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Abstract

This paper investigates assignment strategies (load balancing algorithms) for process farms which solve the prob-
lem of online placement of a constant number of independent tasks with given, but unknown, time complexities
onto a homogeneous network of processors with a given latency. Results for the chunking and factoring assign-
ment strategies are summarised for a probabilistic model which models tasks’ time complexities as realisations
of a random variable with known mean and variance. Then a deterministic model is presented which requires
the knowledge of the minimal and maximal tasks’ complexities. While the goal in the probabilistic model is the
minimisation of the expected makespan, the goal in the deterministic model is the minimisation of the worst-
case makespan. We give a novel analysis of chunking and factoring for the deterministic model. In the context of
demand-driven parallel ray tracing, tasks’ time complexities are unfortunately unknown until the actual compu-
tation finishes. Therefore we propose automatic self-tuning procedures which estimate the missing information in
run-time. We experimentally demonstrate for an “everyday ray tracing setting” that chunking does not perform
much worse than factoring on up to 128 processors, if the parameters of these strategies are properly tuned. This
may seem surprising. However, the experimentally measured efficiencies agree with our theoretical predictions.

Categories and Subject Descriptors (according to ACM CCS): C.1.2 [Computer Systems Organization]: Processor
Architectures / Multiple Data Stream Architectures (Multiprocessors) / Parallel Processors, D.4.1 [Software / Op-
erating Systems / Process Management / Scheduling]: , G.1.0 [Numerical Analysis]: General / Parallel Algorithms,

1.3.6 [Computer Graphics]: Three-Dimensional Graphics and Realism / Raytracing

1. Introduction

Ray tracing [Whi80] computes an image of a 3D scene by
recursively tracing rays from the eye through the pixels of a
virtual screen into the scene, summing the light path con-
tributions to pixels’ colours. In spite of various optimisa-
tion techniques [Gla89], typical sequential computation time
range from minutes to hours.

Approaches to the parallelisation of ray tracing can be
roughly divided into two classes. Object space subdivision
algorithms (data-driven) geometrically divide the 3D scene
into disjoint regions which are distributed in processors’
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memories. A process traces a ray until the ray leaves the
process’ region; after that the ray is passed to the appropriate
neighbour. An obvious advantage of the object space subdi-
vision algorithms is that the scene size is only limited by the
total memory of processors; however, the implementation of
these algorithms may be laborious. It is also unclear how the
problem of load balancing should be solved. [DS84], [Pit93]
Screen space subdivision algorithms (demand-driven) ex-
ploit the fact that the primary rays which are sent from the
eye through the pixels of the virtual screen are independent
of each other. Tracing of primary rays can therefore run in
parallel without a communication between processes. An
important advantage of the screen space subdivision algo-
rithms is that they can easily be incorporated into an existing
sequential code. The problem of large data placement and
access on distributed memory machines is not studied in this
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paper; it can be handled independently using a distributed
object database. [Gre91], [Pla02a] This paper focuses on the
problem of load balancing for screen space subdivision al-
gorithms.

Previous works on demand-driven ray tracing merely
present an empirical experience with chunking assignment
strategies [Gre91], [BBP94], [KH95], [FHK97], [FHK98]
and factoring assignment strategies [FHK97], [FHK98],
[P1a98]. However, they do not explain what the optimal pa-
rameter settings for these strategies look like or how they
can be determined. It seems paradoxical that a chunk size
of 9 pixels is suggested in [BBP94] whereas chunk sizes of
4096 and 16384 pixels are investigated in [FHK97]. We will
show in this paper that the optimal chunk size is a function of
the screen resolution, number of WORKER processes, latency
of chunk assignment and pixels’ (or chunks’) time complexi-
ties. The knowledge of these parameters not only determines
the optimal chunk size but also allows for a prediction of ef-
ficiency for a given number of WORKERs. The information
on an empirical chunk size alone is insufficient.

A diffusive load balancing strategy is advocated in
[HA98] and arguments are given as to why naive static and
probabilistic assignment strategies do not achieve an accept-
able performance on a large number of processors. However,
it remains unclear how the optimal setting of the parameters
of the proposed diffusive algorithm can be determined.

This paper is organised as follows: Section 2 defines the
problem of independent task assignment. Section 3 sum-
marises known results for the probabilistic model. Section 4
presents a novel analysis for the deterministic model. Sec-
tion 5 proposes tuning strategies for the deterministic model.
Section 6 shows experimental results for demand-driven ray
tracing and compares the measured data with theoretical pre-
dictions from Section 4. Section 7 concludes the paper.

