
Unifying Framework for Message Passing�

Tomas Plachetka

Comenius University, Bratislava, Slovakia

Abstract. Theoretical models are difficult to apply for the analysis of
practical message passing systems used today. We propose a model which
can be used for such an analysis. Our framework for message passing is
in many ways similar to the framework for transactional database sys-
tems. The abstract message passing system is defined in our framework
independently of hardware, operating system and means of communi-
cation. The interface between the application and the message passing
system consists of four basic abstract message passing operations. The
application can be written in any programming language, provided that
the application’s communication primitives can be translated into se-
mantically equivalent sequences of the basic message passing operations.
We prove that a restricted version of our model is as powerful as the un-
bounded asynchronous channel model. We also prove that MPI, the Mes-
sage Passing Interface, is in some sense weaker than our restricted model
and therefore also than the unbounded asynchronous channel model.

1 Introduction

The reason for the introduction of a unifying framework is that we know of no
theoretical message passing model which can be directly mapped onto contem-
porary practical systems. For instance, the abstract channel model [1], [7] has
been used in computer languages and software libraries which support parallel
computation, e.g. [9], [4], [7]. Nevertheless, the mapping of the abstract channel
model onto a computer network is not apparent for the following reason. A chan-
nel is an unbounded first-in-first-out data structure which stores messages sent
to the channel by a sender process; a receiver process removes the messages from
the channel, or blocks if the channel is empty. The wires in computer networks
have no capacity—either the receiver or the sender processes can store messages,
but not the wire between them. Therefore channels cannot be directly mapped
onto wires and vice versa. We propose a model which uses neither channels nor
wires. It uses an abstraction of communication which can be efficiently mapped
onto different communication mechanisms provided by contemporary networking
and shared-memory systems. Mutual simulations of various abstract models are
summarised in the invariance thesis: “‘Reasonable’ machines can simulate each
other with a polynomially bounded overhead in time and a constant overhead in
space.” [12]. We will show that our model is ‘reasonable’ in this sense.

� This work was partially supported by the grant APVT-20-018902.

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 451–460, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

452 T. Plachetka

Our framework fits into the framework for transactional database systems
which is well-accepted among academic researchers and implementors of the sys-
tems [3], [2], [5]. The latter defines a clean interface between a database transac-
tion and a database system. This interface consists of only four basic operations
which operate on database records: READ, WRITE, INSERT and DELETE
(the last two operations are often omitted in database textbooks which silently
assume that the database is non-empty and its cardinality does not change).
The semantics of these basic operations is defined independently of the actual
database programming language (e.g. SQL). It is only required that the ap-
plication’s language primitives can be automatically translated into equivalent
sequences of the basic operations. This allows for the programming of database
transactions without any knowledge as to how the four basic operations are
implemented, independently of whether the database system is centralised or
distributed and independently of the hardware or the operating system used to
run the database system. This also gives rise to the development of important
abstract theories such as serialisability and recovery which help the implementors
of database systems to optimise their systems by reordering the basic operations
in the system, while adhering to the semantics of the basic operations. Alto-
gether, the framework for transactional database systems is a standard with a
solid scientific background which helps to make complex database systems robust
and reliable. In our opinion, this all holds for our message passing framework—
only the set of the basic operations is different. The basic database operations
work with database records, whereas the basic message passing operations work
with messages.

This paper is organised as follows. Section 2 describes the components of our
framework and formally defines its main component, the message passing sys-
tem. This definition induces the semantics of basic message passing operations.
We prove in Section 3 that a restricted version of our model can simulate the
unbounded asynchronous channel model and vice versa within the bounds of
the invariance thesis. This means that our restricted model is as powerful as
other abstract models. We then prove that MPI, the Message Passing Inter-
face [11], [10] cannot simulate our restricted model within the bounds of the
invariance thesis and is therefore weaker than the asynchronous channel model.
The same holds for other practical systems—we chose MPI as it is becoming
a de facto industrial standard for programming parallel applications. Section 4
concludes the paper.

