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ABSTRACT. Minimum Weight Triangulation problem (MWT) is to find a set of edges
of minimum total length that triangulates a given set of points in the plane. Although
some properties of MWT have been proved and many heuristics proposed, polyno-
miality (and)/or NP-completness of MWT problem is still unsolved. The problem
belongs to the few open problems from the book [GaJo]. In this paper we present
results indicating that even very good approaches based on the local edge examina-
tion (like LMT-skeleton) fail to come close to the MWT for specially constructed
set of points. Furthermore, we show a method how to construct a set of points for
which MWT is unstable — a slight displacement of a point in the input set causes
significant change in the price of MWT.

1. Locat MWT EDGE EXAMINATION

Up to now it is not known yet if there is a polynomial algorithm which finds the
MWT for an arbitrary point set. Known polynomial algorithms related to MWT
problem can be divided into two groups:

1. algorithms approximating the MWT by a triangulation which may not be
the minimum one;
2. algorithms which attempt to find a maximum subgraph of MWT.

1.1. Algorithms approximating the MWT.
Algorithms belonging to the first group are usually heuristics based on observing
some features of the MW'T. Here is a list of several such algorithms:

Delaunay triangulation;

greedy algorithm;

Plaisted’s and Hong’s heuristics [P1Ho];
simulated annealing [BFMNPS];
pairwise edge acceptation [BFMNPS];

ete.

However, all the algorithms mentioned above compute only an approximation of
MWT (a special case is simulated annealing, which is a probabilistic algorithm).

Typeset by A S-TEX



1.2. Algorithms constructing a subgraph of MWT.

Algorithms from the second group are based on theorems characterizing edges
which must belong to MWT. In combination with heuristics from the first group
they can achieve very good practical results (computing as many MWT edges as
possible and applying a good heuristic on the rest of edges). The most powerful
algorithm was proposed by Dickerson and Montague in [DiMo]. It is based on con-
structing the LM T-skeleton (Locally Minimum Triangulation) which is a subgraph
of MWT (LMT-skeleton can be computed in O(n*) time, where n is the size of
input point set). On randomly generated input sets was experimentally shown that
this subgraph is usually quite large, so the exact MWT can be computed for several
hundred points. (Edges of the MWT which do not belong to the LMT-skeleton are
computed by applying brute force algorithm on each discontinuity component of
LMT-skeleton.)

Let us concentrate on known subgraphs of the MWTT.

2. SURVEY OF POLYNOMIAL TIME DETECTION OF MW'T EDGES

In this section we summarize known algorithms producing a subgraph of the
exact MWT in polynomial time and consider limitations of some of them.

Up to now, the following edges of the MWT can be computed in polynomial
time:

1. “Trivial edges” — those which are not intersected by any other edge. The
convex hull of the input point set is included in this category.

2. Double edges of the nearest neighbour graph (NNG)”. This result was pre-
sented in [YaXuYo]. (We shall show that this result can be slightly im-
proved.)

3. Edges of 1.17682 f3-skeleton. [Ke], [ChXu]

4. Edges of the LMT-skeleton. [DiMo]

5. The shortest edge. [Gi]

Below we describe these categories in more detail.

2.1. Double edges of the nearest neighbour graph (NNG).

In [YaXuYo| was proved that all double edges of the NNG must belong to the
MWT. We shall prove that the result can be improved a little by weakening as-
sumptions of the theorem:

Theorem. Let XY be points of the input point set S, such that intersection of
circles cirele( X, | XY|), cirele(Y, | XY|) and area defined by perpendicular displace-

ment of line segment AB does not contain any other point of S. Then the edge AB
belongs to the MWT of point set S.

Proof.

