
The HiQoS Rendering System

Tomas Plachetka, Olaf Schmidt, and Frank Albracht

University of Paderborn, Department of Computer Science, Fürstenallee 11,
D-33095 Paderborn, Germany

Abstract. Simulation of global illumination in 3D scenes is a compu-
tationally expensive task. One of the goals of the project HiQoS (High
Performance Multimedia Services with Quality of Service Guarantees)
was to develop and test a prototype of an e-commerce system which
simulates realistic lighting of large scenes on high performance parallel
computers. The system, although tailored to the needs of this specific
application, is very generic and exhibits metacomputing features: 1.the
access to high performance computers is fully transparent to the user;
2.the modular architecture of the system allows to dynamically add or
remove computing resources in geographically different computing cen-
ters. The prototype of the proposed system was evaluated in the in-
dustrial contexts of architectural visualization and film production. This
paper summarizes scientific and technical problems which arose during
the project as well as their solutions and engineering decisions.

1 Introduction

Photo-realistic visualization of 3D models is important in many industrial areas,
for instance in architecture, entertainment industry and film production. The
requirements to the level of realism as well as the complexity of the models
grow very fast and so do the requirements to the performance of the systems
used for the visualization. The computing power needed for the synthesis of
photo-realistic images (rendering in this paper) in a reasonable time falls into
the category of high performance computing.

Companies needing high-quality visualizations seldom have supercomputers
on their own. Such machines are either too expensive or regarded as irrelevant by
many IT managers. A rental and a temporary physical installation of additional
computers in order to meet production deadlines are accompanied by technical
problems and additional costs.

A prototype of an advanced e-commerce rendering system addressing the
above problems has been developed during the project HiQoS (High Perfor-
mance Multimedia Services with Quality of Service Guarantees) [1], [2]. This
system, HiQoS Rendering System, allows a user to submit rendering jobs via a
simple web interface. The further processing of jobs is fully automatic. The com-
plexity and the distributed nature of the system are hidden from the user. The
project HiQoS was financially supported by the German Ministry of Education
and Research (BMBF). The HiQoS Rendering project partners were: Axcent
Media AG, GPO mbH, IEZ AG, University of Paderborn and Upstart! GmbH.
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We know about several projects related to a remote global lighting simulation.
Virtual Frog [3] is one of the pioneering works which aims to support teaching of
biological principles: “. . . our goal is to provide accessibility over the Web in order
to reduce the complexity of installing, running, and managing the software.” The
interactivity played a major role in this project – the model (of a frog) resides
on a server and the server computes a desired visualization of the model (a
schematic view, a view of a scanned slice, a volume traced view, etc.) Online
Rendering of Mars [4] is technically very similar: the user chooses a perspective
and a lighting and within a few minutes gets back a rendered picture of Mars.
Closer to the HiQoS project idea is a rendering server using the (sequential)
Radiance program to compute ray traced pictures of a user’s model [5]. There also
are companies offering their computers for rendering purposes [6] – however, the
data exchange, job specification and scheduling of the rendering jobs are handled
by human operators. The HiQoS rendering project went further, offering an
automatic and parallel rendering service on demand, whereby parallel computers
in several computing centers can be combined into a single computing system.

The global illumination problem is defined in section 2. Parallelizations of
two global illumination methods, ray tracing and radiosity, is discussed in the
same section. Special attention is devoted to an efficient representation of the
diffuse global illumination resulting from the radiosity method. Two approaches
to the simplification of radiosity solutions are presented: mesh decimation and
radiosity maps. The architecture of the HiQoS Rendering System is described
in section 3. Section 4 describes an evaluation of the HiQoS Rendering System
in two industrial scenarios, in architectural visualization and in film production.
In section 5 we draw our conclusions and sketch our future research directions.

2 Simulation of Global Illumination

Photorealistic visualization of 3D models is one of the quests of computer graph-
ics. Almost all light phenomena are well explained by the quantum electrody-
namics. However, for practical purposes it is not desirable to simulate the propa-
gation of light or to model large-scale 3D models on a subatomic level. Synthesis
of photorealistic pictures is a chain of simplifications. Kajiya’s rendering equa-
tion [7] provides a framework for the simulation of global lighting on the level of
geometrical optics. The rendering equation is an integral equation describing an
energy balance in all surface points of a 3D model. With exception of extremely
simple cases this equation cannot be solved analytically. The ray tracing and
radiosity methods [8] make additional assumptions about the light-object inter-
actions in order to simplify the rendering equation.

