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Abstract In this paper, a rendering system is pre-
sented, which utilizes efficient parallel methods for
solving the global illumination problem. The sys-
tem allows interactive walkthroughs in complex ar-
chitectural environments consisting of several thou-
sands of polygons and an off-line animation pro-
duction. The 1mage synthesis system 1s designed
as a portable and scalable client-server architec-
ture. The parallel global Wllumination calculations
are performed by a rendering server, either on
massively parallel computer systems or on hetero-
geneous workstation-clusters. The wvisualization-
winterfaces are connected to the server as clients,
which are started on workstations with spectalized
graphics hardware.
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1 Introduction

Computer graphics technology is quickly be-
coming part of everyday experience. One im-
portant aim of the research in the area of image
synthesis in the last couple of years has been
the recreation of images of environments that
do not exist up to now. The ability to create
images of non existing environments is impor-
tant to applications ranging from industrial or
architectural design to advertising and enter-
tainment. In particular the rendering of re-
alistic images requires a precise treatment of
lighting effects by simulating the underlying
physical phenomena of light emission, propa-
gation, and reflection. The most advanced al-
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gorithms for such simulations of radiative light
transfer are radiosity methods [1] and Monte
Carlo ray tracing. The visual realism pro-
vided by global illumination algorithms sup-
ports the ability to perceive the content of a
3-dimensional environment by simulating illu-
mination effects such as indirect illumination,
color bleeding between surfaces and soft shad-
owing. Drastic progress has been made in
terms of 3D-animation, software modeling and
shading capabilities. Ray tracing and radios-
ity algorithms, currently implemented in image
synthesis systems, provide the necessary ren-
dering quality, but these methods are suffer-
ing from their extensive computational costs,
and their enormous need for memory. The use
of scalable parallel systems offers a solution to
these problems.

In this paper an image synthesis system is pre-
sented, which utilizes efficient parallel meth-
ods for solving the global illumination prob-
lem. These methods are introduced in section
2 and section 3. Section 4 provides a brief de-
scription of the rendering system. Performance
measurements and conclusions are presented in
section 5.

2 Data-Parallel Radiosity

Radiosity has become a popular technique in
image synthesis to produce high quality images
taking into account the correct global illumi-
nation of an environment. This method was
originally developed in the area of heat trans-
fer, and simulates the exchanges of heat en-
ergy between the objects in an environment.



In 1984 Goral et. al. [1] introduced the ra-
diosity method for computer graphics in order
to calculate the global illumination in environ-
ments consisting of perfectly diffuse reflecting
surfaces. It is assumed that the environment
is divided into discrete patches. The radiosity
(radiant energy that leaves a surface) of a patch
is determined by the self emitted radiosity plus
the reflected radiosity, and is described by the
radiosity equation. Such an equation exists for
each patch of the environment. This system of
simultaneous equations can be solved by using
an iterative (GGauss-Seidel method, which as-
signs a particular radiosity value to each patch,
and therefore, a discrete representation of the
diffuse illumination in the scene is calculated.
The obtained solution is independent of the
viewer’s position in the scene. This means
that the position of an observer can be mod-
ified without recalculating the radiosity solu-
tion. The full matrix solution is very time
and memory consuming, and is impractical for
larger numbers of patches.

To overcome the limitations of the full matrix
solution, Cohen et. al. introduced the pro-
gressive refinement method [2]. The light en-
ergy is distributed in the environment in an
iterative process. In every iteration the patch
with the most unshot radiosity is determined
and this amount of energy is distributed to
all other patches in the environment. This
process is repeated until the unshot radiosity
of the selected patch drops below a predefined
value. While the solution is progressively re-
fined, the intermediate results can be displayed
after every iteration.

A form factor specifies the fraction of en-
ergy leaving one patch and impinging on an-
other patch of the environment. This frac-
tion depends on the visibility between the two
patches, and their orientation in 3D space. It
is difficult to calculate the form factors ana-
lytically for general applications and complex
geometries. Therefore, a numerical technique
called hemicube approach was introduced to
compute form factors for complex environ-
ments [3]. Other strategies for calculating
proper form factors have been proposed [4] [5],

which produce better form factors than the
hemicube approach.