2. Problem definition

We assume that the computational time complexities of
screen pixels are not known until the computations have
actually been performed; however, we assume that this un-
known complexity is constant. This means that if the same
pixel (task) is computed on any two processes then the two
computational times will be exactly the same. We assume
that the number of processes does not change e.g. due to
faults in processors or links between them. We also assume
that the computations on different pixels are independent of
each other. (Some anti-aliasing techniques introduce depen-
dencies between pixels in order to save the number of ad-
ditional primary rays, but these techniques can be applied
in post-processing [Pla02a]). Finally, we assume that a pixel
must be processed sequentially in a whole. The goal of load
balancing is to assign subsets of screen pixels to the pro-
cesses so that the time of the parallel computation of all the
screen pixels (makespan) is minimal.

We will refer to the assigned sets of pixels as jobs. Each
assignment of a set of pixels to a process incurs a time
penalty perceived by that process. This penalty, referred to
as latency, is caused by the actual mechanism which is used
for the assignment (e.g. message passing).

In terms of message passing, the model above corresponds
to a process farm which consists of one LOADBALANCER
process and N WORKER processes. Each WORKER process
runs a loop in which it sends a job request to the LOAD—
BALANCER, waits for a job and then processes the received
job. The LOADBALANCER process runs a loop in which it
waits for a job request from any WORKER and then assigns a
job to the WORKER which sent the request. The LOADBAL—
ANCER’s loop runs until all pixels have been processed. Af-
ter that the LOADBALANCER collects all outstanding job re-
quests, replies them with NO_MORE_WORK in order to make
the WORKERS terminate and then terminates itself.

The question is how large the jobs which are assigned by
the LOADBALANCER in replies to job requests must be in or-
der to process all pixels as quickly as possible. A procedure
which answers this question is called a (assignment) strat-
egy. Note that a strategy must work online because when a
job request arrives, the LOADBALANCER must immediately
decide how many pixels should be assigned in that job.

The job results must usually be assembled into a final re-
sult. In the context of ray tracing, the final compositing of the
resulting image parts into a single image can involve a rel-
atively large volume of data. This compositing burden can
be moved to an additional MASTER process (Fig. 1). [P1a98]
The addition of the MASTER process also amortises the com-
positing overhead because some of the job results are pro-
cessed during the parallel computation of other jobs.
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Figure 1: Process farm

The problem of load balancing for screen-space subdi-
vision algorithms for parallel ray tracing is identical to the
problem of scheduling parallel loops. The latter problem
arises in the optimisation of loops in compilers for multipro-
cessor machines. A more general term which is also used to
denote the same problem is “allocation of independent tasks
to parallel processors”. (The terms “task” and “batch” trans-
late into terms “pixel” and “job” in the context of parallel
ray tracing.)

(© The Eurographics Association 2004.
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A certain knowledge concerning the tasks’ time complex-
ities (computational times on pixels) is required in order to
make claims about performance of a strategy. Two models
have been proposed which characterise this knowledge. Sec-
tion 3 briefly summarises the known results for chunking and
factoring strategies for the probabilistic model (we recom-
mend [Hag97] for a more extensive overview of the results).
Section 4 presents a novel analysis of chunking and factoring
for the deterministic model.

It is commonly assumed in both the probabilistic and the
deterministic models that the latency L is a (known) constant
and that the complexity of the strategy itself does not in-
crease the latency. While this assumption simplifies the anal-
ysis of assignment strategies, the latency L is not strictly con-
stant in practice. The network latency perceived by a process
may vary e.g. when several messages arrive in the process at
the same time. Moreover, L not only includes the network la-
tency but also the time of preprocessing and postprocessing
which is required for each job in the parallel implementation,
whereas it only runs once in the sequential implementation.

2.1. Notation
The following notation is used throughout this paper:

N number of WORKER processes
W number of tasks (pixels)
L latency (the overhead of the assignment of one job)

3. Assignment strategies for the probabilistic model

The probabilistic model has been traditionally investigated
in the context of optimisation of parallel loops. It assumes
that the tasks’ complexities are identical random variables
with (known) mean u and (known) standard deviation G.