The assumption of ray tracing is that all indirect light reflections are perfectly
specular. Ray tracing does not solve the rendering equation explicitly – it traces
photons from the camera into the 3D scene (in a backward direction), measuring
the contributions of light sources to the camera pixels along the traced paths.
Ray tracing is inherently view dependent. Its product is the picture seen by a
given camera. The illumination is not stored in the 3D model.
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Radiosity assumes that all light reflections are perfectly diffuse and that
the 3D model consists of a finite number of small elements (patches). Under
these assumptions the rendering equation can be formulated as a system of
linear equations. The system is usually very large and the computation of all
its coefficients is prohibitively expensive. Radiosity algorithms solve the system
iteratively, storing the illumination in the 3D model. The radiosity method is
view independent. A converged radiosity solution is an illuminated 3D model
which can be viewed from different perspectives without having to rerun the
lighting simulation.

Data-parallel radiosity and ray tracing algorithms have been developed and
implemented within the HiQoS project. The following sections briefly describe
the parallelization ideas. (An asynchronous distributed memory model with mes-
sage passing is assumed.)

2.1 Parallel Ray Tracing

Our ray tracing parallelization is based on a screen subdivision strategy which
exploits the independence of computations on any two pixels. Processor farming
is a natural way of the parallelization. However, there are two potential problems
with a straightforward implementation: bad load balancing (computation times
for two pixels are different) and no data-scalability (replication of the 3D model
in each processor imposes a limit to the maximum model size).

The problem of unequal processor load can be solved under an assumption
that the ratio of the computation times on any two equally large areas of the
screen can be bounded by a constant [9]. The idea is to assign large screen areas
to processors first, then smaller, ending up with single pixels (or other sufficiently
small pieces). Almost linear speedups can be measured up to 64 processors.

A distributed object database is used to avoid the necessity of storing the
whole 3D model in every processor. Large models (requiring several Gigabytes
of memory) can so be rendered on currently available parallel machines. The
only limitation to the model size is the total memory of the processors used for
the computation. Each processor holds a resident subset of all objects of the 3D
model. The remaining objects (or a part of them) are stored in a cache memory.
If a non-resident object is needed during the computation, the processor stops
the computation, sends a request to the processor holding the object and makes
space for the requested object in its cache by removing some other objects from
the cache if needed. Upon having received the requested object, the processor
resumes the computation. An LRU strategy is used for the cache management
(always the Last Recently U sed object is removed from the cache). A similar
implementation is described in [10].

2.2 Parallel Radiosity

A progressive refinement method [11] is used for the simulation of light propa-
gation. Each patch of the model is a potential light source. The unshot energy
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and the total reflected energy are stored by each patch. The original (sequen-
tial) progressive refinement method iteratively selects a patch with the most
unshot energy (a shooter) and shoots the whole unshot energy in the half-sphere
surrounding the shooting patch. The total reflected and unshot energies of all
other patches (receivers) are updated during the shooting according to their
visibility from the shooter (the receiving patches can be refined in this step to
store the gathered energy accurately enough). This process is iterated until the
total unshot energy drops down under a threshold (or some additional termi-
nation criterium is fulfilled). The computation of visibility between two patches
(a so-called form factor) is a non-trivial problem. We are currently using a ray
casting method for the form factor computation [12]. This method randomly
generates samples on the shooter and the receiver and checks how many pairs of
the shooter-receiver samples are mutually visible. The number of visible sample
pairs is used in estimation of the total mutual visibility between the two patches.

The parallel radiosity algorithm begins with a preprocessing step (a meshing
step) in which the model is discretized into patches (in our implementation the
mesh consists only of triangle and quadrangle patches). The discretized model is
partitioned into 3D subscenes which are distributed onto processors. The shoot-
ing iterations run asynchronously in all processors. Aside of the locally stored
patches, each processor maintains an incoming message queue which contains
information about shooters selected by other processors. At the beginning of
each iteration a processor looks for the shooter with the most unshot energy
among the patches in its message queue and the locally stored patches. Then
it performs either an external shooting (if a shooter from the message queue
has been selected) or an internal shooting (if a local shooter has been selected).
A shooting influences only the locally stored patches. To spread the informa-
tion about shooting iterations performed locally, the processor broadcasts the
selected shooter in the case of an internal shooting [13], [14].

