVM/TPL graph. The polling
version is on average only slightly better than the event-driven version for message
sizes up to 1 kByte. For larger message sizes PVM/TPL is not only clearly better

2.8. EFFICIENCY BENCHMARKS 91

but also much more stable.34 Note the PVM/polling’s falloff at the message size
of 32 kbytes—this is the message size where the message flow arriving in PING
is not continuous and so the thread T2 calls sleep(time) very frequently (see
Fig. 2.23). The danger of such falloffs is that they can neither be predicted nor
systematically eliminated.

The same holds for the comparison of the MPICH/polling to MPICH/TPL.
MPICH/TPL is slightly worse for small message sizes but clearly better for message
sizes from 8 kbytes. Also—most importantly—MPICH/TPL is much more stable
than MPICH/polling.

Another measure of stability is the standard deviation of the absolute times, or
(after scaling by the total message size) the standard deviation of the throughput
over the same 10 runs. The standard deviation of the throughput is shown in
Fig. 2.25.

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 1

 n
od

e
hp

cL
in

e

Message length (Bytes)

PVM/TPL

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 1

 n
od

e
hp

cL
in

e

Message length (Bytes)

PVM/TPL
MPICH/TPL

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 1

 n
od

e
hp

cL
in

e

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 1

 n
od

e
hp

cL
in

e

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 1

 n
od

e
hp

cL
in

e

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 1

 n
od

e
hp

cL
in

e

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 1

 n
od

e
hp

cL
in

e

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 1

 n
od

e
hp

cL
in

e

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

Figure 2.25: Standard deviation of throughput, 1 node hpcLine

The standard deviations of the event-driven PVM/TPL and MPICH/TPL should
theoretically be 0 because the overhead of the interrupt mechanism is constant
for every message arriving in PING. These deviations are indeed very low but
range from 0 to 8%. The non-zero values can be explained by external system
factors (e.g. thread scheduling brings certain irregularities to the measurements).

34The characteristics of the PVM/TPL graph are similar to the characteristics of a simple
pingpong PVM benchmark. In a simple pingpong benchmark the process PING is single-
threaded. It runs a loop in which it first sends a message and then receives the reply.

92 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

MPICH/polling is surprisingly stable on this measure. The same experiment
always took approximately the same time when it was repeated 10 times. The
difference in the number of sleep() calls in the runs was also neglectable. This
does not correspond to our expectations—the number of sleep() calls should be
very random. Only a detailed study of MPICH’s complex buffering model may
lead to a satisfactory explanation. MPICH also exhibits surprising regularities
also in specially constructed irregular communication scenarios. [KS02]

PVM/polling is as expected very unstable. Different runs of the same ex-
periment produce very different times. There is an extremely high correlation
between the standard deviation of sleep() calls in the runs and the standard
deviation of throughput (or absolute time). The graph in Fig. 2.26 is the stan-
dard deviation of the number of sleep() calls. This graph and the PVM/polling
graph in Fig. 2.25 are almost identical!

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 n

um
be

r
of

 s
le

ep
()

 c
al

ls
 (

%
),

 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 n

um
be

r
of

 s
le

ep
()

 c
al

ls
 (

%
),

 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/polling
MPICH/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 n

um
be

r
of

 s
le

ep
()

 c
al

ls
 (

%
),

 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/polling
MPICH/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 n

um
be

r
of

 s
le

ep
()

 c
al

ls
 (

%
),

 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/polling
MPICH/polling

Figure 2.26: Standard deviation of the number of sleep() calls in the polling
versions of the benchmark, 1 node hpcLine

The polling overhead further depends—when the optimised polling version is
used—on the continuity of the message flow. The continuity of the message flow
(which is measured as the number of sleep() calls) depends on the application
that generates the messages, on the buffering model used by the communica-
tion library and by the network, and on the polling inside the communication
library (see Section 2.6.3). The buffering has a “smoothing” effect—messages
that have been sent by PONG in short time intervals (there is a short pause

2.8. EFFICIENCY BENCHMARKS 93

between each two messages sent by the process PONG) will be received in the
process PING as a continuous flow (see Fig. 2.27). Note that the PINGPONG
benchmark (whether PING is multi-threaded or single-threaded is irrelevant)
has the potential to generate continuous message flows. However, a continuous
stream of large messages leads to buffer overflows which cause “cuts” in the flow.
Each “cut” results in a sleep() call. Certain settings of message sizes trigger
the generation of the “cuts” in message flows, which reverts the “smoothing”
effect of the buffering. This leads to falloffs that can be seen in PVM/polling and
MPICH/polling graphs in Fig. 2.24.

PONG PING

TCP

network

Figure 2.27: Smoothing effect of the TCP protocol (Nagel’s algorithm). [Ste94],
[WS95] A non-continuous message flow generated by the process PONG is re-
ceived as a continuous message flow in the process PING

The continuity of the message flow is expressed by burstiness. Burstiness
is the average size of the data transferred between two “cuts” (the size of the
data between two successive sleep() calls. The graph in Fig. 2.28 shows an
average burstiness over the 10 runs (the total transferred data size divided by
the measured number of sleep() calls) for the polling version of the benchmark.
Note the extreme similarity between the graphs in Fig. 2.28 and in Fig. 2.24!

2 hpcLine nodes

We repeated all the experiments on 2 hpcLine nodes, by mapping the processes
PING and PONG onto different nodes. The only difference between this and
previous scenarios is that the network overhead is added to this scenario.

The graph in Fig. 2.29 shows the average measured throughput over the 10
rounds. (Note that 25 MBits/second is the physical limit of Fast Ethernet.)
The average throughputs of PVM/polling and event-driven PVM/TPL are similar.
MPICH/polling is even better than MPICH/TPL—however, there is a falloff at a
message size of 128 kByte.

The graph in Fig. 2.30 depicts the deviation of the throughput. The deviation
of PVM/polling’s throughput is extremely high for messages up to 1 kByte. This
was expected. However, PVM/polling behaves very deterministically for large
messages. MPICH/polling is also deterministic, as on 1 node. We are not able
to explain this phenomenon. Without a detailed study of the buffering models of
PVM and MPICH and their synchronisation with TCP buffering [Ste94], [WS95]
a satisfactory explanation cannot be given. We can only point out that we did
not change the “out of the box” distributions of PVM and MPICH which may not

94 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 32 1024 32768 1.04858e+06

A
ve

ra
ge

 b
ur

st
in

es
s

(M
B

yt
e

pe
r

sl
ee

p(
)

ca
ll)

, 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/polling

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 32 1024 32768 1.04858e+06

A
ve

ra
ge

 b
ur

st
in

es
s

(M
B

yt
e

pe
r

sl
ee

p(
)

ca
ll)

, 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/polling
MPICH/polling

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 32 1024 32768 1.04858e+06

A
ve

ra
ge

 b
ur

st
in

es
s

(M
B

yt
e

pe
r

sl
ee

p(
)

ca
ll)

, 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/polling
MPICH/polling

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 32 1024 32768 1.04858e+06

A
ve

ra
ge

 b
ur

st
in

es
s

(M
B

yt
e

pe
r

sl
ee

p(
)

ca
ll)

, 1
 n

od
e

hp
cL

in
e

Message length (Bytes)

PVM/polling
MPICH/polling

Figure 2.28: Average burstiness (amount of transferred data per sleep() call)
for the polling versions of the benchmark, 1 node hpcLine

have been optimal for the TPL implementation. (TPL uses these distributions
as the underlying communication libraries, see Fig. 2.18.)

A comparison of the graphs in Fig. 2.30 and Fig. 2.31 again reveals an ex-
tremely strong correlation between the standard deviation of throughput and
the standard deviation of the number of sleep() calls for PVM/polling and
MPICH/polling.

Similarly, the polling graphs in Fig. 2.32 (average burstiness) and Fig. 2.29
(average throughput) are almost identical. This means that the throughput of
the polling version strongly depends on the continuity of the data flow. Bursts in
the data flow cause the more frequent calling of sleep() inside the polling loop,
which is the source of the efficiency loss.

2.8.2 SYMMETRICAL THREADED PINGPONG

The difference between ONE-SIDED THREADED PINGPONG and SYMMET-
RICAL THREADED PINGPONG is that in the latter benchmark both the pro-
cesses PING and PONG use the same mechanism in order to receive messages.
SYMMETRICAL THREADED PINGPONG therefore corresponds to a generic
implementation of a non-trivial application in which all processes are acting as
clients and servers at the same time.

2.8. EFFICIENCY BENCHMARKS 95

0

5

10

15

20

25

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/TPL

0

5

10

15

20

25

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/TPL
MPICH/TPL

0

5

10

15

20

25

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

0

5

10

15

20

25

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

5

10

15

20

25

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

5

10

15

20

25

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

5

10

15

20

25

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

5

10

15

20

25

1 32 1024 32768 1.04858e+06

T
hr

ou
gh

pu
t (

M
B

yt
e/

se
c)

, 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

Figure 2.29: Average throughput, 2 nodes hpcLine

It is often believed that a high latency is the main drawback of the event-
driven approach. [HSS+98], [PS98] This may be true for applications which do
not require thread-safety or asynchronous communication. All other applications
must use polling and suffer from a high latency caused by polling. The goal of the
measurements with the SYMMETRICAL THREADED PINGPONG benchmark
was to compare the latencies of the event-driven and the polling versions. The
source code of the programs which were used for this comparison is in Appendix B.

Average roundtrip times measured between 2 nodes of hpcLine are shown in
Fig. 2.33 as a function of the number of roundtrips. The roundtrips are initiated
by the process PING and they are independent on one another (a roundtrip
begins without waiting for the completion of the previous one). The message size
was set to 1 Byte in all experiments, each experiment was repeated ten times.

Latency is usually defined as a single roundtrip time divided by two. Hence,
latency corresponds to the first column in Fig. 2.33. Note that the latency of the
event-driven PVM/TPL and MPICH/TPL is very close to zero at this scale. Fig. 2.34
is the same graph, only 100 times magnified. The latencies of the polling versions
of this benchmark are 0.17 for MPICH/polling and 0.3 for PVM/polling—about
500 times higher than the latencies of the event-driven versions (ca. 0.0006 sec-
onds)!35 The polling latencies amortise with a growing number of the number

35For a comparison, a single roundtrip time of the raw TCP protocol (with no higher com-

96 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 2

 n
od

es
 h

pc
Li

ne

Message length (Bytes)

PVM/TPL

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 2

 n
od

es
 h

pc
Li

ne

Message length (Bytes)

PVM/TPL
MPICH/TPL

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 2

 n
od

es
 h

pc
Li

ne

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 2

 n
od

es
 h

pc
Li

ne

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 2

 n
od

es
 h

pc
Li

ne

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 2

 n
od

es
 h

pc
Li

ne

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 2

 n
od

es
 h

pc
Li

ne

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 th

ro
ug

hp
ut

 (
%

),
 2

 n
od

es
 h

pc
Li

ne

Message length (Bytes)

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

Figure 2.30: Standard deviation of throughput, 2 nodes hpcLine

of roundtrips. However, a usual communication scenario in each process of a
non-trivial application is “send a request; wait for the reply”, in which case there
is only one roundtrip performed at any one time (from the point of view of the
process which initiated the request). Even if there was an application which
would make use of performing many roundtrips by one process in parallel with-
out waiting for the replies, the process would eventually run out of memory. The
reason is the missing flow control mechanism for outgoing messages in PVM and
MPICH, see Section 2.7.8.

Theoretically, the latency of the event-polling version should be constant.
However, both the PVM/TPL and MPICH/TPL graphs in Fig. 2.34 contain two un-
expected peaks. We are not able to explain these peaks—we only suspect that
they are related to the residual amount of polling in the underlying quasi-thread-
safe communication libraries, or to the Nagel’s algorithm of the TCP protocol,
or to the non-optimal thread-switching policy in Linux.

2.8.3 Summary of benchmarking results

Our theoretical expectations from Section 2.6.4 are fully justified by the exper-
iments. The throughput of the polling implementations of the benchmarks is

munication library involved) is ca. 0.00015 seconds.

2.8. EFFICIENCY BENCHMARKS 97

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 n

um
be

r
of

 s
le

ep
()

 c
al

ls
 (

%
),

 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 n

um
be

r
of

 s
le

ep
()

 c
al

ls
 (

%
),

 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/polling
MPICH/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 n

um
be

r
of

 s
le

ep
()

 c
al

ls
 (

%
),

 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/polling
MPICH/polling

0

20

40

60

80

100

1 32 1024 32768 1.04858e+06

S
ta

nd
ar

d
de

vi
at

io
n

of
 n

um
be

r
of

 s
le

ep
()

 c
al

ls
 (

%
),

 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/polling
MPICH/polling

Figure 2.31: Standard deviation of the number of calls in the polling versions of
the benchmark, 2 nodes hpcLine

a function of the number of sleep() calls in the polling loop. The overhead
of every sleep() call which adds to the parallel time is 0 to 0.02 seconds (or
more)36. Thus the total polling overhead in our benchmarking scenarios ranges
between 0 and 2000 seconds (= 0.02 seconds * 100000) in each run. This ran-
domness can clearly be observed in Fig. 2.25 and Fig. 2.26 for PVM/polling.
The absolute times of the runs without this overhead (a simple single-threaded
pingpong benchmark) are between ca. 5 seconds and 6000 seconds, depending
(only) on the size of the messages used in the benchmark. It is also evident from
the MPICH/polling graphs that the performance depends solely on the number
of sleep() calls in the polling loop.

The overhead of the event-driven mechanism is constant in the benchmarks
because the mechanism is triggered by every message that arrives in the process
PING. It does not depend on the continuity of the message flow. This overhead
is slightly larger than the polling overhead by continuous message flows, and much
smaller than the polling overhead when the smoothing effect of TCP buffering
(Fig. 2.27) does not help.

36This is only a one-sided overhead (when only the PING process runs the polling loop).
However, it is likely in a non-trivial application that all processes are symmetric in this respect—
that means, the process sending a request also runs a polling loop when it is waiting for a reply.
In such a case, the overhead of servicing one request ranges from 0 to 0.04 seconds (or more).

98 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 32 1024 32768 1.04858e+06

A
ve

ra
ge

 b
ur

st
in

es
s

(M
B

yt
e

pe
r

sl
ee

p(
)

ca
ll)

, 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/polling

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 32 1024 32768 1.04858e+06

A
ve

ra
ge

 b
ur

st
in

es
s

(M
B

yt
e

pe
r

sl
ee

p(
)

ca
ll)

, 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/polling
MPICH/polling

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 32 1024 32768 1.04858e+06

A
ve

ra
ge

 b
ur

st
in

es
s

(M
B

yt
e

pe
r

sl
ee

p(
)

ca
ll)

, 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/polling
MPICH/polling

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 32 1024 32768 1.04858e+06

A
ve

ra
ge

 b
ur

st
in

es
s

(M
B

yt
e

pe
r

sl
ee

p(
)

ca
ll)

, 2
 n

od
es

 h
pc

Li
ne

Message length (Bytes)

PVM/polling
MPICH/polling

Figure 2.32: Average burstiness (amount of transferred data per sleep() call)
for the polling versions of the benchmark, 2 nodes hpcLine

The event-driven PVM/TPL clearly outperformed PVM/polling as regards sta-
bility. PVM/polling behaved very non-deterministically on 1 as well as on 2 nodes
of hpcLine.

MPICH/polling was surprisingly very deterministic. However, for certain
message sizes there is a falloff in MPICH/polling’s performance. Even though
MPICH/TPL was outperformed by MPICH/polling for small message sizes, it did
not exhibit any falloffs. Also, MPICH/TPL was handicapped in this benchmark be-
cause of the polling inside the MPICH library (see Section 2.6.3) which negatively
influences the performance of the event-driven mechanism.

We must stress that both benchmarks (one-sided as well as symmetrical) are
the best possible representatives of non-trivial applications for the polling com-
munication libraries as it produces continuous message flows that minimise the
number of expensive sleep() calls in the polling loop. An application which does
not produce continuous message flows leads to the calling of sleep() after each
received message in the polling loop, which drastically decreases performance. In
such a case the latency of servicing a request will always be at least 0.02 seconds
if polling is used (the stream of requests is likely to be non-continuous). The
latency of 0.02 seconds is much higher than the average latency of the event-
driven versions of the benchmarks. The latency of the event-driven mechanism
does not depend on the rate with which requests are generated. Therefore, if

2.8. EFFICIENCY BENCHMARKS 99

0

0.05

0.1

0.15

0.2

0.25

0.3

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

).
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL

0

0.05

0.1

0.15

0.2

0.25

0.3

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

).
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL

0

0.05

0.1

0.15

0.2

0.25

0.3

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

).
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL
PVM/polling

0

0.05

0.1

0.15

0.2

0.25

0.3

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

).
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

0.05

0.1

0.15

0.2

0.25

0.3

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

).
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

0.05

0.1

0.15

0.2

0.25

0.3

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

).
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

0.05

0.1

0.15

0.2

0.25

0.3

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

).
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

0.05

0.1

0.15

0.2

0.25

0.3

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

).
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

Figure 2.33: Average roundtrip time, 2 nodes hpcLine

the event-driven mechanism is not worse than polling on these benchmarks, it
can only perform better in a real non-trivial application which produces many
non-continuous message flows.

The event-driven mechanism outperformed polling in terms of message passing
latency by two orders of magnitude. The minimisation of latency is essential for
decreasing idle periods in processes of many non-trivial applications.

Remark. There is one additional factor which determines the latency of request
servicing of the even-driven implementation—thread scheduling policy. The fol-
lowing thread scheduling policy is optimal (yielding minimum latency) for the
concept depicted in Fig. 2.20. This thread scheduling policy is almost identical
to the Transputer’s scheduling policy described in Section 2.2.2:

• The main thread cannot be preempted by any other thread.

• The remaining threads Thread1. . . ThreadN are scheduled using any pol-
icy, for example round-robin. It is not very important whether the schedul-
ing of the threads Thread1. . .ThreadN is preemptive or not, but the non-
preemptive scheduling is a more rigorous choice because it avoids an un-
necessary context switching.

• The main thread has a higher priority than Thread1. . .ThreadN . This

100 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

),
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

),
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

),
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL
PVM/polling

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

),
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

),
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

),
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

),
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

1 4 16 64 256 1024 4096 16384 65536 262144

A
ve

ra
ge

 r
ou

nd
tr

ip
 ti

m
e

(s
ec

),
 2

 n
od

es
 h

pc
Li

ne

Number of roundtrips

PVM/TPL
MPICH/TPL
PVM/polling

MPICH/polling

Figure 2.34: Average roundtrip time, 2 nodes hpcLine (a 100x magnification of
the graph from Fig. 2.33)

means that the threads Thread1. . .ThreadN are only scheduled when the
main thread is blocked. The main thread is immediately scheduled when it
unblocks, possibly preempting another running thread (if there is one).

The POSIX standard defines thread scheduling policies which should be sup-
ported by operating systems: SCHED FIFO (run to completion), SCHED RR (round-
robin), . . . However, many operating systems (Solaris, Linux, Ultrix) restrict the
choice of the scheduling policy to SCHED RR. Other thread scheduling policies are
either not implemented or require super-user privileges. The reason for this is
that thread scheduling is mixed with process scheduling in the implementations
of the operating systems which are designed for shared-memory multiprocessors.

The round-robin thread scheduling policy is a source of increased message
servicing latency in TPL. Unfortunately, this is a problem that cannot be solved
without a change to the operating system’s scheduler. •

Open questions remain:

• Under what circumstances does the network (more precisely the transport
protocol, TCP in this case) produce a continuous stream of messages?

2.9. CONCLUSIONS 101

• What are the optimal settings of TCP or other transport protocols for the
event-driven mechanism of TPL?

• Would the use of other existing transport protocols significantly influence
the answer to the first question?

2.9 Conclusions

We showed that the existing message passing standards such as PVM, MPI and
CORBA, do not allow an efficient implementation of a large class of important
applications which we refer to as non-trivial. All irregular applications belong to
this class, including so-called grand-challenge problems. (Practically every larger
parallel application belongs to this class.) The source of inefficiency is polling.
Inefficiency is not the only drawback of polling. Further drawbacks include a
destruction of the natural structure of the program code, a high execution time
variation of the same program on the same input on the same system, limited
flow control etc.

We proposed a formal message passing framework which is compatible with
existing fundamental abstract models for parallel processing. This framework
defines the structure and behaviour of any system which implements message
passing but it is very flexible at the same time—it does not dictate whether the
physical system architecture is shared or distributed memory; it does not dictate
whether the programming language is functional, logical or imperative; it does
not exclude fault-tolerance; etc. A similar framework exists for database systems
and it is well accepted by all implementors of database systems.

To the best of our knowledge, this is the first formal framework which adheres
to the existing abstract message passing models and which also covers practical
issues of parallel processing. The reason why non-trivial applications cannot be
implemented efficiently in MPI and CORBA is that these standards do not fit
into our framework. This makes these standards incompatible with formal mes-
sage passing models such as Hoare’s CSP or Andrews’ channel model. Moreover,
MPI and CORBA do not define asynchronous message passing, even though they
claim that they do. Interestingly, PVM does fit into our framework—however,
its operation binding (the current implementation of PVM) does not cover asyn-
chronous communication.

TPL, our message passing library, is a straightforward materialisation of our
message passing framework. We implemented the operation binding for clus-
ters with distributed-memory nodes. However, the language primitives defined
in TPL are system-independent. This means that a program written using the
TPL library will run without a change in the source code on a shared-memory
architecture as well (only the operation binding must be added to the implemen-
tation of the library). The TPL library is thread-safe and portable on the POSIX

102 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

level which is supported by all contemporary platforms. The interface of TPL is
very small—it only consists of 11 functions (plus 24 functions for message assem-
bling and disassembling). However, it efficiently (without polling) implements
asynchronous communication, one-sided communication, message handlers, ac-
tive messages, flow control, support for heterogeneous systems etc. We are aware
of no communication library which would cover all these features without polling
or without a loss of portability.

The current implementation of TPL is based on quasi-thread-safe PVM 3.4
and MPICH 1.2.4-ch p4. These quasi-thread-safe libraries are the original li-
braries extended with a novel interrupt mechanism. Quasi-thread-safety is al-
ready sufficient for the implementation of non-trivial application without polling.
The choice of the underlying library is not very important—a direct use of a
socket library instead of PVM or MPICH would be even more efficient. However,
our intention was to demonstrate the flexibility of TPL. An application written
in TPL can be linked with the quasi-thread-safe PVM or the quasi-thread-safe
MPICH (or any lower level library which is thread-safe or at least quasi-thread-
safe) without a change in the application’s source code. We are aware of no other
communication library which can do this.

TPL outperforms the standard PVM and MPI implementations (PVM 3.4 and
MPICH 1.2.4-ch p4) on a standard cluster platform by two orders of magnitude
on an irregular benchmark. This benchmark, a threaded pingpong, is derived
from our definition of a non-trivial application—in other words, the structure
of this benchmark directly corresponds e.g. to the structure of grand-challenge
problems. All implementations of this benchmark using the standard PVM 3.4
and MPICH 1.2.4-ch p4 libraries are forced to use polling.

In order to illustrate the importance of the results above, the following short
section presents a short case study which presents mechanisms of the MPI model
for overlapping of communication and computation. We compare these mecha-
nisms to the mechanisms of TPL.

2.9.1 Overlapping of Communication and Computation

The MPI model for overlapping of communication and computation is described
in the PhD thesis by R. P. Dimitrov, “Overlapping of Communication and Com-
putation and Early Binding: Fundamental Mechanisms for Improving Parallel
Performance on Clusters of Workstations” [Dim01] in Section 3.2.2 “Statement
of Model and Definition of Parameters”. One of the goals of the cited work
is the minimisation of the effective overhead of “asynchronous communication”
defined in the MPI standard by a proper delaying of completion synchronisa-
tion. (We claim that MPI does not define message passing, unless MPI’s “asyn-
chronous communication” is removed from the specification, therefore the quo-
tation marks.)

Dimitrov’s work is technically correct with respect to the MPI model. However,

2.9. CONCLUSIONS 103

some of the assumptions used throughout the work either do not hold or are
irrelevant in models which define message passing.

Figure 2.35: Overhead and transmission time in the MPI model. tsp denotes
the moment at which the sender posts a send request. t1 denotes the moment
when the first byte of the message is placed on the network. t2 denotes the
moment when the last byte of the message is placed on the network. tsc denotes
the moment when the application is notified about the completion of the send
request. trp denotes the moment when the application posts a receive request
(which matches the send request). t3 denotes the moment when the first byte of
the message arrives. t4 denotes the moment when the last byte of the message
arrives. trc denotes the moment when the receiver is notified about the completion
of the receive request

In Section 3.2.2, pp. 93–94, Dimitrov explains the idea behind the non-
blocking MPI Recv (the notation is explained in Fig. 2.35):

“Once the non-blocking receive request is posted, the message-
passing middleware typically does not perform any processing on this
request until a matching message arrives (i.e., until t3). According
to this scenario, Trcv1 will simply be shifted in time, and, as a result,
the application can perform other computation or communication in
the period between the moment when the request is posted and t3.

104 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

Therefore, this shift of the moment of request posting will not result
in an effective overhead increase. In fact, this behavior is encouraged
by most MPI implementations because the first component of the re-
ceive overhead can be shifted to earlier parts of the parallel algorithm
which are not overhead sensitive (e.g., in the initialization phase of
the algorithm). . . . This will decrease the effective receive overhead
incurred by the user process and improve the opportunities for over-
lapping of communication and computation. These opportunities are
further enhanced by message-passing middleware that supports in-
dependent message progress. If such a service is available, the user
process may delay the completion synchronization (e.g., MPI Wait)
until a moment after t4, which would enable this process to effectively
overlap the entire transition time with other activities.”

No implementation of MPI may violate the progress rule which is defined in
the MPI standard—for instance, MPICH does not comply to the MPI standard
(see Section 2.6.3). More generally, if the message passing middleware does not
support independent message progress, then no MPI implementation exists which
builds on such a middleware.37 (Nevertheless, these remarks are purely academi-
cal because practically all contemporary message passing middlewares do support
threading and therefore independent message progress. A similar middleware was
already provided by INMOS Transputers.)

The kind of overlapping of communication and computation which is described
in the quoted text only applies to regular (trivial) applications. The reason for
that is that is impossible to insert the completion synchronisation (MPI Wait())
anywhere into a program with an unpredictable flow of control but at the pro-
gram’s end. This is not desirable because then the lower bound of the latency of
the receive perceived by the program will be equal to the execution time of the
whole program.

Even if the application is regular—that means, it consists of communication
and computation phases which are strictly separated in the program—it does
not know when the matching message actually arrives. Therefore it can be only
guessed how much computation can be inserted between the posting of a non-
blocking request (MPI Recv()) and the completion synchronisation (MPI Wait()).
This guess is system-dependent, which means that the application must be tuned
after it has been ported to another system or when certain parameters of the
system change. This tuning may sometimes require structural changes in the
application which is very undesirable.

37The interpretation of the progress rule has been a very hot topic in the MPI Forum for
many years. According to statements of MPI developers in public forums, the interpretation
of the progress rule is still unclear. In order to clarify this, we defined a formal framework
which adheres to well-accepted abstract message passing models such as the channel model by
Andrews and which clearly defines point-to-point communication.

2.9. CONCLUSIONS 105

TPL does not offer non-blocking receive for a simple reason—it is not needed.
If the application can proceed in the computation without receiving a message, it
does not post any receive. If it cannot proceed, it blocks and waits for that mes-
sage. It is possible that the message has already arrived at the time of posting a
blocking receive, in which case the waiting is not needed. We recall that TPL does
make use of the middleware which supports independent message progress and
buffering at receiver (see Section 2.7.8). Therefore, if the matching message has
already been sent to this process (if the send request has already been posted by
the sender), it has either been received or is being received by this process. TPL
provides an automatic overlapping of computation and communication. An appli-
cation written in TPL needs no tuning after it has been ported to another system.
The strategy which is described in the quotation can only outperform TPL in
the case when the guess of the completion synchronisation point (the insertion of
MPI Wait() into the program) was correct. However, if this synchronisation point
can be precisely guessed, then a blocking receive (MPI Recv()) at the synchroni-
sation point can be used instead of the MPI Irecv() and MPI Wait() pair without
a significant loss of efficiency. This implies that TPL can only be outperformed
in the case when the application exhibits absolutely predictable communication
patterns and therefore does not need asynchronous communication at all. (This
situation is very rare because also theoretically regular communication patterns
are perturbed by external factors in real systems, e.g. by I/O operations, process
scheduling etc.)

Dimitrov further explains the idea behind the non-blocking MPI Isend, and
defines an objective of his study, pp. 94:

“The send process can achieve effective overlapping of communica-
tion and computation, similarly to the receive process, by shifting the
synchronisation procedure of the send request to a later moment, and
scheduling computation activities immediately after the send request
is registered with the MPI library (i.e., after t1). This can effectively
hide the transmission time (assuming sufficient memory bandwidth)
and also move the notification overhead to a non-time-critical segment
of the algorithm. The actual benefit of overlapping depends on the
capabilities of the computer platform, on the network infrastructure,
and the communication software. A main objective of this study is to
reveal the factors that affect overlapping, how overlapping efficiency
can be improved, and how parallel algorithms can take advantage of
overlapping.”

No abstract message passing model (except of modern “message passing sys-
tems” such as MPI or CORBA) requires the synchronisation procedure of the
send request (e.g. MPI Wait()), see Section 2.5.5. This “feature” alone makes the
modern systems incompatible with fundamental abstract message passing mod-
els. This “feature” obviously does not mean an improvement of the fundamental

106 CHAPTER 2. EVENT-DRIVEN MESSAGE PASSING

models as it forces polling in all irregular applications which use non-blocking
send. A further study of this semantics is therefore irrelevant.

TPL does not require any synchronisation procedure. It makes no sense to dis-
tinguish between blocking or non-blocking send in TPL because TPL’s buffering
at receiver guarantees that no send will block forever.

Chapter 3

Global illumination

The goal of rendering is to provide an observer who is watching a computer screen
with the same sensation as if the observer was watching a real 3D scene on the
screen. The image on the screen is computed from a 3D model. The 3D model
consists of the geometry of all 3D objects, the material properties of the 3D
objects and the properties of the light sources which illuminate the scene. The
model also contains a description of the virtual camera which takes a picture of
the scene. The picture of the 3D scene as seen by the camera appears on the
screen. In informal terms, the global illumination problem involves computing
this picture from the information stored in the 3D model.

The light distribution in the scene does not depend on the camera. Even if
the observer is missing, the light is distributed in the scene. The solution to
the global illumination problem can therefore be divided into two independent
phases:

1. Computation of the light distribution in the 3D scene

2. Measurement of the light distribution by the virtual camera

The first phase may simulate the laws of physics [FLS70] in order to compute
the distribution of light in the scene. This involves the simulation of the physics
of light—interactions of light with the objects and also with the media between
them. Note that if this phase is separated from the second phase, then the
computed illumination must also be stored. On the other hand, it can be assumed
during the computation of the first phase that the picture computed in the second
phase will be viewed by a human eye. We already know that the human eye is
sensitive to radiance and therefore a sufficient product of the first phase provides
a knowledge of radiances for all surface points and all directions in the 3D scene.

The second phase deals mostly with the human perception of colour. The hu-
man eye is a device which measures the spectral energy distribution of impinging
light. This energy distribution is a function which is defined on the wavelength
which ranges from ca. 400 nm to ca. 700 nm. The impinging light seen by

107

108 CHAPTER 3. GLOBAL ILLUMINATION

the virtual camera must be reproduced by a physical device (computer monitor,
glasses, paper) in order to create the impression of “looking at the 3D scene”.
The contemporary display devices are not able to display all energy distributions.
However, the human eye is also not able to distinguish between many different
energy distributions and therefore the simplified models used for the colour syn-
thesis in physical devices (tone mapping) are usually sufficient.

3.1 Physics of light

At a macro-level, light behaves as an electromagnetic wave. Light has all the
usual properties of waves, such as bending around obstacles and interference.
Unlike sound, light also propagates in the vacuum (sound is not an electromag-
netic wave). However, not all phenomena can be explained by the wave theory. A
simple example is the refraction of light. [Fey88] Newton was not able to explain
refraction, even though he attempted to model light with particles. It turned
out that some phenomena can be explained using the wave theory, whereas other
phenomena must be explained using the particle theory (wave-particle duality).
However, it continued to remain unclear as to which cases and why light some-
times behaves as a wave and sometimes as particles. It took several centuries
until the quantum electrodynamics theory was developed by Maxwell, Einstein,
Feynman and others. [FLS70] Quantum electrodynamics is to date the best ex-
isting theory which satisfactorily explains all light phenomena. At a micro-level,
a quantum of energy is transported by a particle called a photon. This is the
reasoning from [Fey88]:

We know that light is made of particles because we can take a
very sensitive instrument that makes clicks when light shines on it,
and if the light gets dimmer, the clicks remain just as loud—there are
just fewer of them. Thus light is something like raindrops—each little
lump of light is called a photon—and if the light is all one color, all
the “raindrops” are the same size.

