Independent Task Placement and its Tuning in the Context of Demand-Driven Parallel Ray Tracing

Grenoble, June 11, 2004
Overview

- Screen partitioning: demand-driven process farm
- Problem definition and examples of tradeoffs
- Analysis of chunking and factoring strategies
- Experiments with chunking and factoring, with manual tuning of parameters
- How efficient will your program be on your machine for a given number of processors for a given input?
- Is the choice of assignment strategy really important (in the context of contemporary parallel ray tracing)?
Parallel ray tracing: screen partitioning (demand-driven process farm)
Parallel ray tracing: screen partitioning
(demand-driven process farm)

What does the LOADBALANCER process do?
Given:
N nr. of worker processes, all equally fast
W nr. of tasks, independent of each other (not even spatially coherent)
L latency; i.e. overhead of assigning 1 job to a worker (a constant time which does not depend on the number of tasks in 1 job or anything else)

Unknown:
Task time complexities.

Goal:
Minimise the makespan (the parallel time required for assigning & processing of all tasks). This problem is online, because the LOADBALANCER must make a decision as to how many tasks to pack into a job immediately after receiving a work request. Well, online... our W is constant!

Probabilistic model
\[\mu \quad \text{average tasks' time complexity} \]
\[\delta \quad \text{std. dev. of tasks' complexities} \]

Deterministic model
\[T_{\text{max}} \quad \text{maximal tasks' time complexity} \]
\[T_{\text{min}} \quad \text{minimal tasks' time complexity} \]

Goal: minimise expected makespan

Goal: minimise worst-case makespan (for worst possible task arrangement)
Chunking

Largest chunks (for 2 workers)

1 2

Problem: imbalance

Smallest chunks (1 chunk=1 task)

Problem: many messages

The chunk “shape” is irrelevant

How large should the chunks be?

(... so that the worst-case makespan is minimal!)
Chunking, worst-case analysis

The time diagram below depicts the structure of the worst case (worst makespan):
One of the workers always gets the tasks of time complexity T_{max}.

Parameterisation:

- N nr. of workers
- W nr. of tasks
- L latency
- T_{max} max. task complexity

Unknown: K_{opt} (chunk size)

$$M = \left(1 + \frac{W}{NK}\right)(L + KT_{\text{max}})$$

$$K_{\text{opt}} = \frac{WL}{NT_{\text{max}}}$$

$$M_{\text{opt}} = \frac{WT_{\text{max}}}{N} + L + 2\sqrt{\frac{WT_{\text{max}}}{N} \cdot L}$$

$M'(K) := 0$
Factoring

\[3 \frac{x \cdot W}{4} \geq \frac{3}{4} W \Rightarrow x \geq 1 \Rightarrow x = 1 \]

Parameterisation:
- \(N \): nr. of workers
- \(W \): nr. of tasks
- \(T \): max. ratio of tasks’ complexities \((T = T_{\text{max}} / T_{\text{min}}) \)

Unknown: the job size \(K \) used for the next round

\[t_1 \text{ sec} \leq T \cdot t_2 \text{ sec} \]

\[t \text{ sec} \leq T \cdot t \text{ sec} \]

\[t(K) \leq \frac{t(W-K)}{N-1} \]

\[TK \leq \frac{W-K}{N-1} \]
Factoring, worst-case analysis

Structure of the worst case (time diagram below).
One of the workers always gets tasks of complexity T_{max}.

$K_1 = \frac{W}{1 + T(N-1)}$
$K_2 = \ldots$
$K_r = A$

N

$L + K_1 T_{\text{max}}$
$L + K_2 T_{\text{max}}$
$L + K_r T_{\text{max}}$

Parameterisation:
N nr. of workers
W nr. of tasks
L latency
T_{max} max. task complexity
T_{min} min. task complexity
$T = \frac{T_{\text{max}}}{T_{\text{min}}}$
A atomic job size (size of the smallest job)

$M_{\text{opt}} = \frac{(W - A)T_{\text{max}}}{N} + Lr + L + AT_{\text{max}}$
$r = 1 + \left\lfloor \log_{1 + T(N-1)} \left(\frac{AN}{W} \right) \right\rfloor$
Screen partitioning, chunking with $K_{opt} = 360$
Tuning of factoring strategy (tuning of atomic job size A)

Communication time may exceed the communication time for one pixel. If it does then LB should always distribute more than one pixel in a job. The parameter A determines the size of the minimal job (in pixels).

<table>
<thead>
<tr>
<th>LB: start stopwatch</th>
<th>worker: receive work (P_{job} pixels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB: send work to a worker</td>
<td>worker: start stopwatch</td>
</tr>
<tr>
<td>LB: ...</td>
<td>worker: compute</td>
</tr>
<tr>
<td>LB: receive another work request and T_{job} from the same worker</td>
<td>worker: stop stopwatch</td>
</tr>
<tr>
<td>LB: stop stopwatch</td>
<td>worker: send work request and report T_{job} to LB</td>
</tr>
</tbody>
</table>

$T_{comm} = T_{total} - T_{job}$

Optimal setting of A (in LB process):

$A = \min (P_{job})$, such that $T_{comm} \leq T_{job}$
Tuning of factoring strategy (tuning of parameter T)
The optimal setting of the T is independent of the optimal setting of A.
The parameter T controls the trade-off between chunking (for $T \to \infty$) and static job assignment (for $T=1$). The optimum T_{opt} is somewhere between the two extremes.
An overestimation of T_{opt} ($T > T_{opt}$) leads to unnecessary communication.
An underestimation of T_{opt} ($T < T_{opt}$) leads to imbalance.

Solution 1 (optimistic):
A realistic (empirical) guess of $T +$ work stealing phase.
No run-time tuning of T. T remains a constant during the farming phase.
Work stealing eliminates a possible imbalance.
The work stealing phase begins immediately after LB answers “no more work” to a work request (hence, work stealing overlaps with farming). In such a case the worker begins to actively look for work among other workers.
Tuning of factoring strategy (tuning of parameter T)

Solution 2 (conservative):
Run-time tuning of T (no work stealing phase).

This solution avoids an underestimation of T_{opt}.

In the first round, $T \to \infty$ is assumed (jobs of size A are distributed).

After a worker finishes, T is set to the maximum time ratio which has been observed until that moment (a pessimistic setting).

Despite the pessimistic setting, an underestimation can occur. However, LB detects this situation as some worker does not finish “in time” according to the current T (LB sets “deadlines” for workers according to its current setting of T).

If underestimation is detected, LB sends an ABORT signal to the late worker, making the worker finish a.s.a.p. with only a partial result. The pixels which have not yet been computed are returned back to LB. According to the number of the finished pixels in the partial result, LB adjusts the parameter T (pessimistically) and continues.
Conclusions
- Farming yields almost a linear speedup (efficiency 95% with 128 workers) for parallel ray tracing (POV-Ray) on a fairly complex “everyday” scene.
- Trivial chunking algorithm with optimal chunk size does not perform worse than a theoretically better factoring algorithm with optimal chunk size; for the particular machine, particular nr. of processors, particular input, particular quality settings, particular room temperature etc. used during these experiments.
- Efficiency of chunking/factoring can be predicted for a particular machine, particular nr. of processors, particular input, particular room temperature etc.
- In experiments with process farming, parameters W (nr of tasks), N (nr of workers), L (latency), T_{min} and T_{max} (min/max tasks’ or jobs’ time complexities) must be reported. Reporting only W, N and an empirical chunk size is insufficient for drawing conclusions from experiments with process farming (e.g. chunking).
- The parameters specific to chunking/factoring can (and must) be tuned automatically in run-time.