A method of speeding up the radiosity compu-
tations is to use some sort of parallelism. Our
rendering system uses a data-parallel method
for computing a radiosity solution.  This
method is based on partitioning the geome-
try of the input scene into smaller subscenes
and distributing them onto several processors
of a scalable MPP-system [6] [7] [8]. In a
preprocessing step, an appropriate meshing of
the input scene is calculated, and the resulting
mesh of patches is divided into 3-dimensional
cells, every cell containing a part of the scene
(subscene). The processes of meshing and par-
titioning are closely related. The scene is par-
titioned into convex regions (boxes) with each
patch being assigned to exactly one cell due to
the geometrical position of the patch. A patch
lies completely within a cell. This restriction
makes it difficult to subdivide an arbitrarily
meshed input scene into convex regions. A so-
lution to this problem is to clip overlapping
patches at the cell boundaries, which leads to
meshes of various complexity for different cell
topologies. In our solution, a 2d-grid placed
above the input scene (parallel to xy-plane)
is projected onto every surface. The mesh-
ing process uses the projected edges of the
grid as patch boundaries. When the scene
is partitioned into convex regions, cell bound-
aries can only be placed along edges of the 2d-
grid. This ensures that a patch lies exactly
within one cell. Obviously, this solution does
not lead to an optimal meshing of the surfaces,
and cells are only produced along two dimen-
sions. The advantage of this solution is that
the same mesh can be used for parallel radios-
ity calculations with different cell topologies,
and so the calculation times are comparable.
Note that this solution can easily be extended
to cell topologies in three dimensions. This
is possible by the use of additional 2d-grids
parallel to the xy-, xz- and yz-plane during
the meshing and partitioning process. This
preprocessing step performs static load bal-
ancing by defining subscenes with nearly the
same number of patches within every cell. Af-



ter this preprocessing step, the cell topology
is mapped onto the given processor topology.
In every cell the iterations of the progressive
refinement algorithm [2] are performed asyn-
chronously. Our method distinguishes between
a local shooting iteration with the shooting
patch being part of the local scene, and an
external shooting iteration with the shooting
patch not belonging to the local scene. Dur-
ing a local shooting iteration a shooting patch
of the local subscene is being selected. The
form factors to the local patches are calcu-
lated using the method introduced by Baum
et. al. [4]. This method uses the hemicube
[3] only to determine the visibility between the
shooting patch and sample points on the other
patches of the environment. Form factors are
evaluated analytically using the visibility in-
formation stored within the hemicube pixels.
All the patches of the subscene of the shoot-
ing patch are projected onto the hemicube,
and the energy is transfered to the local envi-
ronment according to the calculated form fac-
tors. As a next step, all the subscenes are de-
termined which include patches that may re-
ceive unshot radiosity of the selected shoot-
ing patch (see Fig. 1). The form factors to
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Figure 1: The visible zone of a shooting patch

the patches of these subscenes have to be com-
puted by projecting all patches onto the same
hemicube placed above the selected shooting
patch. Due to the distributed storage of the
scene either parts of the scene database or vis-
ibility information have to be exchanged be-
tween the processors in order to calculate form
factors correctly. In our parallel approach, vis-

ibility information, and a copy of the shooting
patch are packed into the hemicube message,
which is passed to the cells in the visible zone
of the shooting patch in a certain order. Af-
ter receiving a hemicube message, an external
shooting iteration is performed taking into ac-
count the included information. Visibility in-
formation is encoded in a so called hemicube
bitmap. One bit of the hemicube bitmap cor-
responds to a pixel of a hemicube face, and
is set to 1 if a patch has been projected onto
that pixel of the hemicube (see Fig. 2). If
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Figure 2: The hemicube bitmap

a hemicube bitmap is sent to a neighboring
cell, projections are only performed on those
pixels of the hemicube with the corresponding
bitmap entry set to 0. It is ensured by the
routing of the hemicube bitmaps that all the
hemicube pixels for which the bitmap entry is
set to 1 are covered by the projection of a patch
that is closer to the shooting patch than all the
patches in the actual cell [7]. Vice versa, if the
bitmap entry is set to 0 there is no patch closer
to the shooting patch than all the patches of
the actual cell, that was projected onto the cor-
responding hemicube pixel in another cell. At
the beginning of each iteration, it is tested if
the maximum unshot radiosity of the received
external shooting patch (stored in the external
shooting patch buffer) is larger than the unshot
radiosity of the locally selected shooting patch.
In this case, an external shooting iteration is
performed. During the external iteration, in
a first step, the patches of the local scene are
projected onto the hemicube, which is placed
above the external shooting patch. Projections



are only allowed on pixels for which the cor-
responding bitmap entry is 0. The hemicube
bitmap is updated while the projections are
being performed. The updated bitmap, and
the shooting patch are packed into a hemicube
message and sent to the directly neighboring
cells. In a second step, the determined visibil-
ity information is used to calculate form fac-
tors between the external shooting patch and
the local patches in the same manner as during
a local shooting iteration. The unshot radios-
ity is distributed in the local cell according to
the calculated form factors.