A single photon is itself a “wave” with some frequency. The length of the
“wave” lambda of a single photon can be computed if its frequency is known:

λ =
c

f
(3.1)

where c is the speed of light which is constant (c ≈ 2.99 ·108 m/s). The energy
E transported by a single photon with the frequency f is equal to

E = h · f (3.2)

where h is the Planck’s constant (h ≈ 6.63 · 10−34 Js).

3.1. PHYSICS OF LIGHT 109

Heisenberg’s uncertainty principle states that it is impossible to precisely mea-
sure both the photon’s location and momentum (hence, its energy) at the same
time. The photon’s momentum p (note that photons have no mass) is defined as

p =
E

c
(3.3)

More precisely, Heisenberg’s principle states that if one makes a large num-
ber of “identical” measurements of the photon’s location and momentum under
the same experimental conditions, then the measurements will show surprising
differences. If ∆x denotes the standard deviation of the location and ∆p denotes
the standard deviation of the momentum measured over the set of “identical”
experiments, then the following tradeoff holds:

∆x∆p ≥ h

4π
(3.4)

The consequence of Heisenberg’s principle is that photons do not (only) travel
along straight lines. A photon which moves between two points, A and B (and
which is heading towards B) can theoretically choose any path from A to B (also
if there are no obstacles between the two points). The length of the path is only
limited by the speed of the light c if the photon is supposed to get to B within
a limited period of time. However, the probabilistic distribution of the paths is
not uniform. A vast majority of the photons will follow a path which is close
to the straight line connecting A and B. This fact is widely used in computer
graphics which assumes that photons only travel along straight lines unless they
interact with an obstacle. The participating medium (such as air or water) is
often ignored in computer graphics—in other words, it is assumed that the space
between object surfaces is filled with a vacuum.

Photons do not interact with each other. However, they interact with object
surfaces. When a photon hits an obstacle (an object surface), one of the following
events happens:

• The photon is absorbed.

• The photon is reflected. More precisely, the photon is absorbed and a new
photon is emitted from the point of the incidence into the half-space above
the surface (pointed to by the surface normal). The new photon carries less
energy than the absorbed photon.

• The photon is refracted. More precisely, the photon is absorbed and a new
photon is emitted from the point of the incidence into the half-space below
the surface.

Reflection and refraction differ in the direction of the reemitted photon. The
term scattering covers both reflection and refraction—a photon is scattered if it
is either reflected or refracted.

110 CHAPTER 3. GLOBAL ILLUMINATION

Most transparent materials cause a partial reflection and a partial reflection
(and a partial absorption) of photons. For instance, if a narrow beam of photons
(a ray) is shot at a glass surface under a certain angle, then one part of the pho-
tons will be reflected, another part of the photons will be refracted and some part
of the photons will be absorbed. The same experiment can also be continually
repeated using individual photons with the same statistics. Only quantum elec-
trodynamics can explain how an individual photon “makes up its mind” whether
to go through the glass or whether to reflect off it (and in which direction). The
photon randomly “chooses” one of the three events. The probabilities of the
events generally depend on the surface material, on the photon’s incoming angle
and on the photon’s frequency.

A simulation of a large number of photons and their interactions with surfaces
and media on a micro-level is very expensive. Computer simulations of lighting
bundle many photons into a beam. This bundling is already a simplification
of real-world physics but allows for the design of algorithms which are more
appropriate for lighting simulation in larger environments in a reasonable amount
of time. In the following text we will define several notions which are useful in
the simulations.

Remark. Whereas a single photon has a single frequency, a beam can contain
photons with many different frequencies. Therefore it makes sense to refer to
the light spectrum of a beam, which is an energy histogram over an interval of
(visible) frequencies. •

Definition. The solid angle subtended by a 3D surface, viewed from a point x
is the area of the projection of the surface onto the unit sphere centered at x. •

The solid angle is measured in steradians (sr) and ranges from 0 to 4π sr.
The solid angle is a 3D analogy of the angle in 2D subtended by a curve from
a point x (which is the length of the arc of the projection of the curve onto the
unit circle centered at this point).

The differential solid angle dω subtended by a differential surface with area
dA and viewed from a point at the distance r is equal to

dω =
dA cos θ

r2
(3.5)

where θ is the angle between the surface normal and the direction from the
point to the surface.

A direction in 3D can be expressed using two angles (θ, φ). A differential solid
angle dω around a direction (θ, φ) is equal to

dω = sin θ dθ dφ (3.6)

3.1. PHYSICS OF LIGHT 111

Definition. The light flux Φ is the amount of energy which passes through a
boundary per unit time over a given range of spectrum. •

The spectrum range in the flux definition is usually an interval of wavelengths
[λmin, λmax]. As it is more convenient to talk about energy radiated around a
direction rather than through a boundary, another measure is defined:

Definition. Radiance (intensity) L is the amount of energy which travels at a
given point in a given direction, per unit time, per unit area perpendicular to the
direction of travel, per unit solid angle (over a given spectrum range). •

From its definition, radiance is the flux leaving a differential area around a
given point, which leaves the point in a differential solid angle around a given
direction:

L(x, ω) =
dΦ(x, dA, ω, dω)

dA dω cos θ
(3.7)

where x is the given point, ω is the differential angle around the given direc-
tion, dω is a differential angle around the given direction, θ is the angle between
the surface normal at the given point and the given direction.

Definition. We denote Li(x, ω
′) the incoming radiance which impinges at the

point x from the direction ω′.1 •

Remark. The physical measures such as radiance, incoming radiance, . . . are
defined for a wavelength or a range of wavelengths. Equation 3.7 should therefore
be written as

LΛ(x, ω) =
dΦΛ(x, dA, ω, dω)

dA dω cos θ
(3.8)

where Λ denotes a range of wavelengths. We shall omit the superscript Λ for
the remainder of the text.

The usual practice in computer graphics is to write similar equations for three
representative wavelengths (such as R, G and B, see Section 3.2.1) and to work
with the three equations independently of each other. This means that some
phenomena such as fluorescence (which occurs when a photon hits a surface and a
new photon is reemitted at a different wavelength) cannot be correctly simulated.

•

1In order to simplify the notation, we refer to differential solid angles as directions.

112 CHAPTER 3. GLOBAL ILLUMINATION

Definition. The Ray-Trace function RT (x, ω) is a function which returns the
nearest surface point to x in the direction ω. (If there is no surface point in
the direction ω from the point x, RT (x, ω′) returns an arbitrary point along the
direction ω from the point x.) •

Radiance has a reciprocal property. For any two mutually visible points x
and y, the radiance leaving the point x in the direction of y is the same as
the incoming radiance at the point y from the direction of the point x. This
property can be directly proven from the above definitions: Let us denote dA
the differential surface around the point x and let us denote dA′ the differential
surface around the point y. Let us denote ω the differential solid angle around
the direction from x to y and let us denote ω′ the differential solid angle around
the direction from y to x. Let us denote θ the angle between the surface normal
at the point x and the direction ω. Similarly, let us denote θ′ the angle between
the surface normal at the point y and the direction ω′. Equation 3.7 can then be
rearranged as

dΦ(x, dA, ω, dω) = L(x, ω) dA dω cos θ (3.9)

The substitution of dω into Equation 3.9 using Equation 3.5 yields

dΦ(x, dA, ω, dω) = L(x, ω)
dA cos θ dA′ cos θ′

r2
(3.10)

The Equation 3.10 is called the fundamental law of photometry.
The flux which passes from x to y through any area which is a cross section of

the solid angle between x and y and a plane perpendicular to the direction from
x to y is the same as the flux which arrives at the point y from the direction of
the point x (as both fluxes pass through the same boundary):

dΦ(x, dA, ω, dω) = dΦ(y, dA′, ω′, dω′) (3.11)

As the direction of the flux which passes between the differential areas around
the points x and y is not important, an equation similar to Equation 3.10 can be
derived for the reciprocal flux:

dΦ(y, dA′, ω′, dω′) = Li(y, ω
′)
dA cos θ dA′ cos θ′

r2
(3.12)

From Equations 3.10, 3.11 and 3.12 it follows

L(x, ω) = Li(y, ω
′) = L(RT (x,−ω′), ω′) (3.13)

where−ω′ is the direction opposite to ω′ (in this case−ω′ = ω). Consequently,
radiance L(x, ω) does not depend on the distance between the points x and y.
This is the reason why the human eye and photographic cameras (which are

3.2. 3D MODELING 113

sensitive to radiance) perceive the same colour at all viewing distances when
they observe a point from the same angle.

Definition. Radiosity B is the total energy which leaves a differential area
around a given point, per unit area, per unit time (over a given range of spec-
trum). •

Hence,

B(x) =
∫

Ω
L(x, ω) cos θ dω (3.14)

where x is the given point, Ω is the space of all directions leaving x, θ is the
angle between a direction ω and the surface normal at x.

3.2 3D modeling

The modeling of real 3D scenes usually makes further simplifying assumptions.
Further approximations are required by the algorithms which compute the illu-
mination in the scenes. Some of these approximations are only necessary for the
computation of a reasonable illumination in a reasonable amount of time (some
applications require real-time) on the current hardware. As the computing power
grows, it is important to avoid using the approximations which are “hard-wired”
in an algorithm and which cannot be eliminated later unless the algorithm is
changed.

3.2.1 Modeling of colour spectrum

Spectrum is an energy histogram over a wavelength interval. A discrete rep-
resentation of real functions usually involves a sampling of the interval. The
sampling used in computer graphics applies the fact that the human eye is an
imperfect spectrometer. The whole visible spectrum can be represented using
three numbers, R, G and B (red, green, blue). [FvDFH90] Based on physiologi-
cal experiments, three basis functions (colour matching functions), r(λ), g(λ) and
b(λ) are defined on the entire visible range of wavelengths. Any spectral function
C(λ) is approximated as a linear combination of these basis functions:

C(λ) = R r(λ) +G g(λ) +B b(λ) (3.15)

When given a spectrum L(λ), the coefficients R, G and B can be computed
as

R =
∫

Λ
L(λ) r(λ) dλ, G =

∫

Λ
L(λ) g(λ) dλ, B =

∫

Λ
L(λ) b(λ) dλ (3.16)

114 CHAPTER 3. GLOBAL ILLUMINATION

where Λ is the range of visible wavelengths.
Furthermore, the human eye cannot distinguish between colours which have

only slightly different RGB coordinates. This allows a relatively coarse sampling
of the RGB coordinates. The values R, G, B are usually represented as integers
from 0 to 255 (1 Byte).

Remark. There are other colour models such as CIE XYZ, CMYK, HSV etc.
[FvDFH90] However, a conversion exists between any two of these. •

The use of any of the above colour models in a lighting simulation algorithm
introduces the assumption that light is monochromatic. The polarisation of light
is also ignored.

3.2.2 Modeling of surface geometry

The surfaces in a 3D scene are usually divided into disjoint parts, called objects.
This division can be hierarchical—an object can consist of smaller objects etc.
The objects at the bottom of this hierarchy are surfaces which are of the same
material.

The surface geometry describes the shape of a 3D surface. There are two
principal approaches to the description of surface geometry:

1. Polygonal representation (triangle mesh).

2. Constructive solid geometry (CSG).

Polygonal representation

In the polygonal representation, a surface is modeled as a union of polygons,
usually triangles. The majority of the triangles are bordering with three other
triangles. Triangle mesh is a data structure which uses this fact in order to save
space which is required for storing the triangles:

V = {v1, . . . , vmaxv}, vi ∈ R3 (3.17)

is a set (array) of vertices,

T = {t1, . . . , tmaxt}, ti = 〈va, vb, vc〉i, a, b, c ∈ {1, . . . ,maxv} (3.18)

is a set (array) of triangles. The triangle “vertices” in the set T are indices to
the vertex set V . A triangle mesh can be extended for the storing of additional
information. In particular, surface normals are often stored in the vertices in

3.2. 3D MODELING 115

order to smooth the discontinuities of the normals on the edges of neighbouring
triangles.2 This extension only requires to store an array

N = {n1, . . . , nmaxn}, ni ∈ R3 (3.19)

where ni is a surface normal in the vertex vi. The surface normal at a point
inside a triangle can be linearly interpolated using the surface normals stored in
the triangle vertices. [Pho75], [Bli78] It is generally agreed that a surface normal
always points to the half-space which is outside the surface.

Remark. Some 3D formats or programs which export surface geometry to a
3D format do not allow for the storing of the surface normal information. A
common problem involves then distinguishing which side of a triangle is inside
and which side is outside of the triangle—in other words, the orientation of the
surface normals is unclear. A common solution to this problem involves using
the order of the vertices in T to implicitly determine the direction of the normal
for a given triangle ti—unless the normals are explicitly provided in the array
N , the direction of the surface normal corresponds to the direction of the vector
product of the three vectors (vertices) indexed by ti.

Note that a triangle is independently illuminated from its front and back
sides. If the mesh structure is extended so that it stores the illumination of the
triangles in the triangle vertices, then this information must be stored separately
for the front and back sides of the triangle. However, a common practice is not
to store the illumination for the inner surfaces of objects such as balls as it is
not assumed that the inside of a ball may be of any importance. While this is
true, the simplified modeling sometimes leads to unexpected problems during the
computation of the illumination and during the visualisation of the illuminated
scene. •

One advantage of this representation is that the surface can be parameterised,
which is useful for texture mapping (the so-called uv-mapping requires a parame-
terisation of the surface). [FvDFH90] Another advantage is that this representa-
tion is supported by the hardware of the contemporary graphics cards, 3D scan-
ners and other physical devices. A practically arbitrary surface representation
can be converted into a triangle mesh—such a conversion is called a tessella-
tion. The polygonal representation is also supported in practically all existing
3D formats.

The most serious disadvantage of the polygonal representation is that triangle
meshes are only approximations of curved surfaces. The more triangles are stored

2This smoothing is desirable for the modeling of curved surfaces such as spheres. However,
the smoothing must be avoided for box-like surfaces which actually contain sharp edges, such
as a table or a cigarette box. A common workaround involves assigning a so-called crease-angle
to an object (or to the entire scene). Normals of neighbouring triangles are then only smoothed
if the angle between the natural normals of the triangles does not exceed the given crease-angle.

116 CHAPTER 3. GLOBAL ILLUMINATION

in a mesh, the better the approximation—however, the resolution of the mesh
must be fixed when the scene is being stored in a file at the latest. The chosen
resolution may not be sufficient later (for instance, when the surface is viewed
from a small distance, the discontinuities which were neglectable before may
become visible). However, the resolution cannot be increased further once it has
been fixed, see Fig. 3.1.

Figure 3.1: An example of a triangle mesh. Note the discontinuities on the top
and on the bottom of the cone

Constructive solid geometry

Constructive solid geometry (CSG) is a modeling methodology which allows us to
combine basic 3D surfaces (geometric primitives) in order to create more complex
ones using boolean set operations. The following binary operations are used to
combine two geometric primitives: union, intersection and difference. Unary
operations which can be applied to any surface are inverse (which is usually used
together with intersection in order to avoid the definition of infinite surfaces) and
transformation (rotation, scaling and translation or any combination of these).

A CSG object can be stored as a tree. The leaves of the tree store the
geometric primitives (e.g. spheres, cones, boxes, . . .), other nodes store the
operations. An example of a CSG tree is depicted in Fig. 3.2.

It is very important to note that an algorithm which computes all intersections
of a line with a CSG object exists (provided that the line-object intersections can
be computed for all geometric primitives used in the CSG tree which defines the
object). The surface normal of a CSG object can also be computed at any surface
point (if it can be computed for all the geometric primitives). [GN71], [Jan86]
The two methods which compute the intersections with a line and the surface
normals are known for many object primitives. These object primitives include
planes, quadrics, blobs, bézier surfaces, sweep surfaces, polygons, height fields
etc. [Gla89]

3.2. 3D MODELING 117

Figure 3.2: An example of a CSG tree. The object shown in the root node of the
tree is a result of the union and difference operations. The unary transformation
operations are not depicted in the figure (a transformation is applied to each node
of the tree)

Remark. The problem with surface normals as mentioned for the polygonal
representation must also be solved for the CSG representation. Hence, the com-
putation of normals for the CSG primitives must include the computation of the
orientations of the normal vectors using an agreed method. •

3.2.3 Modeling of surface materials

Surface material describes the scattering properties of the surface. Light scatter-
ing depends on the microstructure of the surface which is usually not included in
the model of the surface geometry. The scattering properties are described using
so-called material which is assigned to the surface geometry.

Generally, a ray of light which hits a surface enters the surface and then
leaves the surface from a different location. This so-called sub-surface scattering
is usually ignored and replaced by a model which assumes that the incident ray
of light leaves the surface at the point of incidence:

Definition. The bidirectional scattering distribution function, BSDF is defined
as the ratio of the scattered radiance and incoming radiance:

BSDF (x, ω′, ω) =
dLs(x, ω)

dEi(x)
=

dLs(x, ω)

Li(x, ω′) cos θ′ dω′
(3.20)

118 CHAPTER 3. GLOBAL ILLUMINATION

where x is the point of incidence, ω is a differential solid angle around the
outgoing direction, ω′ is a differential solid angle around the incoming direction,
θ′ is the angle between the surface normal and the incoming direction. The
subscript of the outgoing radiance Ls underlines the fact that Ls is only the part
of the outgoing radiance due to the scattering of the incoming light (the surface
at the point x can also emit light in which case the outgoing radiance for a given
direction is the sum of the emitted and scattered radiances). •

Remark. Note that Ls(x, ω) depends on the incoming radiances Li(x, ω
′) from

all directions ω′. dLs(x,ω)
dω′ fixes the incoming direction to one particular direction

of interest ω′. •

Remark. BSDF covers both the reflection and refraction of light. BSDF is
defined for all incoming directions ω′ and outgoing directions ω around the point
x. •

The following equation, called the scattering equation, describes the local il-
lumination model. [CW93] If the incoming radiance Li(x, ω

′) is known for all
incoming directions ω′, then the scattered radiance in the direction of interest ω
can be computed as (this follows from Equation 3.20)

Ls(x, ω) =
∫

Ω
BSDF (x, ω′, ω) Li(x, ω

′) cos θ′ dω′ (3.21)

There are physical constraints on BSDF . A surface cannot reflect more light
than it receives (Equation 3.22 and Equation 3.23). Furthermore, the reciprocal
property also applies to BSDF (Helmholtz’s principle, Equation 3.24):

∫

Ω
BSDF (x, ω′, ω) cos θ′ dω′ ≤ 1, ∀ω ∈ Ω (3.22)

∫

Ω

∫

Ω
BSDF (x, ω′, ω) Li(x, ω

′) cos θ′ dω′ dω ≤
∫

Ω
Li(x, ω

′) dω′ (3.23)

BSDF (x, ω′, ω) = BSDF (x, ω, ω′) (3.24)

The BSDF function can be directly represented as a set of values defined for
sampled surface points and incoming and outgoing directions. However, such a
representation would probably consume a lot of memory. In practice, BSDF is
described using a set of parameters of a chosen reflection model. Commonly used
reflection models were proposed by Gouraud [Gou71], Phong [Pho75], Torrance-
Sparrow [TS67], Blinn [Bli77], Schlick [Sch93] and others. We will briefly intro-
duce the Phong model.

3.2. 3D MODELING 119

Phong reflection model

In the Phong reflection model, the reflective material properties are described
by four scalars kd (diffuse coefficient), ks (specular coefficient), ka (ambient co-
efficient) and s (shininess). The model does not actually define the BSDF—it
replaces Equation 3.21 with another one. [Pho75] The scattered radiance Ls(x, ω)
is expressed as (we generalise the original Phong formula slightly)

Ls(x, ω) = ka

∫

Ω\ΩL

Li(x, ω
′) cos θ′ dω′+

∫

ΩL

Li(x, ω
′) (kd cos θ′+ks coss α) dω′

(3.25)
The integration domain is split into two parts. The part ΩL denotes all

incoming directions from a light source to the point x which are not blocked by
any other object. In other words, ΩL is a set of directions from which the point
x is directly illuminated.

The Phong model is purely empirical. Its parameters have no physical mean-
ing. The splitting of the integration is already wrong—the real BSDF function
makes no distinction between direct and indirect incoming light (the surface mate-
rial has no means of distinguishing between direct and indirect incoming light—it
reflects both in the same way).

The term ks coss α in Equation 3.25 depends on the position of the camera, as
α is the angle between the perfectly mirrored direction of ω ′ around the normal at
x and the viewing direction. (This is another flaw of the model—the real BSDF
function does not depend on the camera.) This term simulates so-called specular
highlights which are caused by a direct reflection of light from a metalic surface
onto the camera. The parameter ks controls the intensity of the highlight and
the parameter s controls its “tightness”.3

The indirect illumination term
∫
Ω\ΩL

Li(x, ω
′) cos θ′ dω′ is sometimes approx-

imated with a constant in some illumination algorithms (local illumination algo-
rithms).

The reason why we deal with the Phong model is that it is assumed in the
majority of the existing 3D formats—in which the material description consists
of the four scalars kd, ks, ka and s. The description of materials is a very serious
problem of contemporary computer graphics.

Modified (more realistic) Phong reflection model

Fortunately, the four parameters used in the Phong model can be given a more
realistic interpretation than that of Equation 3.25. [LW94] The modified Phong

3We assume here silently that the surface of each object consists of the same material and
that each object is assigned its own BSDF . It would be possible to describe the surfaces of all
objects using one global BSDF but in such a case the parameters kd, ks, ka and s would be
functions of x.

120 CHAPTER 3. GLOBAL ILLUMINATION

model obeys Equation 3.21 and defines the BSDF function as a sum of specular
and diffuse components:

BSDF (x, ω′, ω) = BSDFd(x, ω
′, ω) +BSDFs(x, ω

′, ω) = kd
1

π
+ ks

s+ 2

2π
coss α

(3.26)

where α is the angle between the perfect specular reflective direction and the
outgoing direction. (The parameter ka is ignored.)

This BSDF model does not include light transmission. The adding of light
transmission usually requires an inclusion of additional parameters such as IOR
(index of refraction) and the transparency coefficients of the model (and also an
inclusion of the additive term which corresponds to Equation 3.26).

3.2.4 Modeling of light sources

A light source is an area which emits light without being illuminated from the
outside. A light source can be characterised by the placement and geometry of
the area and by its directional radiant properties. It is usually assumed that these
properties do not change over time. A light source i is characterised by its radiant
emittance lie(x, ω). There is a finite set of light sources in the 3D model. The
whole set of light sources is described using the function Le(x, ω) =

∑
lie(x, ω).

4

The idealised light source types widely used in computer graphics are a point
light source and an area diffuse light source. The area of a point light source is a
differential area around a point and the energy emitted in all directions is equal.
(A simple modification of a point light source is a spot light source which is a
differential area around a point which emits energy in a cone around the point.
The emitted radiance is maximal in the direction of the cone axis and zero for the
directions outside the cone.) The area of an area diffuse light source is a non-zero
(usually planar) area, point of which emits energy equally in all directions.

A more realistic description of light sources is provided by the ANSI/IESNA
standard “IES Recommended Standard File Format for Electronic Transfer of
Photometric Data”. [LM-02] Characteristics of many real luminaires (light fix-
tures) by various manufacturers are stored in the IES format (the description of
a luminaire is essentially the radiance function sampled in many points of the
luminaire in many directions). This format is being adopted by the computer
graphics community. For instance, the RADIANCE rendering system [War94]
can import light sources which are described using the IES format and work with
them.

4We can assume that the areas of light sources do not overlap. (The area of a light source i
is the set of points x for which lie(x, ω) 6= 0 for some ω.)

3.3. THE GLOBAL ILLUMINATION PROBLEM 121

3.2.5 Modeling of camera

A camera is a device which is sensitive to radiance. The radiance is measured
using a finite set of sensors. A sensor i is characterised by its sensor responsive-
ness function wi

e(x, ω
′) which returns 1 if the radiance impinging at the point

x in the direction ω′ directly reaches the measuring device (e.g. a film or an
eye). Otherwise it returns 0. The total response measured by the sensor i in a
differential area around a point x is

∫

Ω
wi
e(x, ω

′) Li(x, ω
′) cos θ′ dω′ (3.27)

where θ′ is the angle between the incoming direction ω′.

The set of all sensors is characterised by the functionWe(x, ω
′) =

∑
wi
e(x, ω

′).5

The picture seen by the camera consists of a finite number of pixels which are
organised in a rectangular 2D grid. Each pixel is covered by one sensor. The
total response measured over a pixel is thus

∫

S

∫

Ω
We(x, ω

′) Li(x, ω
′) cos θ′ dω′ dA

=
∫

S

∫

Ω
We(x, ω

′) L(RT (x,−ω′), ω′) cos θ′ dω′ dA (3.28)

where dA is a differential area around the point x, θ′ is the angle between the
incoming direction ω′ and the surface normal at the point x and S is the area
covered by the pixel. The interpretation of this equation is: “The total response
of a sensor is the radiance which directly reaches the measuring device.”

3.3 The global illumination problem

An instance of the global illumination problem is a tuple

〈G,BSDF,Le, C〉 (3.29)

where G is a description of the surfaces, BSDF is a description of the material
properties of the surfaces, Le is a description of the light sources and C is a
description of the camera. The problem is to compute the values measured by
the camera sensors.

5We can assume that the areas of sensors do not overlap. (The area of a sensor i is the set
of points x for which wi

e(x, ω
′) 6= 0 for some ω′.)

122 CHAPTER 3. GLOBAL ILLUMINATION

3.3.1 Rendering equations

Radiance equation

A mathematical definition of the global illumination problem is comprised in the
Equation 3.28. The calculation of the total response of a camera sensor (colour
of a pixel) depends on the knowledge of the function Li over the set of points x
and directions ω′ of interest (for which We(x, ω

′) 6= 0).
The unknown incoming radiance Li (or radiance L, see Equation 3.13 which

relates L and Li) can be calculated using the scattering equation 3.21. We recall
that Ls(x, ω) on the left side of Equation 3.21 is the scattered radiance at the
point x. If the point x also emits light, then the total outgoing radiance L(x, ω)
which leaves the point x due to emission and scattering is equal to

L(x, ω) = Le(x, ω) + Ls(x, ω) (3.30)

= Le(x, ω) +
∫

Ω
BSDF (x, ω′, ω) L(RT (x,−ω′), ω′) cos θ′ dω′

Equation 3.30 is called the radiance equation. In order to solve the global
illumination problem, Equation 3.30 must be solved (the function L must be
calculated) for those x and ω which contribute to the integration in Equation 3.28
at least.

Potential equation

The global illumination problem can also be looked at from another point of view,
using an abstract measure which expresses the visual importance.

Definition. (Visual) potential (also called visual importance)W (x, ω ′) is defined
as the percentage of the incoming radiance Li(x, ω

′) at the point x in the direction
ω′ which reaches the measuring device. •

Remark. The percentage of the incoming radiance Li(x, ω
′) at the point x in

the direction ω′ which directly reaches the measuring device is equal to We(x, ω
′).
•

Let us denote Ws(x, ω
′) the percentage of the incoming radiance Li(x, ω

′) at
the point x in the direction ω′ which leaves the point x and indirectly reaches the
measuring device—that means after one or more scatterings. From the definitions
of BSDF (Equation 3.20) and the potential it follows that

W (RT (x, ω), ω) BSDF (x, ω′, ω) cos θ

3.4. APPROACHES TO THE GLOBAL ILLUMINATION PROBLEM 123

is the percentage of Li(x, ω
′) which leaves the point x in the direction ω due to

scattering and then (directly or indirectly) reaches the measuring device. θ is the
angle between the surface normal at the point x and the direction ω. The total
percentage of Li(x, ω

′) which reaches the measuring device is thus equal to

W (x, ω′) = We(x, ω
′) +Ws(x, ω

′) (3.31)

= We(x, ω
′) +

∫

Ω
BSDF (x, ω′, ω) W (RT (x, ω), ω) cos θ dω

Equation 3.31 is called the potential equation. There is a strong structural
similarity between the potential equation and the radiance equation. Indeed,
the solving of the potential equation also solves the global illumination problem.
If the function W (x, ω′) is known, then the total response of a sensor can be
calculated as

∫

S

∫

Ω
W (RT (x, ω), ω) Le(x, ω) cos θ dω dA (3.32)

where dA is a differential area around the point x, θ is the angle between the
direction ω and the surface normal at the point x and S is the area of all the light
sources. The interpretation of this equation is: “The total response of a sensor
is the percentage of the emitted radiance times the percentage of this emitted
radiance which eventually reaches the measuring device”.

3.4 Approaches to the global illumination prob-

lem

Both the radiance equation 3.30 and the potential equation 3.31 are Fredholm
integral equations of the second kind and cannot be (except for a few special cases)
solved analytically. [Atk76] There are two classes of methods which numerically
solve the equations:

• Direct methods which directly solve the integral equations. These include
Monte Carlo and Quasi Monte Carlo integrations in higher dimensions.

• Approximation methods which make additional simplifying assumptions and
solve simplified equations. These include (eye-) ray tracing and finite ele-
ment methods such as radiosity.

The main advantage of the direct integration methods is that they work with-
out approximations with the original model. This means for instance that if the
integration method guarantees a certain error bound, then this error bound also
applies to the computed images.

124 CHAPTER 3. GLOBAL ILLUMINATION

An important practical question by designing a global illumination algorithm
is whether the algorithm requires an explicit storage of the radiance or the po-
tential function over the space of all surface points and directions. As this space
is infinite, the explicit representation of the function radiance or the potential
function in finite memory is already an approximation. The error bound of such
an approximation is usually difficult to predict. This means that direct methods
should not rely on the explicit storing of the radiance or the potential functions
in order to guarantee the error bound provided by the underlying integration
method.

3.4.1 Direct methods

Gathering path integration

The radiance equation 3.30 can be regarded as a recurrent definition of the un-
known function L. Let us denote R the radiance transport operator

(RL)(x, ω) =
∫

Ω
BSDF (x, ω′, ω) L(RT (x,−ω′), ω′) cos θ′ dω′ (3.33)

Using this operator, the radiance equation 3.30 can be written as

L = Le +RL
= Le +R(Le +RL) = Le +RLe +R2L

. . .

=

(
n∑

i=0

RiLe

)
+Rn+1L (3.34)

Fig. 3.3 and Fig. 3.4 depict the geometry of the integrands of (RL)(x, ω) and
(R2L)(x, ω), respectively. If the operator R is a contraction (and it is—thanks to
the underlying physics, see Equation 3.22) then limn→∞Rn+1L = 0. Therefore

L = lim
n→∞

n∑

i=0

RiLe =
∞∑

i=0

RiLe (3.35)

The terms RiLe have the following structure:

(R0Le)(x, ω) = Le(x, ω)

(R1Le)(x, ω) =
∫

Ω1

BSDF (x, ω′1, ω) Le(RT (x,−ω′1), ω′1) cos θ′1 dω
′
1

(R2Le)(x, ω) =
∫

Ω2

∫

Ω1

BSDF (RT (x,−ω′1), ω′2, ω′1) BSDF (x, ω′1, ω)

Le(RT (RT (x,−ω′1),−ω′2), ω′2) cos θ′1 cos θ′2 dω
′
1 dω

′
2

. . . (3.36)

3.4. APPROACHES TO THE GLOBAL ILLUMINATION PROBLEM 125

1

1
�

�������
1 �

���	��
����
���
1 � � � 1 � �

�

��
��������
1 � �

1
�

Figure 3.3: Gathering path integration: The geometry of the integrand of the
term (RL)(x, ω)

1

1 �
�������

1 �

���������������
1 !� � 1 �

�

�����"���#�
1 !�

1 �
2 �

�����������������
1 !� �$� 2 !�

���%�������&���"���#�
1 !� �#� 2 !� � 2 !�

2 �

Figure 3.4: Gathering path integration: The geometry of the integrand of the
term (R2L)(x, ω)

These terms have a physical interpretation: “(RiLe)(x, ω) is the radiance at
the point x in the direction ω which has been scattered exactly i-times after it
had left a light source (including the scattering at the point x).”

