Unifying Framework for Message Passing

Tomas Plachetka
Comenius University, Bratislava

Unifying Framework for Message Passing or Why <u>NOT</u> (e.g.) MPI

Overview

- Novel formal universal framework for communication systems, independent on hardware, programming language etc. (similar to the framework for transactional database systems)
- Theorem: Our restricted model can simulate asynchronous channel model and vice versa
- Theorem: MPI (Message Passing Interface) model cannot (reasonably) simulate our restricted model
- Corollary: Asynchronous channel model is stronger than MPI (MPI lacks asynchronous communication)
- Conclusions

Each process can only access its own memory

Each process is assigned a unique **identifier** (0, 1, ..., N)

Processes exchange data via messages

A message is passed between a process and a channel

Processes use **non-blocking** PUT(ch, m) and **blocking** GET(CH, m)

Processes communicate via <u>unbounded</u> channels. A channel is a FIFO (first-in-first-out).

Processes communicate via <u>unbounded</u> channels. A channel is a FIFO (first-in-first-out).

Process S

Process R

Processes communicate via <u>unbounded</u> channels. A channel is a FIFO (first-in-first-out).

Processes communicate via <u>unbounded</u> channels. A channel is a FIFO (first-in-first-out).

Process S

Process *R M1*

Synchronous (blocking) SYNC_PUT(ch, m) can be simulated using asynchronous (non-blocking) PUT(ch, m):

Process S

Channel C

M

Process R

Is this allowed? (Two processes simultaneously receiving on the same channel.)

YES

Which process receives the message *M*?

Either R1 or R2. (Not both R1 and R2.)

Is this allowed? (Two processes simultaneously sending to the same channel.)

YES

Which message will be received by the process *R*? Either *M1* or *M2* (some of these).

Is this allowed? (Same process simultaneously sending and receiving on the same channel.)

YES (Think of *P1* as of your department. People of the department communicate using a shared departmental mailbox.)

Point-to-point message passing

Each process can only access its own memory

Each process is assigned a unique **identifier** (0, 1, ..., N)

Processes exchange data via messages

A message is passed between two processes (point-to-point)

Processes use non-blocking send and blocking recv

A message can be sent from any process to any other one

Point-to-point message passing

Message passing implemented as a library

send and recv are function calls; the communication library hides the implementation of these functions from the programmer

The same application can run on a distributed-memory cluster as well as on a shared-memory multiprocessor without a change in the application

Point-to-point message passing

Message passing implemented as a library

send and recv are function calls; the communication library hides the implementation of these functions from the programmer

The same application can run on a distributed-memory cluster as well as on a shared-memory multiprocessor without a change in the application

Point-to-point message passing (MPI)

MPI Isend and MPI Recv are function calls; the communication library hides the implementation of these functions from the programmer

Context of a non-blocking send

- Allocate a send buffer
- Pack data into the send buffer
- 3. MPI Isend(recipient id, buf, &req)
- 4. Continue working
- 5. MPI Wait(req) or MPI Test(req)
- Free the send buffer 6.

Context of a blocking receive

- Allocate a receive buffer
- MPI Recv(sender id, buf)
- 3. Unpack data from buffer
- Free the send buffer

Sender's view (TP)

Sending a message

Allocate a buffer

```
new(s);
semaphore_init(s, 0);
[CREATE, sender, NULL, m, NULL, s, t];
semaphore_wait(s);
delete(s);
```

- Put data into the buffer
- Send the buffer to the receiver.
- **⇒** [SEND, sender, receiver, m, NULL, NULL, t];

Sender's view (TP)

Sending a message

Allocate a buffer

```
new(s);
semaphore_init(s, 0);
[CREATE, sender, NULL, m, NULL, s, t];
semaphore_wait(s);
delete(s);
```

- Put data into the buffer
- Send the buffer to the receiver. [SEND, sender, receiver, m, NULL, NULL, t];

Sender's view (TP)

Sending a message

Allocate a buffer

```
new(s);
semaphore_init(s, 0);
[CREATE, sender, NULL, m, NULL, s, t];
semaphore_wait(s);
delete(s);
```

- Put data into the buffer
- Send the buffer to the receiver. [SEND, sender, receiver, m, NULL, NULL, t];

Questions:

Who should decide how large a send buffer to allocate?

Who should free the send buffer? SYSTEM NOT IN MP!

SENDER

Receiver's view (TP)

Receiving a message

1. Receive a message to a buffer

```
new(s);
semaphore_init(s, 0);
[RECV, receiver, sender, m, accept_all, s, t];
```

- semaphore_wait(s); delete(s);
- Read data from the buffer
- Free the buffer

[DESTROY, receiver, NULL, m, NULL, NULL, t];

Receiver's view (TP)

Receiving a message

1. Receive a message to a buffer

```
new(s);
  semaphore_init(s, 0);
   [RECV, receiver, sender, m, accept_all, s, t];
  semaphore_wait(s);
→ delete(s);
```

- Read data from the buffer
- Free the buffer [DESTROY, receiver, NULL, m, NULL, NULL, t];

sender POSTAL) SYSTEM 'Hello' receiver

Receiver's view (TP)

Receiving a message

 Receive a message to a buffer new(s);

```
semaphore_init(s, 0);
[RECV, receiver, sender, m, accept_all, s, t];
semaphore_wait(s);
```

Read data from the buffer

Free the buffer

delete(s);

[DESTROY, receiver, NULL, m, NULL, NULL, t];

Questions:

Who should decide how large a receive buffer to allocate?

receiver SYSTEM NOT IN MP!