Additional improvements to the parallelization described above include dy-
namic load balancing (a processor’s load can be measured by the number of yet
unshot external shooters waiting in the message queue) and two representations
of the 3D model used to speed up form factor computations [15].

2.3 Simplification of Radiosity Solutions

The diffuse illumination computed by the parallel radiosity program is stored
in the vertices of the polygon mesh (vertex radiosities). Interpolation is used to
compute the outgoing radiosities in other surface points. The original mesh gets
progressively refined during the radiosity computation (new vertices are created)
in order to store the illumination accurately enough. This refinement leads to
huge data volumes resulting from radiosity simulations (Fig. 1). Memory require-
ments of radiosity solutions cause problems by transferring the data to the user
over the Internet, by a subsequent postprocessing of the scene, by interactive
walkthroughs, by rendering final pictures, etc. The following sections describe
two methods of simplification of radiosity solutions. Both methods were imple-
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(a) (b)

Fig. 1. Refinement of a polygonal mesh: (a) original mesh; (b) refined mesh

mented (both sequential and data-parallel versions) and the later was integrated
in the HiQoS Rendering System.

Mesh Decimation. The idea of the mesh decimation method is an iterative
deletion of edges from the model using the vertex-unify operation (joining of
two adjacent vertices into one vertex). The problem of overwhelming memory
complexity also arises by acquisition of 3D models using 3D scanners and the
first existing mesh decimation methods have been developed in this application
area [16], [17]. The presence of additional radiosity information stored in the
vertices of an illuminated model influences only the choice of a metric used in
the algorithm.

Mesh decimation algorithm
INPUT: a polygon mesh M , a desired compression ratio c
WHILE (compression ratio c is not reached)

(1) In M , select edge e = [P1, P2] for removal
(2) Remove edge e by joining points P1, P2 into point P
(3) Find optimal placement for point P

OUTPUT: a simplified polygon mesh M

It is not obvious in which order the edges should be scheduled for the removal
(line 1) and how to find the optimal placement for the vertices resulting from
the vertex-unify operation (line 3). An objective metric is used to answer both
questions in a single optimization step. The metric evaluates the current quality
of the simplified mesh. The selection of the edge to be removed and the placement
of the resulting vertex are a solution to an optimization problem which minimizes
the quality reduction over all possible edge selections and all possible placements
of the resulting vertex. The choice of the metric determines the complexity of
the optimization problem (costs of evaluation of the metric alone must also be
considered) and influences the final visual quality of the simplified mesh. We
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used a quadric metric [18], [19] which takes the vertex radiosities into account
[20].

One problem of the mesh decimation method is that the visual quality of the
simplified mesh is not guaranteed. Mesh decimation can be seen as a lossy com-
pression of a model. Whereas compression ratios of up to 90% can be achieved
retaining an acceptable visual quality for some scenes, the visual error by the
same compression ratios is high for other scenes. The compression ratio can be
chosen interactively (using the operator’s visual perception as a quality measure)
but interaction makes the method unsuitable for use in an automated remote
rendering system.

Radiosity Maps. The method of radiosity maps provides a non-lossy compres-
sion of illuminated meshes using a more efficient representation of the illumina-
tion. The vertex radiosities are stored in radiosity maps (texture maps) instead
of in mesh vertices. One radiosity map is assigned to each object (an object
is a set of patches forming a logical element, e.g. chair, table, staircase, etc.)
Additionally, uv-mapping coordinates are stored in the vertices of the resulting
mesh. The entire substructuring information is removed from the mesh. Typical
compression ratios are 70%–80%. Moreover, texture mapping (see Fig. 3 (a)) is
supported by the hardware of recent graphics cards which significantly increases
framerates by interactive walkthroughs.