The 2-dimensional example in Fig. 3 shows
that sending the hemicube bitmap to neighbor-
ing cells in the wrong order will lead to projec-
tion errors. If the hemicube of shooting patch
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Figure 3: Projection errors due to false routing
of messages

s is sent from cell 3 via cell 1 and 2 to cell
4, patch b is projected onto the hemicube be-
fore patch c. This leads to an error during
the following shooting iteration, since patch
b is covered by patches a and c¢. A correct
routing is achieved by sending the hemicube
bitmap from cell 3 to the directly neighbor-
ing cells 1 and 4. The local scenes of cell 1
and cell 4 are projected independently onto the
hemicube. A valid hemicube bitmap for cell 2
is calculated by performing a logical OR opera-
tion on the corresponding bitmap entries of the
bitmaps created in cell 1 and cell 4. The result-
ing bitmap is used to perform correct projec-
tions within cell 2. An example for the routing
of a hemicube bitmap in a 2d-cell topology is
given in Figure 4. This routing scheme can eas-
ily be extended for 3d-cell topologies. In this
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Figure 4: Routing of a hemicube bitmap

case, situations can occur with a maximum of
3 bitmaps having to be combined in order to
get a valid bitmap (in 2d the maximum is 2).
At the beginning of the parallel calculations,
only those processors related to subscenes
containing primary light sources are able to
perform local shooting iterations. All other
processors are waiting until they receive a
hemicube message with an external shooting
patch. After performing an external shooting
iteration, energy is transferred into these sub-
scenes. Now these processors can also start
their progressive refinement iteration with in-
terleaved local and external shooting itera-
tions. After a short startup phase, all proces-
sors are performing their iterations asynchro-
nously.

It is important to notice that only the
hemicube bitmaps (one bit per hemicube pixel)
are passed between the processors in order to
perform distributed visibility calculations. Be-
cause of the described routing it is not neces-
sary to send z-buffer information (depth val-
ues). So the communication overhead of our
method is very low compared to previously in-
troduced data-parallel radiosity methods [9].
The idea of hemicube bitmaps was introduced
n [7] for the first time. A similar concept
named wvisibility masks was introduced by Ar-
naldi et. al. [10]. They are using ray casting
for the form factor calculation. The visibil-
ity mask is a sub-sampled hemisphere identi-
cal with the one involved in the computation
of form factor calculation. Every pixel of the
hemisphere, that is used for the form factor



computation, corresponds to a boolean value
in the visibility mask. This visibility masks
are exchanged between different processors in
order to calculate correct form factors. The
routing of messages is also very similar to the
one described in [7] [8].

2.1 Radiosity for Dynamic Scenes

For common modeling systems the paradigm
modeling then rendering is valid. In these sys-
tems the processes of modeling and render-
ing are strictly separated. The image synthe-
sis system introduced in this paper, tries to
change this paradigm to modeling while ren-
dering as proposed by Chen [11]. The user is
allowed to interact with the objects of the envi-
ronment, e.g. turn on/off light sources, move
objects, change materials, and after each in-
teraction the primary influences of the modifi-
cation of the scene on the global illumination
are displayed with short delay. The integrated
data-parallel radiosity method was modified in
order to calculate radiosity solutions in dy-
namic environments. After a user interaction
the change of geometry is broadcasted to all
processors. Incremental changes of affected ra-
diosity values are calculated instead of recal-
culating a complete radiosity solution [11]. In
most of the cases, a scene modification has only
local influences on the illumination in a given
environment (especially in large buildings with
several rooms). Thus, in our data-parallel ra-
diosity method, incremental radiosity values
only have to be calculated in subscenes of the
partitioned input scene which are affected by
the interaction. Although this initially causes
more load on some processors, other processors
receive work due to propagation of light energy.
During an usual modeling session, several
changes are made. Every processor has a local
geometry-queue, where the changes, which af-
fect the local scene, are accumulated [11]. The
queues contain the history of all the geometry
changes which, when executed in order, will
describe the up-to date scene. It is very likely
that the successive modifications affect differ-
ent subscenes, which are handled by different

processors. Thus, a good load distribution in
produced by the changes.