3.1. Fixed-size chunking

The fixed-size chunking strategy always assigns jobs of the
same size to idling WORKER processes (the last job may be
an exception). This model was investigated by Kruskal and
Weiss. The following estimation of the expected makespan
E[M] for the chunk size K is given in [KW85]:

EM]~ % +—+o\/2K1nN 1)

This formula has a nice intuitive interpretation. The first
term describes time of executing W tasks on N processors on
a system with no overhead. The second term describes the la-
tency overhead. The third term describes the load imbalance
due to the variation in tasks’ durations. Unfortunately, the
estimation in Equation 1 only holds if W and K are large and
K > logN. If these assumptions hold then also the optimal
chunk size K°7" can be estimated:
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If the assumptions above do not hold, [KW85] gives the
following estimates for the expected makespan E[M]:
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for K < W /N and small vK/N; and
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for K < W /N and large v/K /N. However, a tractable an-
alytical expression for the optimal chunk size K cannot be
derived from Equations 3 and 4.

3.2. Factoring

The factoring strategy works in rounds. In each round, it
assigns N jobs of equal size. The job size is decreased by
a factor after each round. The idea behind this strategy is
to “smooth” the high imbalance of the early rounds with
smaller jobs of the later rounds. The LOADBALANCER pro-
cess must at any time keep enough unassigned tasks for this
smoothing—on the other hand, the assigned jobs should al-
ways be as large as possible in order to minimise the latency
overhead.

An approximation of the optimum job size K{”" which is
used in round i was determined by Flynn and Flynn Hummel
[FFHO0] by estimating the maximal portion of the remain-
ing (unassigned) work which has a high probability of be-
ing completed by N processors before the optimal time, i.e.
uW /N. The analysis yields the following iteration scheme
(at the beginning of round i, r; denotes the number of still

unassigned tasks, NX is the division factor): [FHSF91]
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The latency L is ignored in the derivation of the scheme
above. The latency is only used as a termination criterion—
the factoring rounds stop when uK” < L. After that the
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remaining tasks are assigned in equal-sized jobs of size 1%[’ pt
which was used in the last iteration i.

Note that this iteration scheme only requires the knowl-
edge of the coefficient of variation cov of the tasks’ proba-
bility distribution (cov = 6/u). There are two extreme cases:

1. If cov = 0 (no variance) then this strategy is equivalent to
a static job assignment strategy which assigns N equal-
sized jobs to N processors in a single round.

2. If cov — oo (unbounded variance or negligible tasks’
time complexities) then this scheme is equivalent to the
dynamic job assignment which assigns the W tasks one-
by-one to idle processors.

Experiments with the factoring strategy are presented e.g.
in [FHSF91] and [BFH95]. However, the authors did not
attempt to estimate cov. Instead of this the values of x; in
Equations 7 and 8 were assigned an empirical value of 2.
This means that 13,” P! was halved after each iteration i. The
reasoning on why halving leads to good experimental re-
sults is in our opinion not persuasive—although it performed
well for the chosen problem instances and the machine used
for the experiments, it would not perform well for other in-
stances and other machines.

4. Assignment strategies for the deterministic model

Plachetka [Pla98], [Pla02a] introduced a deterministic
model which does not model tasks as random variables. This
model only assumes (in addition to the assumptions from
Section 2) the knowledge of the maximal and the minimal
tasks’ complexities Ty, and Trnax. Whereas the goal in the
probabilistic model is to minimise the expected makespan
E[M], the goal in the deterministic model is to minimise the
absolute makespan M for the worst possible arrangement of
tasks’ complexities.

4.1. Fixed-size chunking

The fixed-size chunking strategy always assigns jobs of the
size K to the idling WORKER processes whereby K remains
constant during the algorithm (the last assignment may be
an exception). It can be observed that the worst makespan
is obtained if one of the processes is always assigned jobs
which contain the most complex tasks. As we are interested
in the worst-case makespan, we can safely assume that the
time complexity of all tasks is equal to this heaviest task’s
complexity Tuqy. Then the chunking computation depicted
as a time diagram (Fig. 2) consists of L%J blocks of the
width K and of the height N (both the width and the height
are expressed in the number of tasks). Moreover, if % is not
an integer number then there is one extra block of the width
at most K, and of the depth at most N — 1. We will assume
that there indeed is such an extra block and that its width is
K (the depth of this extra block is not important as it does
not influence the makespan).