As the operator R is contractive (a part of the transported radiance is ab-
sorbed in each scattering), the values of (RiLe)(x, ω) get smaller as i increases:

(R0Le)(x, ω) ≥ (R1Le)(x, ω) ≥ (R2Le)(x, ω) ≥ (R3Le)(x, ω) ≥ . . . (3.37)

The most rigorous algorithms which use Equation 3.35 in order to solve the
global illumination problem are path tracing [Kaj86] and distributed ray tracing
(also called Monte Carlo Ray Tracing) [CPC84]. These algorithms do not ex-
plicitly store the computed radiance function—instead they directly compute the
integral 3.28 using Monte Carlo integration. Both path tracing and distributed

126 CHAPTER 3. GLOBAL ILLUMINATION

ray tracing generate paths which consist of line segments (rays). The first ray
starts at the measuring device and goes through a pixel (its direction is ran-
domly generated). If a ray does not hit a surface, the path will be terminated.6

Otherwise a decision is made whether the path will be prolonged by another ray
(the direction of this scattered ray is generated randomly) or whether the path
is terminated.7 The probability of the prolongation of a path is proportional to
an estimated contribution of the new ray to the integral 3.28 (as the radiance
transport operator R is a contraction, this contribution decreases as the length of
the path increases). When a path is terminated, its contribution to the integral
3.28 is added and the path is discarded. The difference between path tracing
(Fig. 3.5) and distributed ray tracing (Fig. 3.6) is that path tracing only collects
the direct lighting Le from the light sources in the last point of the path which
is being terminated, whereas distributed ray tracing collects the direct lighting
in the last point of every segment of the path. (Note that the collection of the
direct lighting is a necessity if the scene contains point light sources, because the
probability of hitting a point light with a randomly generated ray is zero.)

³�
³�

³�
³�

Figure 3.5: Camera tracing with a single collection of the direct radiance (path
tracing)

Shooting path integration

The potential equation 3.31 can be expanded in a similar way to that of Equa-
tion 3.34. Let us denote P the potential transport operator

6Instead of the termination of the path in this case, the algorithm may shorten the path
and recursively trace other rays.

7If a ray hits a surface of a light source, the path is terminated in order to avoid a multiple
addition of the direct lighting. Another possibility involves excluding the surfaces of light
sources from the computations of these intersections.

3.4. APPROACHES TO THE GLOBAL ILLUMINATION PROBLEM 127

³�
³�

³�
∫�

∫�

∫�

Figure 3.6: Camera tracing with a multiple collection of the direct radiance
(distributed ray tracing)

(PW)(x, ω′) = We(x, ω
′) +

∫

Ω
BSDF (x, ω′, ω) W (RT (x, ω), ω) cos θ dω (3.38)

The potential equation 3.31 can be written as (note that the operator P is a
contraction)

P = We + PW
= We + P(We + PW) = We + PWe + P2W
. . .

=

(
n∑

i=0

P iWe

)
+ Pn+1W

=
∞∑

i=0

P iWe (3.39)

Fig. 3.7 and Fig. 3.8 depict the geometry of the integrands of (PW)(x, ω′)
and (P2W)(x, ω′), respectively.

The terms P iWe of the infinite sum have the following structure:

(P0We)(x, ω
′) = We(x, ω

′)

(P1We)(x, ω
′) =

∫

Ω1

BSDF (x, ω′, ω1) We(RT (x, ω1), ω1) cos θ1 dω1

(P2We)(x, ω
′) =

∫

Ω2

∫

Ω1

BSDF (RT (x, ω1), ω1, ω2) BSDF (x, ω′, ω1)

We(RT (RT (x, ω1), ω2), ω2) cos θ1 cos θ2 dω1 dω2

. . . (3.40)

128 CHAPTER 3. GLOBAL ILLUMINATION

1

�
���������
	��

1
 � 1
 ���
	�� �

	

1

�����
	��
1

Figure 3.7: Shooting path integration: The geometry of the integrand of the term
(PW)(x, ω′)

1

����������
���
1 � � 1 �

������� � �
�

1

�����
���
1 �

�������������������
1 � � 2 � � 1 �

���������������
1 � � 2 �

2

2

Figure 3.8: Shooting path integration: The geometry of the integrand of the term
(P2W)(x, ω′)

The physical interpretation of these terms is: “(P iWe)(x, ω
′) is the percentage

of the incoming radiance impinging at the point x in the direction ω ′ which reaches
the measuring device after exactly i scatterings (including the scattering at the
point x).”

The most rigorous algorithm which uses Equation 3.39 in order to solve the
global illumination problem is light tracing. [DLW93] Light tracing does not ex-
plicitly store the computed potential function—instead it directly computes the
integral 3.32 using Monte Carlo integration. The algorithm generates paths which
consist of line segments (rays). The first ray starts at a randomly chosen point of
a randomly chosen light source in a randomly chosen direction. If a ray does not
hit a surface, the path is terminated. Otherwise a decision is made as to whether
the path will be prolonged by another ray (the direction of this scattered ray is
randomly generated) or whether the path will be terminated.8 The probability

8Instead of the termination of the path in this case, the algorithm may shorten the path
and recursively trace another rays.

3.4. APPROACHES TO THE GLOBAL ILLUMINATION PROBLEM 129

of the prolongation of a path is proportional to an estimated contribution of the
new ray to the integral 3.32 (as the potential transport operator P is a contrac-
tion, this contribution decreases as the length of the path increases). When a
path is terminated, its contribution to the integral 3.32 is added and the path is
discarded. The direct potential We from the camera can be collected either at
the last point of the path which is being terminated (Fig 3.9) or at the last point
of every segment of the path (Fig 3.10).

³�
∫�

³�

³�

Figure 3.9: Light tracing with a single collection of the direct potential

³�

∫�

³�

³�
∫�

∫�

Figure 3.10: Light tracing with a multiple collection of the direct potential

Bidirectional path integration

A disadvantage of the gathering and shooting path integrations are their slow
convergence. In practice, this slow convergence means that certain light phenom-
ena, e.g. caustics, take a long time to compute—however, we must stress that if

130 CHAPTER 3. GLOBAL ILLUMINATION

the computational time is unlimited then any of the direct methods can correctly
solve the global illumination problem (the expected solution is equal to the exact
solution with probability 1). Bidirectional path integration combines the gather-
ing and shooting paths into global paths which connect the measuring device with
a light source. Note that the gathering paths generated by distributed ray trac-
ing also connect the measuring device with a light source—however, the length
of the “shooting path segment” (which collects the direct lighting) is limited to
the length one. Similarly, the shooting paths generated by light tracing also con-
nect the measuring device with a light source, but in this case the “gathering
path segment” (which collects the direct potential) is limited to the length one.
Bidirectional path integration connects shooting and gathering paths of arbitrary
lengths, see Fig. 3.11 and Fig. 3.12 [LW93], [VG94], [Vea97]

³�

³�
³�

³�
³�

Figure 3.11: Bidirectional path tracing

The above path integration methods as well as other direct methods (such
as stochastic iteration, [SK99b], [SK99a]) are stochastic methods. As such they
suffer from stochastic errors which are perceived as noise in the computed images.
However, if approximations are avoided in the algorithms which are used within
the methods, then probabilistic guarantees can be given on the computed results.
The most important guarantee is that the computed results are on average correct
and that the stochastic errors can be eliminated by using more random samples
(e.g. more paths or more iterations).

3.4.2 Approximation methods

Most approximation methods restrict the modeling of surface material proper-
ties to perfect diffuse or perfect specular reflectors. The idea is to simplify the
structure of one of the rendering equations and to apply a deterministic method
which solves the modified equation. The disadvantage of this is that practically

3.4. APPROACHES TO THE GLOBAL ILLUMINATION PROBLEM 131

³�

³�
³�

³�
³�

Figure 3.12: Bidirectional path tracing with multiple connections of the gathering
and shooting paths

no surface of nature is perfectly diffuse or perfectly specular (or a linear combina-
tion of both). Therefore the solution to the modified problem usually differs from
the solution to the original (physically more correct) problem and this difference
cannot usually be bounded. Two well-known methods of this kind are (eye-) ray
tracing and radiosity. The next two chapters are devoted to these two methods.
We sketch the simplifying assumptions which they make below.

(Eye-) Ray tracing

(Eye-) ray tracing solves a simplified version of Equations 3.28 and 3.30 using the
expansion 3.35. It is assumed that all object surfaces are perfect specular reflec-
tors (or perfect specular transmitters, or both) for the purpose of the computation
of the indirect illumination (the terms RiLe(x, ω), i ≥ 2).

A perfect specular reflector is a surface which is characterised by the following
BSDF :

BSDFr(x, ω
′, ω) = ks ∆(ω, ω′ − 2(N · ω′) ·N) (3.41)

where x is a surface point, ω′ is the incoming direction (a normalised 3D
vector), ω is the outgoing direction (a normalised 3D vector), ks ∈ 〈0, 1) is a
specular coefficient, N is the surface normal at the point x and ∆ is a slightly
modified Dirac function (for directions in 3D):

∀ω2 6= ω1 : ∆(ω1, ω2) = 0

∀ω1 :
∫

Ω
∆(ω1, ω2) dω2 = 1

132 CHAPTER 3. GLOBAL ILLUMINATION

The direction ω′− 2(N ·ω′) ·N in Equation 3.41 is the mirror direction which
lies in the same plane as ω′ and N and the angle between this mirror direction
and the surface normal is equal to the incoming angle, see Fig. 3.13.

�

�

�

�

Figure 3.13: Perfect specular reflection. θ = θ′

A perfect specular transmitter is a surface which is characterised by the fol-
lowing BSDF :

BSDFt(x, ω
′, ω) =





kt ∆
(
ω, kior ω

′ +
(
kior cos θ −

√
1 + k2ior(cos

2 θ − 1)
)
·N

)

if 1 + k2ior(cos
2 θ − 1) ≥ 0

ks ∆(ω, ω′ − 2(N · ω′) ·N)
if 1 + k2ior(cos

2 θ − 1) < 0
(3.42)

where x is a surface point, ω′ is the incoming direction (a normalised 3D
vector), ω is the outgoing direction (a normalised 3D vector), kt ∈ 〈0, 1) is a
specular transmission coefficient, kior ∈ (0, 1〉 is the index of refraction9 between
the surrounding medium and the surface material at x, N is the surface normal
at x, ∆ is the modified Dirac function and θ is the angle between the incoming
direction and the surface normal at x (hence, cos θ = N · (−ω ′)), see Fig. 3.14.

The direction kior ω
′ +

(
kior cos θ −

√
1 + k2ior(cos

2 θ − 1)
)
· N is the perfect

direction of refraction (Snell’ Law). The first split term of BSDFt represents
the perfect specular refraction, the second split term represents the total internal
reflection which occurs when the incoming angles is small.

The resulting BSDF is the sum of the perfect specular reflection and the
perfect specular transmission:

9The index of refraction may depend on the wavelength of the incoming light. This is why
a glass prism divides the refracted white light into a rainbow. [New52] A varying index of
refraction can be included in this model.

3.4. APPROACHES TO THE GLOBAL ILLUMINATION PROBLEM 133

�

�

�

�

Figure 3.14: Perfect specular refraction. sin θ = kior sin θ′

BSDF (x, ω′, ω) = BSDFr(x, ω
′, ω) +BSDFt(x, ω

′, ω) (3.43)

The BSDF above is used in the computation of the terms RiLe(x, ω), i ≥ 2
in the potential equation 3.31. For the computation of the direct lighting (the
terms R0Le(x, ω) and R1Le(x, ω)), either the Phong model (Equation 3.25) or
the modified Phong model (Equation 3.26) are used.10 This is not quite correct
but it saves computational time. Eye ray tracing is very similar to distributed ray
tracing which is schematically depicted in Fig. 3.6. The difference between the
two is that eye ray tracing only computes the integral which corresponds to the
direct camera rays (the computation of this integral is called anti-aliasing) and
the integral which corresponds to the dashed direct light rays (the computation of
this integral is called shading). All the integrals in-between are only approximated
by sampling the radiance function in two principal directions (the direction of the
perfect reflection and the direction of the perfect transmission).

Radiosity

The radiosity method consists of two steps in order to compute the picture viewed
by the camera. In the first step (the so-called view-independent step), the un-
known radiance function is computed using a simplified version of Equation 3.30.
Unlike (eye-) ray tracing, the radiosity method explicitly represents the radiance

10The term R0Le(x, ω) is often ignored. This term corresponds to the direct lighting which
impinges at the camera and it is responsible for the effect known as “lens flare”. This effect
can be observed when a picture is taken against the sun. The sunlight which directly hits the
camera lens creates colourful circles.

134 CHAPTER 3. GLOBAL ILLUMINATION

function. In the second step (the view-dependent step) the picture viewed by the
camera is computed using Equation 3.28.

The first of the simplifying assumptions which are made by radiosity is that
all object surfaces are perfect diffuse reflectors. A perfect diffuse reflector is a
surface which is characterised by the following BSDF :

BSDF (x, ω′, ω) =

{
kd(x)
π

if ω lies in the half-space of reflection (ω′ and N)
0 otherwise

(3.44)
where kd(x) ∈ 〈0, 1) is a diffuse reflection coefficient, see Fig. 3.14. Note that

this BSDF does not depend on ω′ or ω (as the basic radiosity method ignores
the transmission of light, we will in the following text restrict the set of incoming
and outgoing directions Ω to the directions in the half-space of reflection). This
means that the incoming radiance is equally reflected in all outgoing directions.
This assumption allows us to write Equation 3.30 as

L(x, ω) = Le(x, ω) +
kd(x)

π

∫

Ω
L(RT (x,−ω′), ω′) cos θ′ dω′ (3.45)

�

�

�

Figure 3.15: Perfect diffuse reflection. The incoming radiance is equally scattered
in all outgoing directions in the half-space of reflection, independently of the
incoming direction ω′

The second simplifying assumption is that all surfaces are modeled as planar
areas (so-called patches) and that the 3D model only contains a finite number
of these patches. Moreover, the radiance over all points of one patch is assumed
to be constant. Let P1, . . . , Pn denote the patches. These patches include light
sources. The radiant emittance of all light sources is assumed to be perfectly
diffuse (Le(x, ω) is only a function of x) and constant at every point of one patch.
In other words, all light sources are area light sources. We define exitance at a
point of light source (which is characterised by its radiant emittance lie(x, ω), see
Section 3.2.4) as

3.4. APPROACHES TO THE GLOBAL ILLUMINATION PROBLEM 135

E(x) =
∫

Ω
lie(x, ω) cos θ dω (3.46)

If all light sources are area light sources (perfect diffuse emitters) and if their
areas do not overlap, then the above equation can be simplified by using the fact
that Le(x, ω) does not depend on ω (Equation 3.6 is used to express the direction
ω as polar angles):

E(x) =
∫

Ω
Le(x, ω) cos θ dω = Le(x, ω)

∫

Ω
cos θ dω

= Le(x, ω)
∫ π

0

∫ 2π

0
cos θ sin θ dθ dφ = π Le(x, ω) (3.47)

We recall here the definition of radiosity (Equation 3.14). If a point x lies on
a surface of a perfect diffuse reflector (or a perfect diffuse emitter), then L(x, ω)
does not depend on ω. Hence, radiosity at the point x is equal to

B(x) =
∫

Ω
L(x, ω) cos θ dω = L(x, ω)

∫

Ω
cos θ dω = π L(x, ω) (3.48)

The multiplication of Equation 3.45 by π yields

B(x) = E(x) + kd(x)
∫

Ω
L(RT (x,−ω′), ω′) cos θ′ dω′ (3.49)

Note that not all incoming directions ω′ contribute equally to the integral in
the above equation. Those directions for which the function RT (x,−ω ′) does not
find a surface point do not contribute at all. For all other directions the point
y = RT (x,−ω′) lies on a surface of a perfect diffuse reflector or emitter. For the
point y it holds that

L(y, ω′) = L(RT (x,−ω′), ω′) = B(y)

π
(3.50)

The above equation and the substitution of dω′ into Equation 3.49 using
Equation 3.5 yield

B(x) = E(x) +
kd(x)

π

∫

S
B(y)

cos θ cos θ′

r(x, y)2
V (x, y) dA (3.51)

where θ is the angle between the surface normal at the point y and the di-
rection from y to x, r(x, y) is the distance between the points x and y and dA is
a differential area around the point y. The integration domain S are all surface
points. The function V (x, y) is a visibility function which is needed in order to
avoid the collection of multiple contributions to the integral after the change to
the integration domain. Note that in the integral of Equation 3.49, the func-
tion RT (x,−ω) returns the nearest point to x in the direction of −ω, whereas

136 CHAPTER 3. GLOBAL ILLUMINATION

the integration over all surface points also includes further points. The visibility
function V (x, y) returns 1 for the nearest point and 0 for all further points:

V (x, y) =

{
1 if the points x and y are mutually visible
0 otherwise

(3.52)

Radiosity B(y) in Equation 3.51 depends on the patch on which the point
y lies. However, we assume that the radiosity in each point of one patch is
constant. The integration domain S is the union of all patches, S =

⋃n
i=1 Pi and

so the integral of Equation 3.51 can be divided into a sum of integrals:

B(x) = E(x) +
kd(x)

π

n∑

i=1

∫

y∈Pi

B(y)
cos θ cos θ′

r(x, y)2
V (x, y) dAi (3.53)

Equation 3.53 is not quite correct because it violates the assumption of the
constant radiosity over all points of one patch—the values of B(x) which are com-
puted for different points x of one patch using Equation 3.53 are not necessarily
equal. To overcome this problem, we define patch radiosity Bi, i = 1, . . . , n as
an area-weighted average of the point radiosities Bi(x), x ∈ Pi:

Bi =
1

Ai

∫

x∈Pi

B(x) dx (3.54)

where Ai is the area of the patch Pi. Similarly, we define patch exitance
Ei, i = 1, . . . , n as an area-weighted average of the point exitances E(x), x ∈ Pi:

Ei =
1

Ai

∫

x∈Pi

E(x) dx (3.55)

A correct version of Equation 3.53 is therefore

Bi = Ei + ρi
n∑

j=1

Bj
1

Ai

∫

x∈Pi

∫

y∈Pj

cos θ cos θ′

π r(x, y)2
V (x, y) dAj dAi (3.56)

where ρi = kd(x) at any point x ∈ Pi (the diffuse reflection coefficient kd(x)
is constant for all points of a patch).

If we denote

Fij =
1

Ai

∫

x∈Pi

∫

y∈Pj

cos θ cos θ′

π r(x, y)2
V (x, y) dAj dAi (3.57)

then Equation 3.56 can be written as

Bi = Ei + ρi
n∑

j=1

FijBj (3.58)

3.5. CONCLUSIONS 137

Equation 3.58 is called the radiosity equation. Note that the terms Fij only
depend on the geometry of the patches in the 3D model and can therefore be
computed independently of the illumination. The terms Fij are called form fac-
tors.

The radiosity equation is a linear equation system with the unknowns Bi, i =
1, . . . , n. The system can be written in an equivalent matrix form as




1− ρ1F11 −ρ1F12 . . . −ρ1F1n
−ρ2F21 1− ρ2F22 . . .

...
... . . .

. . .
...

−ρnFn1 1− ρnFnn







B1
B2
...
Bn




=




E1
E2
...
En




(3.59)

Any known method for solving linear equation systems (e.g. Gauss method)
can theoretically be used to solve this equation system. The main practical
difficulties are the size of the system (very large models consist of millions of
patches) and the computation of the matrix elements (the computation of the
form factors Fij).

When the radiosity equation is solved, Equation 3.28 is used to compute the
picture. The patch radiosities are stored, therefore the model can quickly be ren-
dered for many different cameras without the need to recompute the illumination.

Remark. A simplification of the potential equation leads to a similar linear
equation system to that of Equation 3.58. The unknowns in this case are “diffuse
patch potentials” (“diffuse patch potential” is a counterpart of radiosity). After
the modified equation system has been solved, pictures of the model viewed by
one camera can quickly be rendered for different lighting conditions (for different
sets of light sources) using Equation 3.32.

The knowledge of both the patch radiosities and the “diffuse patch potentials”
allows for a quick rendering of the model for different cameras under different
lighting conditions. The preprocessing phase in this case consists of the solving
of two (similar) linear equation systems.

Furthermore, the two equation systems (the radiosity equation and the “dif-
fuse potential equation”) can be combined in order to speed up the rendering for
one camera and for one set of light sources. [SAS92], [SP94], [BW95] •

3.5 Conclusions

A realistic simulation of global illumination is a challenging problem. An accurate
simulation of the underlying physics on an atomic level is computationally not
feasible for the purpose of the illumination of large-scale scenes. The state of the

138 CHAPTER 3. GLOBAL ILLUMINATION

art mathematical formulation of the global illumination problem involves two
adjoint Fredholm integral equations of the second kind: radiance and potential
equations. These equations can be extended in order to include further light
phenomena without destroying their structure.

The methods which solve the global illumination equations can be divided
into two categories. The methods in the first category attempt to directly solve
the equations, without further approximations. The essence of these methods is a
Monte Carlo integration in high dimensions which at least provides probabilistic
guarantees of the accuracy of the computed images. The methods in the second
category make additional approximations. Two popular examples of such meth-
ods are ray tracing and radiosity. Ray tracing is more flexible than radiosity as it
does not make approximations on the modeling level and can be extended in order
to compute the full global illumination with no approximations. Also, some light
phenomena which are not covered in the radiance and potential equations—for
instance participating medium—can be incorporated into a ray tracing algorithm
(much more easily than into a radiosity algorithm).

Some textbooks on computer graphics make a distinction between “view-
dependent” and “view-independent” methods. (Note that the illumination never
depends on the camera, therefore the quotation marks.) From a theoretical point
of view, it is not very important as to whether a method explicitly stores the
computed illumination (“view-independent”) or only computes the information
which is necessary in order to render a picture viewed by the camera (“view-
dependent”). However, the explicit storage of illumination may consume a large
amount of memory and may invalidate error bounds given by the numerical meth-
ods which are used to solve a rendering equation.

Contemporary 3D standards do not reflect the requirements of global illumi-
nation algorithms. Commercial modeling programs use proprietary 3D formats
which are incompatible with other modeling programs. The 3D models can be
exported into one of the existing open formats such as VRML [ISO97] but this
leads to a loss of information in the 3D model. For instance, it is very paradoxal
that although practically no modeling system internally works with triangles (hu-
man 3D artists do not model a surface using non-overlapping triangles, they use
Constructive Solid Geometry instead), the only representation which can be ex-
ported is a triangle mesh. The lack of a portable 3D standard is in our opinion a
very serious problem because imperfections in input data cause imperfections in
rendered images. We sketch a solution to this problem in Section 6.1.

Chapter 4

Ray tracing

The ray tracing method (also referred to as eye-ray tracing) computes an im-
age of a 3D scene by recursively tracing rays from the eye through the pixels of
a virtual screen into the scene, summing the light path contributions to pixels’
colors. The main idea behind this method is to only follow those photon paths
which contribute to the image seen by the camera. The basic ray tracing algo-
rithm was proposed by Whitted in 1980.1 [Whi80] This algorithm is still very
popular in real-world rendering systems. It can serve as a basis for all direct
methods which are introduced in Section 3.4 and also, perhaps less apparently,
for the radiosity method which we discuss in Chapter 5.

This chapter focuses on the basic ray tracing algorithm which only traces
rays in the directions of perfect specular reflection and perfect specular refrac-
tion in order to evaluate the higher-order integrals of the radiance equation (see
Section 3.4.2). We present the existing optimisation techniques which acceler-
ate the computation of the function RT (x, ω) (which is defined in Section 3.1).
[Gla89] In spite of these optimisation techniques, sequential computation times
can range from minutes to hours. A parallelisation of the algorithm is therefore
very desirable.

Many research papers on parallel ray tracing are only interested in the perfor-
mance of the algorithms. Software engineering issues are often ignored. Among
these belong questions such as:

• Can the parallel algorithm be easily integrated into an existing sequential
code?

• Will it be possible to continue the development of the sequential code with-
out the need of reimplementation of the parallel version?

1The idea of tracing rays from the camera to the 3D scene was first described in [App68] in
the context of hidden-surface removal.

139

140 CHAPTER 4. RAY TRACING

• Which existing sequential optimisation techniques can be reused in the
parallel version (and which can not)?

We keep these questions in mind throughout this chapter. The parallelisation
method which we propose is based on the method of Green and Paddon. [GP89],
[Gre91] We propose a better screen subdivision algorithm which improves the
existing screen subdivision algorithms. We show that false conclusions may be
drawn if the performance of the parallel algorithms is only compared empirically
and if active polling is used in the underlying communication library.

4.1 The basic ray tracing algorithm

The basic ray tracing algorithm (sometimes referred to as backwards ray tracing
or eye ray tracing) solves the radiance equation 3.30. [Whi80], [Gla89] Instead
of the computation of the radiance L(x, ω) at all surface points x and all direc-
tions ω, ray tracing only computes the radiance function at points and directions
which contribute to the integral of Equation 3.28 (which corresponds to the im-
age viewed by the camera). The computed radiance values are typically not
permanently stored. Ray tracing traces rays through the camera pixels in order
to compute the integral of Equation 3.28. These rays are called primary rays.
The direct lighting contribution to the radiance function is computed by the ray
tracing shader at the closest intersection points between these rays and the 3D
surfaces in the direction to the camera (the computation of the closest intersec-
tion points equals to the computation of the function RT which is defined in
Section 3.1). At these intersection points new rays are generated. The basic ray
tracing algorithm only generates two secondary rays, in the directions of perfect
specular reflection and perfect specular transmission. These secondary rays are
recursively traced until the direct lighting in the new intersection points has no
significant contribution to the integral of Equation 3.28 (or until a user-defined
recursion limit is reached).

The computation of the direct illumination contributions in the intersec-
tion points involves the generation of so-called shadow rays (the dashed rays in
Fig. 3.6). The shadow rays sample the directions from the points on the surfaces
of light sources to the intersection point in order to compute the direct illumina-
tion terms of the integrals of Equation 3.25 (the Phong illumination model). The
basic ray tracing algorithm usually assumes the use of point light sources only,
which reduces the number of the shadow rays to the number of light sources for
each intersection point.

4.2. SEQUENTIAL OPTIMISATION TECHNIQUES 141

4.2 Sequential optimisation techniques

Already Whitted identified the repeated evaluation of the function RT (x, ω)
(which returns the closest intersection of the ray starting at point x in direc-
tion ω with the 3D scene) as the far most expensive activity (ca. 90% of the
processing time) in the ray tracing algorithm. [Whi80] This evaluation involves
the computation of a number of ray-object intersections. We will refer to these
intersection computations as ray tracing operations (RTOPs).

Although not all secondary rays must be generated (not all materials are
specular reflectors or transmitters), the number of the RTOPs is still very high.
The following estimation can be found in [DS84] Denote an average number of
secondary rays spawned at an intersection point N and assume that the average
depth of the ray tracing recursion tree over all primary rays isD. (One ray tracing
recursion tree is assigned to one pixel. The root of the ray tracing recursion tree
corresponds to the primary ray generated for that pixel. The remaining nodes
of the tree correspond to the rays generated by the ray tracing recursion.) The
average number of nodes in one tree is then equal to

D∑

i=1

N i−1 =
ND − 1

N − 1

Denote L the average number of shadow rays over all intersection points (if
we assume that the scene only contains point light sources, then L is equal to
the number of point light sources). Denote the number of primary rays W (W
is equal to the number of camera pixels). Denote the number of objects in the
scene X (we assume here that objects are geometric primitives). Then the total
number of RTOPs is equal to

#RTOP = W ·X
(
ND − 1

N − 1

)
(1 + L)

For a realistic setting W = 720 × 576, X = 1000, L = 2, N = 1.2, D = 5
the total number of RTOPs is approximately equal to 9.26 · 109. This section
describes some of the techniques which reduce this number.

4.2.1 Bounding volumes

A simple optimisation technique are bounding volumes. Bounding volumes do not
actually reduce the number of ray tracing operations. The idea behind bounding
volumes is to replace many expensive ray tracing operations with less expensive
ones. Each finite object is enclosed into a volume whereby the computation of
the intersections of a ray with the volume is much cheaper than the computation
of the intersections of the ray with the object enclosed. The intersections with

142 CHAPTER 4. RAY TRACING

the object must only be computed for those rays which intersect the object’s
bounding volume.

Good candidates for bounding volumes are boxes and spheres for which the in-
tersection calculations are very fast. [RW80] Bounding volumes can be computed
automatically in the preprocessing phase of the ray tracing algorithm. The more
tightly the bounding objects enclose the original objects, the more computational
effort is saved during the ray tracing algorithm.

4.2.2 Bounding slabs

A very important technique for the reduction of ray tracing operations are bound-
ing slabs—a space subdivision hierarchy. The idea behind this technique is a
construction of a tree (or, more generally, a DAG) which subdivides the 3D space
containing the scene into a hierarchy of non-overlapping volumes. The leaves of
this tree are either objects or their bounding volumes. [RW80]

When intersections of a ray with the scene are to be computed, the ray is first
tested for an intersection with the root of the tree (the volume which contains all
the objects). If the ray intersects this volume, the successors of the root node are
recursively tested for intersections. The recursion is terminated when either the
ray does not intersect any of the current node’s successors or the current node
is a leaf and the intersections for all objects comprised in the volume have been
computed.

The theoretical upper bound on the cost of the tree traversal is O(3
√
N) for any

balanced subdivision tree with the number of leaves equal (or proportional) to
the number of objects. [RKJ98] Even though the worst case does not practically
happen, the use of bounding slabs means a certain tradeoff. A bad situation
occurs when a node of the tree corresponds to a large volume which contains
several small objects (or one small object). In this case the costs of the tree
traversal may be higher than the costs of the direct intersection of the objects’
bounding boxes.

It is important that the bounding slabs can be constructed automatically in
the preprocessing of the ray tracing algorithm. Non-uniform space subdivision
based on BSP trees [Kap85] or octrees [Gla84] adapts better to general scenes
than uniform space subdivision [FTI86]. A hybrid spatial subdivision is described
in [CDP95].

Remark. It makes sense for some object types (e.g. triangle meshes) to build a
local subdivision tree for the object’s volume. This speeds up the local intersec-
tion calculations and does not influence the traversal of the main tree. •

4.3. PERSISTENCE OF VISION RAY TRACER 143

4.2.3 Light buffers

Light buffers are a technique which is specific to the reduction of ray tracing
operations for shadow rays. [HG86] In order to determine whether an intersection
point is in a full shadow in a given direction with respect to a light source, it is not
necessary to compute all the intersections along the direction. The light source
is surrounded by a cube the surface of which is discretised into cells. (The choice
of the number of the cells only influences the performance of this technique, not
its correctness.) Bounding boxes of all objects are projected onto this cube in the
preprocessing step and a list is created for each cell which contain the pointers
to the bounding boxes which hit the cell. This list of objects’ bounding boxes is
sorted by their distances from the light source.

In order to determine whether a given point lies in a full shadow with respect
to the light source, the intersections of the ray from the light source to the given
point are only computed with the objects which are stored in the list of the
cell through which the ray passes. This computation is terminated when either
an intersection of the ray with an opaque object is found, or the distance of
the next stored object is greater than the distance from the light source to the
given point. (Note that if the given point is not in a full shadow with respect to
the light source, the algorithm returns the list of intersections between the light
source and the point. This information is needed by the ray tracing shader in
order to approximate the attenuation of the emitted radiance with respect to the
given point.)

4.3 Persistence of Vision Ray Tracer

It is not particularly difficult to implement a sequential ray tracer. However, it is
not easy to implement a good ray tracer because of technical pitfalls which arise
when several optimisation techniques are combined together and when further
extensions have to be built in. The freeware (sequential) Persistence of Vision
Ray Tracer [PT] is state of the art for several reasons:

• All important existing ray tracing optimisation techniques are comprised
in POV-Ray. These include the use of bounding volumes, bounding slabs
(a space subdivision hierarchy), light buffers and vista buffer.

• POV-Ray supports a variety of geometry primitives, light source types,
cameras and materials. Constructive Solid Geometry is used in order to
create more complex objects (see Section 3.2.2).

• The scene description language is a macro language which adds power to
the CSG modeling.

144 CHAPTER 4. RAY TRACING

• The implementation is portable. POV-Ray has been ported to practically
all existing platforms. It does not rely on any graphical interface (although
it is possible to use one) or external libraries which may cause a loss of
portability.

• Although the program is relatively large (ca. 100000 lines of ANSI C code),
the object-oriented way of coding make it robust and extensible. The source
code is freely available.

• POV-Ray implements several extensions to the basic ray tracing algorithm.
One of these extensions is the computation of the indirect diffuse illumina-
tion using distributed ray tracing (see Section 3.4.1). The implementation is
based on the algorithm proposed by Ward, Rubinstein and Clear. [WRC88]

• POV-Ray is used and supported by many people. Most of the contributions
of the Internet Ray Tracing Competition (IRTC) use POV-Ray as the final
rendering system. [IRT]

POV-Ray has been developed by POV-Team, a group of volunteer program-
mers. The original implementation of POV-Ray (version 0.5, released in 1991)
was based on DKBTrace by David Kirk Buck. The current official version is 3.5.
However, the version 3.5 leaves the original principles of POV-Ray. In particular,
the implementation of caustics in the version 3.5 is not only far from being per-
fect but also enormously increases the complexity of the implementation. [Lüc03]
In our opinion, the last extensible official version of POV-Ray is 3.1g which we
chose for our parallelisation and experiments.

