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ABSTRACT

This paper is about design and implementation of POV || Ray—an efficient parallel 3D rendering engine
based on the popular (sequential) POV-Ray raytracer. Although distributed freely, thanks to its powerful
scene description language, special effects capabilities, portability and output quality, POV-Ray can
compete with commercial raytracers. POV || Ray provides the same functionality as its sequential sibling,
but runs approximately N times faster on a parallel machine with N processors (our experiments with
up to 40 processors show almost a linear speedup). We used a loadbalanced screen subdivision technique
to increase performance. Furthermore, we added two-pass solution and animation support to POV || Ray.
POVH Ray uses GOLEM communication library based on PVM. GOLEM, as well as POVH Ray and
a parallel online radiosity engine with two-pass support, were developed at University of Paderborn

(Germany) within project PARAGRAPH.

Keywords: raytracing, parallel, loadbalancing

1 INTRODUCTION

Although many speedup techniques are known today,
raytracing still 18 a time consuming process. Paral-
lelization is an attempt to make it faster. Former ap-
proaches to raytracing parallelization can be roughly
divided into two groups [GREENS9]: techniques us-
ing screen space subdivision (each processor holds en-
tire scene in its memory and computes a subset of
screen pixels in parallel with other processors); and
techniques using 3D object space subdivision (each
processor holds only a part of the scene in its local
memory, exchanging either rays or objects with its
neighbours when needed).

The 3D space subdivision techniques ([DIPPE84],
[SCHERSS8], [GREENR8Y], [PTTOT93]) have been ne-
cessity in former times. The main reason was that the
entire scene did not fit into memory of each processor
in a distributed memory machine. Another reasons
were ray coherence exploitation and a good loadbal-
ancing behaviour reported by using these techniques.

Screen space subdivision techniques ([PRIOL89].
[WOODWARKS84]) seem to be more natural (com-
putations on screen pixels are independent, thus no
communication between processors is needed), but

have two drawbacks. Firstly, memory is not effi-
ciently used (the entire scene is duplicated in pro-
cessor memories if using a distributed memory ma-
chine), thus an unnecessary limitation is imposed to
the maximum scene size. Secondly, 1t is not so ob-
vious how to achieve a reasonable loadbalancing, be-
cause computational time on different pixels is un-
predictable. Despite of these arguments, there is a
very good software engineering reason why to use
screen space subdivision—it is much easier to paral-
lelize in this way an already existing raytracing pro-
gram, reusing known sequential raytracing speedup
techniques, rather than to develop and tune a more
complicated one. Next section and our efficiency tests
show that the loadbalancing problem is not as critical
as 1t seems to be.

In case of distributed memory architectures, the need
for storing the entire scene in memory of each pro-
cessor leads to an unpleasant limitation to the maxi-
mum scene size. However, this problem can be solved
by maintaining a distributed object database. One
processor (or several processors) with large memory
stores all objects in the scene and acts as a database
server. The other processors, doing the raytracing
calculations have a limited cache memory. If a pro-
cessor needs an object which is not currently in its



cache, it asks a database server to send it. The pro-
cessor requesting an object must make sure that there
is enough memory for storing the object—if the cache
is already full, a victim (or victims) must be found
among the objects in the cache to make enough space
for the requested object. The caching strategy tries to
predict which objects will be needed in a near future,
in order to minimize the number of requests.

2 PARALLELIZATION

One of the aims of project PARAGRAPH was imple-
mentation of a parallel rendering engine combining
raytracing and radiosity. For the reasons described
above we decided to parallelize an existing sequen-
tial state-of-the-art raytracer, using screen subdivi-
sion technique. POV-Ray proved to be a good choice.

The main POV || Ray design goals were:

e Scalability and efficiency (measured by speedup).
e Portability.
e Preserving POV-Ray features.

e Two-pass solution support.

A process farm is suitable for screen subdivision (see
Fig.1). There is one master process, responsible for
subdividing the 2D screen into nonoverlapping parts,
assigning these parts to worker processes and for col-
lecting results (pixel colours) from them. The worker
processes are initially waiting until they receive a job
from master (a subset of pixels to be computed). Af-
ter receiving a job, a worker performs raytracing cal-
culations on the pixels, sends the result back to the
master process and waits for another job.
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Figure 1: A process farm

This algorithm is quite straightforward. The crucial
question is how to distribute the screen among work-
ers.