2.1.1. Overview. -
If the assumptions of the theorem are satisfied and AB is a line segment inter-
secting XY, the following observations hold:

Observation 1. |[AB| > | XY|.
Observation 2. LAXB > 7/2 and LAY B > /2.
Observation 3. |[AX| < |AB| and |BX| < |AB|.
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Let S be a set of points in the plane and M the minimum triangulation of S. Let
us assume that an edge XY satisfies assumptions of the theorem and XY ¢ M.
Then (from definition of triangulation) it must be intersected by at least one edge.
From those we choose the edge AB with minimum length. We will show that in that
case edges XA, XB, YA, YB also belong to M and quadrangle X AY B contains
no point of S. By flipping edges XY, AB we obtain a triangulation with less total
length. Thus we get a contradiction with minimality of ML

To prove the contradiction above, we will separately consider halfplanes deter-
mined by line AB, situation in both halfplanes being similar — let us concentrate
on halfplane XAB. First of all, we shall show that the triangle X AB does not
contain any point of S. Then there are two possible cases:

Case A: One of the edges XA, X B belongs to M (and the other one does not).
Case B: None of the edges X A, X B belongs to M.

We shall show that both cases lead to a contradiction with our assumptions.

2.1.2. Triangle XAB does not contain any point of S.

Let the triangle X AB contain a point P which lies, say, in halfplane AXY. Then
length |PB]| is certainly less than length |AB|. Edge PB cannot be in M, because
AB is the shortest edge crossing XY. Thus PB must be crossed by some edge Py Py
where at least one point P; or P, belongs to the triangle X AB. We can repeat
our argument for the point closer to AB. Fact that there is only finite number of
points in S leads to a contradiction with minimality of AB.

2.1.8. Case A: One of the edges XA, XB belongs to M (and the other does
not).

Let the edge X B be in M. AX ¢ M implies that some edge PB € M (the edge
must cross AX and we already proved that the triangle AX B contains no point
of S). We can select the point P so that length of PB is minimum of all edges
crossing X A.

If both edges X P, AP were in M, we could replace the edge PB with AX, thus
getting a shorter triangulation. If at least one of X P, AP is not in M, there must
exist points Py,..., P, € S such that {P;B,...,P,B, PB} is set of all edges of M
which intersect either X P or AP (there is no point in triangle APX, because PB
is the shortest edge crossing XA). Let I = {XB,P,B,...,P,B,PB,AB}. The
convex hull of the triangles between BX and BA form a natural ordering of points
P;. It is easy to see that in the ordering we can always choose three consecutive
edges Z1B,Z3B, Z3B € [ so that the edge Z; Z3 is crossed only by edge Z; B of M.

But this is a contradiction with minimality of M, because ZiZ3 is certainly
shorter than Z3B ({Z1BZ3 < w/2) and so we can replace the longer edge with the
shorter one. Thus X B € M implies XA € M.

2.1.4. Case B: None of the edges XA, XB belongs to M.

We showed that the triangle X AB does not contain any point of S. This implies
that if an edge EF € ML E # A E # B, F # A F # B crosses one of edges X A,
X B, then e also crosses the second one.

Let X' be the intersection point of XY and AB. Let us consider all edges
crossing line segment XX’ — let C denote the set after adding edge AB. The
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edges define a set of points {A41,..., A} above XX and {By, ..., B,} under X X'

(points in the sets are ordered by their a-coordinate). Basic observations:

a) Each of the points coincides with at least two edges of C.

b) e € C = |e| > |AB| (we assume minimality of AB among edges crossing
XY).

c) If A;B; € C, then |XA,| < |A;Bj| and |XB;| < |4;B;|. Furthermore.,
|XA| < |AB| and | X B| < |AB] (see Preliminaries).

d) If an edge ¢ € M is inside the (simple) polygon XA, ... A,ABB,, ... By,
then e € C.

e) Edges which form the polygon mentioned in previous point are in M (oth-
erwise there would exist an edge e crossing line segment X X', e ¢ C).

First we shall consider situation when all edges XA, XAq,...,XA,, XB,
XBy,...,XB, lie inside the polygon XA,...A,ABB, ...B; (in other words,
all points A, Ay,..., Ay, B, By,..., B, are visible from X). Let us replace all
triangulation edges from inside the polygon with the following ones: XA, X B,
XAy,...,XA,, XBy,...,XB,. From the observations a) and ¢) follows that the
length of the new triangulation will be less than the original one. This is a contra-
diction with minimality of ML