2 Components of the Message Passing Framework

This section describes the roles of the components used in our framework.Fig. 1 de-
picts the relationships between the components. Process communicates with other
processes only by submitting basicmessage passing operations to themessage pass-
ing system. (We will assume throughout this paper that the set of processes does
not change with time; we only make this restriction for the sake of simplicity.) A
process can be a process in the POSIX sense but our framework does not require

Unifying Framework for Message Passing 453

Process

Language binding

Basic message passing operations
CREATE, DESTROY, RECV, SEND

Architecture binding

Message passing system

Transaction

Language binding

Basic database operations
INSERT, DELETE, READ, WRITE

Architecture binding

Database system

Fig. 1. Left: Components of the message passing framework; Right: Components of
the database framework

that. The system regards a process as a single entity with a unique identifier from
which it reads a stream of basic message passing operations. A process corresponds
to a transaction in the database framework. Language binding translates commu-
nication primitives used in processes (e.g. a broadcasting primitive, a barrier prim-
itive etc.) into semantically equivalent sequences of basic message passing opera-
tions. The use of synchronous and asynchronous communication primitives in pro-
cesses does not influence the semantics of basic message passing operations. The
interface between the processes and the message passing system consists of four
types of basic message passing operations which work with messages: CREATE,
DESTROY, RECV, SEND. The semantics of the basic message passing operations
is induced by the definition of the message passing system. The representation and
contents of messages is arbitrary and does not influence the semantics of the basic
operations. Architecture binding maps the semantics of the basic message passing
operations onto a specific architecture of the message passing system. This map-
ping may for example include routing algorithms for distributed architectureswith
different network topologies, algorithms which guarantee faults tolerance; etc. Ar-
chitecture binding hides similar mechanisms from processes and guarantees that
the semantics of the basic operations does not depend on the actual implementa-
tion of the system. Message passing system is an abstract component which reads
basic message passing operations and executes them as it is defined in the rest of
this section.

Definition 1 (Submission of a basic message passing operation). Sub-
mission of a basic operation denotes the act of passing the operation from a
process (or the language binding layer) to the message passing system.

Definition 2 (Representation of basic message passing operations).
All basic message passing operations are tuples [op, x, Y, m, f, s, t], where op ∈
{CREATE, DESTROY, SEND, RECV}; x is the identifier of the process which
submits the operation; Y is a set of process identifiers; m is a message; f is
a boolean function defined on messages (a filter); s is either a reference to

454 T. Plachetka

a semaphore object which can be accessed by the message passing system, or
NULL; t is the time stamp of the submission of the operation (i.e. the time
when the operation has been read by the message passing system).

Definition 3 (Scope of a process). The scope of a process is a memory
space where messages relating to the process are stored. A message can only be
accessed (i.e. read from, written into, shrunk or expanded) by the process in the
scope of which the message is stored. A process can create and destroy messages
only by submitting CREATE and DESTROY operations. The system creates,
destroys and accesses messages in scopes of processes only as it is defined in this
section. In addition, the system stores operations which it has read in the scope
of the process which submitted the operation. SC(x) will denote the scope of the
process x and SC(∗) will denote the union of the scopes of all the processes.

To keep things simple, we will deliberately mix messages with pointers to mes-
sages in the field m. It is obvious where in the text m denotes a message and
where it denotes a reference to a message.

Definition 4 (Processing of submitted operations). The system may at
any one time either read one operation or execute one operation. The system only
reads those operations which have been submitted. Every submitted operation is
only read once by the system. When the system reads an operation, then it updates
the operation’s time stamp and stores the operation in the scope of the process
which submitted the operation. At any time t, the system can only execute an
operation which is stored in SC(∗) at the time t. The system may postpone the
execution of a submitted operation (i.e. operations are not necessarily executed
by the system in the order in which they are submitted).

Definition 5 (Matching operations). We will say that two basic message
passing operations
BO1 = [op1, x1, Y1, m1, f1, s1, t1], BO2 = [op2, x2, Y2, m2, f2, s2, t2], (or BO2 =
[op1, x1, Y1, m1, f1, s1, t1], BO1 = [op2, x2, Y2, m2, f2, s2, t2], respectively) are
a matching pair (we will also say that BO1 is an operation matching the opera-
tion BO2 and vice versa) iff