4.4 Parallel ray tracing

Unless stated otherwise, we assume throughout this section that message passing
is used for the communication between parallel processes.

4.4.1 Existing approaches

Parallel ray tracing algorithms can be roughly divided into two classes [Gre91]:

• Image space subdivision (or screen space subdivision) algorithms exploit the
fact that the primary rays sent from the camera through the pixels of the
virtual screen are independent of each other. Tracing of primary rays can
run in parallel without a communication between processes. The problem
of an unequal workload in processes must be considered. Another problem
arises by rendering large scenes—a straightforward parallelization requires
a copy of the whole 3D scene to be stored in the memory of each process.
On the other hand, these algorithms are usually easy to implement.

4.4. PARALLEL RAY TRACING 145

• Object space subdivision algorithms geometrically divide the 3D scene into
disjunct regions which are distributed in process’ (processors’) memories.
The computation begins with passing of the primary rays to processes stor-
ing the regions through which the primary rays pass first. The rays are
then recursively traced by the processes. If a ray leaves a process’s region,
it is passed to the process which stores the adjacent region (or discarded if
there is no adjacent region in the ray’s direction). An advantage of object
space subdivision algorithms is that the maximum size of the rendered 3D
scene is theoretically unlimited because it depends only of the total memory
available in all processes. Potential problems are an unequal workload and
a heavy communication between processes. Moreover, an implementation
of these algorithms may be laborious.

• Functional decomposition and hybrid algorithms, extend the data-driven
approach of object space subdivision algorithms with additional demand-
driven tasks in order to achieve a better load balance.

We will briefly present the works which belong to the last two classes. (We
recommend [RCJ98] and [CDR02] for further reading.) Then we will return to
image space subdivision which is the base of our parallelisation.

Object space subdivision algorithms

One of the first parallel algorithms was proposed in [DS84] Their algorithm is
based on a geometrical subdivision of 3D space into convex 3D regions. Each
region is assigned to one process. Rays are traced by processes and when a ray
leaves the region assigned to the process, it is passed to the neighbour which
maintains the region in the direction of the ray. The authors give a theoretical
estimation of the speedup, O(3

√
S2) where S is the number of regions. (An analysis

of the object space subdivision is given in [CWBV85] for an empty scene.) The
authors also propose to adjust the boundaries of the regions in run-time in order
to achieve a better balance. This algorithm has never been implemented.

The cost estimation prediction given in [RKC98] assumes an octree spatial
subdivision (see Section 4.2.2) and predicts costs of parallel ray tracing for voxels
of the octree. This prediction can be useful for a balanced static assignment of
objects to processors e.g. in image space subdivision algorithms which work with
a distributed object database (see Section 4.4.4).

The use of pyramidal-shaped regions is proposed in [BP88] and [PB89]. The
pyramidal regions begin in the eye point and ensure that primary rays never leave
their initial regions, which saves some communication between processes.

A mapping of 3D regions onto a hypercube is given in [KNS87]. Their idea is
to achieve an efficient implementation of object space subdivision on a hypercube
multiprocessor architecture. In [KNK+88], a load balancing strategy is described

146 CHAPTER 4. RAY TRACING

in which each 3D region is maintained by a cluster of several processes. This
allows for parallel intersection calculations inside one region.

The idea behind Jevan’s work [Jev89] is to immediately send a prolonged ray
to the neighbouring process which maintains the next region, before computing
intersections with the ray with the current region. If the ray is intersected with
the current region, the results of the neighbour’s computations are canceled.

In [Pit93], an implementation of an object space algorithm is described. The
experiments showed that the fine-grain strategy leads to a low (56%) efficiency
and that the regular 3D space subdivision which was used in the implementation
leads to a work imbalance. The regions which contain light sources are responsible
for a high load in these regions.

Functional decomposition and hybrid algorithms

The algorithm described in [SC88] uses a functional decomposition in order to
parallelise ray tracing. Each process stores a copy of the entire scene together with
a bounding volume hierarchy (see Section 4.2.2). The tree of bounding volumes
is divided into an upper and lower parts. All processes perform the intersection
computations with the upper part of the tree for different rays in parallel. How-
ever, an overloaded process does not perform the intersection computations with
the lower part of the tree—instead of that it sends this work to an underloaded
process. Experimentally measured efficiencies range from 68% to 88%.

The algorithm presented in [RC97] is based on object space subdivision (the
scene is distributed in process’ memories). This algorithm distinguishes between
several task types (such as shading tasks and intersection calculation tasks). Some
of these tasks are generated on-the-fly and as not every task can be performed by
any process, it is impossible to predict the loads in the processes. Other tasks are
generated by a master process. Whenever a process is idle (that means, its queue
of external requests is empty), it sends a work request to the master process. A
similar approach is described in [NL96].

An algorithm which uses functional decomposition in order to make use of
programmable hardware is proposed in [PBMH02]. (This work assumes a triangle
representation of objects.)

4.4.2 Image space subdivision

The computations on the primary rays (pixels of the virtual screen) are inde-
pendent of each other which suggest an assignment of screen areas to parallel
processes. Therefore, the processes which perform the computations on non-
overlapping screen areas do not need to communicate at all. However, there are
several additional issues which must be considered in order to make this approach
efficient and general:

4.4. PARALLEL RAY TRACING 147

1. The computational times for different primary rays are not equal and they
cannot be reliably predicted before the computations have actually been
performed.2 It must also be said that even though the computations on
primary rays are independent of each other, there is a coherence between
primary rays which are close to each other in the image space.

2. The sum of computational times for all primary rays is much greater than
the computational time for any single primary ray.

3. The communication between processes cannot be neglected even if the mes-
sages exchanged are very short.

4. Some sequential optimisation techniques such as saving of the primary rays
in anti-aliasing schemes do lead to dependencies between pixels.

5. The parallelisation should assume that the complete scene description does
not fit into memory of each process.

The first three issues are dealt with in this section. The problem of memory
limitations is addressed separately, as it is suggested in [GP89], [Gre91]. Sec-
tion 4.4.4 is devoted to the design of a distributed database.

A static subdivision of the image space is proposed in [Woo84]. This static
subdivision scheme assigns the same amount of pixels to processes. The pixels
assigned to one process are spaced at regular intervals across the screen. Wood-
wark’s work assumes that the whole scene description fits into the memory of
each process.

Theoretical as well as experimental arguments for why any static subdivision
scheme is inadequate in order to achieve a good efficiency (over 90%) are given
in [HA98]. The granularity of screen subdivision is not fine enough to yield the
desired efficiency when the law of large numbers is applied.

Several works use chunking (which is sometimes referred to as tiling) in order
to distribute the work among processes. Chunks are screen regions of a constant
size which are assigned to idle processes on demand by a central master process.
[CT96], [GP89], [Gre91], [BBP94], [FFB99], [FHK97], [KH95]3

We found only one paper on screen space subdivision which reports experience
with work stealing. [BBP94] The processes are connected to a logical ring. Ini-
tially, each process is assigned an equal amount of work. When a process finishes
a job, it sends a job request to the ring. If the same job request returns from the

2Some results concerning cost control rather than cost estimation for primary rays are given
in [CC02]. This cost control is based on the psychological observation that different pixels in
the computed image have a different visual importance when the image is perceived by a human
observer.

3The work by Keates makes use of hardware-supported shared memory in order to address
the scene storage problems in the processes.

148 CHAPTER 4. RAY TRACING

other side of the ring without having been satisfied, then the process knows that
it can terminate. Otherwise the process gets a new screen part to compute.

The abstract model for scheduling parallel loops is very similar to screen space
subdivision of parallel ray tracing (assuming enough memory to store the whole
scene in memories of all processes) in the sense that there is a static pool of
tasks which can be computed in parallel but for which the computational times
cannot be predicted. [KW85], [FHSF91], [FHSF92], [FHBWW95], [FHSUW96]
The cited papers give an analysis of factoring (also referred to as fractiling) which
is similar to chunking but the chunk size is gradually decreased. The latest
four papers propose a halving of the chunk size and compare such a factoring
with a uniform size chunking. Assuming a normal probability distribution of the
tasks’ computational times, an analysis on the expected imbalance is given. The
problem with these results is that the halving of the chunk size does not lead
to a perfect balance of load. The knowledge of the expected imbalance does not
improve the actual parallel time.

The algorithm which we propose below is a generalisation of the previous ap-
proaches. The uniform size chunking and the factoring into halves are special
cases of our algorithm. The parameters of our algorithm are intuitive. We can
characterise the setting of the parameters which yields a perfect load balance (while
minimising the communication costs). The only remaining question is how to find
this setting.

Perfect load balancing algorithm

We will assume a farming model which consists of one master process and N
worker processes (see Fig. 4.1). The master process assigns non-overlapping
screen areas to workers, collect the results from the workers and updates the
frame buffer (the image which is being computed). A worker is initially waiting
until it receives a job from the master. Then the worker traces the primary rays
for the given area, returns the computed subimage to the master and waits for
another job.

The farming scheme can be extended with a load balancing process (load-
balancer), which takes over one of the master’s responsibilities—the distribution
of jobs to workers (see Fig. 4.1). The only information which is needed by the
loadbalancer process is the size of the image (this information is passed from
the master to the loadbalancer at the very beginning of the computation). The
introduction of the loadbalancer process effectively reduces the idle times in the
worker processes. When a worker becomes idle (or shortly before it becomes
idle), it sends a job request to the loadbalancer and the computed subimage to
the master. [Pla98]

The problem is to determine an appropriate granularity of the assigned parts.
The choice of granularity influences the load balance and the number of exchanged
messages. There are two extreme cases: 1. The assigned parts are minimal (pix-

4.4. PARALLEL RAY TRACING 149

MASTER

WORKER 1WORKER 1 WORKER 2 WORKER N.....

Figure 4.1: Left: A process farm. Right: A process farm extended with a load
balancing process

els). In this case the load is balanced perfectly but the number of work requests
is large (equal to the number of pixels which is usually much greater than the
number of workers). 2. The assigned parts are maximal (the whole image is par-
titioned into as many parts as the number of workers). In this case the number
of work requests is low but the load imbalance may be great. Fig. 4.2 depicts
these two extreme cases.

1 2 3 4 5 6 7 8

Figure 4.2: The extreme cases of chunking. Left: Minimal chunks. Right: Maxi-
mal chunks

Let W denote the total number of atomic parts (e.g. image pixels or image
columns), let N denote the number of workers (a homogeneous parallel machine
is assumed). The task of a load balancing algorithm is to compute the W atomic
parts on N workers in the shortest possible parallel time. Let us assume that a
minimal constant T is known which bounds the maximal ratio of the computa-
tional times on any two atomic parts (T ≥ 1.0):

processing time on part 1

processing time on part 2
≤ T (4.1)

If this assumption holds, then the algorithm in Fig. 4.3 is perfect in the sense
that it guarantees a perfect load balance (the maximal imbalance is not larger
than the processing time of the atomic job with the largest processing time). At

150 CHAPTER 4. RAY TRACING

the same time, the number of work requests is minimal. [Pla02a]4

loadbalancer(float T , int W , int N)
int part size;
int work = W ;
while (work > 0)
part size = max (1, bwork/(1 + T · (N − 1))c);
for (counter = 0; counter < N ; counter++)
wait for a work request from an idle worker;
if (work > 0)
send job of size part size to the worker;
work = work − part size;

collect work requests from all workers;
send termination messages to all workers;

Figure 4.3: The perfect load balancing algorithm (used in the loadbalancer pro-
cess)

Claim. The algorithm in Fig. 4.3 always assigns as much work as possible to
idle workers, while still ensuring the best possible load balance.

Proof. The algorithm works in rounds, one round being one execution of the
while-loop. In the first round the algorithm assigns image parts of size

smax = max (1, bW/(1 + T · (N− 1))c)

(measured in the number of atomic parts). In each of the following rounds the
parts are smaller than in the previous round. Obviously, the greatest imbalance
is obtained when a processor pmax computes a part of the size smax from the first
round as long as possible (whereby the case of smax = 1 is trivial and will not
be considered here) and all the remaining N − 1 processors compute the rest of
the image as quickly as possible (in other words, the load of the remaining N − 1
processors is perfectly balanced). The number of parts computed in parallel by
all processors except of pmax is W − smax. The ratio of the total workload (in
terms of the number of processed atomic parts) of one of the N − 1 processors
(let pother denote the processor and let sother denote its total workload) and smax

is then
sother
smax

=
W−smax

N−1
smax

=
W−bW/(1+T ·(N−1))c

N−1
bW/(1 + T · (N− 1))c

4A similar algorithm was independently published in [PMTR95].

4.4. PARALLEL RAY TRACING 151

This ratio is greater or equal to T . This means that the processor pother does at
least T times more work than the processor pmax in this scenario. From this and
from our assumptions about T and about the homogeneity of processors follows
that the processor pmax must finish computing its part from the first round at
the latest when pother finishes its part from the last round. Thence, a perfect load
balance is achieved even in the worst case scenario.

It follows directly from the previous reasoning that the part sizes smax assigned
in the first round cannot be increased without affecting the perfect load balance.
(For part sizes assigned in the following rounds a similar reasoning can be used,
with a reduced image size.) This proves the optimality of the above algorithm.

•

Claim. The number of work requests (including final work requests that are not
going to be fulfilled) in the algorithm in Fig. 4.3 is equal to

N · (r + 1) +

⌈
W ·

(
1− N

1 + T · (N − 1)

)r⌉

where

r = max
(
0,
⌊
log1− N

1+T ·(N−1)
(N/W)

⌋)

Proof. It is easy to observe that

N ·W
1 + T · (N − 1)

·
(
1− N

1 + T · (N − 1)

)i−1

atomic parts get assigned to workers during the ith execution of the while-loop
and that

W ·
(
1− N

1 + T · (N − 1)

)i

atomic parts remain unassigned after the ith execution of the while-loop.
r is the total number of executions of the while-loop minus 1. The round r

is the last round on the beginning of which the number of yet unassigned atomic
parts is greater than the number of workers N . r can be determined from the
fact that the number of yet unassigned atomic parts after r executions of the
while-loop is at most N :

W ·
(
1− N

1 + T · (N − 1)

)r
≤ N

which yields (r is an integer greater than or equal to 0)

r = max
(
0,
⌊
log1− N

1+T ·(N−1)
(N/W)

⌋)

152 CHAPTER 4. RAY TRACING

There are N work requests received during each of the r executions of the
while-loop, yielding a total of N · r work requests. These do not include the
work requests received during the last execution of the while-loop. The number
of work requests received during the last execution of the while-loop is equal to

⌈
W ·

(
1− N

1 + T · (N − 1)

)r⌉

Finally, each of the workers sends one work request which cannot be satisfied.
Summed up,

N · (r + 1) +

⌈
W ·

(
1− N

1 + T · (N − 1)

)r⌉

is the total number of work requests. •

The perfect load balancing algorithm in Fig. 4.3 is a compromise between
the two extreme chunking cases in Fig. 4.2. The two extremes are obtained
when T →∞ (minimal chunks), or when T = 1 (maximal chunks), respectively.
Fig. 4.4 illustrates the work assignment for N = 2 and T = 3.

�
���
���
���
���
���
���
���
���
���

� ��� ��� ��� ��� ����
6FUHHQ�UHVROXWLRQ

�QXPEHU�RI�DWRPLF�SDUWV�

1X
PE

HU�
RI�

ZR
UN�

UHT
XH
VWV

��ZRUNHUV

��ZRUNHUV

���ZRUNHUV

����ZRUNHUV7 ���

Figure 4.4: Left: Illustration of the work assignment in the perfect load balancing
algorithm for N = 2 and T = 3. Right: The exact number of work requests in
the perfect load balancing algorithm as a function of the number of workers and
the number of atomic parts

4.4.3 Setting of parameters in the perfect load balancing
algorithm

Two parameters must be tuned in the perfect load balancing algorithm. The
first parameter is the job time ratio parameter T . The second parameter has
not been introduced yet. It may be useful to pack more pixels into a single job

4.4. PARALLEL RAY TRACING 153

towards the end of the algorithm because a computation on several pixels may
cost much less than sending several messages instead of one. We will define M as
the size of the minimal job which should be assigned to a worker. M is measured
as the number of the original atomic work parts (M ≥ 1). One line in the load
balancing algorithm in Fig. 4.3 will be modified:

part size = max (1, bwork/(1 + T · (N − 1))c)

will be replaced with

part size = max (M, bwork/(1 + T · (N − 1))c)

It is obvious that the chunking approaches are special cases of our algorithm.
Indeed, if M is equal to the chunk size and T → ∞, then chunks of the size M
will be distributed among workers on demand. The algorithm is also a generali-
sation of factoring which assigns a half of the still unassigned work equally to all
workers—factoring in halves is obtained by setting T = (2N − 1)/(N − 1) and
M = 1.

The tuning of the parameters T and M should be fully automatical. The
parameters can be tuned independently of each other. Unfortunately, both must
be set before the computation begins and they both depend on the amount of
the computation which is unknown before the computation finishes.

Setting of the atomic job size M

The parameter M controls the sizes of the smallest jobs which will be distributed
in the last round of the algorithm. An overestimation of M results in a potential
imbalance. The extreme setting ofM = W/N yields (independently of T) a static
distribution of load which is obviously the worst case in terms of load balance.

The optimal setting of M depends on the communication costs and compu-
tational times for the original jobs. If M is too small, then communication costs
can dominate the computation of jobs of the size M . Moreover, the loadbalancer
process can become a bottleneck when many workers send their job requests
frequently. This also influences the optimal setting of M .

Our suggestion is to run the load balancing algorithm with M = 1 and adapt
M according to the measurements performed in the run-time. This involves an
extension of the protocol between the loadbalancer and worker processes. The
worker process can measure the computational time Tjob spent on the last job and
report this time to the loadbalancer together with a job request. The loadbalancer
process measures the time from the moment tstart when a job was assigned to the
worker to the moment tfinish when it becomes another job request from that
worker. The communication time Tcomm (for that particular job) is then equal to
Tcomm = tfinish− tstart−Tjob. Tcomm ≥ Tjob is an indication of that the job size in
the load balancing algorithm should not be further decreased in the next rounds.

154 CHAPTER 4. RAY TRACING

(The fixation of M can be postponed e.g. until Tcomm ≥ Tjob is measured for all
jobs which were assigned in the same round.)

Remark. The constant M can also be used in the worker process in order
to prefetch another job. If the worker is computing a job and detects that the
number of parts remaining does not exceedM at some moment, it can send a work
request to the loadbalancer before its current job is finished. This prefetching
can hide a part of the communication overhead. •

Setting of the job time ratio T

The parameter T controls the sizes of the largest jobs which will be distributed
already in the first round of the algorithm. An underestimation of T results in
a potential imbalance. The extreme setting of T = 1 yields (independently of
M) a static distribution of load. The problem is that if T was underestimated
at the beginning of the algorithm, then an adjustment of T in run-time does not
help (unlike a run-time adjustment of M) unless jobs which have already been
assigned can be taken away from workers.

The optimal setting of T depends on the ratio between the computational
times on the longest and shortest job assigned. If T is too great, then an unnec-
essary communication overhead will add to the parallel time.

A conservative approach to the tuning of T is to assign jobs of the size M
among the N workers in the first round and estimate T from the statistics which
are collected after a worker finishes. T is then set to the maximum job time ratio
measured on previous jobs. This alone does not prevent an underestimation of
T—the small jobs from the first round only cover a small part of the image and
therefore they are not a representative sample of the computational times across
the whole image. However, the statistics collected during the first round allow
for setting a limit on the computational times of jobs which are assigned in the
next round. If a worker which computes a job detects during the computation
that it has spent more time on the job than the limit allows (this detects an
underestimation of T), then it stops the computation, sends a partially computed
part of the job to the master and returns the part which has not been computed
back to the loadbalancer. The loadbalancer updates its estimation of T and at
an appropriate time it notifies the workers for which this update is relevant.

We suggest an optimistic approach which allows an underestimation of T by
using an empirical constant for T which remains constant during the algorithm.
The potential imbalance can be eliminated by the use of work stealing as an
additional phase which begins immediately after the loadbalancer has no more
parts to distribute. The work stealing phase involves a higher overhead than the
farming but it overlaps with the farming phase and it is only initiated when an
imbalance is detected—this means, when a worker sends a work request to the

4.4. PARALLEL RAY TRACING 155

loadbalancer and receives a “no more work” reply. The work stealing phase can
overlap with the farming phase. The constant T controls the amount of work
stealing which is needed to balance the load at the end. T → ∞ yields a pure
work stealing. The closer the estimation of T is to the optimal T , the shorter
will be the work stealing phase.

4.4.4 Distributed object database

It is desirable that the screen subdivision algorithm proposed in the previous
section also works if the entire scene description does not fit into the memory of
each processor. This problem can be overcome by the use of a database which is
capable of storing all the scene data. The access to an external database (such
as a standard client-server database system or a disk storage in general) may be
prohibitively expensive because the frequency of queries is very high. A careful
reordering of operations in the ray tracing algorithm may overcome the problem
of the slow communication with an external database [PKGH02] but this may
result in a special implementation of an one-purpose ray tracer.

Green and Paddon suggest a different approach [GP89], [Gre91] which we
decided to follow. It is assumed that the sum of the memories of all the processes
involved in the parallel computation (the worker processes) is sufficient to hold
the entire scene description. The function of each worker process is twofold: 1.it
performs the recursive computations on the primary rays; 2.it serves as a database
server for all the remaining workers, which means that it accepts data requests
from the other workers and provides them with the requested data. This makes
parallel ray tracing a non-trivial application, see Section 2.1.

Before coming to a design of the distributed database, we will make some
observations. Ray tracers can support a variety of object types most of which
are very small in memory. Polygon meshes are one of a few exceptions. If a
scene does not fit into memory of one process, it is usually because it consists
of several large polygon meshes. We therefore distribute mesh objects in our
implementation but the implementation does not exclude a distribution of other
object types.

We assume that any single object does fit into memory of each process. (It
should also be said that a majority of scenes do fit into memory of each worker.)
Some amount of memory is required by the program code, stack, image buffer,
acceleration ray tracing structures (such as bounding boxes, bounding slabs, light
buffers) etc. Most of these acceleration structures can be switched off so that they
do not consume any memory.

The scene description stored in the database does not usually change during
the computations of one image. This allows to decide during the preprocessing
whether the amount of memory is sufficient to store the scene or not. Initially,
the scene is stored in a file. The scene description in the file does not necessarily
correspond to the storage of the scene in the (main) memory—we recall that

156 CHAPTER 4. RAY TRACING

e.g. POV-Ray uses a macro language which allows a procedural creation of the
objects. During the parsing of the scene file by all worker processes, objects
are created in the memories of the worker processes. After an object has been
created in memory, the workers synchronise and decide whether the object will be
replicated in memory of all workers or whether the object will only be stored in the
memory of one worker. In the latter case the worker with minimal current memory
load is selected to become the owner of that object. All the remaining workers
delete the data which belong to that object (e.g. vertex coordinates, vertex
normals, triangle indices etc. belong to the data of a mesh object). However,
they do not delete the object’s envelope. This envelope contains a global object
identifier, the identifier of the object’s owner (e.g. the rank of the process which
stores the object’s data), the object’s bounding box, a flag whether the object
is currently present in the memory etc. After this, workers continue in parsing
the scene file. Note that none of the workers consumes more memory than it is
necessary at any one time.

If the parsing phase was successful, then each worker is able to store the
objects which it owns and it has at least as much free memory as it is needed
to store the data of the largest object in the distributed database. The worker’s
memory which is unused after the parsing stage will be used as a cache for the
objects which are not owned by the worker. A worker never deletes the data of
the objects which it owns.

Object’s data are needed at two places in the ray tracing algorithm: in the
intersection computations and in the shading. It must be ensured that the data
of the object are in the memory before they are referenced—if the data are not in
the memory, a data request is sent to the owner. It is likely that the object which
is being referenced at the moment will also be referenced in a near future because
of the coherence of the primary rays.5 The sole fact that a cached object is
being referenced is useful for the bookkeeping of the cache policy which uses this
information in order to decide which objects will be released from the cache when
new object’s data are to be inserted into the cache. Fig. 4.5 depicts the pseudo-
code of the function Fetch Object Data which is inserted in the ray tracing code
immediately before the object’s data will be referenced.

An object’s owner acts as a server for all other workers which eventually need
the object’s data. A worker must run a separate thread which reacts to mesh
requests by sending the data independently of the worker’s computations.

Remark. The shading computations always follow the intersection computa-
tions for the same object—however, not immediately. A large number of other
objects may be referenced meanwhile. The object which was referenced in the
intersection computations may be released from the cache before it is referenced
again in the shading. In order to save the latter data request, all the information

5A more sophisticated method can be used to predict the future object references. [RKC98].

4.4. PARALLEL RAY TRACING 157

Fetch Object Data(object)

{
if (! is in memory(object))

{
send data request(object->owner, object->id);
insert into cache(object);

wait for data(object->owner, object);

}
else

{
if (object->owner != my rank)

cache hit(object);

}
}

Figure 4.5: The pseudo-code of the function Fetch Object Data. The function
insert into cache makes space for the requested object data by removing other
object’s data according to the cache policy, and then increases the requested
object’s importance. The function cache hit increases the object’s importance

which is needed for the shading can be precomputed at the moment when the
object is referenced for the first time. This information is stored in the object’s
envelope which always remains in the memory. By doing so an eventual expensive
communication can be avoided for the price of a much less expensive unnecessary
computation (not all intersected objects are going to be shaded).

Another efficiency improvement involves a prepacking of the object’s data to
ready-to-send buffers. However, there are several reasons for why this optimi-
sation should not be used. One reason is that the prepacked buffers consume
memory which can otherwise be used for the cache. Another reason is that
this technique may limit the implementation to homogeneous parallel machines,
unless the data encoding used for the prepacking is platform-independent. Fur-
thermore, the time which is needed for the packing of the data is usually much
shorter than the communication overhead. •

4.4.5 Experiments

This section first illustrates the tuning of the constants M and T of the load bal-
ancing algorithm in Fig. 4.3. Our experiments simulate the automatical tuning
which is described in Section 4.4.3. Then we present results of experiments with
a distributed object database. We compare three caching policies which attempt

158 CHAPTER 4. RAY TRACING

to exploit coherence in object references in the ray tracing algorithm in order to
save the number of expensive data requests. We also present efficiency measure-
ments of the parallel ray tracing implementation which uses a distributed object
database.

Throughout this section, the efficiency of a run of a parallel program will be
measured as

sequential time

parallel time with N workers ·N
Unless stated otherwise, the resolution of all the images computed during the

experiments of this section was 720x576 (PAL). All images were computed with
default POV-Ray 3.1g settings (with no anti-aliasing).

Setting of the atomic job size M

In order to show how the efficiency of a parallel implementation depends on the
atomic job size, we used a chunking job assignment in the loadbalancer process
which always assigns a constant chunk of the screen to an idle worker on demand.
Our goal was to (manually) find the optimal chunk size for two given scenes, BLOB
and HAUS6. The BLOB scene is extremely simple—it only consists of one object
and one point light source. The HAUS6 is fairly complex—it consist of ca. 600
objects and 8 point light sources.

For these experiments, we used a configuration with 90 workers which were
running on a partition of 92 processors of the hpcLine (see Section 2.8 for the
machine description). This is the maximal number of workers which can be
mapped onto the allocated partition so that each process is mapped onto a sin-
gle node of the machine (the remaining two nodes are used by the loadbalancer
and the master processes). The optimal chunk size for this configuration deter-
mines the upper limit on the efficiency of any parallel computation which uses 90
worker processes. We recall that the chunk size which is smaller than the optimal
chunk size will result in the domination of the communication overhead over the
computation times of the smallest jobs which are assigned in the load balancing
algorithm in Fig. 4.3 extended with the constant M , see Section 4.4.3. However,
the smaller the optimal chunk size is, the better balance of load can be expected.

We compared two programs in these experiments, an event-driven one and
a polling one. These programs are identical on the binary level. They both use
the very same implementation of POV||Ray. The only difference is in the im-
plementation of the TPL library. The event-driven program is POV||Ray linked
with the TPL implementation which uses the interrupt mechanism described in
Section 2.6.6. The polling program is (the same) POV||Ray linked with the TPL
implementation which uses the polling mechanism described in Section 2.6.2. The
two TPL implementations are based on the same source code and the difference

4.4. PARALLEL RAY TRACING 159

between the two are only a few lines of code which are conditionally selected us-
ing #ifdef directives. In order to make the comparison fair, neither the polling
nor the event-driven version uses special optimisations—they both are generic
implementations of the polling and event-driven mechanisms from Chapter 2.

The results of the experiments are shown in Fig. 4.6. The optimal chunk size
for the BLOB scene is 720 pixels for both the polling and event-driven versions.
The optimal chunk size for the HAUS6 scene is 720 pixels for the polling program
and 72–720 pixels for the event-driven program.

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800

T
im

e
(s

ec
on

ds
)

Chunk size (pixels)

event-driven TPL/PVM

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800

T
im

e
(s

ec
on

ds
)

Chunk size (pixels)

event-driven TPL/PVM
polling PVM

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800

T
im

e
(s

ec
on

ds
)

Chunk size (pixels)

event-driven TPL/PVM
polling PVM

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800

T
im

e
(s

ec
on

ds
)

Chunk size (pixels)

event-driven TPL/PVM
polling PVM

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800

T
im

e
(s

ec
on

ds
)

Chunk size (pixels)

event-driven TPL/PVM

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800

T
im

e
(s

ec
on

ds
)

Chunk size (pixels)

event-driven TPL/PVM
polling PVM

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800

T
im

e
(s

ec
on

ds
)

Chunk size (pixels)

event-driven TPL/PVM
polling PVM

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800

T
im

e
(s

ec
on

ds
)

Chunk size (pixels)

event-driven TPL/PVM
polling PVM

Figure 4.6: Absolute parallel times for 90 workers for a varying chunk size. Left:
BLOB scene. Right: HAUS6 scene

Fig. 4.7 shows the efficiencies of event-driven and polling programs for a pure
chunking job assignment. The optimal constant chunk sizes (720 pixels for the
BLOB scene and 360 pixels for the HAUS6 scene) were used for these measurements.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

event-driven TPL/PVM

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

event-driven TPL/PVM
polling PVM

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

event-driven TPL/PVM
polling PVM

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

event-driven TPL/PVM
polling PVM

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

event-driven TPL/PVM

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

event-driven TPL/PVM
polling PVM

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

event-driven TPL/PVM
polling PVM

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

event-driven TPL/PVM
polling PVM

Figure 4.7: Efficiency of the chunking algorithm for a constant chunk size and
varying number of worker processes. Left: BLOB scene (chunk size 720 pixels).
Right: HAUS6 scene (chunk size 360 pixels)

160 CHAPTER 4. RAY TRACING

Setting of the job time ratio T

The optimal settings ofM from Fig. 4.8 were used in order to determine the opti-
mal settings of T for the same two scenes. We only performed these measurements
for the event-driven program. The loadbalancer process used the algorithm of
Fig. 4.3 extended with the constantM defined in Section 4.4.3. (No work stealing
was used.)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

T=1 (event-driven TPL/PVM)
T=2 (event-driven TPL/PVM)
T=3 (event-driven TPL/PVM)

T=inf (event-driven TPL/PVM)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

T=1 (event-driven TPL/PVM)
T=2 (event-driven TPL/PVM)
T=3 (event-driven TPL/PVM)

T=inf (event-driven TPL/PVM)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

T=1 (event-driven TPL/PVM)
T=2 (event-driven TPL/PVM)
T=3 (event-driven TPL/PVM)

T=inf (event-driven TPL/PVM)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

T=1 (event-driven TPL/PVM)
T=2 (event-driven TPL/PVM)
T=3 (event-driven TPL/PVM)

T=inf (event-driven TPL/PVM)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

T=1 (event-driven TPL/PVM)
T=2 (event-driven TPL/PVM)
T=3 (event-driven TPL/PVM)

T=inf (event-driven TPL/PVM)
0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

T=1 (event-driven TPL/PVM)
T=2 (event-driven TPL/PVM)
T=3 (event-driven TPL/PVM)

T=inf (event-driven TPL/PVM)
0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

T=1 (event-driven TPL/PVM)
T=2 (event-driven TPL/PVM)
T=3 (event-driven TPL/PVM)

T=inf (event-driven TPL/PVM)
0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140

E
ffi

ci
en

cy

Number of workers

T=1 (event-driven TPL/PVM)
T=2 (event-driven TPL/PVM)
T=3 (event-driven TPL/PVM)

T=inf (event-driven TPL/PVM)

Figure 4.8: Efficiency of the perfect load balancing algorithm with the optimal
chunk size and varying number of worker processes. Top: BLOB scene (M = 720
pixels). Bottom: HAUS6 scene (M = 360 pixels)

These measurements show that the maximal efficiency is obtained for these
two scenes for T →∞. However, the setting of T = 3 already yields the maximal

4.4. PARALLEL RAY TRACING 161

efficiency.6 Note the poor efficiency for the setting of T = 1 (a static load
assignment).