In the second situation at least one of points A, Aq,..., A, B, By,...,B, is
not visible from X. Let us assume that a point Z € {4, Ay,..., A} is the case.
To prove the contradiction with minimality of M we shall use a reasoning similar
to the one from the section “3.Case A” — there must exist a convex polygon de-
fined by three points of {4, Ay,..., A,,} and one point of {B, By,...,B,}. Within
this polygon we can repeat the reasoning used in the previous section to obtain a
contradiction with minimality of ML

|

2.2. Edges of the 1.17682 (-skeleton.
The 1.17682 [3-skeleton is defined as set of all edges XY satisfying the following

condition:

Let Zi,Zy be intersections of two circles with centers on line XY and
radii § = 1.17682 - | XY'|/2, the circles passing through the points X, Y
respectively. If the closed area defined by the circles does not contain
any point of &, then the edge XY belongs to the 1.17682 3-skeleton.

In [ChXu] was proved that all edges of the 1.17682 3-skeleton form belong to the
MWT. It is obvious that the 1.17682 (-skeleton can be computed in polynomial
time.

2.3. Edges of the LMT-skeleton.
The LMT-skeleton and its modifications are discussed in [DiMo]. It is based on
the idea of “locally minimum triangulation”:

Let XY be an edge. If in every empty quadrilateral AX BY, where A
lies to the left and B to the right of the line XY, holds |AB| > |XY|,
then the edge XY belongs to the LMT-skeleton.

In [DiMo] was proved that the LMT-skeleton forms a subgraph of the MWT. An
obvious upper bound for the LMT-skeleton computation is O(n?).
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3. WEAKNESS OF THE LMT-SKELETON

The LMT-skeleton proved to produce almost complete subgraphs of the MWT on
a large number of randomly generated point sets. Time complexity of the algorithm
shows that the MWT can be constructed using the LMT-skeleton in time O(n*+2),
where k is number of unconnected components of the LMT-skeleton. Experiments
with the LMT-skeleton on random point sets gave quite an optimistic result [DiMo]:

“Though we suspect an example exists, we have not yet found a point
set where the LMT-skeleton contains more than a single unconnected
region interior to a simple polygon. Thus even when the LMT-skeleton
is not completely connected it should still allow the complete MWT to
be constructed quickly.

An open problem: What is the worst case disconnectivity of the LMT-
skeleton?”

We shall show now that the answers to the questions above are pessimistic — for
a given n there always exists a special arrangement of n points such that number
of disconnectivity components of LMT-skeleton is ©(n). This implies that the time
complexity of the proposed algorithm is asymptotically exponential in the worst

case.

Observation. For an input point set consisting of nine points (or more) equally
distributed on a circle and one point in the center of the circle the LMT skeleton
will not connect the central point.

Let us construct a special arrangement of n points (n being a large number)
for which the number of disconnectivity components is O(n). Let us begin with
[n/10] circles with the same radii r, the distance of their centers being greater than
2r for any pair of the circles. We equally distribute 10 points on each circle as is
described in the observation (one circle may differ in the number of points). As
the LMT-skeleton will not connect the central points in the circles, the number of
circles is less than or equal to the number of disconnectivity components — and
this number is O(n).

4. UNSTABILITY OF MWT

4.1. Motivation.

In section 2.1. we proved that if two points of the input set are the nearest
neighours of each other, then the edge connecting them must belong to the MWT.
A question arises:

If we weaken assumptions of the theorem and allow a third point Z in
the “forbidden” area of points X,Y , assuming edges ZX,ZY to be in
MWT, will the edge XY still always be in MW'T?

In the case of positive answer, we would be able to detect additional MWT edges
in polynomial time. However, in the next section we shall show that the answer is
negative.



Let us consider an input point set like this: Let edges ZX, ZY be in MW'T, point
Z lie on the axis of the line segment XY, Z being “very close” to XY. Let two
points A and B lie on the other side of XY “very close” to each other and “very
close” to the axis of XY, and so that polygon ABY ZX is convex. Let us denote
a=|XY|/2,b=|XA|=|XB|=|YA| = |YB]| (see Fig. 1). The MWT can appear
in two forms, depending on the proportion b/a:
Case 1: convex hull4+the edge XY and one of AX, AY, BX, BY;
Case 2: convex hull+both edges AZ, BZ.