2.1 Loadbalancing optimization

The simplest way how the master process can divide
the screen among N workers is to cut it into NV slices
of equal sizes (Fig.2).

Figure 2: Simple work distribution for 8 workers

The disadvantage of this approach is possibly unequal
loadbalancing. Different slices can take different time
to compute. Here 1s an example of a bad case: Let
slices 1-7 take 5 minutes to compute, whereas slice
8 takes 13 minutes. After 5 minutes of computation,
workers 1-7 would be idle, while worker 8 would re-
main running for the next 8 minutes. During these
8 minutes only % of the computational power would
be used, and the total computation time would be
13 minutes. But the total time can be reduced to 6
minutes—by keeping all workers busy until the end
of computation.

Generally we cannot predict in advance which parts
of the screen are going to be computationally expen-
sive. This means that there 1s no optimal static load-
balancing strategy (“static” means that all pixels are
distributed among workers before the computation
and this distribution is never changed).

Remark. In the following text we consider
distributed memory and non-work-stealing model.
(Once a worker is assigned a job, it cannot be inter-
rupted until it finishes the computation of that job.)
For interprocess communication we assume an asyn-
chronous message passing model. .

Getting a perfect loadbalancing is very easy. The
screen is subdivided into atomic parts (e.g. screen
pixels, rows, columns) as shows Fig.3.

Indeed, the imbalance at the end of computation
never exceeds the computational time of an atomic
job. However, such a solution 1s inacceptable because
of a high communication cost. This strategy creates
too many small jobs, thus too many messages are ex-
changed between master and workers. The commu-
nication overhead can become even greater than the
raytracing time.

A good loadbalancing algorithm should therefore ful-
fill two contradictory requirements: 1.minimum com-
munication overhead; 2.minimum imbalance at the
end of computation. A solution would be to assign
large jobs to workers first, then smaller, yet smaller,
..., finishing with atomic jobs. The key is to specify
what “large” and “smaller” mean.



Figure 3: Another simple work distribution (atomic
parts are screen columns in this case)

Let us assume that for any two jobs of equal sizes

joby computational time

jobs computational time —

where 7" > 1.0 1s a constant known in advance. Given
the constant 7', the following algorithm ensures op-
timal loadbalancing, significantly reducing communi-
cation overhead (N denotes number of workers):

Work Load=number of atomic parts;
Ratio=1/(1+T(N —1));
JobSize = (WorkLoad - Ratio);
...assign a job of size JobSize to each worker;
WorkLoad = WorkLoad — N - JobSize,
while (WorkLoad > 0)
{
...wait until an idle worker asks for a job;
if (JobSize > atomic job size)

{
JobSize = WorkLoad - Ratio;,

}
...assign the worker a job of size JobSize;

WorkLoad = WorkLoad — JobSize;

The algorithm is pessimistic. It assigns jobs just as
large as possible, still ensuring no imbalance at every
moment. Fig.4 illustrates how it works.

Remark. Note that the two simple job distribution
strategies mentioned before are special cases of this
algorithm. For 7" = 1.0 the screen is subdivided into
N equal parts. For T' — oo we get the second ex-
treme, when the screen is subdivided into “infinitely”
many “infinitely” small jobs (atomic jobs). .

Remark. As we found later, the same idea has been
independently used in [PANDZ95] for shared memory
model. .

Remark. Unfortunately, we usually do not know the
constant T beforehand. 7" must be set empirically and
for a specially constructed scene the loadbalancing
might not be equal as promised. A value of T'= 2.5

Figure 4: Illustration of assigning jobs in the perfect
loadbalancing algorithm for 7' = 3.0, N = 2. Num-
bered parts are the jobs assigned to workers, in that
order. (Jobs 1 and 2 are assigned before the while
loop.)

is suggested in [PANDZ95]. Our experiments (see
section 6) justify this setting.