Choice of the cache policy

Together with P. Gramblička, our student, we compared the efficiencies of several
cache policies on several scenes. [Gra98] These policies differ in how they react
when an object is being referenced (cache hit in Fig. 4.5) and in how they select
the objects for the removal from the cache (so-called victims) in order to make
space for a requested object (insert into cache in Fig. 4.5). An object request
is also called a cache miss. The efficiency of a caching policy is measured using
the miss ratio:

#object requests

#object references

The lower the miss ratio is, the more efficient is the policy. The object ref-
erences in the definition of the miss ratio include references to objects which are
owned by the process. We will only present the policies which are fully automat-
ical and do not require any tuning:

• RANDOM does nothing when an object is being referenced. On an object
request, victims are selected randomly until there is enough space in cache
to store the requested object.

• LRU (Last Recently Used) maintains a linked list of the cached objects.
When an object is being referenced, it is moved to the beginning of the list.
On an object request, always the last object in the list is removed from the
cache until there is enough space in cache to store the requested object.

• LRU-COUNTER assigns a counter to each object. This counter is initially
zero and it is increased when the object is being referenced. On an object
request, always the object with the lowest counter is removed from the
cache.

Fig. 4.9 shows the results of the measurements on three scenes which were
rendered sequentially in the resolution 640x480, using a simulated memory limit.
The graphs may suggest that the RANDOM policy as approximately as good as LRU.
This is only because the total number of references is relatively high. In fact,
the absolute number of cache misses of LRU is ca. 25% lower than the absolute
number of cache misses of RANDOM in all the graphs. LRU performs very well
although its obvious disadvantage is that objects which are only referenced a few
times remain a long in the cache. LRU-COUNTER uses counters in order to prevent

6The efficiency greater 1 for the BLOB scene is caused by the short sequential time which
does not allow an amortisation of I/O calls in the sequential program.

162 CHAPTER 4. RAY TRACING

this situation. The weakness of LRU-COUNTER is that objects which are referenced
often during a short time interval remain very long in the cache.

Distributed object database

Fig. 4.10 shows efficiencies of parallel ray tracing with distributed object database
which were measured with our old implementation of POV||Ray. The old im-
plementation of POV||Ray was based on the GOLEM communication library.
[Ree97] The GOLEM library uses PVM for inter-process communication and it
uses polling in order to allow for an implementation of non-trivial applications.

The LRU cache policy was used in these measurements. The cache miss
ratio was under 1% in the 20% case (only 20% of all objects are relevant for the
rendering of this image) and the total number of data request was ca. 3000. The
cache miss ratio increased only by 0.1% in the 10% case but the total number of
data requests increased to ca. 500000. In the 5% case, the cache miss ratio was
ca. 15% and the total number of data requests was ca. 7000000.

Our recent POV||Ray implementation differs from the old one in many details
which make a direct comparison impossible. We compared efficiencies of two
programs which only differ in the mechanism which is used for the communication
(similarly as in the subsection above on the settings of the constants M and T).
One program uses the TPL library with an event-driven mechanism, the other one
uses the TPL library with polling. The programs are otherwise identical (even
on the binary level). We only made the measurements for 90 workers where the
memory limit was set to ca. 5%. We used a slightly modified HAUS6 scene in this
experiment (with fewer light sources and a different camera). We used the setting
of M = 5 (pixels) and T → ∞ (and no work stealing). This setting (chunking)
excludes a significant imbalance and a bottleneck at loadbalancer. We measured
an efficiency of ca. 0.0178 for the event-driven version and ca. 0.0015 for the
polling version.

4.4.6 Further extensions and improvements

It may take a long time to read the scene description from a large file to the
memories of the worker processes, especially if the objects are modeled as triangle
meshes. This issue becomes critical when the parallel program is running on a
disk-less machine which is connected to a disk server via a slow communication
link. For instance, if 100 processes read the same file of size 100 MB, then
100x100 MB=10 GB must be transferred via the slow link. This transfer can take
longer than the parallel computation itself. The solution involves the reading of
the file in one of the workers only. This worker broadcasts the data which it reads
among other workers. Broadcasting is usually much faster than disk operations
involving the same volume of data. [Pla98]

4.4. PARALLEL RAY TRACING 163

0

0.005

0.01

0.015

0.02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER

0

0.005

0.01

0.015

0.02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

0

0.005

0.01

0.015

0.02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

RANDOM

0

0.005

0.01

0.015

0.02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

RANDOM

0

0.005

0.01

0.015

0.02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

RANDOM

0

0.005

0.01

0.015

0.02

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

RANDOM

0

0.01

0.02

0.03

0.04

0.05

0.06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER

0

0.01

0.02

0.03

0.04

0.05

0.06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

0

0.01

0.02

0.03

0.04

0.05

0.06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

RANDOM

0

0.01

0.02

0.03

0.04

0.05

0.06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

RANDOM

0

0.01

0.02

0.03

0.04

0.05

0.06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

RANDOM

0

0.01

0.02

0.03

0.04

0.05

0.06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

RANDOM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

RANDOM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

RANDOM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

RANDOM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
is

s
ra

tio

Cache size (relative to the total size of cached objects)

LRU-COUNTER
LRU

RANDOM

Figure 4.9: Cache miss ratios. Top: BATH, 353 objects. Centre: ROSENTHALERHOF,
2215 objects. Bottom: HELICOPTER, 167 objects

164 CHAPTER 4. RAY TRACING

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

E
ffi

ci
en

cy

Number of workers

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

E
ffi

ci
en

cy

Number of workers

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

E
ffi

ci
en

cy

Number of workers

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

E
ffi

ci
en

cy

Number of workers

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

E
ffi

ci
en

cy

Number of workers

100% memory
20% memory
10% memory
5% memory

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

E
ffi

ci
en

cy

Number of workers

100% memory
20% memory
10% memory
5% memory

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

E
ffi

ci
en

cy

Number of workers

100% memory
20% memory
10% memory
5% memory

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45 50

E
ffi

ci
en

cy

Number of workers

100% memory
20% memory
10% memory
5% memory

Figure 4.10: Efficiency of POV||Ray (an old polling version) with a distributed
object database. The memory percentage states how large part of the sum of all
object data sizes is allowed to be stored in the memory of each worker. A worker
is only allowed to use this amount of memory for the storage of objects which it
owns and for the object cache. The missing data in the graph indicate the cases
where this simulated memory limit was exceeded in some worker

The sequential anti-aliasing optimisation technique which measures the dif-
ferences between already computed pixel colours in order to reduce the number
of supersampling primary rays cannot be directly used in parallel screen subdivi-
sion without a loss of efficiency. If this technique is applied directly, then primary
rays for the pixels on the job borders will be computed twice. We use additional
communication in order to avoid this double computation. [Pla02a]

An interesting practical issue is persistence of data. The workers can remain
running after they have finished a computation of one image, and keep the scene
description in their memories. It is possible to define a protocol between an
external frontend program (which implements the user interface) and the backend
(the parallel program itself) which allows the user to interact with the parallel
program. We used this scenario in order to render camera animations without
the need of re-reading the entire scene from a file (only a short camera description
must be parsed by the workers in order to render the next frame). The use of
persistent data in the context of animation allows for further optimisations of
the parallel ray tracing algorithm which exploit the temporal coherence between
subsequent frames. [FHK97]

Our current implementation of POV||Ray does not address the diffuse in-
terreflection [WRC88] which is implemented in the sequential POV-Ray. The
mechanism which is needed in order to share the irradiance database distributed
in the memories of workers is similar to the sharing of the distributed object data.

4.5. CONCLUSIONS 165

The difference between the two is that the irradiance database quickly changes
during the parallel computation and a change in one worker must be passed to
other workers as soon as possible. [Rei96], [RCJ99]

4.5 Conclusions

We presented a simple and robust parallelisation of ray tracing. The paralleli-
sation is based on screen space subdivision. We proposed a demand-driven load
balancing algorithm which is a generalisation of chunking approaches. We proved
that this algorithm guarantees a perfect load balance while minimising the num-
ber of work requests if its two parameters are optimally set. The optimal setting
of these two parameters is generally unknown before the actual computation fin-
ishes. However, both the parameters have an intuitive interpretation and their
optimal setting can be characterised. We proposed an automatical tuning proce-
dure for these parameters and illustrated the procedure on experiments.

We addressed the problem of large scenes which cannot be copied into mem-
ories of the parallel processes. The parallel program uses a distributed object
database which maintained by the same processes which use the data. (The
use of a distributed object database makes the parallel ray tracing application
non-trivial—each worker process performs the ray tracing computations and inde-
pendently it acts as a database server for other worker processes.) We compared
several cache strategies out of which we presented three which do not require any
tuning. The LRU (Last Recently Used) strategy performed best.

We showed that the choice of the communication library strongly influences
the performance of the parallel program. We compared two programs which are
identical on the binary level—the only difference between the two is the choice
of a mechanism inside the communication library. One program uses polling in
order to achieve thread-safety and an independent message progress, the other
program uses an event-driven mechanism. None of these mechanisms uses spe-
cial optimisation techniques, the implementation of the mechanisms is practically
identical to the code snippets from Chapter 2. The event-driven version outper-
formed the polling version in all experiments (for all problem instances and in all
runs).

166 CHAPTER 4. RAY TRACING

Chapter 5

Radiosity

The radiosity method solves a discretised version of the radiance equation 3.30
or a discretised version of the potential equation 3.31 or a combination of both
as sketched in Section 3.4.2. The discretised radiance and potential equations
are linear equation systems. We will focus on the discretised radiosity equation
Equation 3.59 which can be written as

MB = E (5.1)

where Mij = δij − ρiFij are the elements of the radiosity matrix M. The
symbol δij denotes the Kronecker delta which is 1 for i = j and 0 otherwise.1

There are several approaches to solving a linear equation system. An example
of a simple approach is Gauss elimination which was used e.g. in [GTGB84],
(the first paper which describes the use of radiosity for image synthesis). One
disadvantage of Gauss elimination (or other full-matrix methods) is that the
matrix of the system must be completely computed—this means that the form
factors between all pairs of patches must be computed. This approach is not
feasible for large matrices because the computation of each form factor involves
a double integration (Equation 3.57).

Most radiosity algorithms use Southwell relaxation as the underlying linear
equation solver.2 [CCWG88], [SP94] The idea is to compute an acceptable ap-
proximation of the radiosity solution without having to compute the whole radios-

1The form factor Fii = 0, therefore Mii = 1 for i = 1, . . . , n.
2An interesting alternative approach is presented in [Ash01]. The idea is to express the

(slightly modified) radiosity matrix M using the spectral decomposition theorem as M =∑n
i=1 λiviv

T
i , where λi are the eigenvalues of the matrix M and vi are the corresponding

eigenvectors. The radiosity matrix can be approximated as M ≈ ∑p
i=1 λiviv

T
i , p < n, where

the eigenvalues have been sorted in a decreasing order: |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. It has already
been shown that only the first few largest eigenvalues carry significant information for typical
radiosity matrices. Hence, even if p is much less than n, the approximated radiosity solution is
close to the exact radiosity solution. From a practical point of view, it is important that the
computation of the first few largest eigenvalues (and the corresponding eigenvectors) does not
require full knowledge of the matrix M if e.g. the Block Lanczos algorithm is used. [GU77]

167

168 CHAPTER 5. RADIOSITY

ity matrix. Southwell relaxation is an iterative method which computes a series
of approximations of the radiosity solution. The more iterations are performed,
the better the final approximation is. As a result of the physical constraints,
the radiosity matrix M is diagonally dominant which ensures the convergence of
Southwell relaxation.

5.1 Southwell relaxation

In order to give a convenient physical interpretation of Southwell relaxation,
Equation 5.1 can be slightly reformulated. We denote the total energy radiated
by the patch Pi (Ai is the area of the patch Pi) as βi = BiAi. Similarly, we
denote the total energy emitted by the patch Pi as εi = EiAi. In this notation,
the radiosity equation can be written as

Kβ = ε (5.2)

where Kij = Ai

Aj
Mij. The vector of the unknowns βi after k-th iteration of

Southwell relaxation is denote as β(k). The residual vector after k-th iteration is
denoted as r(k) = ε −Kβ(k) . (The matrix K is diagonally dominant, therefore
the iteration process converges: limk→∞ ‖r(k)‖ = 0.) In each iteration, Southwell
relaxation choses the maximal residuum r(k−1)s from the residual vector of the
previous iteration and sets the new residuum to zero: r(k)s = 0. This yields the
following recurrent formulas for β and r: [SP94]

β(k)s = β(k−1)s + r(k−1)s (5.3)

r
(k)
i = r

(k−1)
i −Kis r

(k−1)
s =

{
0 for i = s

r
(k−1)
i + ρi Fsi r

(k−1)
i for i 6= s

(5.4)

The natural initial settings of β and r are β(0) = 0 and r(0) = ε. Note that

after k-th iteration,
β

(k)
i
+r

(k)
i

Ai
is a good estimate of the patch radiosity Bi. These

radiosity estimates rapidly converge to the exact radiosity solution already after
a few iterations. [CCWG88]

Several points are worth mentioning:

• The residua r
(k)
i correspond to the yet unshot patch energies (the energies

to be distributed in the future iterations k + 1, k + 2, . . .).

• The values β
(k)
i correspond to the accumulated patch energies.

• In one iteration k, the unshot patch energy r(k−1)s is “shot” to all other n−1
patches and the contributions of this “shot” are added to the residua of the
n − 1 patches. The patch Ps whose patch energy is being shot is called a
shooting patch.

5.2. FORM FACTOR COMPUTATION 169

• In each iteration k, the radiosity estimates
β

(k)
i
+r

(k)
i

Ai
are updated for all

patches Pi except for the shooting patch Ps with the maximal residuum
r(k)s .

• The same patch Ps can have the maximum residua r(k1)
s and r(k2)

s in different
iterations k1 and k2. Hence, the same patch can be selected several times
to be the shooting patch during the iteration process.

• The total yet unshot energy ‖r(k)‖ =
∑n

i=1 r
(k)
i is a good estimate of the

global error after k iterations of Southwell relaxation. The fraction ‖r(k)‖
‖ε‖

is the percentage of the initial total unshot energy which has not yet been
shot. This percentage can serve as a convenient termination criterium of
the iteration process.

• One iteration only involves the computation of n−1 form factors (the form
factors between the shooting patch Ps and all other n − 1 patches). As
the number of iterations performed is usually much smaller than n, the
majority of the form factors do not need to be computed in order to obtain
the desired approximation of the radiosity solution.

5.1.1 Shooting radiosity algorithm

The algorithm in Fig. 5.1 is based on Southwell relaxation which has been de-
scribed above. This algorithm is referred to as the shooting radiosity algorithm.
The variables Bi represent patch radiosities (Bi = (β

(k)
i + r

(k)
i)/Ai after k execu-

tions of the while loop). The variables ∆Bi represent patch unshot radiosities

(∆Bi = r
(k)
i /Ai after k executions of the while loop).

The most expensive part of the algorithm is the computation of the form
factors between the shooting patch Ps and the receiving patch Pr (the function
compute form factor). The larger the equation system, the more iteration steps
are required in order to reach the termination criterium and the more form factors
must be computed in each iteration step. It is therefore desirable to use as few
patches as possible for the scene representation (for instance, a rectangular wall
should be modeled as two triangles, not more).

The radiosity algorithm in Fig. 5.1 explicitly enumerates the receiving patches
(this happens in the for loop which follows the shooting patch selection). A
different approach—direction sampling (an implicit form factor computation)—
can be found e.g. in [Kel94] and [Kel96]

5.2 Form factor computation

The computation of form factors between pairs of patches in Fig. 5.1 (Equa-
tion 3.57) is the basis of the shooting algorithm. The approaches to the compu-

170 CHAPTER 5. RADIOSITY

/* Input:
patches P1, . . . , Pn
patch reflectances ρ1, . . . , ρn
patch emittances E1, . . . , En

desired accuracy p
*/

shooting radiosity()

{
/* Initialisation. */

for (i = 1; i < n; i++)
{

Bi = 0;
∆Bi = Ei;

Ai = patch area(Pi);
}

/* Southwell iterations. */

while (
∑n

i=1Ai∆Bi > p)
{

Ps = select shooting patch(); /* As∆Bs = maxiAi∆Bi */

for (r = 1; r < n; r++)
{

F = compute form factor(Ps, Pr);
inc = ρr F As ∆Bs / Ar;

Br += inc;
∆Br += inc;

}
∆Bs = 0;

}
}
/* Output:

patch radiosities B1, . . . , Bn

*/

Figure 5.1: The basic shooting radiosity algorithm

5.2. FORM FACTOR COMPUTATION 171

tation of form factors can be divided into four classes: [SP94]

1. Direct analytical integration. Exact form factors are known for many
special configurations of the two patches. [How82] The known configura-
tions in Howell’s catalogue are divided into three groups: differential area to
differential area (e.g. two differential areas in an arbitrary configuration),
differential area to finite area (e.g. a differential planar element to finite
parallel rectangle) and finite area to finite area (e.g. two identical, paral-
lel, directly opposed rectangles). Howell’s catalogue assumes that the two
patches are not occluded by any other patch. Some radiative heat transfer
applications work with 3D models without occlusions. Unfortunately, in
most models relevant to computer graphics applications it is even impos-
sible to predict whether there is an occlusion between two patches or not
(there generally is).

2. Contour integration. Using Stokes’ theorem, the area integral of Equa-
tion 3.57 can be transformed into a contour integral:

Fsr =
1

2πAs

∮

Cs

∮

Cr

ln r dcr dcs (5.5)

where Cs and Cr are the contours of the patches Ps and Pr.

A form factor between a point x (a differential area) and a polygon P =
[v1, v2, . . . vmaxp] can be analytically carried out using contour integration
if no occlusion exists between the point and the polygon: [HS67], [SH93]

FxP =
1

2π

maxp∑

i=1

N ·
6 (Ri, Ri⊕1)

|Ri ×Ri⊕1|
(Ri ×Ri⊕1) (5.6)

where N is the normal at the point x and ⊕ is the “circular next” operator
on 1, . . . ,maxp. 6 denotes the (signed) angle between two vectors. Ri is
the vector from x to vi.

3. Projection. Projection methods are based on Nusselt’s analogy which
provides an alternative definition of a form factor between a differential
area around a point x and a finite surface patch P : [Nus28], [SP94]

The form factor FxP is the fraction of the area in the base
plane3 which is obtained by projecting the patch P onto the unit
hemisphere centered at the point x, and then orthogonally down
onto the base plane.

3The base plane is the plane which contains the point x and which is perpendicular to the
normal at the point x.

172 CHAPTER 5. RADIOSITY

A popular algorithm which is based on the above projection is the hemicube
algorithm (a hemicube or an arbitrary surface around the point x can be
used instead of the hemisphere in the above definition). [CG85] The ad-
vantages of the hemicube algorithm are that it can deal with an occlusion
between two patches, it is relatively simple and it can use the hardware of
contemporary graphics cards (the z-buffer algorithm is implemented in the
hardware). One disadvantage is that the precision of the form factor ap-
proximation depends on the discretisation of the hemicube. An insufficient
discretisation leads to severe inaccuracies.

4. Monte Carlo integration (ray casting). Monte Carlo integration [ES00]
is the most straightforward method of computing the form factor between
two patches Ps and Pr which may be occluded by other patches. The ad-
vantage of Monte Carlo integration is generally its flexibility. Care must
be taken when choosing the estimator. Estimators which are unbiased and
which have a low variance are preferred. Estimators which have both these
properties are proposed in [Pie93] and [Bek99]. Unlike the projection meth-
ods, Monte Carlo integration is not confronted with aliasing problems. The
only parameter which must be tuned is the number of samples.

We will focus on the methods of Monte Carlo integration in the next section.

5.2.1 Monte Carlo form factor computation

Direct area estimator

A direct approach to the computation of the factor Fsr uniformly generates Ns

points xi, i = 1, . . . , Ns on the patch Ps and Nr points yj, j = 1, . . . , Nr on the
patch Pr and it uses the estimator

F̂sr =
1

Ns Nr π As

Ns∑

i=1

Nr∑

j=1

cos θij cos θ′ij
r(xi, yj)2

V (xi, yj) (5.7)

where θij is the angle between the surface normal of the patch Ps and the
direction from xi to yj, θ

′
ij is the angle between the surface normal of the patch

Pr and the direction from yj to xi, r(xi, yj) is the distance between the points xi
and yj and V is the visibility function defined in Equation 3.52.

The estimator in Equation 5.7 is unbiased. This means that its expected
value is correct (E[F̂sr] = Fsr). However, its variance can be very high and even
unbounded: [Bek99]

var[F̂sr] =
Ar

π2 As

∫

x∈Ps

∫

y∈Pr

(
cos θ cos θ′

r(x, y)2
V (x, y)

)2
dAr dAs − F 2sr (5.8)

5.2. FORM FACTOR COMPUTATION 173

The problem with the unbounded variance is caused by the factor r(x, y)4

in the denominator of 5.8 and it shows up for abutting patches. In this case,
increasing the number of samples does not necessarily improve the form factor
estimate.

Delta area estimator

The approach of [WEH89] uniformly generates Ns points xi, i = 1, . . . , Ns on the
patch Ps and Nr points yj, j = 1, . . . , Nr on the patch Pr. For a pair of points
xi and yj, an analytical form factor from the differential area around the point
xi to a disk around the point yj is calculated in order to approximate the inner
form factor integral (the sum of the Nr disk areas is equal to Ar). This yields
the estimator

F̂sr =
1

Ns Nr π As

Ns∑

i=1

Nr∑

j=1

cos θij cos θ′ij
r(xi, yj)2 +

Ar

Nr

V (xi, yj) (5.9)

This estimator is biased (E[Fsr] 6= Fsr) but it is consistent (E[Fsr] = Fsr for
Nr →∞). The bias can only be neglected if Nr is large enough.

Directional estimator

The inner form factor integral (Equation 3.57) can be written as a directional
integral, which yields an equivalent form factor formula

Fsr =
1

π As

∫

x∈Ps

∫

ω∈Ωr(x)
cos θ dω dAs (5.10)

where Ωr(xi) denotes the solid angle subtended by the visible part of the patch
Pr as seen from the point x, θ is the angle between the surface normal at x and
the direction ω and dAs is a differential area around the point x.

The determination of the integration domain Ωr(xi) involves solving the vis-
ibility problem. The visibility can be analytically solved in this case but this
analytical computation is very expensive. [BRW89] Equation 5.10 can be refor-
mulated as

Fsr =
1

π As

∫

x∈Ps

∫

ω∈Ω′
r(x)

cos θ V ′(x, ω, Pr) dω dAs (5.11)

where Ω′r(x) denotes the solid angle subtended by the patch Pr as seen from
the point x. The function V ′(x, ω, Pr) returns 1 if RT (x, ω) ∈ Pr and 0 otherwise.

The directional integration uniformly generates Ns points xi, i = 1, . . . , Ns

on the patch Ps. For each point xi, directions ωj, j = 1, . . . , Nr are uniformly
generated over the solid angle Ωr(xi) subtended by the patch Pr as seen from the
point xi. The resulting form factor estimator is

174 CHAPTER 5. RADIOSITY

F̂sr =
1

Ns Nr π As

Ns∑

i=1

Nr∑

j=1

cos θij V
′(xi, ωj, Pr) (5.12)

This estimator is unbiased and its variance is always bounded: [Bek99]

var[F̂sr] =
1

π2 As

∫

x∈Ps

Ω′r(x)
2
∫

ω∈Ω′
r(x)

(cos θij V
′(x, ω, Pr))

2
dω dAs − F 2sr

≤ 4 (5.13)

A technical problem remains and that is how to uniformly sample the direc-
tions ω in the solid angle Ω′r(x). If the patch Pr is a triangle, then Pr can be
projected onto a hemisphere around the point x and the sampling technique for
spherical triangles can be applied. [Arv95]

Weighted analytical estimators

The idea behind the following estimators is to uniformly generate Ns points
xi, i = 1, . . . , Ns on the patch Ps and to analytically compute the unoccluded
point-to-patch form factor FxiPr

(Equation 5.6) for each point xi. This form
factor is weighted by the visibility sampling. For each point xi, Nr points
yij, j = 1, . . . , Nr are uniformly generated on the patch Pr. The visibility function
V (xi, yij) is computed for the point xi and the points yij, j = 1, . . . , Nr.

The resulting estimator which is proposed in [Pie93] is

F̂sr =
1

Ns Nr

Ns∑

i=1

FxiPr

Nr∑

j=1

V (xi, yij) (5.14)

A similar estimator is proposed in [Bek99] (weighted area sampling):

F̂sr =
1

Ns

Ns∑

i=1

FxiPr

∑Nr
j=1

(
cos θij cos θ′

ij

πr(xi,yij)2
V (xi, yij)

)

∑Nr
j=1

cos θij cos θ′
ij

πr(xi,yij)2

(5.15)

Both of the estimators above are unbiased and their variance is bounded by
1
Ns

∫
x∈Ps

F 2xPr
dAs. [Bek99] In our opinion these two estimators are the best known

ones in connection with the shooting radiosity method.

5.3 Discretisation of surface geometry

The surface discretisation (also known as meshing) is a conversion of the sur-
face geometry of a 3D model into a polygonal representation. This polygonal
representation is usually a set of triangle meshes. The illumination computed
by a radiosity algorithm is stored in this mesh (usually in the vertices of the

5.4. ILLUMINATION STORAGE AND RECONSTRUCTION 175

triangles). The initial mesh is created in the preprocessing stage and it is dy-
namically refined by the radiosity algorithm in order to accurately represent the
stored illumination.

Mesh generation has been the subject of many research papers, especially in
relation to the finite element methods. Specific requirements of mesh generation
for the purpose of radiosity computations were formulated in [BMSW91]. These
specific requirements place constraints on the size of the triangles and on the
topology of the input mesh. We will show that none of these constraints are
important if suitable techniques are used in the radiosity algorithm. We propose
a radiosity algorithm which works well with an arbitrary input mesh—the only
requirement is, that the triangles are numerically interpreted as triangles (that
means, that the numerically computed area of any triangle must not be 0). The
initial size of the triangles is also not important—the larger they are, the better.
Some radiosity algorithms (e.g. [Sch00]) work with triangles and quadrangles—
we only allow the use of triangles in order to keep the algorithm simple (this only
influences the computational time, not the quality of the radiosity solution).

5.4 Illumination storage and reconstruction

The assumption of the radiosity method is constant radiosity over a patch. How-
ever, as the diffuse illumination usually smoothly varies over a surface, the storage
of a single RGB value per patch leads to unpleasant visual artifacts. These arti-
facts are caused by the discontinuities of the illumination on the borders between
the patches. This problem can be solved by making the patches very small—
however, this would increase the computational time. A usual practice is to store
different RGB values in the vertices of the patches.4 These RGB values are called
vertex radiosities. The illumination at a point of the patch is reconstructed using
the interpolation of the vertex radiosities of the patch. As patches are two-sided,
the illumination must be independently stored for the front side and the back
side of each patch (see Section 3.2.2).

The illumination over a patch is not always smooth. It can vary rapidly in
particular on shadow boundaries. The linear interpolation is not able to capture
sudden changes. This problem can also be solved by using smaller patches but it
is desirable to keep the number of patches as small as possible. A commonly used
compromise is using an adaptive hierarchical subdivision. The initial patches are
as large as possible (e.g. a planar wall is represented as two triangles, regardless
of its size). A patch is only subdivided when a significant discontinuity of the
illumination is detected on its surface. The resulting subpatches can be further
subdivided in a similar manner.

4An alternative is to represent the illumination over a patch as a linear combination of a
finite number of base functions (the so-called Galerkin method).

176 CHAPTER 5. RADIOSITY

A patch only needs to be subdivided at the moment when its vertex radiosities
are being updated. This only happens when the patch is acting as the receiving
patch during the radiosity algorithm and when its current level of subdivision is
not able to capture the illumination.

The push-pull algorithm can be used to maintain the patch radiosities and
patch unshot radiosities at each subdivision level. [SP94] The radiosity stored in
a node of the tree is equal to the average radiosity stored in the nodes’ children.
This is important for algorithms which perform the energy exchange between the
shooting patch and the receiving patch at different subdivision levels.

Our algorithm also uses the adaptive hierarchical subdivision. However, the
energy exchange always takes place on the top level of the hierarchy—that means,
the shooting patch and the receiving patch are the original (large) patches. The
tree data structure provides two operations for the storage and retrieval of ra-
diosity and unshot radiosity (these are both represented as RGB values):5

• retrieve(P, side, x, c) retrieves the RGB value at the point x on the
side side of the patch P . This retrieved value is stored into c. The retrieval
procedure first traverses the hierarchy of the patch P on the side side in
order to find the smallest triangle (the smallest triangle is always a leaf of
the subdivision tree) which contains the point x. Then the RGB values
which are stored in the vertices of this triangle are interpolated in order to
compute the value c.

• store(P, side, x, c) stores the RGB value c at the point x on the side
side of the patch P . The storing procedure first traverses the hierarchy of
the patch P in order to find the smallest triangle which contains the point
x. Then it updates the RGB values which are stored in the vertices of this
smallest triangle and checks whether the interpolation of the new vertex
values at the point x differs from c. If the difference is larger than a user-
specified threshold, the triangle is subdivided into smaller non-overlapping
triangles6 and the update is recursively repeated for that of these new tri-
angles which contains the point x. When this recursion returns, the vertex
values are “pulled” from the smallest triangle up to the root of the tree.

The (point-based) retrieve(P, side, x, c) operation always retrieves the
best level of detail of the illumination at the point x. The point-based store oper-
ation is more general than a patch-based store operation. Indeed, a patch-based
store(P, side, c) operation can be simulated using the point-based operation
store(P, side, xcenter, c), where xcenter is the center of the patch P . The
patch-based retrieve operation (this operation is needed for the selection of

5Similar operations are proposed in [Bek99] (per-ray refinement).
6All the smaller triangles must still numerically be interpreted as triangles (with non-zero

areas). If this assertion fails then the subdivision of the current node is discarded.

5.5. ENERGY TRANSFER 177

the shooting patch) simply returns the average of the vertex radiosities of the
top-level patch.

Remark. The illumination can be stored in any data structure which provides
the store and receive operations. The data structure must additionally al-
low for an efficient generation of sample points on the shooting patch which is
described in Section 5.5.1 (Fig. 5.4). •

5.5 Energy transfer

The transfer of energy from the shooting patch Ps to the receiving patch Pr in
the basic radiosity algorithm in Fig. 5.1 is comprised in the while loop which
follows the shooting patch selection. The actual energy transfer is preceded by
the form factor computation. Our algorithm combines these two steps (and it
retains the explicit enumeration of the receiving patches).

We will focus on the Monte Carlo form factor computation (see Section 5.2.1).
In order to explain the proposed energy transfer mechanism, we will first con-
sider the simple direct area form factor estimator (Equation 5.7). This method
uniformly generates Ns points xi, i = 1, . . . , Ns on the patch Ps and Nr points
yj, j = 1, . . . , Nr on the patch Pr. Equation 5.7 sums up the contributions of

all point pairs [xi, yj] to the estimated form factor F̂sr. We can merge this step
with the computation of inc in Fig. 5.1—instead of working with the form factor
estimator F̂sr we can directly work with the added radiosity estimator

înc =
ρr ∆Bs

Ns Nr π Ar

Ns∑

i=1

Nr∑

j=1

cos θij cos θ′ij
r(xi, yj)2

V (xi, yj) (5.16)

Let us assume that there are Ns point light sources located at the points
xi, i = 1, . . . , Ns. Their emittances are

E(xi, ω) =

{
cos θ

r(xi,y)2
if ω lies in the half-space of the surface normal at xi

0 otherwise
(5.17)

where θ is the angle between the surface normal at the point xi and the
direction ω. The attenuation term r(xi, y)

2 is artificial. It expresses that the
emittance is inversely proportional to the square of the distance to the point
illuminated by the light source. If the Ns point light sources are the only light
sources in the model, then the sum

ρr
Ns∑

i=1

cos θij cos θ′ij
r(xi, yj)2

V (xi, yj) (5.18)

178 CHAPTER 5. RADIOSITY

is equal7 to the direct illumination term which is computed by the ray tracing
shader at the point yj. Equation 5.18 is the inner sum of Equation 5.16 multiplied
by ρr (if the sums in Equation 5.16 are swapped). If the ray tracing shader is
applied to all Nr points on the patch Pr, then the sum of the resulting “colours”
scaled by ∆Bs

Ns Nr π Ar
is equal to the right side of Equation 5.16. This final summa-

tion can be expressed using the store operation (see Section 5.4). The “colours”
cj computed by the ray tracing shader for the receiving samples yj, j = 1, . . . , Nr

are scaled and added to vertex radiosities of the patch Pr: store(Pr, side, yj,
cj ∗ ∆Bs

Ns Nr π Ar
). The idea behind using the ray tracing shader for the energy

exchange in the radiosity algorithm is illustrated in Fig. 5.2.