The two situations are distinguished by unequalities b + 2a < 2v/b? — a? (in
Case 1), and b+ 2a > 2v/b? — a? (in Case 2). After some simplifications we get
that b/a > (24 v/28)/3 in Case 1, and b/a < (2 + v/28)/3 in Case 2.

Resume: for the special input point set described above we found a relationship
between distances a and b, saying that the edge XY is in MWT iff the points
A, B fulfil the required minimum distance from the points X and Y. The required
minimum distance (2 4+ v/28)/3 is constant for given points X,Y, Z for the input
point set described above. In the next section we show that there is no constant
lower bound for the required minimum distance in general case (for given points

XY 7).

4.2. A slight change of input point set causes an arbitrarily great weight
change of MWT.

Let us make similar assumptions about points X, Y., Z as we did in the previous
section, but consider K points Ay, ..., Ax instead of A, B (points Ay, ..., Ax have
similar properties as A, B from the previous section and lie on the same line parallel
to XY'). The case when the edge XY belongs to MWT is characterized by the
equation 2a + (K — 1)b > K+/b? — a?. After some simplifications we get b/a >
14 AVERES - For U — oo the unequality can be rewritten as b/a > /K /2.
Thus we see that we can always raise the required minimum distance of the points
Aq,..., Ag by adding another point Ax 4 to the input point set.

Furthermore, note that for a large K we can place the points Ay,..., Ax on
a line parallel to XY so that if we shift them a little bit closer to XY, we get
the other form of MWT. Let us shape the points A; to the form of “( J” (please

imagine a bottom part of a w-i-d-e parabola, so that all the points A; can “see”

both points X, Y') above the edge XY and shift them the bit closer to XY (we get
MWT-concave). All the points A; will connect to the point Z. Now shape them
to the form of “(\” (again, imagine an upper part of a w-i-d-e parabola) and shift
them the bit further from XY (we get MWT-convex). The weight of MWT-convex

is much more less than the weight of MWT-concave (see Fig. 2 and Fig. 3). The
weight(MWT-concave)
weight(MWT-convex)

we can make the weight change arbitrarily great.

proportionality factor grows with the number of points A;, thus
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Fig. 2: MWT-concave

Fig. 3: MWT-convex



REFERENCES

[GaJo] M.R.Garey, D.S.Johnson, Computers and Intractability, Freeman, San Francisco,
1979.

[P1Ho] D.A Plaisted, J.Hong, A heuristic triangulation algorithm, J.Algorithms (1987), no. 8,
405—-437.

[BFMNPS] M.Bartanus, A.Ferko, R.Mag, L.Niepel, T.Plachetka, E.Sikudova, New heuristics for
minimum weight triangulation, Winter School on Computer Graphics (The Fourth
International Conference in Central Europe on Computer Graphics and Visualization),
vol. 1, 1996, pp. 31-40.

[DiMo] Dickerson, Montague, A (usually?) connected subgraph of the minimum weight tri-
angulation (1996) (to appear in Proceedings of SoCG).

[YaXuYo] B.T.Yang, Y.F.Xu, Z.Y.You, A chain decomposition algorithm for the proof of a
property on minimum weight triangulations, Proceedings of the International Sym-
posium on Algorithms and Computation, Lecture Notes in Computer Science 834,
Springer-Verlag, 1994.

[Ke] J.M.Keil, Computing a subgraph of the minimum weight triangulation, Computational
Geometry: Theory and Applications (1994), no. 4, 13-26.

[ChXu] S.Cheng, Y.Xu, Approaching the largest 3-skeleton withing the minimum weight tri-
angulation (1995), (manuscript).

[G1] P.D.Gilbert, New results in planar triangulations, Report R-850, University of Illinois
Coordinated Science Lab., 1979.

DEPARTMENT OF COMPUTER GRAPHICS AND IMAGE PROCESSING, COMENIUS UNIVERSITY,
MLYNSKA DOLINA, 84215 BRATISLAVA, SLOVAK REPUBLIC
E-mail: ferko@fmph.uniba.sk, niepel@fmph.uniba.sk, plachetka@fmph.uniba.sk