w
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Figure 2: The structure of the worst case for the chunking
strategy (time diagram)
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The total time complexity of each block (including the
extra block) is L + KTmax. Hence, the makespan M of this
worst-case scenario can be bounded from above by Mg,
(which ignores the rounding of L%J) as follows:

w
M < Myjgp, = (1+ﬁ)(L+KTmaX) (10)
The optimal chunk size K which minimises Mg, can be

found by setting the first derivative of M), with respect to
K to zero:

WL

/ Pa—
Mhigh:Tmax—m =0 (11)
Solving for K yields
g — | WL 12)
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The substitution of K in Equation 10 with K°?" from
Equation 12 yields an upper bound on the optimal makespan
in the worst case:

WT, [W Tpax
Mzgh: A',”""+L+2 —]'(’7” 13)

4.2. Factoring

The factoring strategy works in rounds. During each round,
N jobs of equal size are assigned to idle WORKER processes
(it can happen that some of the WORKER processes can be
assigned more than one job within the same round). When
a round finishes, the job size is decreased. During the last
factoring round, single-task jobs are assigned. Due to the in-
teger arithmetic, one extra round may be needed in order to
assign the remaining tasks (the number of these remaining
tasks is smaller than N).

(© The Eurographics Association 2004.
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The ratio T = Tinax/ Tnin is used to determine the job size
K; for the round i. This job size is a factor of the work re-
maining (the work is expressed in the number of tasks). Let
W; denote the number of still unassigned tasks at the begin-
ning of the round i. The factoring strategy always guarantees
that the computation of the job of the size K; will not take
longer than the parallel computation of the still unassigned
W; — K; tasks on the remaining N — 1 WORKERS:

time(W; — K;)

ti K;) <
ime(K;) < N1

(14)

where time(K;) is the (sequential) processing time on K;
tasks. Equation 14 can be equivalently written as

Wi—K;
P <
TKi < (15)
which yields
W;
K<——"+ 16
"T14+T(N-1) (16)

The maximal K; apparently minimises the number of fac-
toring rounds (and therefore the makespan). Hence,

opt

w;
& = | v 0

The maximal makespan is obtained in the case if one of
the WORKERSs always gets jobs which contain the most com-
plex tasks. As we are interested in the worst case, we can
safely assume that the time complexity of all tasks is equal
to this maximal complexity Tinax. We will also assume that
there is one extra round (and that at least one of the tasks
which are assigned in the extra round has the time complex-
ity Tmax). This worst case is depicted in Fig. 3. The com-
putation consists of r factoring rounds and one extra round.
The contribution of i-th factoring round to the makespan is
L+ K;Tnax. The contribution of the extra round is L+ Ty,qx.

The round r is the last round at the beginning of which the
number of still unassigned tasks W, is at most N (as the size
of the N jobs assigned in the round r is K, = 1). It can be
observed that the number of still unassigned tasks W; at the
beginning of round i is equal to

i—1
N
W:W(l‘m) (1s)

Solving W, < N for maximal r using Equation 18 yields

r=1+ POglfN/(HT(Nfl))(N/W)J 19)
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Figure 3: The structure of the worst case for the factoring
strategy (time diagram)

Hence, the makespan M°?" in the worst case is equal to

M = T ((W/N| D) +L(r+1) - 0)

5. Tuning of the deterministic factoring algorithm

A common practical problem of the assignment strategies
presented in Section 3 and Section 4 is that their parameters
are not known before the parallel computation finishes. An
empirical constant setting of the parameters may be close to
the optimal setting for a certain input and a certain machine,
but it may be far from the optimal setting for other inputs or
other machines. We tackle this problem for the deterministic
job assignment strategies using a self-tuning approach.

The parameters which are known or can be measured be-
forehand for a given machine and for one run are W, L and N.
The only unknown parameter which is required by the fac-
toring strategy is 7. (In order to predict the makespan, the
a priori knowledge of Tuax is also required—which implies
the a priori knowledge of 7,,;,.)

The parameter T controls the trade-off between the fixed-
size chunking with maximal chunks (7" — 1 yields the chunk
size of |W /N | tasks) and fixed-size chunking with minimal
chunks (7" — oo yields the chunk size of 1 task). Note that
if the latency exceeds the computational times of tasks then
ending up with single-task jobs is not desirable—the factor-
ing rounds should be terminated sooner and the yet unas-
signed tasks should be distributed in N equal-size chunks.
In order to achieve this, we introduce a parameter A which
determines the minimal (atomic) job size which is assigned
during the factoring rounds. The resulting factoring algo-
rithm is shown in Fig. 4.