Figure 5.2: Radiosity energy exchange using the ray tracing shader. Left: shadow
rays are traced by the ray tracing shader from the light sources in order to
illuminate a surface point Y . Right: shadow rays are traced by the ray tracing
shader in order to transfer energy from the shooting patch to the receiving patch.
The temporary point light sources are randomly generated on the shooting patch

Remark. The construction above can be easily adapted to use a better form
factor estimator of Section 5.2.1, for instance the weighted analytical estimator
(Equation 5.14). We show in Section 5.7.1 that the weighted analytical esti-
mator outperforms the direct area form factor estimator which we used in the
construction above for explanatory purposes. •

Remark. The idea of using artificially generated light sources for the purpose of
the computation of the indirect diffuse illumination can also be found in [Kel97].
Keller’s method does not use any permanent illumination storage—it is “view-

7More precisely, Equation 5.18 is equal to the direct illumination term which is computed by
the ray tracing shader only if two simplifying assumptions hold in the 3D model: 1.all patches
are opaque, 2.all patches are pure diffuse reflectors described by the scalar ρr. Ray tracing
shaders usually work with more general material descriptions. If the materials in the model
do not satisfy the previous assumptions then the “colour” returned by the ray tracing shader
may differ from Equation 5.18 because the shader takes into account all material properties,
not only the scalar ρr.

5.5. ENERGY TRANSFER 179

dependent”. The method shoots the original light sources onto randomly gener-
ated points on a patch and creates a new temporary point light source in each
of these points. An image of the scene is then rendered, whereby the scene is
illuminated by the temporary light sources. This process is repeated for each
patch and the final image is obtained as a sum of the single images. The render-
ing step makes use of graphics hardware. The algorithm only computes diffuse
scatterings of level one (the term RL of Equation 3.35). Scatterings of level two
and higher (the terms RiL, i ≥ 2) can be added by extending the lengths of the
light paths using a direction sampling of the temporary light sources. (Rays are
traced in randomly generated directions and additional temporary light sources
are generated if in the surface points which are hit by the rays.) •

5.5.1 Shooting radiosity algorithm using the ray tracing
shader

The above reformulation of the energy transfer in terms of the ray tracing shader
leads to the algorithm in Fig. 5.3. We will discuss a few algorithmic aspects
hidden in the pseudo-code:

• Patch radiosities Bi and patch unshot radiosities ∆Bi do not need to be
explicitly stored in the patches (and subpatches) because they can be re-
constructed from the vertex radiosities and vertex unshot radiosities.

• The basic radiosity algorithm only works with patch light sources. The
function set vertex unshot radiosities in Fig. 5.3 may include the so-
called first shot during which all other point light types are shot onto the
patches Pi. This first shot can be implemented similarly to the shooting
in one Southwell iteration—points are randomly generated on the receiving
patches and the ray tracing shader is called to illuminate them. (It is
important that the illumination acquired during the first shot is compatible
with the direct ray tracing illumination.)

• The patch selected by the function select shooting patch is always the
top-level patch (not a subpatch of the subdivision tree). Note that illumi-
nation is stored independently for front and back sides of every patch. The
shooting patch selection routine must search both the front and back sides
of each patch.

• An appropriate choice of the sampling rates (computed in the function
choose sampling rates) requires a heuristics which should depend on the
amount of the transferred energy As ∆Bs and on a rough estimation of the
form factor Fsr. A discussion on sampling rates for the Monte Carlo form
factor computations can be found in [Bek99].

180 CHAPTER 5. RADIOSITY

/* Input:
patches P1, . . . , Pn
patch emittances E1, . . . , En

desired accuracy p
*/

shooting radiosity()

{
/* Initialisation. */

for (i = 1; i < n; i++)
{

zero vertex radiosities(Bi);

set vertex unshot radiosities(Bi, Ei);

}

/* Southwell iterations. */

while (
∑n

i=1Ai∆Bi > p)
{

Ps = select shooting patch(); /* As∆Bs = maxiAi∆Bi */

for (r = 1; r < n; r++)
{

choose sampling rates(Ps, Pr, Ns, Nr);

generate shooter random samples(Ps, x1, . . . , xNs
);

store light sources();

set light sources(x1, . . . , xNs
);

generate receiver random samples(Pr, y1, . . . , yNr
);

for (j = 1; j < Nr; j++);

{
ray tracing shader(yj);

}
restore light sources();

}
zero vertex unshot radiosities(Bs);

}
}
/* Output:

patch radiosities B1, . . . , Bn

vertex radiosities stored in the trees of patches B1, . . . , Bn

*/

Figure 5.3: Shooting radiosity algorithm using the ray tracing shader

5.5. ENERGY TRANSFER 181

• An efficient algorithm for uniform generation of random points inside a
triangle can be found in [Gla90].

• The use of stratified sampling (also known as latin square sampling or
jittering, see [ES00]) in the function generate random samplesmay reduce
the variance of the Monte Carlo integration.

• The first three function calls in the for (r=1; r < n; r++) loop set up
the temporary point light sources on the shooting patch. These three lines
of code can be moved before the for loop which significantly speeds up the
energy transfer. The idea behind this rearrangement is the reusing of the
shooting samples (more precisely, the point lights) in shootings to different
receiving patches. This leads to a significant increase of the efficiency,
especially if the light buffer technique is applied. It is much more efficient
to compute the light buffers once per iteration than once per a receiving
patch.

• The function ray tracing shader is actually called twice—once for the
front side of the receiving patch Pr and once for the back side. This function
computes the direct illumination cj at the points yj and calls the function
store in order to store the obtained “colours” cj in the subdivision tree
(after scaling).

• The function set light sources and the store() call in the function
ray tracing shader can be adapted to (implicitly) compute the the form
factor estimate 5.14 or 5.15 instead of 5.7. (Our implementation uses the
form factor estimate of Equation 5.14.)

Random generation of sampling points

A particularly interesting issue is the generation of the sampling points on the
shooting patch (generate shooter random samples) and the receiving patch
(generate shooter random samples). The computation of form factors using
Equation 5.14 requires a uniform sampling of both the shooting patch and the
receiving patch. However, the following example shows that it is not desirable to
generate the samples uniformly on the shooting patch from the point of view of
the energy transfer (we recall that both the shooting patch and the receiving patch
are top-level patches). Let us assume that the unshot radiosity in one part of the
shooting patch is much greater than in another parts. In an extreme case the
whole unshot radiosity is accumulated in one leaf of the subdivision tree, while
the unshot radiosity stored in the other leaves is zero. If the sampling points
are generated uniformly on the shooting patch, then it may happen that none
of the sampling points lies inside the leaf with the non-zero unshot radiosity.
The retrieve operation would return 0 for all the generated points, therefore no
energy would actually be shot at the receiving patches.

182 CHAPTER 5. RADIOSITY

There are two solutions to this problem. (Note that the problem is only related
to the shooting patch—the points on the receiving patch should be generated
uniformly.) The first solution involves shooting smaller patches than the top-
level patches—however, this would lead to a slow convergence of the shooting
algorithm. The second solution involves a weighted sampling of the shooting
patch. The idea behind this weighted sampling is to control the density of the
generated points on the shooting patch according to the unshot radiosity over
the shooting patch. The pseudo-code in Fig. 5.4 describes the point generation
process. This process first chooses a leaf of the subdivision tree (a triangle) with
a probability proportional to the unshot radiosity of the leaf and then generates
the random point inside this leaf.

generate shooter random samples(Ps, x1, . . . , xNs
)

{
for (i = 1; i <= Ns; i++)

{
node = Ps;
while (node is not a leaf)

{
... select a successor child of node with probability

proportional to the patch unshot radiosity of child;
node = child;

}
xi = (uniform) random point on the patch of the node node;

}
}

Figure 5.4: Generation of sample points on the shooting patch

It may be argued that the non-uniformity of the random sampling of the
shooting patch violates the assumption of the form factor computation of Equa-
tion 5.14. However, the proposed process should be looked at as shooting of
the group of leaf patches of the subdivision tree. Let us return to the previous
example—let us assume that only one leaf patch stores the whole unshot radiosity
of the shooting patch. In this case the random points will only be generated on
this one leaf patch and the implicitly computed form factor will correspond to
the form factor between this one leaf patch and the receiving patch. The effect
of the subsequent shooting is therefore the same as if that one leaf patch was
selected for the shooting.

5.6. VISUALISATION 183

Practical consequences

The proposed algorithm has a number of positive practical consequences (the
only drawback is the mesh representation of the surface geometry):

• The visibility function V (xi, yj) computed by the ray tracing shader is more
general than its original definition in Equation 3.52 as the ray tracing shader
automatically handles (non-scattering) transparency. Hence, the visibility
function is no longer a function which returns either 0 or 1—it becomes a
real function instead: V (xi, yj) ∈ 〈0, 1〉.

• Ray tracers can usually work with complex material descriptions which in-
clude layered textures, alpha channel, bump mapping etc. As the energy
transfer in the radiosity algorithm invokes the ray tracing shader, the ra-
diosity algorithm can work with the same material description.

• Only a few parameters must be supplied by the user: 1.desired accuracy of
the radiosity solution (the constant p in Fig. 5.3), 2.threshold which con-
trols the adaptive refinement (see Section 5.4), 3.parameter which controls
the sampling density in the function choose sampling rates. All these
parameters are intuitive as they are expressed as percentages.

• The radiosity computation can be incorporated into any ray tracer as a
preprocessing step. The combination of radiosity and ray tracing yields the
so-called two-pass solution of the global illumination problem. [SP89]

5.6 Visualisation

Ray tracing is used for the visualisation of the radiosity solution. The computa-
tion of the ambient and the direct illumination terms in the ray tracing shader is
replaced by the retrieve() function call (this function is defined in Section 5.4).

The quality of the rendered two-pass images can be further improved if the
direct illumination is subtracted from the radiosity solution and computed by
the ray tracing shader (in this case only the ambient term is replaced by the
retrieve() function call). Unless the size of the leaf triangles in the radiosity
mesh is after the projection onto camera comparable to the size of the camera
pixels, the direct illumination computed by ray tracing is more accurate.

The computed images include the direct illumination, indirect perfect specular
illumination (multiple perfect specular scatterings) and indirect perfect diffuse il-
lumination (multiple perfect diffuse scatterings). Transparency is also accounted
for. Some light phenomena, e.g. caustics, are not included in the two-pass solu-
tion. These missing phenomena are related to photon paths along which indirect
specular and diffuse scatterings are mixed (or photon paths with imperfect scat-
terings).

184 CHAPTER 5. RADIOSITY

5.7 Experiments

We implemented the shooting radiosity algorithm in Fig. 5.3 as a module of the
Persistence of Vision Ray Tracer (POV-Ray). The radiosity computation runs as
a preprocessing step which is followed by ray tracing. The scene must consist of
triangle meshes (more precisely, other object types may be used as well but the
radiosity algorithm only stores the illumination in triangle meshes).

The implementation is fully functional even though not yet complete. An
additional programming effort would be needed in order to implement extensions
such as a heuristics for the dynamical control of the number of samples on the
shooting patch and the receiving patch (a fixed number of samples is currently
used), the adaptive substructuring, the storing of the computed illumination in a
file etc. However, all major algorithmic issues have already been addressed. The
missing details only influence the efficiency of the implementation.

5.7.1 Form factors

In order to verify the correctness of the implementation we first created a special
3D model for which the radiosity solution can be calculated analytically. The
model consists of an empty box (a cube with 6 square walls) and a camera which
views the inside of the box. As our implementation only uses triangles, each
wall is modeled as two triangles. In the following experiments we also used a
refined version of the box in which each wall is modeled as eight triangles. (We
implemented a simple mesher which refines the model until all triangle edges
are shorter than a given threshold.) These two versions, BOX12 and BOX48 are
equivalent in the sense that they describe the same surfaces—the only difference
is the number of triangles, see Fig. 5.5.

Figure 5.5: Left: BOX12, the box scene modeled of 12 top-level triangle patches.
Right: BOX48, the same box scene modeled of 48 top-level triangle patches (level-
one refinement)

There are two kinds of form factors in the scene: 1.the form factor between
the floor and one of the vertical walls, Fperp; 2.the form factor between the floor

5.7. EXPERIMENTS 185

and the ceiling, Fpar. The analytical formulas for both these form factors can be
found in Howell’s catalogue: [How82]

Fperp =
1

2
+

1
4
ln 3

4
−
√
2 arctan 1√

2

π
≈ 0.200044 (5.19)

Fpar =
4
√
2 arctan 1√

2
− ln 3

4

π
− 1 ≈ 0.199825 (5.20)

Remark. Fperp and Fpar are not equal. This is an interesting asymmetry which
can rarely be observed in the nature for a symmetric configuration such as a
cube. The difference between the two form factors is very small, which yields an
uncommon approximation of π (if we set Fperp = Fpar):

π ≈ 10
√
2

3
arctan

1√
2
− 5

6
ln

3

4
≈ 3.141134 (5.21)

•

It is not straightforward to verify the implementation of the form factor com-
putation as the value of a form factor does not appear explicitly anywhere in
the algorithm in Fig. 5.3. However, it is possible to modify the selections of the
shooting patch and the receiving patch in Fig. 5.3 so that only all the triangles of
the emitting floor will shoot energy at a particular receiving patch (the particular
patch is one of the vertical walls and the ceiling, respectively). We also modified
the algorithm so that it terminates after the energy of the floor has been shot.
Even though we can not directly measure the value of the form factor, we can
read the unshot patch radiosity values of the receiving patches after the shot.
The unshot radiosity of a wall is equal to the sum of unshot radiosities of all its
triangles. If we set the reflectivity ρ of the receiving patch to 1 and the unshot
radiosity of the shooting patch to 1, then the unshot radiosity of the receiving
patch after the shooting will be equal to the form factor between the shooting
patch and the receiving patch. The side-effect of this methodology is the testing
of the implementation of the function store and of the energy transfer.

We compare the direct area estimator of Equation 5.7 to the weighted ana-
lytical estimator of Equation 5.14. Using the procedure above we computed the
form factors for the scenes BOX12 and BOX48 for a given number of samples per
triangle in 100 independent runs (the number of samples on the shooting triangle
was equal to the number of samples on the receiving triangle). We measured the
minimum, maximum and average values over the 100 runs.

The results of these experiments are shown in Fig. 5.6. Note that the average
values of the computed form factors match the exact values of the form factors
in all graphs. However, the average is not relevant for the reliability of the imple-
mentation (unless the same shooting is repeated many times and the results are

186 CHAPTER 5. RADIOSITY

averaged—but this is not a common practice as the visibility computation is the
most expensive part of the radiosity algorithm). The variance is more relevant.
Even more relevant than the variance are the minimum and the maximum values
of the computed form factors over the 100 runs. (Note that a wrongly computed
form factor value in an early iteration of the radiosity algorithm may invalidate
the resulting radiosity solution.)

The weighted analytical estimator always outperforms the direct area estima-
tor, especially in the computation of Fperp. The weighted analytical estimation of
the form factor always converges to the exact value with the increasing number
of samples. As we mentioned in Section 5.2.1, the increasing number of samples
does not necessarily improve the precision of the form factor direct area estimator.
This can clearly be observed in the Fperp graphs in Fig. 5.6.

The number of triangles only influences the computational time, not the qual-
ity of the radiosity solution if the weighted analytical estimator is used. (We recall
that the number of samples in Fig. 5.6 is given per triangle, not per wall. This
means that the number of samples per wall for the scene BOX48 is four times
higher than the number of samples per wall for the scene BOX12.) This is not
true for the direct area estimator by the computation of Fperp. The reason for
that is probably that the use of more triangles on the shooting and receiving
patches forces the generation of samples pairs which cause an overestimation of
the form factor Fperp.

5.7.2 Experiments with the box scene

Fig. 5.7 is a box scene which is illuminated by a single point light source which
is located in the center of the box (the white spot). This scene demonstrates an
effect known as colour bleeding which is missing in (eye-) ray tracing.

Fig. 5.8 is another box scene with a textured right wall. This scene is illu-
minated by two spot light sources which are both located in the center of the
box. One spot light source illuminates the left wall, the other one illuminates
the right wall. The floor is a perfect mirror. The texture on the right wall in the
two-pass image is distorted because the direct lighting is reconstructed from the
illumination stored in the triangle mesh. The resolution of the mesh is not as
fine as the resolution of the screen, therefore the texture appear distorted. This
model consists of 13000 triangles. The radiosity computation took more than 3
hours (3 samples on the shooting patch and 3 samples on the receiving patch
were used for the energy transfer).

The direct illumination can be computed by the ray tracing algorithm more
accurately than by the radiosity algorithm. In order not to compute the direct
illumination term twice, the illumination from the first shot must be subtracted
from the radiosity solution before the ray tracing phase. This technique was used
for the computation of the right image in Fig. 5.9. This model consist of ca. 3000
triangles. The radiosity computation took approximately 10 minutes (4 samples

5.7. EXPERIMENTS 187

BOX12, computation of Fpar

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

BOX48, computation of Fpar

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

BOX12, computation of Fperp

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

BOX48, computation of Fperp

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

0.14

0.16

0.18

0.2

0.22

0.24

0 2 4 6 8 10 12 14

F
or

m
 fa

ct
or

Square root of the number of samples per patch

average
min
max

exact

Figure 5.6: Monte-Carlo computation of the form factors Fpar and Fperp for the
box scenes BOX12 and BOX48. Left column: direct area estimator (Equation 5.7).
Right column: weighted analytical estimator (Equation 5.14)

188 CHAPTER 5. RADIOSITY

Figure 5.7: Left: ray traced box scene. Right: the radiosity solution (90% con-
verged)

Figure 5.8: Left: ray traced box scene. Right: a two-pass solution (radiosity
and ray tracing). The radiosity solution is 90% converged and it is stored in the
vertices of ca. 13000 triangles. The texture in the right image is a little distorted
because the direct illumination was reconstructed from the radiosity solution.

5.7. EXPERIMENTS 189

on the shooting patch and 4 samples on the receiving patch were used for the
energy transfer). Note that the texture is not distorted as in Fig. 5.8 although
less triangles are used for the illumination storage.

Figure 5.9: Left: ray traced box scene. Right: a two-pass solution (radiosity
and ray tracing). The radiosity solution is 95% converged and it is stored in the
vertices of ca. 3000 triangles. The direct illumination was subtracted from the
radiosity solution and computed by the ray tracing algorithm

Fig. 5.10 shows images of the box scene which contains a blocking object.
This scene is illuminated by one spot light source which is directed towards the
textured wall. The blocking object is only illuminated indirectly—it is therefore
invisible in the ray traced image.

5.7.3 Experiments with large scenes

The main goal of the following experiments was to test the stability of the imple-
mentation of radiosity on large scenes rather than to compute converged radiosity
solutions (which would require more programming work). The first problem we
encountered was the selection of large scenes suitable for the radiosity (two-pass)
computation. Our radiosity implementation is based on POV-Ray. However, the
implementation requires the objects to be modeled as triangle meshes. Most of
the POV-Ray scenes do not use meshes—they use CSG objects instead. We
chose two scenes in order to test the stability of the implementation, HOUSE

and JAGDSCHLOSS. Both these scenes were created during the project HiQoS.
[ACH+99], [PSA01], [ABB+01] The HOUSE scene was modeled in Arcon by M3B
and converted into POV-Ray using a special-purpose converter which was de-
veloped during the project HiQoS. The original HOUSE scene contains ca. 86000
triangles and 27 point light sources. The JAGDSCHLOSS scene was modeled in 3DS
Max by Kinetix. The model was created by Upstart! and converted into POV-
Ray using the 3DWin converter by TB Software. The original scene contains ca.

190 CHAPTER 5. RADIOSITY

Figure 5.10: Left: ray traced box scene with a blocker. Right: a two-pass solution
(radiosity and ray tracing). The radiosity solution is 95% converged and it is
stored in the vertices of ca. 3000 triangles. The direct illumination was subtracted
from the radiosity solution and computed by the ray tracing algorithm. Note the
soft shadow, which is typical for secondary diffuse reflections

190000 triangles and 25 point light sources.

We adjusted the mesh resolution8 and observed the absolute times during the
first few runs. Another problem which we had to solve was that the light sources
in both the models also illuminated the outside of the buildings, while the camera
viewed the inside of the buildings. This enormously increases the computational
time. Even though the outside patches do not usually illuminate any patches of
interest, they will be selected for the shooting in the early iterations. In order
to save this work, we manually deleted the light sources which were positioned
outside of the rooms of interest.

Jagdschloss

The adjusted JAGDSCHLOSS scene contains ca. 350000 triangles and 25 light
sources. It took ca. 11 hours to compute the first 200 shooting iterations for
the scene JAGDSCHLOSS (the ray tracing phase took additional 25 minutes). 3
samples on the shooting patch and 3 samples on the receiving patch were used
for the energy transfer. The radiosity solution which is shown in Fig. 5.11 is only
ca. 3% converged. An additional modeling work is needed to make the materials
and the lighting more realistic.

8This initial mesh refinement is not necessary when the adaptive substructuring is imple-
mented.

5.7. EXPERIMENTS 191

Figure 5.11: Left: ray traced scene JAGDSCHLOSS. Right: the radiosity (two-pass)
solution. The radiosity solution is 3% converged and it is stored in the vertices
of ca. 350000 triangles.

House

The adjusted HOUSE scene contains ca. 170000 triangles and 6 point light sources.
It took ca. 35 hours to compute the first 100 shooting iterations for the scene
HOUSE. 3 samples on the shooting patch and 3 samples on the receiving patch were
used for the energy transfer. The radiosity solution which is shown in Fig. 5.12
is only ca. 4% converged.

Figure 5.12: Left: ray traced scene HOUSE. Right: the radiosity (two-pass) solu-
tion. The radiosity solution is 4% converged and it is stored in the vertices of ca.
170000 triangles.

192 CHAPTER 5. RADIOSITY

5.8 Conclusions

We presented a shooting radiosity algorithm which combines the Monte-Carlo
form factor computation with the energy exchange using the ray tracing shader.
The main advantages of the algorithm are its simplicity and flexibility. No con-
straints are placed on the topology or the resolution of the input mesh, arbitrary
materials are correctly dealt with. The algorithm can be incorporated into any
ray tracer as a preprocessing step and ray tracing acceleration techniques such
as light buffers and hierarchy of bounding boxes can be reused in the radiosity
computations. Our implementation is based on the state of the art Persistence
of Vision Ray Tracer (POV-Ray).

We experimentally verified the correctness of the implementation on a spe-
cially constructed scene for which the exact radiosity solution is known. We also
compared two Monte-Carlo estimators during these experiments: the direct area
estimator and the weighted analytical estimator. The weighted analytical esti-
mator clearly outperformed the direct area estimator and was used in all the
following experiments.

Another set of experiments included radiosity computations for variants of the
box scene and two larger scenes. The implementation needs further optimisations
in order to be suitable for large scenes—however, it is reliable. We did not observe
any problem although some computations took more than one day.

An inherent disadvantage of the proposed algorithm is that it requires a mesh
representation of the model. The efficiency depends on the resolution of the input
mesh. An interesting possibility may be a decoupling of the geometry and the
illumination storage. For example, the energy exchange may only be carried out
between object bounding boxes or between the nodes of the hierarchy of bounding
boxes (bounding slabs). An obvious disadvantage of this approach is that the
computed illumination is only a rough approximation of the actual illumination.
On the other hand, this approach allows for arbitrary object types, not only
triangles meshes. Moreover, some of the tricks which are used in order to reduce
the time complexity of the shooting radiosity algorithm lead to approximations
of the actual illumination anyway. The use of bounding boxes for the energy
exchange may be a viable alternative.

Chapter 6

Summary

Parallel photorealistic image synthesis is a challenging problem. Parallel ren-
dering systems which compute photorealistic images are very rare. This thesis
identifies some of the obstacles which hamper the development of such systems.

The target architecture for the deployment of parallel rendering systems are
distributed-memory systems such as computing clusters. The contemporary mid-
dleware for the development of parallel applications for these systems are message
passing standards such as PVM and MPI. An obvious problem of some of the
implementations of PVM and MPI is a lack of thread-safety. This forces a large
class of parallel applications to use polling. This class can be characterised and
includes for instance all applications which compute on distributed data. We re-
fer to applications which form this class as non-trivial. Parallel ray tracing using
a distributed object database is a non-trivial application.

Polling generally diminishes performance and causes non-deterministic effects
in applications. We identified several sources of polling in message passing pro-
grams which build on PVM or MPI. Apart from issues such as the lack of thread-
safety or the violation of an independent message progress in the implementation
of the standards, the specification of the MPI standard differs from the specifica-
tion of well-accepted abstract message passing models. This difference does not
mean an improvement of the abstract models, it is another source of problems in
parallel programs which require asynchronous message passing.

We proposed a formal framework which adheres to existing formal message
passing models and which addresses practical issues at the same time. There
is a strong similarity between our framework and the framework for database
systems which is accepted as a standard by both the developers and the users
of database systems. We developed a message passing library, TPL, which is a
direct implementation of our framework. TPL is thread-safe, does not internally
use polling and—unlike PVM or MPI—it defines asynchronous message pass-
ing. We showed that TPL can be implemented on the top of slightly extended
PVM or MPI implementations. These extensions include an introduction of an
interrupt mechanism which is invoked on demand. The event-driven TPL library

193

194 CHAPTER 6. SUMMARY

outperformed both PVM 3.4 and MPICH 1.2.4 by two orders of magnitude on
a simple threaded pingpong benchmark running on a standard computing clus-
ter hardware. This benchmark is an abstraction of a non-trivial application and
it must use polling when the communication library is not thread-safe. We do
not claim that TPL is the best possible implementation of message passing—on
the contrary, there is enough space for improvements in its current implementa-
tion. Interestingly, some of the optimisations were addressed in the hardware of
INMOS Transputers.

We defined the global illumination problem and gave a brief overview of meth-
ods which solve the problem. Direct solution methods are recently getting at-
tention of the computer graphics community but approximation methods such
as ray tracing and radiosity are still widely used in applications. We focused
on ray tracing because the techniques of the basic ray tracing algorithm can
be used in direct methods which solve the global illumination problem without
approximations.

We described a parallelisation of ray tracing which builds on the ideas of Green
and Paddon who developed a parallel ray tracer on Transputers more than 10
years ago. The parallelisation is relatively simple and robust and does not place
constraints on the size of the 3D model, as the model can be distributed in the
memories of the processes. We presented a load balancing algorithm for parallel
ray tracing which uses demand-driven screen space subdivision. Our algorithm
is perfect in the sense that if its parameters are optimally set, then it guarantees
a perfect balance of load (hence, the shortest parallel time) and it minimises the
communication at the same time. The optimal setting of the parameters is un-
known but the parameters are intuitive and can be automatically tuned in the
run-time. We suggested a tuning procedure and demonstrated it on a set of ex-
periments. In these experiments, we compared two parallel ray tracing programs
which are identical in all respects but one: the first program uses the interrupt
mechanism inside the communication library, whereas the second program uses
polling inside the communication library. The first program outperformed the
second one in all experiments (for all problem instances and in all runs).

We introduced a practical shooting radiosity algorithm which can be incor-
porated into any ray tracer. The algorithm uses Monte Carlo form factor com-
putation which is combined with energy transfer using the ray tracing shader.
This combined step keeps the radiosity algorithm simple and general at the same
time. We devoted a special attention to the choice of the Monte Carlo form factor
estimator which is essential for the reliability of the radiosity algorithm.

The state of the art of global illumination algorithms is in our opinion much
more advanced than the state of the art of 3D standards which define the form
in which 3D models are stored. Rendering algorithms, as well as human 3D
artists, are often either forced to work with insufficient or incorrect data or to
develop their own standards. The following short section identifies a source of
this problem.

6.1. TOWARDS PORTABLE 3D STANDARDS 195

6.1 Towards portable 3D standards

Computer graphics has been evolving very fast in the past few decades. It has
found applications in computer games, films, architecture, etc. However, the pro-
cess of producing photorealistic images is far from being automatic. The human
factor is required in order to achieve the desired level of perfection. The 3D artist
must sometimes “help” the rendering system to make the image look realistic.
This is not acceptable in certain applications. An example of such an application
is the conservation of cultural heritage. We would like to store models of real
3D objects such as buildings, cars, furnitures, vases, statues etc. in a form from
which very realistic images can be reconstructed later. This form must not be tied
to any particular modeling or rendering software product or to a particular ren-
dering algorithm. Future improvements of the rendering systems should increase
the level of photorealism. Several hundreds of 3D formats exist but none provides
this level of portability. We will return to the modeling of surface geometry in
order to explain what is missing. However, the following reasoning also applies
to the modeling of materials, light sources etc. (The introduction of procedural
shaders, IES luminaire format and MGF format indicates a movement toward
the standardisation of materials and light sources.)

Almost all modeling programs can internally work with spheres. Why cannot
a sphere be passed to some other modeling or rendering program as a sphere?
Why must an object as simple as a sphere be converted into a triangle mesh
instead? The first reason is the “almost all”—not all modeling or rendering
programs work with spheres. Another reason are differences in representations of
spheres. One program may work with the representation 〈center, radius〉 whereas
another program may work the representation 〈x1, x2, x3, x4〉 (where x1, x2, x3, x4
are points in 3D space). The conversion between these two representations is sim-
ple in this particular case, but it may be difficult or impossible for representations
of other geometric primitives.

Let us assume that a standard 3D format exists which can store spheres
(in some representation). Which other geometric primitives must the format
support? Cones? Tori? Cylinders? The current state of the art reduces the set
of geometric primitives to a triangle mesh because triangle meshes are currently
supported in practically all software and hardware systems. We claim that a
portable 3D standard must support all geometric primitives. However, the set of
all geometric primitives is infinite and there is no unique representation for all of
them.

A portable 3D standard should not attempt to define the set of representa-
tions which must be supported by modeling and rendering programs—instead of
that it must define methods (operations on the geometric primitives) on which the
programs can rely. These methods constitute the interface between the represen-
tations of geometric primitives and algorithms which work with the primitives.
Good candidates for such methods are finding all intersections of a ray and a

196 CHAPTER 6. SUMMARY

primitive and computation of the surface normal at an intersection point. The
set of methods must be chosen carefully so that they can also be applied on com-
pound objects which are created using the CSG operations (see Section 3.2.2).
The implementation of the methods for a geometric primitive (a program code)
must be stored in a file together with the primitive. The storage of program code
in a platform-independent form was a problem in the past but this has changed.
At the time being, Java code is portable across practically all existing platforms.
[Sunb] The methods can therefore be implemented in Java.

The hiding of the implementation of the methods allows for an insertion of
a new geometric primitive at any time without the need of reimplementation of
existing modeling or rendering software. This is actually the idea behind the
Java technology. Java3D is in our opinion a step backwards (it is based on
the mesh-only technology) and we believe that the introduction of Java3D by the
original Java developers (Sun Microsystems) is rather a tactical than a strategical
decision. [Suna]

Triangle meshes have been around for several decades and will certainly re-
main being around for a long time. However, the concept which we sketch does
not exclude using triangle meshes further—it only allows for using also other
geometric primitives. Rendering algorithms are prepared for the introduction of
such a concept and so are 3D artists. A great part of contemporary computer
graphics is a collection of one-purpose tricks. A unification concept would help
to distinguish one-purpose tricks from techniques which apply generally.

Appendix A

MPI progress rule tester

The MPI program below verifies whether the implementation of the MPI library
violates the progress rule defined in the MPI standard or not. The sleep(5) in
the process 0 should ensure that the process 1 performs its actions prior to the
MPI Ssend() call in the process 0. This program, linked with an MPI library
which obeys the progress rule, eventually (usually immediately after 5 seconds
have passed) prints out the following:
0: Sleeping for 5 seconds...

1: Posting Irecv

1: Irecv posted, blocking

0: Ssend...

0: Ssend completed (test passed)

An incorrect MPI implementation (an implementation which violates the
progress rule) does not print out the last line. None of the following MPI imple-
mentations passed this test:

• MPICH 1.2.4 (Intel Pentium, Fast-Ethernet/TCP)

• MPICH 1.2.4 (Intel Itanium, Myrinet/GM)

• ScaMPI 1.13.7 (Intel Pentium, Dolphin PCI/SCI)

(We are aware of no MPI implementation which passes this test.)