3 Parallel Two Pass-Method

A parallel ray tracing method has been inte-
grated into the image synthesis system. In
the generic ray tracing algorithm, the ambient
term in the local illumination model is replaced
by a constant. This is not correct, but usually
works well (the output seems to be realistic).
In order to obtain more realistic results, ra-
diosity and ray tracing algorithms can be com-
bined to a two pass method. This idea is not
new, see e.g. [12] for a reference. In the first
pass of our implementation, the data-parallel
radiosity algorithm is started in order to simu-
late the diffuse reflection of light. The second
pass is running parallel ray tracing on the same
scene, using the radiosity information from the
first pass. The constant ambient term is re-
placed by a radiosity value obtained from the
first pass. At the moment, the scene descrip-
tion is stored on every processor of the parallel
system during the second pass. This means
that the ray tracing pass is not data-parallel,
and so the size of the scenes, which can be
handled, is limited. For parallel ray tracing, a
demand-driven strategy for dynamic load bal-
ancing based on an adaptive image space parti-
tioning is used. Initially, equally sized regions
of a part of the total image space are assigned
to the processors. As soon as one processor
finishes his work, he sends a request for new
work to a central load balancing process. In
Figure 5, the pseudo-code for the load balancer
is given. In this pseudo-code, C is the number
of screen columns, and N the number of work-
ers. A single screen column is an atomic job.
Let us assume, that for any two different jobs
of equal sizes

time needed for computation of joby

time needed for computation of joby —

with T > 1.0 being a constant. Unfortunately,
in practice, we usually do not know the para-
meter T beforehand. Usually, it must be set



WorkLoad=C;

Ratio = 1/(1+4T(N-1));

JobSize = (WorkLoad*Ratio);

....assign a job of size JobSize to each worker;

WorkLoad = WorkLoad - N*JobSize,

while (WorkLoad >0)

{
...wait until an idle worker asks for a job;
JobSize = WorkLoad*Ratio;

... assign the worker a job of Size JobSize;
WorkLoad = WorkLoad - JobSize;
}

Figure 5: Pseudo-Code of the load balancer

empirically. The size of the new workpackage
(region of image space) is adaptively decreased
depending on the number of processors and the
work that is still to be done. This strategy en-
sures that the idle times of the processors are
minimal at the end of the calculation of one
picture. The communication overhead of this
strategy is low, compared to a demand driven
strategy with an atomic sized job (small box or
column) being assigned to each request. Thus,
a nearly linear speedup can be achieved for a
large number of processors.

4 Image Synthesis System

The methods introduced in section 2 and sec-
tion 3 have been implemented and integrated
into an interactive image synthesis system.
The system is developed as an open, modu-
lar client-server architecture. It allows easy
extensions of the system with additional com-
ponents of the application. These components
are either new global illumination methods on
the side of the server or application interfaces
as clients. The integration and parallelization
of additional applications is made easier by
the provision of different heuristics for map-
ping, mechanisms for dynamic load balancing,
monitoring, and communication mechanisms
(Fig.6).

The architecture distinguishes between clients
that run on one or more workstations within
a network (frontend components), and the

rendering server, that runs on a parallel

machine (backend). The rendering server
processes the instructions from clients (illumi-
nation calculations), and returns the results to
the corresponding visualization clients. The
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Figure 6: Architecture of the system

visualization-, meshing-, interaction-interfaces
and the system control are started as clients
on frontend machines. The system-control al-
lows the user to choose between the different
global illumination methods of the rendering
server. From there the corresponding applica-
tion components on the frontend system are
started, and the rendering server is initialized
to run the selected illumination method. Scene
descriptions can be converted from standard
file formats into the internal file format of the
rendering system. Next, this internal format
is read by an application interface of the im-
age synthesis system. The backend performs a
parallel simulation of the light distribution for
the scene description. The image synthesis sys-
tem is a complete, integrated solution for the
efficient visualization of architectural data. It
is therefore possible to simulate global illumi-
nation effects caused by specular and diffuse
inter-object reflection. Radiosity calculations
are independent of the viewpoint. Thus, the
results of the simulation can be used for an
interactive walkthrough [3]. During the walk-
through, parallel radiosity calculations con-
tinue and, on demand, the actual results are
visualized. With this procedure the quality of
the visualization permanently improves (pro-
gressive refinement method) [2]. At the end of