5.1. Tuning of the atomic job size A

The parameter A determines the minimal job size. An in-
tuitive approximation of the optimal setting of this parame-
ter is A°”" = max(L/Tnax, 1) (a more precise setting of A°"*
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LOADBALANCER(float T, int A, int W, int N)
int job_size;
int work =W,
while (work > 0)
Jjob_size =max (A, [work/(1+T-(N—1))]);
for (counter = 0; counter < N; counter++)
wait for a job request from an idle WORKER;
if (work > 0)
send job of size job_size to the WORKER;
work = work — job_size;
reply job requests with NO_MORE_WORK;

Figure 4: The factoring algorithm used in the LOADBAL—-
ANCER process

which minimises the worst-case makespan can be probably
derived). Still, the optimal setting of A requires an a priori
knowledge of Tinax.

If A < A°P" is used in the algorithm in Fig. 4 then com-
munication costs will dominate the computational times of
some jobs. If A > A°P" then an unnecessary imbalance will
be observed.

We suggest to run the first factoring round with A = 1
and adapt A according to the measurements performed in the
run-time. Before the LOADBALANCER process assigns a job
Ji, it starts a stopwatch. This stopwatch stops when LOAD—
BALANCER receives another job request from the same
WORKER. Let #,,,(J;) denote the time measured by LOAD—
BALANCER. The WORKER process measures the processing
time of the job #,,,,ker(J;) and reports this time to LOAD—
BALANCER (together with the job request). The difference
troral (Ji) — tworker (Ji) 1s used to estimate the latency L. If

tiotal (Ji) — tyorker (‘Ii)
Lyworker (J i)

>1 1)

has been measured e.g. for all jobs J; of the same round
then this is a good indication of that the job size should not
be further decreased. The factoring rounds should be then
replaced with the final chunking.

Remark. Note that the chunking strategy is a special case of
the extended factoring strategy. If ' — oo then the algorithm
in Fig. 4 assigns jobs of the constant size A. The tuning pro-
cedure above can therefore be used in order to determine the
chunk size for the chunking strategy. .

5.2. Tuning of the factor T

The factor T°?" = Tyax/Tynin is generally unknown before
the actual computation has finished. However, T can also be

tuned in run-time. This tuning is independent on the tuning
of the atomic size A. We propose two tuning approaches:

o Conservative approach. T is always set to the maximal

ratio over all jobs which have already been processed.
This statistics can be measured in the WORKER processes
and reported to the LOADABALANCER process when a
job request is being sent.
Note that an underestimation of 7 can still occur. How-
ever, LOADBALANCER can set a deadline for each job
which it assigns and it can detect if a job has not been
processed in time. If this happens, the LOADBALANCER
sends an ABORT message to the WORKER, making the
WORKER finish its job with only a partial result. The tasks
of the aborted job which have not been processed are re-
turned back to the task-pool in the LOADBALANCER. Af-
ter that LOADBALANCER adjusts (increases) its estima-
tion of T (according to the number of unprocessed tasks
in the aborted job) and continues.

e Optimistic approach. T is set to an empirical constant
and remains constant. Both overestimation and underes-
timation of 7% lead to an unnecessary increase of the
makespan. If 7 > T°P' then the number of rounds will
be greater than the optimal number of rounds—however,
this performance loss can be predicted (and it can be
usually neglected, especially if the overestimation is not
large). The underestimation 7 < T°?" leads to an in-
crease of imbalance. In this case a job request will be
replied by the LOADBALANCER with NO_MORE_WORK,
while other WORKERs may have several yet unprocessed
tasks. When this happens, the WORKER which received
the NO_MORE_WORK message immediately begins with
work stealing, trying to find some other WORKER with
enough yet unprocessed tasks. A part of these yet unpro-
cessed tasks will be then passed to the idling WORKER.

There is a good reason for the favouring of the optimistic
approach: although the empirical 7' can be much smaller
than the actual 72" for individual fasks, the factor between
the computational times of any two assigned jobs may be
still close to the empirical 7. Using the empirical T instead
of the theoretically correct T can significantly decrease
the number of factoring rounds and therefore the latency
overhead. The additional work-stealing phase helps to de-
crease the imbalance in the unlucky case when too many
tasks with high complexity were assigned in one job.