POSTAL) SYSTEM

sender

Who should free the receive buffer? RECEIVER

System's view (TP)

- The system shares a part of memory with each process. This memory is called scope of a process (SC(x)) denotes scope of process x, SC(*) denotes union of scopes of all processes). Scopes store messages, semaphores and yet not executed basic operations
- The system reads streams of basic operations from processes and executes them (both the reading and the execution may be postponed)
- Operations are tuples [op, x, Y, m, f, s, t], where

```
op ∈ {CREATE, DESTROY, SEND, RECV}
```

- is the identifier of process submitting this opeation Χ
- is a set of process identifiers
- is a message
- is boolean function defined on messages (a filter)
- is a semaphore
- is the timestamp of submission of this operation

Execution of [CREATE, x, _, m, _, s, _] (TP)

- 1. Create new message m in SC(x)
- 2. If s ≠ NULL then semaphore_signal(s)
- 3. Remove this operation from SC(x)

Execution of [DESTROY, x, _, m, _, s, _] (TP)

- Remove message m from SC(x)
- 2. If s ≠ NULL then semaphore signal(s)
- 3. Remove this operation from SC(x)

Execution of [RECV / SEND, x, Y, m, f, s, t] (TP)

BR = [RECV, x, Y, m, f, s, t] BS = [SEND,
$$x'$$
, Y' , m' , f' , s' , t']

BR and BS are a matching operation pair iff

$$x \in Y' \& x' \in Y \& f(m')$$

plus some time-stamp properties must hold if ordering of messages is important (only the oldest such operations match)

Matching BR and BS are executed simultaneously:

- 1. Create new message m in SC(x)
- 2. Copy contents of m' into m
- 3. Remove m' from SC(x')
- 4. If s ≠ NULL then semaphore_signal(s)
- 5. If s' ≠ NULL then semaphore_signal(s')
- 6. Remove BR from SC(x)
- 7. Remove BS from SC(x')

Progress guarantee: If a matching pair BR and BS exists then at least one of BR and BS will be eventually executed.

What cannot be done with MPI and can be done with TP

```
p0(FILE *inp0)
                                       p1(FILE *inp1)
 while(! feof(inp0))
                                        while(! feof(inp1))
   new(m); /* [create...] */
                                          sync_recv(p0, m);
                                          printf("received %c", m);
   m = fgetc(inp0);
                                          delete(m); /* [destroy...] */
   async send(p1, m);
   printf("sent");
                                          fgetc(inp1);
```

Equivalent program cannot be written using MPI functions without breaching the bounds of the invariance thesis:

"'Reasonable' machines can simulate each other with a constant factor overhead in space and a polynomial factor overhead in time." [van Emde Boas]

Top 18 reasons why to use MPI

- http://www.lam-mpi.org/mpi/mpi_top10.php
- 1. MPI has more than one freely available, quality implementation.
 - MPI defines a 3rd party profiling mechanism.
- 3. MPI has full asynchronous communication.
 - 4. MPI groups are solid, efficient, and deterministic.
- 5. MPI efficiently manages message buffers.
 - MPI synchronization protects 3rd party software.
 - 7. MPI can efficiently program MPP and clusters.
 - 8. MPI is totally portable.
- 9. MPI is formally specified.
- ₱10. MPI is a standard.

Message Passing Framework (TP)

Application process

(arbitrary entity with unique identifier)

Language binding

Basic msg passing operations

recv, send, create, destroy

(four basic operations with formally defined semantics)

Architecture binding

Message passing system

(implementation of basic operations for a specific architecture)

Transaction

(arbitrary entity with unique identifier)

Language binding

Basic database operations

read, write, insert, delete

(four basic operations with formally defined semantics)

Architecture binding

Database system

(implementation of basic operations for a specific architecture)

Conclusions

- MPI has no asynchronous communication (shame!) although MPI developers say otherwise (SHAME!)
- MPI is unjustly presented as industrial standard (shame!) and often also as academic standard (SHAME!)
- Want a provably better standard? You have just seen one:
 - Our restricted model is as powerful as asynchronous channel model (and other theoretical models); our unrestricted model is at least as powerful
 - Our framework can help in building practical message passing systems. It defines formal semantics of four basic **operations**, of which more complex operations consist
 - Our framework can be efficiently implemented for variety of architectures, ranging from Transputer-based systems to practically all modern systems