the radiosity calculations, it is possible to de-
fine a camera path to produce an animation
with the help of the two-pass extension of the
radiosity method. Because of the use of paral-
lel computer systems with distributed memory
and efficient parallel global illumination meth-
ods, the performance of the system is scalable.
Thus, an image synthesis based on the simu-
lation of the correct lighting conditions is also
possible in complex architectural models.

5 Results

In this section, performance measurements of
the implementation of the new data-parallel ra-
diosity method, and the two pass extension are
are presented. These measurements were per-
formed on the Parsytec CC (peak performance
of 12.7 GFLOPS). Each node of this MPP-
system is a Power PC 604 (133 MHz, 64Mbyte
main memory).

The basis for the measurements presented in
this section is a highly complex input scene.
This scene represents the Rosenthaler Hof at

Figure 7: Inside of Rosenthaler Hof

the center of Berlin. It consists of the former
department store Wertheim, which is being
remodeled to a modern building with apart-
ments, offices and stores. Figure 7 shows a two-
pass visualization of the roofed courtyard of the
office building at night. This test scene had
been substructured into 145588 patches before

the parallel radiosity calculations were started.
During the calculations, adaptive mesh refine-
ment is used to produce more exact illumina-
tion effects.

Rosenthaler-Hof scene
number of patches: 145588 (eps.: 5e-4)
proc. | time (sec) | speedup | efficency

1 8236 1.00 1.00
2 4417 1.86 0.93
4 2368 3.48 0.87
8 1209 6.81 0.85
16 658 12.51 0.78
24 470 17.52 0.73
32 422 19.50 0.61
36 405 20.32 0.56

Table 1: Time for radiosity computations

In table 1 the parallel calculation times which
were needed for the radiosity-pass, are pre-
sented. The radiosity calculations were per-
formed until the unshot radiosity of the se-
lected shooting patches dropped below a prede-
fined percentage of the maximum energy emit-
ted initially by primary light sources. This ta-
ble shows an improvement in the calculation
time with up to 36 processors. With more
than 24 processors, no significant reduction of
the calculation time was obtained. The rea-
son for this is an unevenly and dynamically
produced load, which is caused by the spatial
subdivision. Because of the different group-
ings, and the different material properties of
the objects inside the partitions, the amount of
light energy which is distributed and received
in the local environments differs. The static
load balancing strategy, which produces the
spatial subdivision of the input scene, does not
accurately predict these amounts of energy at
the beginning. Thus, there are some subscenes
receiving a large amount of energy while oth-
ers receive much less energy. Processors that
are responsible for distributing energy in dark
regions are very soon becoming idle, and so the
speedup decreases. This aspect has to be ac-
counted for by dynamic load balancing, which
is currently in its implementation stage. Table
2 shows the calculation times for the ray trac-
ing pass, which were needed to produce figure

7.



Rosenthaler-Hof scene
Number of Light-sources: 12
Boxes Adaptive
proc. | time (sec) | speedup | time (sec) | speedup
1 1768 1.00 1768 1.00
2 934 1.89 886 2.00
6 364 4.89 298 5.93
14 174 10.16 129 13.71
30 92 19.22 62 28.52
38 73 24.22 49 36.08

Table 2: Time for ray tracing pass

The calculation times of our dynamic load bal-
ancing strategy (adaptive) are compared with
a demand driven strategy with the image parti-
tions being equally sized boxes. The measure-
ments show that the new strategy is superior
to the classical one.

6 Conclusion

We presented an image synthesis system, which
uses efficient parallel methods for the simula-
tion of the global illumination. A data-parallel
radiosity method and a parallel ray tracing
method are combined in order to calculate two
pass visualizations of complex environments.
Future work has to concentrate on the aspect
of dynamic load balancing for the parallel ra-
diosity method and data-parallel ray tracing
calculations.
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