6. Experiments with demand-driven parallel ray
tracing

We used the Persistence of Vision Ray Tracer (POV-Ray)
version 3.1g as a base for our demand-driven parallelisa-
tions. POV-Ray is a state of the art (sequential) ray tracer
which implements all important optimisation techniques.
For all the following experiments, we used a fairly com-
plex “everyday scene” with ca. 600 objects and 8 point light

(© The Eurographics Association 2004.
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sources. We rendered an image of this scene in PAL resolu-
tion (720x576 pixels) with no anti-aliasing (Fig. 5).

Figure 5: The rendered image of the “everyday scene”

All the experiments were running on a partition of
Siemens-Fujitsu ApcLine cluster in the Paderborn Cen-
ter for Parallel Computing (PCZ) at the University of
Paderborn. Each process was mapped onto one proces-
sor of the allocated partition. The cluster consists of 96
Siemens Primergy nodes with two 850 MHz Intel Pen-
tium III and 512 MBytes RAM per node, running Linux
Redhat. The nodes are connected via two independent net-
works: SCI (500 MBit/second Scalable Coherent Interface
by Scali/Dolphin) and Fast Ethernet (100 MBit/second). We
used our own message passing library TPL, which uses TCP
and the Fast Ethernet network. [Pla02b] The highest network
latency (roundtrip time) perceived by a process, measured on
a PINGPONG benchmark which uses TPL was ca. 0.6 mil-
lisecond.

When we refer to sequential time, we mean the running
time of the original sequential POV-Ray—not the parallel
time with 1 WORKER process. Efficiencies reported in this
paper relate to the sequential time.

6.1. Pessimistic (worst-case) predictions using
optimistic (average) estimations

The formulas from Section 4 allow us to predict the results
of the efficiency experiments for the worst case if L, Tinax
and T are known. Unfortunately, at the time of these exper-
iments these statistics for individual tasks (pixels) were not
collected during the runs. However, we were able to roughly
reconstruct the parameters as follows:

e [ =0.007 second. This time includes the pre- and post-
processing such as packing/unpacking of the frame buffer,
repetitive computation of vista buffer etc. We got this es-
timation from the difference between the sequential time
and the parallel chunking time with 1 WORKER process.

® Tax = 0.0022591 second. This is actually the average
computational time on one pixel estimated from the se-
quential time (ca. 937 seconds), not the maximal compu-
tational time on one pixel.

(© The Eurographics Association 2004.

e T = 3. This is roughly the factor between the computa-
tional times of blocks of pixels of size at least 360 pix-
els (see Section 6.2), not the factor of maximal and min-
imal computational times on individual pixels (which is
much higher). This factor came out from our empirical
measurements, see Fig. 8 and it is relatively low thanks
to the quasi-random mixture of high-complexity and low-
complexity tasks in the jobs.

Equation 13 and Equation 20 can be used to obtain up-
per bounds on the expected makespan (i.e. lower bounds on
the expected efficiency). In such a case Tuax should be inter-
preted as the maximal job’s time complexity, where a job’s
time complexity is defined as an average of time complexi-
ties of the tasks included in that job; and 7' should be inter-
preted as the maximal ratio of jobs’ time complexities. The
meaning of the reconstructed parameters above is not much
different from this interpretation.

6.2. Chunking

In our first experiment, we manually tuned the optimal chunk
size for the chunking assignment strategy. We ran the paral-
lel program with 90 WORKERs and measured the absolute
parallel times as a function of the chunk size K. The val-
ues of K were 22, 45, 90, 180, 360 and 720 (we had already
known from our previous experience that the empirical op-
timal chunk size for this setting is smaller than 720). The
results of the measurements are shown in Fig. 6. The empir-
ical optimal chunk size K°”" is in the interval 45-360 pixels
(the differences between these parallel times are negligible
and subject to external factors which are beyond our con-
trol). We set K" = 360. (Expressed informally, this is a
chunk size which we can safely “afford” in order to not let
the latency dominate the computational times of the chunks.
Note that the non-constant latency will be lower for fewer
WORKERSs than 90.) The predicted K°” for the worst-case
scenario (Equation 12) is ca. 800 for 2 WORKERs, ca. 280
for 16 WORKERs and ca. 100 for 128 WORKERs. Our choice
KP' =360 is a reasonable constant approximation of K"
for the number of WORKERS in the given range.