Moreover, the size of an atomic job must be chosen
so that the time needed to transfer a message from
worker to master plus the time needed for master to
process the result does not exceed the computation
time of an atomic job. The proper atomic job size
may be dynamically computed by measuring the com-
munication time between master and workers. How-
ever, in our experiments, an atomic job was always
set to a single screen column—too large for ROSEN-
THALERHOF scene, and too small for SKYVASE
scene (see section 6). This setting negatively influ-
enced our speedup measurements for the mentioned
scenes. .

2.2 Minimizing idle time in worker
processes

If the number of workers is large and computation of
one job does not take much time, then the master pro-
cess becomes a bottleneck of the application. There
can be several idle workers waiting for a job while
master is still processing output of another worker.

Another potential source of similar problems may
be slow communication between master and work-
ers. Master and workers need not necessarily run on
the same machine. Typically, the master process runs
on a workstation with graphical capabalities, whereas
workers run on a parallel computer. The communi-
cation within the parallel machine can be very fast,
but the link between the workstation and the parallel
machine can be slow. When a worker finishes com-
putation of a job, it sends result to master—and re-
mains idle while the result goes through the slow link
to master, while master processes the message, and
while another job specification is sent back through
the slow link.



To minimize the idle time in workers, an additional
process must have been inserted between master and
workers. This process, called loadbalancer, takes
over the responsibility of distributing jobs to work-
ers. Loadbalancer is almost completely independent
on master—it only needs to know the image size in
pixels—so it can be placed “close to workers”, on one
of the processors in the parallel machine. (Of course,
loadbalancer runs the loadbalancing algorithm de-
scribed above.) When a worker finishes its computa-
tion of a job, it sends a short notification message to
loadbalancer, then sends the result to master. Mean-
while loadbalancer receives the notification message
and sends the worker a new job specification via the
fast link.

2.3 Speeding up scene parsing

When working with large scenes, the preprocessing
time needed to load the scene from disk to proces-
sors’ memories must also be considered. This prob-
lem becomes critical when the worker processes run
on a parallel disk-less machine connected to a disk
server with a single communication link. If there are,
say, 40 workers, each one reading 10MB scene from
the disk, then 40x10MB=400MB must be sent over
the link.

The solution is to read the scene from the disk only
once, then broadcast it among workers. Broadcasting
even a large message is usually much faster than disk
operations involving the same volume of data.

Of course, reading the entire file by one process and
subsequent broadcasting the huge message would not
bring any improvement. A kind of buffering must
be used. The input scene file is read by one process
in small chunks. After reading a chunk, the process
broadcasts the chunk to all workers, so that they can
parse the chunk while another chunk is being read
from the disk. Optimal chunk size is strongly system
dependent and must be found empirically. (A chunk
size of 64kB was a good choice for the environment
we used for our experiments, see section 6.)

3 TWO-PASS SOLUTION

Original POV-Ray (since version 3.0) offers so called
“radiosity” mode to approximate the ambient light
by distributed raytracing. We shall describe a simple
two-pass mechanism which POV || Ray uses instead of
distributed raytracing, allowing to combine raytrac-
ing with an already precomputed radiosity solution.

(A similar method is suggested in [SHIRL90].)

For two-pass solution purposes we assume that the
entire scene is modelled by triangles only. In the first
pass the radiosity solution is computed. The output
from the first pass are colour intensities stored in the

vertices of all triangles. However, the radiosity al-
gorithm is slightly modified—it subtracts the energy
transfered to a triangle when shooting light source
patches. Without this direct lighting, the radiosity
output contains the indirect (ambient) lighting of all
objects in the scene.

After the first pass, the scene 1is exported in
POV || Ray scene description language (POV || Ray
does not implement the radiosity pass). We extended
the POV-Ray language with two new object types:
radiosity_triangle and radiosity_smooth_triangle.
There 1s only a slight difference between these types
and already existing triangles and smooth_triangles.
The radiosity triangles have the indirect lighting from
the radiosity pass stored in their vertices.

The second pass is then running POV || Ray with a
special flag saying that it should handle the radiosity
triangles a special way. When applying the lighting
model to a point on a radiosity triangle, the constant
ambient term is replaced by an interpolation of the
triangle’s vertex colours gathered from the radiosity
pass.