(op1 = SEND ∧ op2 = RECV ∧ x1 ∈ Y2 ∧ x2 ∈ Y1 ∧ f2(m1)∧

(∀BO′
1 = [op′1, x

′
1, Y

′
1 , m′

1, f
′
1, s

′
1, t

′
1] ∈ SC(∗) : (BO′

1 ≡ BO1∨
op′1 �= SEND ∨ x′

1 /∈ Y2 ∨ x2 /∈ Y ′
1 ∨ ¬f2(m′

1) ∨ t′1 ≥ t1))∧
(∀BO′

2 = [op′2, x
′
2, Y

′
2 , m′

2, f
′
2, s

′
2, t

′
2] ∈ SC(∗) : (BO′

2 ≡ BO2∨
op′2 �= RECV ∨ x1 /∈ Y ′

2 ∨ x′
2 /∈ Y1 ∨ ¬f ′

2(m1) ∨ t′2 ≥ t2)))

Informally, a send operation BO1 = [SEND, x1, Y1, m1, f1, s1, t1] matches a re-
ceive operation BO2 = [RECV, x2, Y2, m2, f2, s2, t2] iff the set of recipients Y1
contains x2, the set of senders Y2 contains x1, the filtering function f2 accepts the
message m1 and neither BO1 nor BO2 can be replaced with an older operation
so that all the previous properties hold.

Unifying Framework for Message Passing 455

The definition of matching operations can be weakened if we do not require
the messages sent from a process to another process to be received in the same
order by the latter process. In such a case, the time-stamps are ignored and the
predicate in the definition 5 becomes

(op1 = SEND ∧ op2 = RECV ∧ x1 ∈ Y2 ∧ x2 ∈ Y1 ∧ f2(m1))

We will use the definition with message ordering (i.e. Definition 5) in the sequel.

Definition 6 (Execution of CREATE operations). The execution of an ope-
ration [CREATE, x, Y, m, f, s, t] consists of the following actions performed in an
atomic step:

1. The system creates a new message m in SC(x).
2. If s �= NULL then the system performs semaphore signal(s).
3. The system removes this operation from SC(x).

Definition 7 (Execution of DESTROY operations). The execution of an
operation [DESTROY, x, Y, m, f, s, t]. consists of the following actions performed
in an atomic step:

1. The system removes m from SC(x).
2. If s �= NULL then the system performs semaphore signal(s).
3. The system removes this operation from SC(x).

Definition 8 (Execution of RECV and SEND operations). The system
may execute an operation BR = [RECV, x, Y, m, f, s, t] at time t only if a match-
ing operation BS = [SEND, x′, Y ′, m′, f ′, s′, t′] exists in SC(∗) at the time t. If
the system decides to execute BR then it must also execute the matching BS in
the same atomic step which consists of the following actions:

1. The system creates a new message m in SC(x).
2. The system copies the contents of the message m′ into the contents of the

message m.
3. The system removes the message m′ from SC(x′).
4. If s �= NULL then the system performs semaphore signal(s).
5. If s′ �= NULL then the system performs semaphore signal(s′).
6. The system removes BS from SC(x′).
7. The system removes BR from SC(x).

Definition 9 (Progress of processing). The system will eventually read ev-
ery submitted operation and it will eventually execute all CREATE and
DESTROY operations which have been read. Moreover, if a matching opera-
tion pair exists in SC(∗) at any time t then the system will eventually execute
at least one of the operations of that matching pair.

The last part of Definition 9 is expressed cautiously in order to support alterna-
tive definitions of matching operations. For example, replace Definition 5 with
the definition which uses no time-stamps and consider the following scenario.
A pair of matching operations BS and BR exists in SC(∗) at time t. Before
either of these operations is executed, another send operation BS′ which also
matches BR, is stored into SC(∗). Then the “at least one” part of Definition 9
allows the system to execute either the pair BR, BS or the pair BR, BS′.

456 T. Plachetka

3 Computational Power of Models

We will say that a program which uses primitive statements of a model A is
correct iff all possible executions of the program with the same input yield the
same output. We will say that a model B can simulate a model A iff an arbitrary
correct program which uses primitive statements of the model A can be written
as a functionally equivalent program which uses primitive statements of the
model B. The functional equivalence means that for any input, B computes the
same output as A; and B terminates iff A terminates (a program terminates
iff all its processes terminate). We will only consider imperative programs with
a single thread of control in every process and we will use the C-like notation to
write the programs. We will say that two models are of the same computational
power iff they can simulate each other within the bounds of the invariance thesis
from Section 1. If a model B can simulate a model A within these bounds but
not the other way around then we will say that B is computationally stronger
than A (or that A is computationally weaker than B).