Computation of radiosity maps
INPUT: a mesh M with vertex radiosities
FOR (each object objk in mesh M)

FOR (each patch pi in object objk)
(1) Find optimal resolution of radiosity map for patch pi

(2) Create radiosity map pmapi for patch pi

(3) Fill radiosity map pmapi for patch pi (Fig. 2)
(4) Pack patch maps pmapi into object map omapk (Fig. 3 (b))
(5) Remove substructuring from all patches pi in object objk

(6) Assign uv-mapping coordinates to all patches pi in object objk

OUTPUT: a simplified mesh M with radiosity maps assigned to objects
(substructuring information removed)

Optimal resolution of a patch map (line 1) is the minimal resolution allowing
a non-lossy representation of the original illumination information. This resolu-
tion depends of the depth of the substructuring of a given patch (examples are
shown in Fig. 2).

An optimal packing of patch maps into an object map (line 4) is an NP-hard
problem. A heuristic is used in this step. The heuristic tries to keep the object
map as small as possible and to use the rectangular area of the object map
efficiently (Fig. 3 (b)).
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(a) (b)

Fig. 2. Optimal resolutions of radiosity maps: (a) a quadrangle patch and the corre-
sponding map; (b) a triangle patch and the corresponding map.
Original vertex radiosities are stored in the marked texels. The colours of empty texels
are interpolated from the marked ones

(a) (b)

Fig. 3. (a) Mapping of a radiosity map onto a 3D object (uv-texture mapping). The uv-
mapping coordinates are stored in the object’s vertices; (b) Packing of patch radiosity
maps into an object radiosity map. The dashed area corresponds to the total area of
the patch maps (a lower bound for the optimal object map size)

3 Architecture of the HiQoS Rendering System

The HiQoS Rendering System is a distributed system consisting of four subsys-
tems: Client, Service Broker, Scheduling Subsystem and Rendering Server. All of
these subsystems may be replicated. An exception is the Service Broker, the sys-
tem’s central entry point. The subsystems and their components communicate
via TCP/IP sockets. No shared file system is needed. A possible configuration
of the system is shown in Fig. 4. The main objectives of this architecture are:

– minimal hardware and software requirements on the user’s side (only an
Internet connection and a web browser are needed)

– transparent access to high performance computing systems (the user does
not know where the computation takes place or what computing systems are
used for computing his job)

– good resource utilization (especially by rendering walkthroughs consisting of
many frames).
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Fig. 4. An example configuration of the HiQoS Rendering System

3.1 Client

The Client subsystem is responsible for a user’s authorization by the Service
Broker, submission of a rendering job and providing input data needed by the job.
The input data generated automatically by the user’s modelling software describe
a 3D scene: its surface geometry, surface materials, light sources and cameras.
Extended VRML 2 and 3DS formats are currently supported. It is practical
to separate the camera information from the rest of the scene description (a
proprietary camera format is used which allows a definition of single cameras as
well as camera paths). The rest of the data are controlling parameters specific
to the selected illumination method. These are provided by a human operator
who fills out an HTML form when submitting a rendering job.

The 3D scene data can be large. They bypass the service broker and flow
from the Client directly to the Global Scheduler. Two transmission scenarios
were considered:

– A passive client scenario, in which the user places the exported scene data in
a public area in the Internet (e.g. the user’s web area) and tells the rendering
system where they are (URLs). This is the currently implemented scenario.
Main disadvantages of this scenario are an additional load in the system
related to the downloading the user’s data and a violation of the privacy of
the data. An advantage is a simple implementation.

– An active client scenario, in which the user (e.g. a software component inte-
grated in the user’s 3D modeller) uploads the data to the rendering system.
Advantages are a possibility of integration of accessing the remote render-
ing system directly from the user’s modeller, a possibility of maintaining an
object cache on the rendering system’s side for reducing the transmission
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costs, ensuring the privacy of the transmitted scenes, etc. A disadvantage is
that additional software components and communication protocols between
them must be implemented.

3.2 Service Broker

The Service Broker is the system’s entry point. This software component com-
municates with users (and administrators of the system), accepts new jobs, gen-
erates a unique id for each accepted job and delivers computed results to users.
The Service Broker is implemented as an Apache web server (PHP scripts are
used for implementing the communication with the Global Scheduler and for
accessing databases kept on the server).

3.3 Scheduling Subsystem

The Scheduling subsystem consists of a Global Scheduler and several Local Sched-
ulers). The former downloads the job data, converts the data, distributes jobs
(or their parts) to the network of Local Schedulers, collects the results (or partial
results) from Local Schedulers and passes the results and a status information
to the Service Broker. There is usually only one Global Scheduler running in the
entire system.