4 IMPLEMENTATION

POV || Ray uses GOLEM communication library.
GOLEM is based on PVM, but provides a higher
programming interface than PVM. A GOLEM ap-
plication consists of two parts, called frontend and
backend. Frontend typically runs on a graphics work-
station, providing user interface. Backend typically
runs on a parallel machine (this means any machine
running PVM; frontend and backend may also run
on a single workstation) and performs the compu-
tationally expensive calculations. All processes can
communicate with each other. Two special GOLEM
processes connect frontend and backend: system in-
terface process (running on frontend) and controller
(running on backend). When, say, a frontend process
sends a message to a backend process, the message is
sent. over a socket to controller which translates the
message into a PVM message and sends it to recip-
ient. This layer is completely transparent to an ap-
plication programmer. The application programmer
only uses high-level GOLEM communication func-
tions and does not see either PVM or the socket com-
munication used between frontend and backend. (An-
dreas Dilger [DILGER] did a similar implementation,
based on the pure PVM library.)

POV || Ray starts N instances of the worker process
plus the loadbalancer process on backend. All back-
end processes keep waiting, waiting for orders from
master. Master is started on frontend as the last
process, using the same commandline syntax and ini-
tialization files as the sequential POV-Ray program.
After parsing its commandline and initialization files



master controls the computation. The computation
consists of the following stages:

e Initialization.
e Parsing the scene file.
e Raytracing.

e Termination.

Remark. Not all of the phases are fail-safe, e.g.
parsing an incorrect scene file leads to abnormal ter-
mination. In such a case POV || Ray ensures a correct
termination of the whole application (terminating all
application processes). .

Both frontend and backend, as well as GOLEM li-
brary, are well portable to Unix-like systems run-
ning PVM. Backend was successfully tested on SUN
workstation cluster (Solaris 2.5), Parsytec GCPP
(parallel computer based on T805 transputers) and
Parsytec CC-48nK (parallel computer based on Mo-
torola Power PC processors). Frontend was success-
fully tested on SUN (Solaris 2.5), SGI (IRIX) and
Parsytec CC-48 node (Motorola Power PC running
ATX).

5 ANIMATION SUPPORT

Although time needed for parsing the scene file can be
reduced as described in the section 2, this stage can
still take lot of time when working with large scenes
(especially the scenes preprocessed by radiosity tend
to be large). When creating a two-pass animation in
which only the camera properties change, it is highly
desirable to render many frames without reparsing
the scene after each frame (the way how the sequen-
tial POV-Ray does it). We introduced a simple and
elegant solution to this problem. A special parame-
ter 1s added to the master’s commandline, telling the
master to keep all backend processes running after
rendering one frame (workers keep the scene in their
memories). The master process terminates, but can
reconnect to the application later. After the master
reconnects, the workers parse only a very short scene
file containing the new camera description and a new
frame is rendered.

A typical usage of this feature is an interactive camera
animation. A user “walks” through a scene precom-
puted by radiosity. The path is remembered and a
sequence of camera positions interpolating the path
is generated. This sequence can be used later for ray-
tracing the same scene from the different viewpoints,
producing a high quality two-pass animation.

6 EFFICIENCY TESTS

The following experiments illustrate the efficiency
of POV”Ray implementation. We measured

POV || Ray speedup on three scenes (BATH, ROSEN-
THALERHOF, SKYVASE). The size of all rendered
frames was 640x480 pixels. Online graphical display
was switched off. This was the backend hardware
used in our experiments:

System: CC48 (Cognitive Computing)
Manufacturer: Parsytec Ltd, Germany
Nodes: 48

Node description:

Processor: Motorola Power PC 604
Speed: 133MHz

Memory: 64MByte

MIPS: 400

MFLOPS peak: 266

Links: 1

Link speed (peak): 1 Gbit/s

Out of the 48 nodes of CC48 only 44 can be used
by an application’s backend. We used up to 40
nodes in our experiments. Furthermore, when us-
ing more than 4 processors, two backend processes
(GOLEM controller and the loadbalancing process)
were mapped onto separate processors (e.g. there
were 38 POVH Ray worker processes running when
using 40 processors).