3.1 Asynchronous Unbounded Channel Model

We will shortly describe the asynchronous unbounded channel model (a more
formal definition can be found e.g. in [7]). A channel is an unbounded FIFO
queue which stores messages. An application program consists of a constant
number of parallel processes which communicate exclusively via channels. The
number of channels can be arbitrary but the set of channels does not change in
run-time. The processes use only two communication primitives with the usual
semantics: PUT(ch, m) inserts the message m into the channel ch. GET(CH, m)
(where CH denotes a set of channels) atomically reads a message from a channel
ch ∈ CH , stores the message into the variable m and then it removes the message
from the channel ch. Each channel can be accessed by any number of processes
but only one process can access a channel at any time. PUT never blocks; GET
blocks until it has not read a message. It is guaranteed that if a channel ch
is non-empty at some time and some GET(CH, m) with ch ∈ CH is blocked
at that time then some (not necessarily the same) blocked GET(CH ′, m′) with
ch ∈ CH ′ will eventually read a message and unblock.

3.2 Our Restricted Model

We will make the following restrictions in our model from Section 2. All the
messages will be tuples [c, m], where c (context) belongs to some finite set C
and m is of an arbitrary data type. If M ≡ [c, m] then M [1] will denote c
and M [2] will denote m. The only filtering functions in basic message passing
operations will be fCH(M) = TRUE iff M [1] ∈ CH , CH ⊂C (i.e. only testing a
context prefix of messages for a membership in CH , CH ⊂C, will be allowed).
All processes will submit CREATE operations only in the following context
(i.e. only a blocking CREATE will be allowed): {new(s); semaphore init(s, 0);
[CREATE, x, NULL, M, NULL, s, t]; semaphore wait(s); delete(s);}. All the pro-
cesses will submit RECV operations only in the following context (i.e. only a

Unifying Framework for Message Passing 457

blocking RECV will be allowed): {new(s); semaphore init(s, 0); [RECV, x, Y ,
M , f , s, t]; semaphore wait(s); delete(s);}. All irrelevant fields in the 7-tuples
representing basic message passing operations will be NULL.

3.3 The MPI Model

The MPI model [11] uses many primitives, but we will only describe those which
are relevant for the comparison with the two previous models. MPI does not use
the channel abstraction. It uses point-to-point message addressing which is simi-
lar to the one of our restricted model. MPI has a primitive MPI Recv which blocks
until it receives a message and it has a nonblocking send primitive, MPI Isend.
Unlike our model, MPI requires the process to free the memory occupied by the
message sent used in MPI Isend. However, the process must not free this memory
before the recipient has received the message—in MPI’s terminology, before the
MPI Isend completes. In order to detect this completion, each MPI Isend must be
paired either with MPI Wait which blocks until the MPI Isend completes, or with
nonblockingMPI Testwhich returns a value indicatingwhether theMPI Isendhas
completed. As we will show, this pairing requirementmakes the MPI model weaker
than the previous two models. Note that our model allows for this kind of synchro-
nisation (deferred synchronisation), as a process may include a semaphore s in a
send operation and perform semaphore wait(s) later. Nevertheless, our model does
not require the process to do this.

3.4 Mutual Simulations of Models

Theorem 1. Our restricted model can simulate the channel model and vice
versa with a constant overhead factor in both time and space.

Proof. We will show that our restricted model can simulate the channel model,
with a constant overhead factor in both time and space. Consider a program
PROG1 which uses the PUT and GET communication primitives of the chan-
nel model. We will construct a program PROG2 which is functionally equivalent
with PROG1 but only uses the basic message passing operations of our restricted
model. Messages in PROG2 will be tuples [ch, m], where ch is a channel identifier
in PROG1 and m is a message in PROG1. The program PROG2 will consist of
the same processes as PROG1. Let P∗ denote the union of all the processes. Re-
place in each process x in PROG2 each occurrence of PUT(ch, m); with {new(s);
semaphore init(s, 0); [CREATE, x, NULL, m′, NULL, s, t]; semaphore wait(s);
delete(s); m′ = [ch, m]; [SEND, x, P∗, m′, NULL, NULL, t];}. Replace in each
process x in PROG2 each occurrence of GET(CH, m); with {new(s);
semaphore init(s, 0); [RECV, x, P∗, m′, fCH , s, t]; semaphore wait(s); delete(s);
m = m′[2]; [DESTROY, x, NULL, m′, NULL, NULL, t];}. It follows directly from
the definitions of the models that the programs PROG1 and PROG2 are func-
tionally equivalent and that the replacements only incur a constant overhead in
both time and space.