Different parallel computing systems in different computing centers can be
used in the system. There is usually one instance of the Local Scheduler running
in one computing center. The main task of the Local Scheduler is to hide the dif-
ferences between the parallel systems, providing a unique interface for allocation
and deallocation of processors, for starting a parallel application on allocated
processors, etc.

Such two-level scheduling scheme is modular and also helps to efficiently uti-
lize the computing resources by rendering of ray traced walkthrough animations.
In this case the Global Scheduler acts as a farmer distributing single frames to
several Local Schedulers. After having computed a frame, the Local Scheduler
sends the frame (a picture) to the Global Scheduler and gets in turn a new frame
to compute. Between the computations of two subsequent frames the 3D scene
persists in memories of running parallel processors on the Local Scheduler’s side.
Thus only a short description of the new camera must be retransmitted between
the schedulers with each single frame.

3.4 Rendering Server

Data-parallel ray tracing and data-parallel radiosity algorithms are currently
supported by the HiQoS Rendering System. These programs are precompiled
for the target parallel systems in computing centers. An actual implementation
of parallel global illumination algorithms is hidden in the Rendering Server.
The Rendering server provides an interface to a Local Scheduler allowing start-
ing, continuation and termination of a chosen parallel program on an allocated
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partition of a parallel system. The interface is independent of the illumination
method, even though the methods considerably differ from each other (also in
input and output parameters). A radiosity job is handled by a Local Scheduler
in the same way as a ray tracing job with one camera.

4 Evaluation of the HiQoS Rendering System

The remote rendering system has been evaluated in two industrial scenarios:
architectural visualization and film production. Although the final goal of both
scenarios is a synthesis of photorealistic pictures, the way of achieving this goal
differs. The user of the first scenario was the company GPO mbH which creates
complex CAD models using the software Speedikon (by IEZ AG) and Arcon:
Architektur Visualisierung (by mb-Software AG). The requirement to the ren-
dering system was a synthesis of high quality visualization pictures and camera
animations of the models. The results have been used for supporting the build-
ing contractors during the planning phase and for a public presentation of the
models. The parallel ray tracing offered by the HiQoS Rendering System al-
lows to significantly reduce the rendering times in comparison to a sequential
computation on a PC. The measured total overhead of the system (the effec-
tive rendering time against the time spent in downloading the models and in
scheduling) is below 10% already by small rendering jobs consisting of about 10
frames (and smaller by more complex jobs).

The user of the film production scenario has been the company Upstart!
GmbH which creates special visual effects for movies (e.g. “Operation Noah”)
and advertisements. 3D Studio Max (by Discreet) is used for the 3D modeling.
A frequent problem is a realistic illumination of building interiors which do not
really exist. A sequence of pictures is not desirable as a product of the global
illumination simulation because this would drastically reduce the flexibility by
the final composition. Rather than pictures, an explicit 3D representation of the
illuminated model is required as an intermediate result of the simulation. The
(sequential) radiosity of Lightscape (by Discreet) is used in this step of the origi-
nal production chain. The sequential radiosity computation of a complex model
can take many hours, sometimes days. Another, even more serious problem are
the run-time memory requirements of the radiosity method which sometimes
exceed the possibilities of a PC. The data-parallel radiosity integrated in the
HiQoS Rendering System leads to shorter computation times and overcomes the
memory problems by using more processors with more total memory. The radios-
ity maps described in section 2.3 are used for the compression of the resulting
data.

5 Conclusions

We described a parallel rendering system which allows computation of the global
illumination of complex 3D models sent by users via the Internet. Currently
data-parallel ray tracing and radiosity illumination methods are supported by
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(a) (b)

Fig. 5. (a) Model of the Dom in Wetzlar. Global diffuse illumination was computed
by radiosity, textures and camera effects were added in a subsequent rendering step;
(b) Ray traced model of a furnished house

the system. The system was integrated as a prototype of an e-commerce service
and successfully evaluated in two industrial scenarios. Possible extensions and
research areas include implementations of further global illumination methods, a
seamless integration of the remote rendering service with existing 3D modellers,
a support for dynamical scenes and a better resource management.
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