As frontend we used SUN Sparc 10 running Solaris
2.5, 80MB of memory. During the experiments al-
most nothing else has been running on the machine.
We could not measure the network load between fron-
tend and backend, but suppose that its influence was
neglectable.

The tables below show POVH Ray performance on
three test scenes. N denotes number of worker pro-
cesses, 1" denotes the parameter of the loadbalancing
algorithm from section 2 (T=1.0 means subdividing
the screen into N parts of approximately equal sizes).
The absolute time values are given is seconds.

Scene BATH (Fig.5) contains about 50000 (non-
meshed) radiosity triangles and 16 light sources. File
size: about 10MB. Average parsing time: about 153
seconds.

Raytracing time (Speedup)

N T=1.0 T=2.0 T=3.0
1454 (1.0) | 454 (1.0) | 454 (L.0)
2 (298  (1.5) | 228 (20) | 231 (2.0)
61109 (42)]| 79 (B.7)| 79 (5.7

14| 48 (95) | 35 (13.0)| 36 (12.6)

30 24 (19.0) | 18 (252) | 18 (252

331 19 (23.9)| 16 (284)| 15 (30.3)

Scene ROSENTHALERHOF (Fig.6) contains
about 86000 triangles (about 2200 meshes) and 12
light sources. File size: about 10MB. Average pars-
ing time: about 182 seconds.



Raytracing time (Speedup)

1768 (1.0) | 1768  (1.0) | 1768  (L.0)

N T=1.0 T=2.0 T=3.0
1
2

934 (1.9) | 886 (2.0) | 886 (2.0)

6| 364 (49) | 298 (6.0) | 303 (5.8)

14 ] 174 (10.1 129 (13.7 129 (13.7

) ) )
30 | 92 (192)| 62 (285)| 62 (285)
38 | 73 (242) | 49 (36.0)| 50 (35.4)

Scene SKYVASE (Fig.7) is a very simple scene
from POV-Ray package. It contains just a few curved
objects. The file size 1s only 2kB and the file was al-
ways parsed within two seconds. We used this scene
to see how POV || Ray behaves on small scenes like
this one.

Raytracing time (Speedup)

N T=1.0 T=2.0 T=3.0
1251 (1.0) | 51 (1.0) | 251 (1.0)
5131 (1.9) | 127 (2.0) | 127 (20)
6 51 (4.9)] 43 (5.9)| 42 (6.0

4| 30 (34)] 19 (13.2)| 19 (13.2)

30| 24 (105) | 14 (18.0) | 13 (19.3)

38 | 17 (14.8) | 20 (125) | 14 (18.0)

7 CONCLUSIONS

In the paper we presented POVH Ray—an efficient
parallel raytracing engine. The parallelization prob-
lems and techniques summarized in section 2 apply
generally.

POV || Ray efficiency tests show almost a linear
speedup for up to 40 processors. For the ROSEN-
THALERHOF scene, the atomic job size setting of a
single screen column was too large and subsequent un-
even loadbalancing degraded the performance. The
reason for the abnormal speedup behaviour in case of
SKYVASE scene was caused again by an inappropri-
ate atomic job size setting—for such a simple scene
the time needed for processing incoming results in
the master process approached the computation time
of raytracing performed by workers (in this case the
atomic job size setting of a single screen column was
too small and the master process became a bottleneck
of the application). Both artefacts can be eliminated
by a dynamical setting of the atomic job size in our
loadbalancing algorithm (see the last remark in sec-
tion 2.1). According to our experiments, the setting
of constant 7' = 2.5 in the loadbalancing algorithm
suggested by [PANDZ95] seems to be a reasonable

value.

Future work can include looking for a better loadbal-
ancing strategy. The problem arising when an entire
scene does not fit into a processor’s memory can be
addressed by either looking for a better scene repre-
sentation suitable for both radiosity and raytracing,
or by investigation of efficient caching strategies for

a distributed object database combined with screen
subdivision parallel ratracing techniques.
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Figure 7: Scene SKYVASE



