Unifying Framework for Message Passing

Tomas Plachetka
Comenius University, Bratislava

Unifying Framework

for Message Passing
or
Why NOT (e.g.) MPI

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 1



Overview

* Novel formal universal framework for communication

systems, independent on hardware, programming language etc.

(similar to the framework for transactional database systems)

* Theorem: Our restricted model can simulate asynchronous
channel model and vice versa

- Theorem: MPI (Message Passing Interface) model cannot
(reasonably) simulate our restricted model

» Corollary: Asynchronous channel model is stronger than MPI
(MPI lacks asynchronous communication)

« Conclusions

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 2



Channel message passing

Process 1

Process O Process 2

Process N

Each process can only access its own memory

Each process Is assigned a unique identifier (0, 1, ..., N)
Processes exchange data via messages

A message Is passed between a process and a channel

Processes use non-blocking PUT(ch, m) and blocking
GET(CH, m)

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 3



Channel message passing

Processes communicate via unbounded channels. A

channel is a FIFO (first-in-first-out).

In »out
Process S Channel C1

M2 M1

Process R

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 4



Channel message passing

Processes communicate via unbounded channels. A

channel is a FIFO (first-in-first-out).

In »out
Process S Channel C1

M2 || M1

Process R

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 4



Channel message passing

Processes communicate via unbounded channels. A

channel is a FIFO (first-in-first-out).

In »out
Process S Channel C1

M2 || M1

Process R

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 4



Channel message passing

Processes communicate via unbounded channels. A

channel is a FIFO (first-in-first-out).

In »out
Process S Channel C1

M2

Process R

M1

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 4



Channel message passing

synchronous (blocking) SYNC PUT(ch, m) can be simulated
using asynchronous (non-blocking) PUT(ch, m):

»out
Process S Channel C

M

» OUT
Process R Channel C’

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 5



Channel message passing

synchronous (blocking) SYNC PUT(ch, m) can be simulated
using asynchronous (non-blocking) PUT(ch, m):

»out
Process S Channel C

M

» OUT
Process R Channel C’

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 5



Channel message passing

synchronous (blocking) SYNC PUT(ch, m) can be simulated
using asynchronous (non-blocking) PUT(ch, m):

»out
Process S Channel C

M

» OUT
Process R Channel C’

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 5



Channel message passing

synchronous (blocking) SYNC PUT(ch, m) can be simulated
using asynchronous (non-blocking) PUT(ch, m):

»out
Process S Channel C

» OUT
Process R Channel C’

M

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 5



Channel message passing

synchronous (blocking) SYNC PUT(ch, m) can be simulated
using asynchronous (non-blocking) PUT(ch, m):

»out
Process S Channel C

» OUT
Process R Channel C’

M?

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 5



Channel message passing

synchronous (blocking) SYNC PUT(ch, m) can be simulated
using asynchronous (non-blocking) PUT(ch, m):

»out
Process S Channel C

» OUT
Process R Channel C’

M?

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 5



Channel message passing

synchronous (blocking) SYNC PUT(ch, m) can be simulated
using asynchronous (non-blocking) PUT(ch, m):

»out
Process S Channel C

M?

» OUT
Process R Channel C’

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 5



Channel message passing

Is this allowed? (Two processes simultaneously receiving on
the same channel.)

YES
Which process recelves the message M?

Either R7 or R2. (Not both R7 and R2.)

Process R17

1N »Out
Process S171 Channel C

M

Process R2

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 6



Channel message passing

Is this allowed? (Two processes simultaneously sending to

the same channel.)

YES

Which message will be received by the process R?
Either M7 or M2 (some of these).

Process S171

M1

N\

Process S2

M2

/

»OUT

N
Channel

C

Tomas Plachetka, Comenius University, Bratislava

Process R

Merin, 23 Januar 2006 7



Channel message passing

Is this allowed? (Same process simultaneously sending and
receiving on the same channel.)

YES (Think of P71 as of your department. People of the
department communicate using a shared departmental

mailbox.)

»OUT

In
Process P1 4_Channel C1

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 8



Point-to-point message passing

Process 1

Process 2

Process O

Process N

Each process can only access its own memory

Each process Is assigned a unique identifier (0, 1, ..., N)
Processes exchange data via messages

A message Is passed between two processes (point-to-point)
Processes use non-blocking send and blocking recv

A message can be sent from any process to any other one

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 9



Point-to-point message passing

Message passing implemented as a library

and recv are function calls; the communication library hides
the implementation of these functions from the programmer

The same application can run on a distributed-memory
cluster as well as on a shared-memory multiprocessor
without a change in the application

Process 1 Process 1

Application Application

(or other transport protocol

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 10



Point-to-point message passing

Message passing implemented as a library

and recv are function calls; the communication library hides
the implementation of these functions from the programmer

The same application can run on a distributed-memory
cluster as well as on a shared-memory multiprocessor
without a change in the application

Process 1 Process 1

Application ___Application

/ Shared memory

( recv() recv()

i |_ Megsage
passing-b

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 10




Point-to-point message passing (MPI)