We then measured the efficiency of the chunking strategy
with constant K°”" = 360 for a varying number of WORKERs
(powers of 2). The results of these measurements and the
predicted efficiency (using Equation 10) are shown in Fig. 7.

6.3. Factoring

The goal of the experiments with factoring was to empiri-
cally find the factor 7" which yields the maximal efficiency
for the given setting. This empirical optimal 77" is the ratio
of the maximal and minimal times of the jobs assigned dur-
ing the run, not the ratio of the maximal and minimal times
of single tasks (pixels). The actual 7°”" may be much higher
than the empirical 7°7". We also used the previously found
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Figure 6: Absolute parallel times of the chunking strategy
with 90 WORKERSs, for a varying chunk size
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Figure 7: Efficiency of the chunking strategy with K°P" =
360, for a varying number of WORKERS (note the logarithmic
scale on x axis)

chunk size as the atomic job size for the factoring algorithm
from Fig. 4 (A = 360).

Fig. 8 shows the results of the measurements for 7' = 2,
T =3 and T = oo (a sufficiently large T') for a varying num-
ber of WORKERS (powers of 2). This graph also includes the
predicted efficiency for T = 3 (using Equation 20). The ef-
ficiencies measured for 7 = 1 (static chunking) are not in-
cluded in the graph; they dropped down quickly from 1.0 to
0.6 for 1-8 WORKERS and ranged between 0.6-0.4 for more
than 16 WORKERs. Note that the empirical 77 is between
3 and oo (whereby 7°P" = oo yields the chunking strategy
with the chunk size A = 360).

7. Conclusions

We presented a worst-case analysis for chunking and fac-
toring assignment strategies for the independent task place-
ment problem, using a deterministic model. This analysis
gives the best setting of the parameters for the worst-case
arrangement, if a certain a priori information on the tasks’
time complexities is known. In the context of demand-driven
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Figure 8: Efficiency of the factoring strategy with A = 360,
for a varying number of WORKERs (note the logarithmic
scale on x axis)

ray tracing, this information is unknown. Therefore we pro-
posed self-tuning strategies which estimate the missing in-
formation in run-time. Our experiments show that even the
very simple chunking assignment strategy yields a very good
performance (more than 94%) for an “everyday ray tracing
setting” on up to 128 WORKERs—provided that the chunk
size is properly set. The factoring strategy never significantly
outperformed the chunking strategy in the experiments; also
our prediction models only slightly favour factoring over
chunking (the predicted difference in their efficiencies is less
than 2% for 1-128 WORKERSs). If we keep the parameters
intact in our prediction models, and only increase the num-
ber of WORKERs to 1024 then the predicted efficiency for
the chunking strategy will be 85%. This seems to contradict
the previously reported bad experience with chunking (e.g.
in [FHK97]), but in fact it does not. None of the previous
publications we know of tuned the chunk size—they used
an empirical chunk size which could be far from the opti-
mal one. We also disagree with Heirich and Arvo [HA98]
who claim that chunking is insufficient for more than 128
WORKERs and seek a solution among diffusive strategies.

We stress that the chunk size K°P" which we empirically
found in Section 6.2 is only valid for the given machine and
communication library, given input, given screen resolution,
given number of WORKER processes etc. A different setting
would yield a different optimal chunk size K°P" which min-
imises the worst-case makespan. This is the reason why the
chunk size must be tuned. According to Equation 12, the op-
timal chunk size K°P" is a function of W (number of tasks), N
(number of WORKERS), L (latency) and Timax (maximal task’s
or job’s time complexity). All these parameters should be re-
ported in experiments with assignment strategies.

Note that our model does not depend on the mechanism
which is used for the job assignment. Even though we as-
sumed message passing throughout this paper, our prediction
model and tuning strategies are also valid for shared memory
architectures. [PMS*99]

(© The Eurographics Association 2004.
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A prefetching technique (combined with chunking) is pro-
posed e.g. in [WBDSO03]. This technique assigns more than
one job to an idle WORKER at the beginning and immediately
assigns another job to the WORKER when the first job has al-
ready been computed. Prefetching leads to a reduction of the

latency (the

WORKER does not wait for a job when it finishes

the computation of the previous job) but increases the work
imbalance. An analysis similar to ours is needed in order to
justify the prefetching technique and to determine the opti-
mal chunk size and the optimal number of prefetched jobs.
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