/* mpi progress.c */

#include <stdio.h>

#include <stdlib.h>

#include "mpi.h"

197

198 APPENDIX A. MPI PROGRESS RULE TESTER

int main(int argc, char *argv[])

{
int rank;

MPI Request req;

int tmp int;

MPI Init(&argc, &argv);

MPI Comm rank(MPI COMM WORLD, &rank);

if (rank == 0)

{
printf("0: Sleeping for 5 seconds...\n"); fflush(stdout);

sleep(5);

printf("0: Ssend...\n"); fflush(stdout);

MPI Ssend(&tmp int, 1, MPI INT, 1, 0, MPI COMM WORLD);

printf("0: Ssend completed (test passed)\n"); fflush(stdout);

}
else

{
printf("1: posting Irecv\n"); fflush(stdout);

MPI Irecv(&tmp int, 1, MPI INT, 0, 0, MPI COMM WORLD, &req);

printf("1: Irecv posted, blocking\n"); fflush(stdout);

for (;;)

;

}
MPI Finalize();

return(0);

}

Appendix B

Threaded pingpong benchmark

The three programs below implement the SYMMETRICAL THREADED PING-
PONG benchmark which is described in Section 2.8.2. The TPL 2.0 program is
event-driven, whereas the PVM 3.4 and MPI programs use polling.

B.1 TPL 2.0

/* pingpong tpl.c */

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/time.h>

#include "tpl.h"

#define RANK PING 0

#define RANK PONG 1

enum

{
MSG INIT = TPL MSGTAG LAST,

MSG PING,

MSG PONG,

MSG QUIT

};

static int nr msgs;

static int msg size;

static char *databuf;

199

200 APPENDIX B. THREADED PINGPONG BENCHMARK

static int rank ping = RANK PING;

static int rank pong = RANK PONG;

static int my rank;

static struct timeval tv1, tv2;

static struct timezone tz1, tz2;

static float elapsed time, mbytes;

static int match pong(int sender, int tag, void *message);

static void *send thread(void *arg);

static void *recv thread(void *arg);

static TPL ACTION message handler(int sender, int tag, void *message);

static int match pong(int sender, int tag, void *message)

{
return(tag == MSG PONG);

}

static void *send thread(void *arg)

{
int counter;

void *sendbuf;

/* To avoid startup bias. */

sleep(3);

/* Start timer. */

gettimeofday(&tv1, &tz1);

for (counter = 0; counter < nr msgs; counter++)

{
tpl begin send(&sendbuf);

tpl pkchar(sendbuf, databuf, msg size);

tpl send(&rank pong, 1, MSG PING, sendbuf);

tpl end send(sendbuf);

}

return NULL;

}

static void *recv thread(void *arg)

{
int counter;

void *message;

B.1. TPL 2.0 201

int tag;

int sender;

char *buf;

if (msg size > 0)

buf = (char *) tpl malloc(msg size * sizeof(char));

for (counter = 0; counter < nr msgs; counter++)

{
tpl begin recv();

tpl recv(match pong, &sender, &tag, &message);

tpl upkchar(message, buf, msg size);

tpl end recv(message);

}

/* Stop timer. */

gettimeofday(&tv2, &tz2);

tpl begin send(&message);

tpl send(&rank pong, 1, MSG QUIT, message);

tpl end send(message);

tpl begin send(&message);

tpl send(&rank ping, 1, MSG QUIT, message);

tpl end send(message);

elapsed time = tv1.tv usec < tv2.tv usec ?

tv2.tv sec - tv1.tv sec + (tv2.tv usec - tv1.tv usec) / 1e6 :

tv2.tv sec - tv1.tv sec - 1 + (tv1.tv usec - tv2.tv usec) / 1e6;

mbytes = 2.0 * (float) nr msgs * (float) msg size / 1048576.0;

printf("%d x %d Bytes x 2 = %f MBytes, %f s, %f MB/s, %f msg/s,

%f s/msg, %d / %d sleeps\n",
nr msgs, msg size, mbytes, elapsed time, mbytes / elapsed time,

nr msgs / elapsed time, elapsed time / nr msgs, 0, 0);

return NULL;

}

static TPL ACTION message handler(int sender, int tag, void *message)

{
void *sendbuf = NULL;

switch (tag)

{
case MSG PING: /* Only for PONG */

202 APPENDIX B. THREADED PINGPONG BENCHMARK

tpl begin send(&sendbuf);

tpl pkchar(sendbuf, databuf, msg size);

tpl send(&rank ping, 1, MSG PONG, sendbuf);

tpl end send(sendbuf);

return(TPL ACTION DROP);

break;

case MSG PONG: /* Only for PING */

return(TPL ACTION ENQUEUE);

break;

case MSG QUIT: /* For both PING and PONG */

return(TPL ACTION EXIT);

break;

default:

printf("%d: ", my rank);

tpl error("Unknown message\n");
break;

}

return(FALSE);

}

int main(int argc, char **argv)

{
pthread t send thread id, recv thread id;

int nr tasks;

tpl initialize(&argc, &argv);

/* Spawn processes. */

nr tasks = 2;

tpl spawn(&nr tasks, &my rank, &argc, &argv);

if (argc != 3)

{
tpl error("Usage: ping <nr msgs> <msg size>\n");

}

nr msgs = atoi(argv[1]);

msg size = atoi(argv[2]);

B.1. TPL 2.0 203

if (msg size > 0)

databuf = (char *) tpl malloc(msg size * sizeof(char));

switch(my rank)

{
case RANK PING:

/* Start sending thread. */

if (pthread create(&send thread id, NULL, send thread,

NULL) != 0)

{
tpl error("Could not start sending thread\n");

}

/* Start receiving thread. */

if (pthread create(&recv thread id, NULL, recv thread,

NULL) != 0)

{
tpl error("Could not start sending thread\n");
}

tpl handle messages(message handler);

pthread join(send thread id, NULL);

pthread join(recv thread id, NULL);

break;

case RANK PONG:

tpl handle messages(message handler);

break;

default:

tpl error("Unknown role\n");
break;

}

/* Terminate the program. */

tpl deinitialize();

if (msg size > 0)

tpl free(databuf);

return(0);

}

204 APPENDIX B. THREADED PINGPONG BENCHMARK

B.2 PVM 3.4

/* ping pvm.c */

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <time.h>

#include <sys/time.h>

#include <unistd.h>

#include "pvm3.h"

#define ERROR(a) {printf(a); fflush(stdout); exit(1);}
#define PONG LOCATION "pvm pong";

#define MAX MSG LENGTH 2000000

enum

{
MSG INIT = 0,

MSG PING,

MSG PONG,

MSG QUIT

};

static int pong tid;

static int nr msgs;

static int msg size;

static struct timeval tv1, tv2;

static struct timezone tz1, tz2;

static float elapsed time, mbytes;

static pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;

static void *pong send(void *arg);

static void *pong send(arg)

void *arg;

{
int counter;

char msg[MAX MSG LENGTH];

/* To avoid startup bias. */

sleep(3);

B.2. PVM 3.4 205

/* Start timer. */

gettimeofday(&tv1, &tz1);

for (counter = 0; counter < nr msgs; counter++)

{
pthread mutex lock(&mutex);

if (pvm initsend(PvmDataDefault) < 0)

ERROR("error pvm initsend\n");
pvm pkbyte(msg, msg size, 1);

if (pvm send(pong tid, MSG PING) < 0)

ERROR("error pvm send\n");
pthread mutex unlock(&mutex);

}
return(NULL);

}

int main(argc, argv)

int argc;

char *argv[];

{
int counter;

char msg[MAX MSG LENGTH];

pthread t pth id;

int bufid;

struct timespec pause, rem;

struct pvmhostinfo *pvm hosts;

int pvm nr hosts;

int pvm nr archs;

int mytid = pvm mytid();

int nr sleep calls = 0;

int nr sleep calls2 = 0;

if (argc != 3)

{
printf("Usage: ping <nr msgs> <msg size>\n");
exit(1);

}

nr msgs = atoi(argv[1]);

msg size = atoi(argv[2]);

pvm setopt(PvmRoute, PvmRouteDirect);

pvm config(&pvm nr hosts, &pvm nr archs, &pvm hosts);

206 APPENDIX B. THREADED PINGPONG BENCHMARK

if (pvm spawn(PONG LOCATION, NULL, PvmTaskHost,

pvm hosts[1].hi name, 1, &pong tid) < 1)

ERROR("Could not spawn pong\n");

if (pvm initsend(PvmDataDefault) < 0)

ERROR("error pvm initsend\n");
pvm pkint(&mytid, 1, 1);

pvm pkint(&nr msgs, 1, 1);

pvm pkint(&msg size, 1, 1);

if (pvm send(pong tid, MSG INIT) < 0)

ERROR("error pvm send\n");
pvm recv(-1, MSG INIT);

pthread create(&pth id, NULL, pong send, NULL);

for (counter = 0; counter < nr msgs;)

{
pthread mutex lock(&mutex);

while ((bufid = pvm probe(-1, MSG PONG)) > 0)

{
pvm recv(-1, MSG PONG);

pvm upkbyte(msg, msg size, 1);

pvm freebuf(bufid);

counter++;

}
pthread mutex unlock(&mutex);

if (counter)

nr sleep calls++;

if (counter < nr msgs)

{
pause.tv sec = 0;

pause.tv nsec = 50000000;

while (nanosleep(&pause, &rem) == -1)

nanosleep(&rem, &rem);

}
}

pvm recv(-1, MSG QUIT);

pvm upkint(&nr sleep calls2, 1, 1);

/* Stop timer. */

gettimeofday(&tv2, &tz2);

pthread join(pth id, NULL);

B.2. PVM 3.4 207

elapsed time = tv1.tv usec < tv2.tv usec ?

tv2.tv sec - tv1.tv sec + (tv2.tv usec - tv1.tv usec) / 1e6 :

tv2.tv sec - tv1.tv sec - 1 + (tv1.tv usec - tv2.tv usec) / 1e6;

mbytes = 2.0 * (float) nr msgs * (float) msg size / 1048576.0;

printf("%d x %d Bytes x 2 = %f MBytes, %f s, %f MB/s, %f msg/s,

%f s/msg, %d / %d sleeps\n",
nr msgs, msg size, mbytes, elapsed time, mbytes / elapsed time,

nr msgs / elapsed time, elapsed time / nr msgs,

nr sleep calls, nr sleep calls2);

pvm exit();

return(0);

}

/* pong pvm.c */

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <time.h>

#include <sys/time.h>

#include <unistd.h>

#include "pvm3.h"

#define MAX MSG LENGTH 2000000

enum

{
MSG INIT = 0,

MSG PING,

MSG PONG,

MSG QUIT

};

static int ping tid;

static int nr msgs;

static int msg size;

static char sendbuf[MAX MSG LENGTH];

static pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;

int main()

208 APPENDIX B. THREADED PINGPONG BENCHMARK

{
int counter;

int bufid;

struct timespec pause, rem;

int nr sleep calls = 0;

pvm mytid();

pvm setopt(PvmRoute, PvmRouteDirect);

bufid = pvm recv(-1, MSG INIT);

pvm upkint(&ping tid, 1, 1);

pvm upkint(&nr msgs, 1, 1);

pvm upkint(&msg size, 1, 1);

pvm initsend(PvmDataDefault);

pvm send(ping tid, MSG INIT);

for (counter = 0; counter < nr msgs;)

{
pthread mutex lock(&mutex);

while ((bufid = pvm probe(-1, MSG PING)) > 0)

{
pvm recv(-1, MSG PING);

pvm upkbyte(sendbuf, msg size, 1);

pvm freebuf(bufid);

pvm initsend(PvmDataDefault);

pvm pkbyte(sendbuf, msg size, 1);

pvm send(ping tid, MSG PONG);

counter++;

}
pthread mutex unlock(&mutex);

if (counter)

nr sleep calls++;

if (counter < nr msgs)

{
pause.tv sec = 0;

pause.tv nsec = 50000000;

while (nanosleep(&pause, &rem) == -1)

nanosleep(&rem, &rem);

}
}
pvm initsend(PvmDataDefault);

pvm pkint(&nr sleep calls, 1, 1);

pvm send(ping tid, MSG QUIT);

B.3. MPI (MPI 1, MPI 2) 209

pvm exit();

return(0);

}

B.3 MPI (MPI 1, MPI 2)

/* pingpong mpi.c */

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <time.h>

#include <sys/time.h>

#include <unistd.h>

#include "mpi.h"

#define MAX MSG LENGTH 2000000

#define ERROR(a) {printf(a); fflush(stdout); exit(1);}

enum

{
MSG INIT = 0,

MSG PING,

MSG PONG,

MSG QUIT

};

static int ping tid = 0;

static int pong tid = 1;

static int nr msgs;

static int msg size;

static struct timeval tv1, tv2;

static struct timezone tz1, tz2;

static float elapsed time, mbytes;

static pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;

static void *pong send(void *arg);

static void *pong send(arg)

210 APPENDIX B. THREADED PINGPONG BENCHMARK

void *arg;

{
int counter;

char msg[MAX MSG LENGTH];

char msg2[MAX MSG LENGTH];

int offset;

MPI Request send req;

MPI Status sts;

int send finished;

struct timespec pause, rem;

/* To avoid startup bias. */

sleep(3);

/* Start timer. */

gettimeofday(&tv1, &tz1);

pthread mutex lock(&mutex);

for (counter = 0; counter < nr msgs; counter++)

{
offset = 0;

MPI Pack(msg2, msg size, MPI BYTE, msg, MAX MSG LENGTH, &offset,

MPI COMM WORLD);

/* We must not use synchronous send here, otherwise the data flow

mechanism will block if this thread gets to sending

many times in a row. */

MPI Isend(msg, offset, MPI PACKED, pong tid, MSG PING,

MPI COMM WORLD, &send req);

/* We must make sure that the send finishes before we attempt to

start another one. But at the same time we must allow the recv

thread to proceed. */

do

{
send finished = 0;

MPI Test(&send req, &send finished, &sts);

if (! send finished)

{
pthread mutex unlock(&mutex);

pause.tv sec = 0;

pause.tv nsec = 50000000;

while (nanosleep(&pause, &rem) == -1)

nanosleep(&rem, &rem);

pthread mutex lock(&mutex);

}
} while (! send finished);

B.3. MPI (MPI 1, MPI 2) 211

}
pthread mutex unlock(&mutex);

return(NULL);

}

int main(argc, argv)

int argc;

char *argv[];

{
int counter;

char msg[MAX MSG LENGTH];

char msg2[MAX MSG LENGTH];

pthread t pth id;

int offset;

struct timespec pause, rem;

int rank;

MPI Status sts;

int flag;

int nr sleep calls = 0;

int nr sleep calls2 = 0;

MPI Init(&argc, &argv);

if (argc != 3)

{
printf("Usage: ping <nr msgs> <msg size>\n");
exit(1);

}

nr msgs = atoi(argv[1]);

msg size = atoi(argv[2]);

MPI Comm rank(MPI COMM WORLD, &rank);

if (rank == ping tid)

{
offset = 0;

MPI Pack(&pong tid, 1, MPI INT, msg, MAX MSG LENGTH, &offset,

MPI COMM WORLD);

MPI Pack(&nr msgs, 1, MPI INT, msg, MAX MSG LENGTH, &offset,

MPI COMM WORLD);

MPI Pack(&msg size, 1, MPI INT, msg, MAX MSG LENGTH, &offset,

MPI COMM WORLD);

MPI Send(msg, offset, MPI PACKED, pong tid, MSG INIT,

MPI COMM WORLD);

MPI Recv((void *) msg, MAX MSG LENGTH, MPI PACKED, pong tid,

212 APPENDIX B. THREADED PINGPONG BENCHMARK

MSG INIT, MPI COMM WORLD, &sts);

pthread create(&pth id, NULL, pong send, NULL);

pthread mutex lock(&mutex);

for (counter = 0; counter < nr msgs;)

{
do

{
flag = 0;

MPI Iprobe(pong tid, MSG PONG, MPI COMM WORLD, &flag, &sts);

if (flag)

{
MPI Recv((void *) msg, MAX MSG LENGTH, MPI PACKED,

pong tid, MSG PONG, MPI COMM WORLD, &sts);

offset = 0;

MPI Unpack((void *) msg, MAX MSG LENGTH, &offset,

msg2, msg size, MPI BYTE, MPI COMM WORLD);

counter++;

}
}
while (flag);

if (counter)

nr sleep calls++;

if (counter < nr msgs)

{
pthread mutex unlock(&mutex);

pause.tv sec = 0;

pause.tv nsec = 50000000;

while (nanosleep(&pause, &rem) == -1)

nanosleep(&rem, &rem);

pthread mutex lock(&mutex);

}
}
pthread mutex unlock(&mutex);

/* Stop timer. */

gettimeofday(&tv2, &tz2);

MPI Recv((void *) msg, MAX MSG LENGTH, MPI PACKED,

pong tid, MSG QUIT, MPI COMM WORLD, &sts);

offset = 0;

MPI Unpack((void *) msg, sizeof(int), &offset,

B.3. MPI (MPI 1, MPI 2) 213

&nr sleep calls2, 1, MPI INT, MPI COMM WORLD);

pthread join(pth id, NULL);

elapsed time = tv1.tv usec < tv2.tv usec ?

tv2.tv sec - tv1.tv sec + (tv2.tv usec - tv1.tv usec) / 1e6 :

tv2.tv sec - tv1.tv sec - 1 + (tv1.tv usec - tv2.tv usec) / 1e6;

mbytes = 2.0 * (float) nr msgs * (float) msg size / 1048576.0;

printf("%d x %d Bytes x 2 = %f MBytes, %f s, %f MB/s, %f msg/s,

%f s/msg, %d / %d sleeps\n",
nr msgs, msg size, mbytes, elapsed time, mbytes / elapsed time,

nr msgs / elapsed time, elapsed time / nr msgs,

nr sleep calls, nr sleep calls2);

}
else

{
/* Pong process. */

MPI Recv((void *) msg, MAX MSG LENGTH, MPI PACKED, ping tid,

MSG INIT, MPI COMM WORLD, &sts);

offset = 0;

MPI Unpack((void *) msg, MAX MSG LENGTH, &offset, &pong tid, 1,

MPI INT, MPI COMM WORLD);

MPI Unpack((void *) msg, MAX MSG LENGTH, &offset, &nr msgs, 1,

MPI INT, MPI COMM WORLD);

MPI Unpack((void *) msg, MAX MSG LENGTH, &offset, &msg size, 1,

MPI INT, MPI COMM WORLD);

MPI Send(msg, offset, MPI PACKED, ping tid, MSG INIT,

MPI COMM WORLD);

pthread mutex lock(&mutex);

for (counter = 0; counter < nr msgs;)

{
do

{
MPI Iprobe(ping tid, MSG PING, MPI COMM WORLD, &flag, &sts);

if (flag)

{
MPI Recv((void *) msg, MAX MSG LENGTH, MPI PACKED,

ping tid, MSG PING, MPI COMM WORLD, &sts);

MPI Unpack((void *) msg, MAX MSG LENGTH, &offset,

msg2, msg size, MPI BYTE, MPI COMM WORLD);

counter++;

offset = 0;

MPI Pack(msg2, msg size, MPI BYTE, msg, MAX MSG LENGTH,

&offset, MPI COMM WORLD);

214 APPENDIX B. THREADED PINGPONG BENCHMARK

MPI Send(msg, offset, MPI PACKED, ping tid, MSG PONG,

MPI COMM WORLD);

}
}
while (flag);

if (counter)

nr sleep calls++;

if (counter < nr msgs)

{
pthread mutex unlock(&mutex);

pause.tv sec = 0;

pause.tv nsec = 50000000;

while (nanosleep(&pause, &rem) == -1)

nanosleep(&rem, &rem);

pthread mutex lock(&mutex);

}
}
pthread mutex unlock(&mutex);

offset = 0;

MPI Pack(&nr sleep calls, 1, MPI INT, msg, MAX MSG LENGTH, &offset,

MPI COMM WORLD);

MPI Send(msg, offset, MPI PACKED, ping tid, MSG QUIT,

MPI COMM WORLD);

}
MPI Finalize();

return(0);

}

List of Figures

2.1 Two independent activities in one process of a non-trivial application 12
2.2 An example of a replicated SEQ. The program computes j = 210 . 17
2.3 An example of a replicated PAR. The program computes j = 210 . 17
2.4 An example of a replicated ALT. The program computes j = 210 . 17
2.5 An example of named processes in Occam. The program computes

j = 210 in PROC sink . 18
2.6 Simulation of dining philosophers in Occam 20
2.7 Simulation of dining philosophers, a process diagram 21
2.8 Hardware block diagram of the T805 Transputer 22
2.9 Implementation of one process of a non-trivial application in Occam 24
2.10 Components of the message passing framework 37
2.11 Natural threaded implementation of one process of a non-trivial

application: it only works if the communication library is thread-
safe . 47

2.12 Polling implementation of one process of a non-trivial application:
a thread-safe communication library is not required for the appli-
cation to work correctly—on the other hand, polling makes the
application inefficient and non-portable 49

2.13 Implementation of nanosleep in the kernel of an operating system 55
2.14 Implementation of the blocking recv in a socket-based communi-

cation library . 61
2.15 Scenario of the interruption of a blocked recv. The intr fd file

descriptor is the reading end of a POSIX pipe. The thread T1
writes to the writing end of the pipe (intr wfd), firing the blocked
select in T2 . 62

2.16 Threaded event-driven implementation of one process of a non-
trivial application using a quasi-thread-safe communication library.
This program does not contain any polling 64

2.17 Implementation of the interrupt mechanism inside a communica-
tion library. intr fd is the reading end of a synchronous pipe,
intr wfd is the writing end of the pipe 66

2.18 TPL layered software architecture 70
2.19 Generic structure of a multi-threaded TPL process (TPL 1.0) . . 75

215

216 LIST OF FIGURES

2.20 Message queueing model of TPL 1.0. Upon the arrival of a mes-
sage, the main thread inserts messages into the queues of the
threads which subscribed the message. In order to avoid a replica-
tion of the (possibly large) data stored in the message bodies, only
the message headers are inserted into the message queues. The
message data is stored only once and referenced by the message
headers. The main thread also signals the semaphore associated
with the message queue into which it is inserting a message (in
order to wake up the thread which may already be waiting for the
message) . 79

2.21 Implementation of tpl handle messages in TPL 1.0 81

2.22 Message queueing model of TPL 2.0. Upon the arrival of a mes-
sage, the main thread first looks for a match among the threads
waiting in the thread queue. If there is a match, the message is
passed to the waiting thread (and the thread is woken up). If there
is no match, the message is inserted into the message queue. A
thread (which is not the main thread) which is calling tpl recv()

first looks into the message queue. If it finds a matching message
in the message queue, it removes it from the queue. If there is no
matching message in the message queue, the thread inserts itself
into the waiting thread queue . 82

2.23 An optimised polling implementation of the PING process. The
optimal setting of time in the sleep(time) call is 50 milliseconds
(see Section 2.6.4). This optimal setting was used in the measure-
ments . 89

2.24 Average throughput, 1 node hpcLine 90

2.25 Standard deviation of throughput, 1 node hpcLine 91

2.26 Standard deviation of the number of sleep() calls in the polling
versions of the benchmark, 1 node hpcLine 92

2.27 Smoothing effect of the TCP protocol (Nagel’s algorithm). [Ste94],
[WS95] A non-continuous message flow generated by the process
PONG is received as a continuous message flow in the process
PING . 93

2.28 Average burstiness (amount of transferred data per sleep() call)
for the polling versions of the benchmark, 1 node hpcLine 94

2.29 Average throughput, 2 nodes hpcLine 95

2.30 Standard deviation of throughput, 2 nodes hpcLine 96

2.31 Standard deviation of the number of calls in the polling versions
of the benchmark, 2 nodes hpcLine 97

2.32 Average burstiness (amount of transferred data per sleep() call)
for the polling versions of the benchmark, 2 nodes hpcLine 98

2.33 Average roundtrip time, 2 nodes hpcLine 99

LIST OF FIGURES 217

2.34 Average roundtrip time, 2 nodes hpcLine (a 100x magnification of
the graph from Fig. 2.33) . 100

2.35 Overhead and transmission time in the MPI model. tsp denotes
the moment at which the sender posts a send request. t1 denotes
the moment when the first byte of the message is placed on the
network. t2 denotes the moment when the last byte of the message
is placed on the network. tsc denotes the moment when the ap-
plication is notified about the completion of the send request. trp
denotes the moment when the application posts a receive request
(which matches the send request). t3 denotes the moment when
the first byte of the message arrives. t4 denotes the moment when
the last byte of the message arrives. trc denotes the moment when
the receiver is notified about the completion of the receive request 103

3.1 An example of a triangle mesh. Note the discontinuities on the
top and on the bottom of the cone 116

3.2 An example of a CSG tree. The object shown in the root node
of the tree is a result of the union and difference operations. The
unary transformation operations are not depicted in the figure (a
transformation is applied to each node of the tree) 117

3.3 Gathering path integration: The geometry of the integrand of the
term (RL)(x, ω) . 125

3.4 Gathering path integration: The geometry of the integrand of the
term (R2L)(x, ω) . 125

3.5 Camera tracing with a single collection of the direct radiance (path
tracing) . 126

3.6 Camera tracing with a multiple collection of the direct radiance
(distributed ray tracing) . 127

3.7 Shooting path integration: The geometry of the integrand of the
term (PW)(x, ω′) . 128

3.8 Shooting path integration: The geometry of the integrand of the
term (P2W)(x, ω′) . 128

3.9 Light tracing with a single collection of the direct potential 129

3.10 Light tracing with a multiple collection of the direct potential . . 129

3.11 Bidirectional path tracing . 130

3.12 Bidirectional path tracing with multiple connections of the gath-
ering and shooting paths . 131

3.13 Perfect specular reflection. θ = θ′ 132

3.14 Perfect specular refraction. sin θ = kior sin θ′ 133

3.15 Perfect diffuse reflection. The incoming radiance is equally scat-
tered in all outgoing directions in the half-space of reflection, in-
dependently of the incoming direction ω′ 134

218 LIST OF FIGURES

4.1 Left: A process farm. Right: A process farm extended with a load
balancing process . 149

4.2 The extreme cases of chunking. Left: Minimal chunks. Right:
Maximal chunks . 149

4.3 The perfect load balancing algorithm (used in the loadbalancer
process) . 150

4.4 Left: Illustration of the work assignment in the perfect load bal-
ancing algorithm for N = 2 and T = 3. Right: The exact number
of work requests in the perfect load balancing algorithm as a func-
tion of the number of workers and the number of atomic parts . . 152

4.5 The pseudo-code of the function Fetch Object Data. The func-
tion insert into cachemakes space for the requested object data
by removing other object’s data according to the cache policy, and
then increases the requested object’s importance. The function
cache hit increases the object’s importance 157

4.6 Absolute parallel times for 90 workers for a varying chunk size.
Left: BLOB scene. Right: HAUS6 scene 159

4.7 Efficiency of the chunking algorithm for a constant chunk size and
varying number of worker processes. Left: BLOB scene (chunk size
720 pixels). Right: HAUS6 scene (chunk size 360 pixels) 159

4.8 Efficiency of the perfect load balancing algorithm with the optimal
chunk size and varying number of worker processes. Top: BLOB

scene (M = 720 pixels). Bottom: HAUS6 scene (M = 360 pixels) . 160

4.9 Cache miss ratios. Top: BATH, 353 objects. Centre: ROSENTHALERHOF,
2215 objects. Bottom: HELICOPTER, 167 objects 163

4.10 Efficiency of POV||Ray (an old polling version) with a distributed
object database. The memory percentage states how large part
of the sum of all object data sizes is allowed to be stored in the
memory of each worker. A worker is only allowed to use this
amount of memory for the storage of objects which it owns and for
the object cache. The missing data in the graph indicate the cases
where this simulated memory limit was exceeded in some worker . 164

5.1 The basic shooting radiosity algorithm 170

5.2 Radiosity energy exchange using the ray tracing shader. Left:
shadow rays are traced by the ray tracing shader from the light
sources in order to illuminate a surface point Y . Right: shadow
rays are traced by the ray tracing shader in order to transfer energy
from the shooting patch to the receiving patch. The temporary
point light sources are randomly generated on the shooting patch 178

5.3 Shooting radiosity algorithm using the ray tracing shader 180

5.4 Generation of sample points on the shooting patch 182

LIST OF FIGURES 219

5.5 Left: BOX12, the box scene modeled of 12 top-level triangle patches.
Right: BOX48, the same box scene modeled of 48 top-level triangle
patches (level-one refinement) . 184

5.6 Monte-Carlo computation of the form factors Fpar and Fperp for
the box scenes BOX12 and BOX48. Left column: direct area estima-
tor (Equation 5.7). Right column: weighted analytical estimator
(Equation 5.14) . 187

5.7 Left: ray traced box scene. Right: the radiosity solution (90%
converged) . 188

5.8 Left: ray traced box scene. Right: a two-pass solution (radiosity
and ray tracing). The radiosity solution is 90% converged and it
is stored in the vertices of ca. 13000 triangles. The texture in the
right image is a little distorted because the direct illumination was
reconstructed from the radiosity solution. 188

5.9 Left: ray traced box scene. Right: a two-pass solution (radiosity
and ray tracing). The radiosity solution is 95% converged and it is
stored in the vertices of ca. 3000 triangles. The direct illumination
was subtracted from the radiosity solution and computed by the
ray tracing algorithm . 189

5.10 Left: ray traced box scene with a blocker. Right: a two-pass
solution (radiosity and ray tracing). The radiosity solution is 95%
converged and it is stored in the vertices of ca. 3000 triangles.
The direct illumination was subtracted from the radiosity solution
and computed by the ray tracing algorithm. Note the soft shadow,
which is typical for secondary diffuse reflections 190

5.11 Left: ray traced scene JAGDSCHLOSS. Right: the radiosity (two-
pass) solution. The radiosity solution is 3% converged and it is
stored in the vertices of ca. 350000 triangles. 191

5.12 Left: ray traced scene HOUSE. Right: the radiosity (two-pass) so-
lution. The radiosity solution is 4% converged and it is stored in
the vertices of ca. 170000 triangles. 191

220 LIST OF FIGURES

Bibliography

[ABB+01] P. Altenbernd, A. Bartels, S. Bicskey, L. O. Burchard, M. Holch,
J. Jensch, M. Oestreicher, I. Neumann, T. Plachetka, T. Prill,
J. Seiler, and A. Schmitt. HiQoS: High Performance Multimedia-
Dienste mit Quality-of-Service-Garantien, 2001. Projekt HiQoS,
Abschlussbericht.

[ACH+99] P. Altenbernd, F. Cortes, M. Holch, J. Jensch, O. Michel,
C. Moar, T. Prill, R. Lüling, K. Morisse, I. Neumann, T. Pla-
chetka, M. Reith, O. Schmidt, A. Schmitt, and A. Wabro.
BMBF-Projekt HiQoS: High-Performance-Multimedia-Dienste mit
Quality-of-Service-Garantien. In R. Krahl, editor, Statustagung des
BMBF, HPSC ’99, Höchstleistungsrechnen in der Bundesrepublik
Deutschland, pages 29–32. BMBF, Bundesministerium für Bildung
und Forschung, 1999.

[And91] G. A. Andrews. Concurrent Programming, Principles and Practice.
Benjamin/Cummings Publishing Company, 1991.

[App68] A. Appel. Some techniques for shading machine renderings of
solids. In Proceedings of AFIPS 1968 Joint Computer Conference,
volume 32, pages 37–45, 1968.

[Arv95] J. Arvo. Stratified sampling of spherical triangles. Computer
Graphics, pages 437–438, 1995.

[Ash01] I. Ashdown. Eigenvector radiosity. Diploma thesis, Department
of Computer Science, Faculty of Graduate Studies, University of
British Columbia, 2001.

[Atk76] K. E. Atkinson. A Survey of Numerical Methods for the Solution
of Fredholm Integral Equations of the Second Kind. Society for
Industrial Mathematics (SIAM), 1976.

[Bac98] J. Bacon. Concurrent Systems (Operating Systems, Database and
Distributed Systems: An Integrated Approach). Addison-Wesley-
Longman, 1998.

221

222 BIBLIOGRAPHY

[BBP94] D. Badouel, K. Bouatouch, and T. Priol. Distributing data and
control for ray tracing in parallel. IEEE Computer Graphics and
Applications, 14(4):69–77, 1994.

[Bek99] P. Bekaert. Hierarchical and Stochastic Algorithms for Radiosity.
PhD thesis, Department of Computer Science, Katholieke Univer-
siteit Leuven, 1999.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[BL93] A. J. Bernstein and P. M. Lewis. Concurrency in Programming
and Database Systems. Jones and Bartlett Publishers, 1993.

[Bli77] J. F. Blinn. Models of light reflection for computer synthesized
pictures. Computer Graphics, pages 192–198, 1977.