We will now prove that the channel model can simulate our restricted model
within the bound. Consider a program PROG1 which uses the basic message

458 T. Plachetka

passing operations of our restricted model. We will construct a program PROG2
which only uses the channel communication primitives PUT and GET. The pro-
gram PROG2 will consist of the same processes as PROG1. The channel iden-
tifiers in PROG2 will be tuples [c, Y] where c ∈ C and Y is a set of processes
(this tuple can be encoded as an integer if the channel model requires it). Re-
place in each process x in PROG2 each occurrence of the sequence {new(s);
semaphore init(s, 0); [CREATE, x, NULL, m, NULL, s, t]; semaphore wait(s);
delete(s);} with new(m);. Replace in each process x in PROG2 each occur-
rence of [DESTROY, x, Y, m,NULL, NULL, t]; with delete(m);. Replace in each
process x in PROG2 each occurrence of [SEND, x, Y, m,NULL, NULL, t]; with
{PUT([m[1], Y], m); delete(m);}. Replace in each process x in PROG2 each oc-
currence of the sequence {new(s); semaphore init(s, 0); [RECV, x, Y, m, f, s, t];
semaphore wait(s); delete(s);} with GET(CH, m);, where CH is the set of all
the channels ch = [c, m] for which f(ch) = TRUE. Note that the set CH can be
computed in constant time as the set of first message components c is known and
finite and f([c, m]) only depends on c. It follows directly from the definitions of
the models that the programs PROG1 and PROG2 are functionally equivalent
and that the replacements only incur a constant overhead in time and space.
�
Theorem 2. The MPI model cannot simulate our restricted model within the
bounds of the invariance thesis.

Proof. Consider the following program in our model which consists of processes
p0 and p1 (P0 will denote the set containing p0, P1 will denote the set containing
p1 and fTRUE will denote a function which always returns TRUE).

p0(FILE *inp0)
{

while (! feof(inp0))
{

new(s);
semaphore init(s, 0);
[CREATE, p0, NULL, m, NULL, s, t];
semaphore wait(s);
delete(s);
m=fgetc(inp0);
[SEND, p0, P1, m, NULL, NULL, t];
printf(”sent”);

}
}

p1(FILE *inp1)
{

while (! feof(inp1))
{

new(s);
semaphore init(s, 0);
[RECV, p1, P0, m, fTRUE, s, t];
semaphore wait(s);
delete(s);
printf(”received %c”, m);
[DESTROY, p1, NULL, m,NULL,
NULL, t];
fgetc(inp1);

}
}

It is easy to verify that this program is correct. We will now prove that it can-
not be simulated by a program which uses MPI primitives MPI Recv, MPI Isend,
MPI Wait and MPI Test without breaching the bounds of the invariance the-
sis. (The rest of MPI’s primitives apparently does not help in the simulation of
the program above.) The process p1 receives n1 messages from the process p0,
where n1 is the number of characters in the input stream inp1 (this number is
unknown until the entire stream inp1 has been read). This can only be accom-
plished by calling MPI Recv n1 times in the p1. In the process p0, MPI Isend

Unifying Framework for Message Passing 459

must obviously be called n0 times, where n0 is the number of characters in the
input stream inp0. These n0 calls must be paired with n0 either MPI Wait or
MPI Test calls in p0, otherwise the memory overhead of the MPI program for
n0 = n1 would depend on n1 and would therefore exceed a constant factor. (We
recall that even if p0 submits SEND operations faster than p1 or vice versa, the
system is allowed to postpone the reading of these operations until the previous
operations of that process have been executed—therefore the program above can
be executed in constant memory for n0 = n1. Generally, the space complexity
of the program above is c + |n0 − n1|, where the constant c depends on neither
n0 nor n1.) MPI Wait cannot be used in any of the n1 pairings because the
MPI program would not terminate for n0 > 0 and n1 = 0, whereas the program
above would. This implies that MPI Test must be used in all the n1 pairings.
In each of these pairings, the nonblocking MPI Test must be repeatedly called
until the corresponding MPI Isend completes, otherwise the memory overhead
would exceed a constant factor. However, in this case the MPI program would
not terminate for n0 > 0 and n1 = 0, whereas the program above would.
�

4 Conclusions

We presented a framework for message passing which defines an interface be-
tween message passing applications and message passing systems. We proved
that its restricted version is as powerful as the unbounded asynchronous chan-
nel model (our unrestricted model is apparently at least as powerful). We also
proved that the MPI model is less powerful than these models. The substantial
difference between the models is that the MPI standard only supports so-called
deferred synchronous communication [8]. Statements such as “MPI has full asyn-
chronous communication” [6] are false. This deviation of the MPI standard from
theoretical models has negative consequences for efficiency and portability of
parallel applications which build on the MPI standard.

Our framework can serve as a well-founded specification of message passing
systems. We stress that this specification only defines the semantics of the basic
message passing operations (which should be provided by any message passing
system), not the means of their implementation. For instance, the implemen-
tation of the operations for distributed architectures does not require a global
clock despite of the time-stamps in Definition 5. We implemented the framework
as a message passing library for several operating systems and network types.
Our implementation is thread-safe and polling-free (it uses no busy waiting).

References

1. Andrews, G.A.: Concurrent Programming, Principles and Practice. Benjamin/
Cummings Publishing Company (1991)

2. Bacon, J.: Concurrent Systems (Operating Systems, Database and Distributed
Systems: An Integrated Approach). Addison-Wesley-Longman (1998)

3. Bernstein, A.J., and Lewis, P.M.: Concurrency in Programming and Database
Systems. Jones and Bartlett Publishers (1993)

460 T. Plachetka

4. Galletly, J.: Occam 2. Pitman Publishing (1990)
5. Gray, J., and Reuter, A.: Transaction Processing: Concepts and Techniques. Mor-

gan Kaufmann (1993)
6. L.P. Hewlett-Packard Development Company: HP MPI User’s Guide, eight edition

(2003)
7. Peyton Jones, S.L., Gordon, A., and Finne, S.: Concurrent Haskell. In 23rd ACM

Symposium on Principles of Programming Languages (1996) 295–308
8. Liebig, C., and Tai, S.: Middleware-Mediated Transactions. In G. Blair,

D. Schmidt, and Z. Tari (eds), Proc. of the 5th International Symposium on
Distributed Objects and Applications (DOA’01), IEEE Computer Society (2001)
340–350

9. Mitchell, D.A.P., Thompson, J.A., Manson, G.A., and Brookes, G.R.: Inside The
Transputer. Blackwell Scientific Publications (1990)

10. MPI Forum. MPI-2: Extensions to the Message Passing Interface (1997)
11. MPI Forum. MPI: Message Passing Interface, Version 1.1 (1998)
12. van Emde Boas, P.: Machine Models and Simulation. In Handbook of Theoretical

Computer Science, Volume A: Algorithms and Complexity (A), Elsevier and MIT
Press (1990) 1–66

Appendix

Semantics of Semaphores

Throughout the paper, we assume the standard semaphore semantics as it is
defined in [ISO/IEC 9945-1: 1990 Information Technology. Portable Operating
System Interface (POSIX), Part 1: System Application Program Interface, C lan-
guage]. Although we are convinced that most readers are familiar with the notion
of semaphores, we provide this appendix in order to avoid misunderstandings
concerning the notation.

A semaphore object is an abstract synchronisation object which keeps an
internal variable count. (The formal definition of semaphores allows for an ar-
bitrary representation of count, provided that the semantics of the semaphore’s
operations remains unchanged.) The call new(s) creates a semaphore object re-
ferred to as s and semaphore init(s, c) sets the variable count belonging to s
to c. The call delete(s) destroys the semaphore s.

The call semaphore wait(s) acquires the semaphore. Its semantics corresponds
to the semantics of Dijkstra’s operation P (s): if the variable count of s is 0 then
the calling process blocks in the call, otherwise the variable count of s is decreased
by 1 and the calling process continues. The testing and decreasing of the variable
count is an atomic operation.

The call semaphore signal(s) signals the semaphore and its semantics corre-
sponds to the semantics of Dijkstra’s operation V (s): the count of s is increased
by 1. Moreover, if there is at least one process which is blocked on the semaphore
s then one of these blocked processes unblocks and attempts to acquire the
semaphore as if it has called that semaphore wait(s) once again.

	Introduction
	Components of the Message Passing Framework
	Computational Power of Models
	Asynchronous Unbounded Channel Model
	Our Restricted Model
	The MPI Model
	Mutual Simulations of Models

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