[Bli78] J. F. Blinn. Simulation of wrinkled surfaces. Computer Graphics,
12:296–292, 1978.

[BMR02] R. Brightwell, A. B. Maccabe, and R. Riesen. Design and imple-
mentation of MPI on Portals 3.0. In D. Kranzlmüller, P. Kac-
suk, J. Dongarra, and J. Volkert, editors, Proc. of the 9th Eu-
roPVM/MPI User’s Group Conference (Recent Advances in Paral-
lel Virtual Machine and Message Passing Interface), volume 2474
of Lecture Notes in Computer Science, pages 331–340. Springer-
Verlag, 2002.

[BMSW91] D. R. Baum, S. Mann, K. P. Smith, and J. M. Winget. Making
radiosity usable: Automatic preprocessing and meshing techniques
for the generation of accurate radiosity solutions. Computer Graph-
ics, 25(4):51–60, 1991.

[BP88] K. Bouatouch and T. Priol. Parallel space tracing: An experi-
ence on an iPSC hypercube. In Proc. of Computer Graphics Inter-
national’88 (New Trends in Computer Graphics), pages 170–188.
Computer Graphics Society, 1988.

[BRW89] D. R. Baum, H. E. Rushmeier, and J. M. Winget. Improving
radiosity solutions through the use of analytically determined form
factors. Computer Graphics, 23:325–334, 1989.

[BW95] P. Bekaert and Y. D. Willems. Importance-driven progressive re-
finement radiosity. In P. Hanrahan and W. Purgathofer, editors,
Rendering Techniques ’95, Proceedings of the Eurographics Work-
shop on Rendering. Springer, 1995.

BIBLIOGRAPHY 223

[CC02] A. Chalmers and K. Cater. Realistic rendering in real-time. In
B. Monien and R. Feldman, editors, Proceedings of Euro-Par 2002
(Parallel Processing), volume 2400, pages 21–28. Springer, 2002.

[CCWG88] M. F. Cohen, S. E. Chen, J. R. Wallace, and D. P. Greenberg. A
progressive refinement approach to fast radiosity image generation.
Computer Graphics, 22:75–84, 1988.

[CDP95] F. Cazals, G. Drettakis, and C. Puech. Filtering, clustering and
hierarchy construction: a new solution for ray-tracing complex
scenes. Computer Graphics Forum, 14(3):371–382, 1995.

[CDR02] A. Chalmers, T. Davis, and E. Reinhard. Practical Parallel Ren-
dering. A K Peters, 2002.

[CG85] M. F. Cohen and D. P. Greenberg. The hemi-cube: A radiosity
solution for complex environments. Computer Graphics, 19:31–30,
1985.

[CPC84] R. L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing.
Computer Graphics, 18(3):137–145, 1984.

[CSD94] A. K. Chowdappa, A. Skjellum, and N. E. Doss. Thread-safe mes-
sage passing with P4 and MPI. Technical report, Mississippi State
University, Dept. of Computer Science, 1994.

[CT96] A. Chalmers and J. Tidmus. Practical Parallel Processing. Intera-
national Thomson Publishing, 1996.

[CW93] M. F. Cohen and J. R. Wallace. Radiosity and Realistic Image
Synthesis. Academic Press Professional, 1993.

[CWBV85] J. G. Clearly, B. M. Wyvill, G. M. Birtwistle, and R. Vatti. Mul-
tiprocessor ray tracing. Computer Graphics Forum, 5:3–12, 1985.

[Dij71] E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta
Informatica, 1:115–138, 1971.

[Dim01] R. P. Dimitrov. Overlapping of Communication and Computa-
tion and Early Binding: Fundamental Mechanisms for Improving
Parallel Performance on Clusters of Workstations. PhD thesis,
Mississippi State University, 2001.

[DLW93] P. Dutre, E. P. Lafortune, and Y. D. Willems. Monte Carlo light
tracing with direct computation of pixel intensities. In Proceedings
of Compugraphics, pages 128–137. Alvor, 1993.

224 BIBLIOGRAPHY

[DS84] M. Dippé and J. Swenssen. An adaptive subdivision algorithm
and parallel architecture for realistic image synthesis. Computer
Graphics, 18(3), 1984.

[DS02] R. Dimitrov and A. Skjellum. Software Architecture and Perfor-
mance Comparison of MPI/Pro and MPICH. MPI Software Tech-
nology, Inc., 2002. (White paper).

[EBe92] M. C. Escher, F. Bool, and J. L. Locher (editor). M. C. Escher:
His Life and Complete Graphic Work. Abradale Press, 1992.

[Ent93] N. E. Things Enterprises. Magic Eye I: A New Way of Looking at
the World. Andrews and McMeel, 1993.

[ES00] M. Evans and T. Swartz. Approximating Integrals via Monte Carlo
and Deterministic Methods. Oxford University Press, 2000.

[Fer98] A. Ferrari. JPVM: Network parallel computing in Java. Concur-
rency: Practice and Experience, 10(11–13):985–992, 1998.

[Fey88] R. Feynman. QED: The Strange Theory of Light and Matter.
Princeton University, 1988.

[FFB99] A. Fava, E. Fava, and M. Bertozzi. MPIPOV: A parallel imple-
mentation of POV-Ray based on MPI. In J. Dongarra, E. Luque,
and T. Margalef, editors, Proc. of the 6th EuroPVM/MPI User’s
Group Conference (Recent Advances in Parallel Virtual Machine
and Message Passing Interface), volume 1697 of Lecture Notes in
Computer Science, pages 426–433. Springer-Verlag, 1999.

[FHBWW95] S. Flynn-Hummel, I. Banicescu, C. T. Wang, and J. Wein. Load
balancing and data locality via fractling: An experimental study.
In B. K. Szymanski and B. Sinharoy, editors, Proc. of the 3rd Work-
shop on Languages, Compilers, and RunTime Systems for Scalable
Computers, pages 85–89. Kluwer Academic Publishers, 1995.

[FHK97] B. Freisleben, D. Hartmann, and T. Kielmann. Parallel raytracing:
A case study on partitioning and scheduling on workstation clus-
ters. In Proceedings of Hawaii International Conference on System
Sciences (HICSS-30), volume 1, pages 596–605. IEEE Computer
Society Press, 1997.

[FHSF91] S. Flynn-Hummel, E. Schonberg, and L. E. Flynn. Factoring: A
practical and robust method for scheduling parallel loops. In Proc.
of Supercomputing ’91, pages 610–619. IEEE Computer Society /
ACM, 1991.

BIBLIOGRAPHY 225

[FHSF92] S. Flynn-Hummel, E. Schonberg, and L. E. Flynn. Factoring: A
method for scheduling parallel loops. Communications of the ACM
(CACM), 35(8):90–101, 1992.

[FHSUW96] S. Flynn-Hummel, J. P. Schmidt, R. N. Uma, and J. Wein. Load-
sharing in heterogeneous systems via weighted factoring. In Proc.
of the 8th Symposium on Parallel Algorithms and Architectures
(SPAA ’96), pages 318–328. ACM Press, 1996.

[FLS70] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman
Lectures on Physics. Addison Wesley Longman, 1970.

[FS98] A. Ferrari and V. S. Sunderam. TPVM: Distributed concurrent
computing with lightweight processes. Concurrency—Practice and
Experience, 10(3):199–228, 1998.

[FTI86] A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: Accelerated
ray tracing system. IEEE Computer Graphics and Applications,
6(4):16–26, 1986.

[FvDFH90] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Com-
puter Graphics: Principles and Practice. Addison-Wesley, second
edition, 1990.

[FW78] S. Fortune and J. Wyllie. Parallelism in random access machines.
In Proceedings of the 10th Annual ACM Symposium on Theory of
Computing (San Diego, CA), pages 114–118. ACM Press, 1978.

[Gal96] J. Galletly. OCCAM 2. Including OCCAM 2.1. UCL (University
College London) Press Ltd, second edition, 1996.

[GBD+94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and
V. Sunderam. PVM: Parallel Virtual Machine (A Users’s Guide
and Tutorial for Networked Parallel Computing). The MIT Press,
1994.

[GCC99] F. Garćıa, A. Calderón, and J. Carretero. MiMPI: A multithread-
safe implementation of MPI. In J. Dongarra, E. Luque, and T. Mar-
galef, editors, Proceedings of EuroPVM/MPI 99, Recent Advances
in Parallel Virtual Machine and Message Passing Interface, 6th
European PVM/MPI Users’ Group Meeting, volume 1697 of Lec-
ture Notes on Computer Science, pages 207–214. Springer Verlag,
1999.

[GK90] I. Graham and T. King. The Transputer Handbook. Prentice Hall,
1990.

226 BIBLIOGRAPHY

[GKPS97] A. Geist, J. A. Kohl, P. M. Papadopoulos, and S. L. Scott. Beyond
PVM 3.4: What we’ve learned, what’s next and why. In Proceed-
ings of EuroPVM/MPI 97, 4th European PVM/MPI Users’ Group
Meeting, pages 3–5. Springer-Verlag, 1997.

[GL96] W. Gropp and E. Lusk. MPICH working note: The second-
generation ADI for the MPICH implementation of MPI. Technical
report, Argonne National Laboratory, USA, 1996.

[Gla84] A. S. Glassner. Space subdivision for fast ray tracing. IEEE Com-
puter Graphics and Applications, 4(10):15–22, 1984.

[Gla89] A. S. Glassner. An Introduction to Ray Tracing. Academic Press,
1989.

[Gla90] A. S. Glassner. Graphics Gems I. Academic Press, 1990.

[GLS95] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. Scientific and
Engineering Computation Series. The MIT Press, 1995.

[GN71] R. A. Goldstein and R. Nagel. 3D visual simulation. Simulation,
16(1):25–31, 1971.

[Gou71] H. Gouraud. Computer display of curved surfaces. IEEE Transac-
tions on Computers, 20(6):623–629, 1971.

[GP89] S. A. Green and D. J. Paddon. Exploiting coherence for multi-
processor ray tracing. IEEE Computer Graphics and Applications,
1989.

[Gra98] P. Gramblička. Cache techniky pre paralelný raytracing. Diploma
thesis, Department of Informatics, Faculty of Mathematics and
Physics, Comenius University, Bratislava, Slovakia, 1998.

[Gre91] S. Green. Parallel Processing for Computer Graphics. Research
Monographs in Parallel and Distributed Computing. Pitman Pub-
lishing, 1991.

[Gro98] Object Management Group. The Common Object Request Broker:
Architecture and Specification (Revision 2.3), 1998.

[Gro02] W. Gropp. MPICH2: A new start for MPI implementations. In
D. Kranzlmüller, P. Kacsuk, J. Dongarra, and J. Volkert, editors,
Proc. of the 9th EuroPVM/MPI User’s Group Conference (Recent
Advances in Parallel Virtual Machine and Message Passing Inter-
face), volume 2474 of Lecture Notes in Computer Science, pages
7–7. Springer-Verlag, 2002.

BIBLIOGRAPHY 227

[GRS97] J. C. Gomez, V. Rego, and V. S. Sunderam. Efficient multithreaded
user-space transport for network computing: Design and test of the
TRAP protocol. Journal of Parallel and Distributed Computing,
40(1):103–117, 1997.

[GTGB84] C. M. Goral, D. E. Torrance, D. P. Greenberg, and G. Battaile.
Modeling the interaction of light between diffuse surfaces. Com-
puter Graphics, 18:213–222, 1984.

[GU77] G. H. Golub and R. Underwood. The Block Lanczos method for
computing eigenvalues. In J. R. Rice, editor, Mathematical Soft-
ware III, pages 361–377. Academic Press, 1977.

[HA98] A. Heirich and J. Arvo. A competitive analysis of load balancing
strategies for parallel ray tracing. The Journal of Supercomputing,
12(1/2):57–68, 1998.

[HG86] E. A. Haines and D. P. Greenberg. The light buffer: a shadow
testing accelerator. IEEE Computer Graphics and Applications,
6(9):6–16, 1986.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

[HOB+99] L. P. Huse, K. Omang, H. Bugge, H. Ry, A. T. Haugsdal, and
E. Rustad. ScaMPI—design and implementation. In H. Hellwag-
ner and A. Reinefeld, editors, SCI: Scalable Coherent Interface,
volume 11734 of Lecture Notes in Computer Science, pages 249–
261. Springer-Verlag, 1999.

[How82] J. R. Howell. A Catalog of Radiation Configuration Factors.
McGraw-Hill, 1982.

[HR03a] J. Hippold and G. Rünger. A communication API for implement-
ing irregular algorithms on SMP clusters. In Proc. of the 10th Eu-
roPVM/MPI User’s Group Conference (Recent Advances in Paral-
lel Virtual Machine and Message Passing Interface), Lecture Notes
in Computer Science. Springer-Verlag, 2003. (To appear).

[HR03b] J. Hippold and G. Rünger. Task pool teams for implementing irreg-
ular algorithms on clusters of smps. In Proceedings of 17th Inter-
national Parallel and Distributed Processing Symposium (IPDPS
2003), pages 54–54, 2003.

[HS67] H. C. Hottel and A. F. Sarofin. Radiative Transfer. McGraw-Hill,
1967.

228 BIBLIOGRAPHY

[HSS+98] L. S. Hebert, W. G. Seefeld, A. Skjellum, C. D. Taylor, and R. Dim-
itrov. MPI for Windows NT: Two generations of implementa-
tions and experience with the message passing interface for clus-
ters and SMP environments. In H. Arabnia, editor, Proceedings
of the International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’98), pages 309–316.
CSREA Press, 1998.

[HV99] M. Henning and S. Vinoski. Advanced CORBA Programming with
C++. Addison-Wesley Longman, 1999.

[IRT] Internet Ray Tracing Competition. http://www.irtc.org.

[ISO90] ISO/IEC 9945-1:1990 Information Technology. Portable Operating
System Interface (POSIX), Part 1: System Application Program
Interface (API) [C Language], 1990.

[ISO97] ISO/IEC 14772-1:1997 Information Technology. Computer graph-
ics and image processing—The Virtual Reality Modeling Language
(VRML), 1997.

[Jan86] F. Jansen. Data structures for ray tracing. In L. R. A. Kessener,
F. J. Peters, and M. L. P. van Lierop, editors, Proc. of the Euro-
graphics Seminar, pages 57–73. Springer-Verlag, 1986.

[Jev89] D. A.J. Jevans. Optimistic multi-processor ray tracing. In Proc.
of Computer Graphics International’89 (New Trends in Computer
Graphics), pages 507–522. Computer Graphics Society, 1989.

[Kaj86] J. T. Kajiya. The rendering equation. Computer Graphics,
20(4):143–150, 1986.

[Kap85] M. R. Kaplan. Space tracing: A constant time ray tracer. SIG-
GRAPH ’85 Tutorial, 1985.

[Kel94] A. Keller. A quasi-Monte Carlo algorithm for the global illumi-
nation problem in the radiosity setting. Technical Report 260/94,
Universität Kaiserslautern, Fachbereich Informatik, 1994.

[Kel96] A. Keller. Quasi-Monte Carlo radiosity. Technical Report 279/96,
Universität Kaiserslautern, Fachbereich Informatik, 1996.

[Kel97] A. Keller. Instant radiosity. Computer Graphics, pages 59–56,
1997.

BIBLIOGRAPHY 229

[KH95] M. J. Keates and R. J. Hubbold. Interactive ray tracing on a vir-
tual shared-memory parallel computer. Computer Graphics Forum,
14(4):189–202, 1995.

[KHS96] O. Krone, B. Hirsbrunner, and V. S. Sunderam. PT-PVM+: A
portable platform for multithreaded coordination languages. Cal-
culateurs Parallèles, 8(2):167–182, 1996.

[KNK+88] H. Kobayashi, S. Nishimura, H. Kubota, T. Nakamura, and
Y. Shigei. Load balancing strategies for a parallel ray-tracing sys-
tem based on constant subdivision. The Visual Computer, 4:197–
209, 1988.

[KNS87] H. Kobayashi, T. Nakamura, and Y. Shigei. Parallel processing of
an object space for image synthesis using ray tracing. The Visual
Computer, 3(1):13–22, 1987.

[KR98] A. Keller and A. Reinefeld. CCS resource management in net-
worked HPC systems. In Proc. Heterogenous Computing Work-
shop HCW’98 at IPPS, pages 44–56, Orlando, Florida, 1998. IEEE
Computer Society Press.

[KRR94] K. Kremer, Thomas Römke, and Friedhelm Ramme. A distributed
computing center software for the efficient use of parallel computer
systems. In HPCN 94, volume 797-II of Lecture Notes in Computer
Science, pages 129–136. Springer-Verlag, 1994.

[KS02] D. Kranzlmüller and M. Schulz. Notes on nondeterminism in mes-
sage passing programs. In D. Kranzlmüller, P. Kacsuk, J. Don-
garra, and J. Volkert, editors, Proc. of the 9th EuroPVM/MPI
User’s Group Conference (Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface), volume 2474 of Lecture
Notes in Computer Science, pages 357–367. Springer-Verlag, 2002.

[KW85] C. Kruskal and A. Weiss. Allocating independent subtasks on
parallel processors. IEEE Transactions on Software Engineering,
11(10):1001–1016, 1985.

[LAB93] P. Liu, W. Aiello, and S. Bhatt. An atomic model for message-
passing. In The 5th Annual ACM Symposium on Parallel Archi-
tectures and Algorithms (SPAA’93), pages 154–163. ACM Press,
1993.

[LM-02] LM-63-1986 Illuminating Engineering Society of North America
(IESNA) and American National Standards Institute (ANSI). IES

230 BIBLIOGRAPHY

Recommended Standard File Format for Electronic Transfer of
Photometric Data, 2002.

[LRBB96] K. Langendoen, J. Romein, R. Bhoedjang, and H. Bal. Integrat-
ing polling, interrupts, and thread management. In Proc. of the
6th Symposium on the Frontiers of Massively Parallel Computa-
tion (Frontiers ’96), pages 13–22. IEEE, 1996.

[Lüc03] S. Lücking. Berechnung von Caustics in 3D-Rendering-
Programmen. Studienarbeit, University of Paderborn, Department
of Computer Science, 2003.

[LW93] E. P. Lafortune and Y. D. Willems. Bi-directional path-tracing. In
Proceedings of Compugraphics, pages 143–153. Alvor, 1993.

[LW94] E. P. Lafortune and Y. D. Willems. Using the modified Phong
reflectance model for physically based rendering. Technical Report
CW 197, Department of Computer Science, Katholieke Universiteit
Leuven, 1994.

[Lyn93] A. Lyne. Indecent proposal. (Film), 1993.

[McN00] A. McNamara. Comparing Real and Synthetic Scenes using Human
Judgements of Lightness. PhD thesis, University of Bristol, 2000.

[MPI94] MPI Forum. MPI: Message Passing Interface, 1994. Version 1.0.

[MPI97] MPI Forum. MPI-2: Extensions to the Message Passing Interface,
1997. Version 2.0.

[MPI98] MPI Forum. MPI: Message Passing Interface, 1998. Version 1.1.

[MS87] D. E. Muller and P. E. Schupp. Alternating automata on infinite
trees. Theoretical Computer Science, 54:267–276, 1987.

[New52] I. Newton. Opticks: Or a Treatise of the Reflections, Inflections
and Colours of Light. Dover Pubns, 1952. Preface by B. Cohen.

[NL96] M. L. Netto and B. Lange. Exploiting multiple partitioning strate-
gies for an evolutionary ray tracer supported by DOMAIN. In
First Eurographics Workshop on Parallel Graphics and Visualisa-
tion, 1996.

[Nus28] W. Nusselt. Graphische Bestimmung des Winkelverhaltnisses
bei der Wärmestrahlung. Zeitschrift des Vereines Deutscher In-
geneure, 19(3):72–673, 1928.

BIBLIOGRAPHY 231

[OPR96] R. Otte, P. Patrick, and M. Roy. Understanding CORBA: the
common object request broker architecture. Prentice Hall, 1996.

[Par94] Parsytec GmbH. Parix V1.3 PowerPC Software Documentation,
1994.

[PB89] T. Priol and K. Bouatouch. Static loadbalancing for parallel ray
tracing on MIMD hypercube. The Visual Computer, 5:109–119,
1989.

[PBMH02] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray trac-
ing on programmable graphics hardware. Computer Graphics,
21(3):703–712, 2002.

[Per85] Y. Perelman. Fun With Maths and Physics. Firebird Publications,
Inc, 1985.

[Pho75] B. T. Phong. Illumination for computer generated pictures. Com-
munications of the ACM, 18(6):311–317, 1975.

[Pie93] G. Pietrek. Fast calculation of accurate formfactors. In Proceedings
of the 4th Eurographics Workshop on Rendering, pages 201–220,
1993.

[Pit93] P. Pitot. The Voxar project. IEEE Computer Graphics and Appli-
cations, pages 27–33, 1993.

[PKGH02] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Render-
ing complex scenes with memory-coherent ray tracing. Computer
Graphics, 21(3):703–712, 2002.

[Pla98] T. Plachetka. POV||Ray: Persistence of Vision parallel raytracer.
In L. Szirmay-Kalos, editor, Proceedings of Spring Conference on
Computer Graphics. Comenius University, Bratislava, 1998.

[Pla02a] T. Plachetka. Perfect load balancing for demand-driven parallel
ray tracing. In B. Monien and R. Feldman, editors, Proceedings of
Euro-Par 2002 (Parallel Processing), volume 2400, pages 410–419.
Springer, 2002.

[Pla02b] T. Plachetka. (Quasi-) thread-safe PVM and (Quasi-) thread-safe
MPI without active polling. In D. Kranzlmüller, P. Kacsuk, J. Don-
garra, and J. Volkert, editors, Proc. of the 9th EuroPVM/MPI
User’s Group Conference (Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface), volume 2474 of Lecture
Notes in Computer Science, pages 296–305. Springer-Verlag, 2002.

232 BIBLIOGRAPHY

[PMTR95] I. S. Pandzic, N. Magnenat-Thalmann, and M. Roethlisberger.
Parallel raytracing on the IBM SP2 and T3D. In EPFL Super-
computing Review (Proceedings of First European T3D Workshop
in Lausanne), volume 7, 1995.

[PS98] B. V. Protopopov and A. Skjellum. A multi-threaded message pass-
ing interface (MPI) architecture: performance and program issues.
Technical report, Computer Science Department, Mississippi State
University, 1998.

[PSA01] T. Plachetka, O. Schmidt, and F. Albracht. The HiQoS render-
ing system. In L. Pacholski and P. Ružička, editors, Proc. of the
28th Annual Conf. on Current Trends in Theory and Practice of
Informatics (SOFSEM 2001: Theory and Practice of Informatics),
volume 2234 of Lecture Notes in Computer Science, pages 304–315.
Springer-Verlag, 2001.

[PT] POV-Team. Persistence of Vision Ray Tracer (POV-Ray).
http://www.povray.org.

[Ray88] M. Raynal. Distributed Algorithms and Protocols. J. Wiley&Sons,
1988.

[RC97] E. Reinhard and A. Chalmers. Message handling in parallel RA-
DIANCE. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 486–493. Springer-Verlag, 1997.

[RCJ98] E. Reinhard, A. G Chalmers, and F. W. Jansen. Overview of par-
allel photo-realistic graphics. In A. de Sousa and B. Hopgood, ed-
itors, State-of-the-Art reports, Eurographics ’98 Conference, pages
1–25. Springer, 1998.

[RCJ99] E. Reinhard, A. Chalmers, and F. W. Jansen. Hybrid scheduling
for parallel rendering using coherent ray tasks. In IEEE Parallel
Visualisation and Graphics Symposium, pages 21–28, 1999.

[Ree97] L. Reeker. GOLEM Dokumentation. University of Paderborn,
1997.

[Rei96] E. Reinhard. A parallelisation of ray tracing with diffuse interreflec-
tion. In Advanced School for Computing and Imaging (ASCI ’96),
pages 367–372, 1996.

[RKC98] E. Reinhard, A. J. F. Kok, and A. Chalmers. Cost distribution
prediction for parallel ray tracing. In K. Bouatouch, A. Chalmers,
and T. Priol, editors, Rendering Techniques ’96, Proceedings of

BIBLIOGRAPHY 233

the Eurographics Workshop on Parallel Graphics and Visualisation,
pages 77–90. Springer, 1998.

[RKJ98] E. Reinhard, A. J. F. Kok, and F. W. Jansen. Cost distribution
prediction for ray tracing. In X. Pueyo and P. Schröder, editors,
Rendering Techniques ’98, Proceedings of the Eurographics Work-
shop on Rendering, pages 41–50. Springer, 1998.

[RW80] S. Rubin and T. Whitted. A three-dimensional representation for
fast rendering of complex scenes. Computer Graphics, 14(3):110–
116, 1980.

[SAS92] B. E. Smits, J. R. Arvo, and D. H. Salesin. An importance-driven
radiosity algorithm. Computer Graphics, 26(2):273–282, 1992.

[SC88] I. D. Scherson and E. Caspary. Multiprocessing for ray tracing: A
hierarchical self-balancing approach. Visual Computer, (4), 1988.

[Sch93] C. Schlick. A customizable reflectance model for everyday render-
ing. In Proceedings of the 4th Eurographics Workshop on Render-
ing, pages 73–84, 1993.

[Sch00] O. Schmidt. Parallele Simulation der globalen Beleuchtung in kom-
plexen Architekturmodellen. PhD thesis, Department of Mathemat-
ics and Informatics, University of Paderborn, 2000.

[SH93] P. Schröder and P. Hanrahan. On the form factor between two
polygons. Computer Graphics, pages 163–164, 1993.

[SK99a] L. Szirmay-Kalos. Monte-Carlo global illumination methods—state
of the art and new developments. In J. Žára, editor, Proceedings of
Spring Conference on Computer Graphics, pages 3–21. Comenius
University, Bratislava, 1999.

[SK99b] L. Szirmay-Kalos. Monte-Carlo Methods in Global Illumination.
Institute of Computer Graphics, Vienna University of Technology,
1999.

[SKH96] K. R. Subramaniam, S. C. Kothari, and D. E. Heller. A commu-
nication library using active messages to improve performance of
PVM. Journal of Parallel and Distributed Computing, 39(2):146–
152, 1996.

[SOHL+95] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Don-
garra. MPI: The Complete Reference. MIT Press, 1995.

234 BIBLIOGRAPHY

[SP89] F. Sillion and C. Puech. A general two-pass method integrating
specular and diffuse reflection. Computer Graphics, 23(3), 1989.

[SP94] F. Sillion and C. Puech. Radiosity and Global Illumination. Morgan
Kaufmann Publishers, 1994.

[Ste94] W. R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols.
Professional Computing Series. Addison-Wesley, 1994.

[Suna] Sun Microsystems. Java 3D. http://java.sun.com/products/java-
media/3D/index.html.

[Sunb] Sun Microsystems. The source for Java technology.
http://java.sun.com.

[Tre97] R. Treumann. Experiences in the implementation of a thread safe,
threads based MPI for the IBM RS/6000 SP. Technical report,
IBM, T. J. Watson Research Center, 1997.

[TS67] K. E. Torrance and E. M. Sparrow. Theory for off-specular re-
flection from roughened surfaces. Journal of Optical Society of
America, 57(9):1105–1114, 1967.

[Vea97] E. Veach. Robust Monte Carlo Methods for Light Transport Simu-
lation. PhD thesis, Stanford University, 1997.

[VG94] E. Veach and L. Guibas. Bidirectional estimators for light trans-
port. In Proceedings of the Eurographics Workshop on Rendering,
pages 147–162, 1994. Also in G. Sakas, P. Shirley and S. Müller (ed-
itors), Photorealistic Rendering Techniques, Springer-Verlag, 1995.

[vNe66] J. von Neumann and A. W. Burks (editor). Theory of Self-
Reproducing Automata. University of Illinois Press, 1966.

[War94] G. J. Ward. The RADIANCE lighting simulation and rendering
system. Computer Graphics, pages 459–472, 1994.

[WEH89] J. R. Wallace, K. A. Elmquist, and E. A. Haines. A ray tracing
algorithm for progressive radiosity. Computer Graphics, 23:315–
324, 1989.

[Whi80] T. Whitted. An improved illumination model for shaded display.
Communications of the ACM, 23(6):343–349, 1980.

[Woo84] J. R. Woodwark. A multiprocessor architecture for viewing solid
models. Display Technology and Applications, 5(2), 1984.

BIBLIOGRAPHY 235

[WRC88] G. J. Ward, F. Rubinstein, and R. Clear. A ray tracing solution
for diffuse interreflection. Computer Graphics, 22(4):85–92, 1988.

[WS95] G. R. Wright and W. R. Stevens. TCP/IP Illustrated, Volume
2: The Implementation. Professional Computing Series. Addison-
Wesley, 1995.

[ZG98] H. Zhou and A. Geist. LPVM: A step towards multithread PVM.
Concurrency—Practice and Experience, 10(5):407–416, 1998.

	Event-Driven Message Passing and Parallel Simulation of Global Illumination
	Table of contents
	1 Introduction
	1.1 Current parallel programming standards
	1.1.1 Polling in non-trivial parallel applications

	1.2 Photorealistic image synthesis
	1.2.1 Measures of photorealism
	1.2.2 Photorealistic rendering systems
	1.2.3 Light phenomena and their simulation

	1.3 Outline of this thesis

	2 Event-driven message passing
	2.1 Non-trivial parallel applications
	2.2 Development of parallel programming
	2.2.1 Occam programming language
	2.2.2 Transputer
	2.2.3 Occam, Transputer and non-trivial parallel applications

	2.3 Current message passing standards: PVM and MPI
	2.4 Point-to-point message passing in PVM and MPI
	2.4.1 Message assembling and sending
	2.4.2 Message receiving and disassembling

	2.5 Unifying framework for message passing
	2.5.1 Components of the message passing framework
	2.5.2 Application process
	2.5.3 Basic message passing operations
	2.5.4 Message passing system
	2.5.5 Language binding
	2.5.6 Operation binding

	2.6 Threaded non-trivial PVM and MPI applications
	2.6.1 Threads and thread-safety
	2.6.2 Polling in threaded non-trivial PVM and MPI applications
	2.6.3 Polling in communication libraries
	2.6.4 Limits of active polling
	2.6.5 Previous work related to thread-safety of PVM and MPI
	2.6.6 Quasi-thread-safe PVM and MPI
	2.6.7 Towards a complete thread-safety of PVM and MPI

	2.7 TPL: Event-Driven Thread Parallel Library
	2.7.1 Concept
	2.7.2 Process startup and termination
	2.7.3 Thread management
	2.7.4 Message passing
	2.7.5 Message handling and message callbacks
	2.7.6 Message packing and unpacking
	2.7.7 Error handling and debugging
	2.7.8 Flow control

	2.8 Efficiency benchmarks
	2.8.1 ONE-SIDED THREADED PINGPONG
	2.8.2 SYMMETRICAL THREADED PINGPONG
	2.8.3 Summary of benchmarking results

	2.9 Conclusions
	2.9.1 Overlapping of Communication and Computation

	3 Global illumination
	3.1 Physics of light
	3.2 3D modeling
	3.2.1 Modeling of colour spectrum
	3.2.2 Modeling of surface geometry
	3.2.3 Modeling of surface materials
	3.2.4 Modeling of light sources
	3.2.5 Modeling of camera

	3.3 The global illumination problem
	3.3.1 Rendering equations

	3.4 Approaches to the global illumination problem
	3.4.1 Direct methods
	3.4.2 Approximation methods

	3.5 Conclusions

	4 Ray tracing
	4.1 The basic ray tracing algorithm
	4.2 Sequential optimisation techniques
	4.2.1 Bounding volumes
	4.2.2 Bounding slabs
	4.2.3 Light buffers

	4.3 Persistence of Vision Ray Tracer
	4.4 Parallel ray tracing
	4.4.1 Existing approaches
	4.4.2 Image space subdivision
	4.4.3 Setting of parameters in the perfect load balancing algorithm
	4.4.4 Distributed object database
	4.4.5 Experiments
	4.4.6 Further extensions and improvements

	4.5 Conclusions

	5 Radiosity
	5.1 Southwell relaxation
	5.1.1 Shooting radiosity algorithm

	5.2 Form factor computation
	5.2.1 Monte Carlo form factor computation

	5.3 Discretisation of surface geometry
	5.4 Illumination storage and reconstruction
	5.5 Energy transfer
	5.5.1 Shooting radiosity algorithm using the ray tracing shader

	5.6 Visualisation
	5.7 Experiments
	5.7.1 Form factors
	5.7.2 Experiments with the box scene
	5.7.3 Experiments with large scenes

	5.8 Conclusions

	6 Summary
	6.1 Towards portable 3D standards

	A MPI progress rule tester
	B Threaded pingpong benchmark
	B.1 TPL 2.0
	B.2 PVM 3.4
	B.3 MPI (MPI 1, MPI 2)

	List of figures
	Bibliography