VPl lsend and MPI|_Recv are function calls; the communication
library hides the implementation of these functions from the

programmer

Context of a non-blocking send

Allocate a send buffer

Pack data into the send buffer
MPI_Isend(recipient_id, buf, &req)
Continue working

MPI1_Wait(req) or MPI_Test(req)

Free the send buffer

Tomas Plachetka, Comenius University, Bratislava

Context of a blocking receive

1. Allocate a receive buffer

MPI| Recv(sender id, buf)

2
3. Unpack data from buffer
4

Free the send buffer

Merin, 23 Januar 2006 11



Sender’'s view (TP)

Sending a message sender
1. Allocate a buffer

2

"Hello”

2. Put data into the buffer

3. Send the buffer to the recelver
==p [SEND, sender, receiver, m, NULL, NULL, t]; /

recelver

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 12



Sender’'s view (TP)

Sending a message sender
1. Allocate a buffer

2

"Hello”

2. Put data into the buffer 1

3. Send the buffer to the recelver
[SEND, sender, receiver, m, NULL, NULL, t]; /

recelver

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 12



Sender’s view (TP)

Sending a message sender
1. Allocate a buffer

2

2. Put data into the buffer

3. Send the buffer to the recelver
[SEND, sender, receiver, m, NULL, NULL, t]; /

Questions:

Who should decide how large a receiver
send buffer to allocate? SENDER

Who should free the send buffer? SYSTEM# NOT IN MP!!

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 12



Receiver's view (TP)

Receiving a message sender

1. Recelve a message to a buffer
new(s):
semaphore _init(s, 0);
[RECV, receiver, sender, m, accept_all, s, t];
=) scmaphore_wait(s);
delete(s);

2. Read data from the buffer
3. Free the buffer

recelver

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 13



Receiver’s view (TP)

sender

Receiving a message

1. Recelve a message to a buffer
new(s):

semaphore _init(s, 0);
[RECV, receiver, sender, m, accept_all, s, t]; 0
semaphore_wait(s);

=) Celete(s);

2. Read data from the buffer

3. Free the buffer . “Hello”‘
/

recelver

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006

13



Receiver's view (TP)

Receiving a message sender

1. Recelve a message to a buffer
new(s);
semaphore_init(s, 0);
[RECV, receiver, sender, m, accept_all, s, t]; 0
semaphore_wait(s);
delete(s);

. Read data from the buffer
. Free the buffer

2/ A

Questions:

Who should decide how large a receiver
receive buffer to allocate? SYSTEM# NOT IN MPI!

Who should free the receive buffer? RECEIVER

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 13




System’s view (TP)

* The system shares a part of memory with each process. This
memory Is called scope of a process (SC(x) denotes scope of
process X, SC(*) denotes union of scopes of all processes).
Scopes store messages, semaphores and yet not executed
basic operations

* The system reads streams of basic operations from processes

and executes them (both the reading and the execution may be
postponed)

« Operations are tuples [op, x, Y, m, {, s, t], where

, , RECV}
IS the identifier of process submitting this opeation
IS a set of process identifiers
IS @ message
IS boolean function defined on messages (a filter)
IS a semaphore
IS the timestamp of submission of this operation

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 14



Execution of [CREATE, X, , m,

1. Create new message m in SC(x)
2. If s # NULL then semaphore_signal(s)
3. Remove this operation from SC(x)

, S, _] (TP)

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 15



Execution of [DESTROY, x, ,m, ,s, ](TP)

1. Remove message m from SC(x)
2. If s # NULL then semaphore_signal(s)
3. Remove this operation from SC(x)

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 16



Execution of [RECV /SEND, x, Y, m, f, s, t] (TP)

BR =[RECV, x, Y, m, f, s, ] BS =[SEND, x, Y, m', f, s, t]
BR and BS are a matching operation pair iff

XeY &Xx €Y &f(m)

plus some time-stamp properties must hold if ordering of
messages Is important (only the oldest such operations match)

Matching BR and BS are executed simultaneously:
. Create new message m in SC(x)

. Copy contents of m' into m
. Remove m’ from SC(x')
. If s # NULL then semaphore_signal(s)

. If s # NULL then semaphore_signal(s’)
. Remove BR from SC(x)

. Remove BS from SC(X)

Progress guarantee: |f a matching pair BR and BS exists
then at least one of BR and BS will be eventually executed.

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 17



VWhat cannot be done with MP| and can be done with TP

PO(FILE *inp0) pP1(FILE *inp1)
{ {
while(! feof(inp0)) while(! feof(inp1))
{ {
new(m); /* [create...] "/ sync_recv(p0, m);
m = fgetc(inp0); printf(“received %c”, m);
async send(p1, m); delete(m); /* [destroy...] */
printf(“sent”); fgetc(inp1);
J J
) )

Equivalent program cannot be written using MPI functions
without breaching the bounds of the invariance thesis:
'Reasonable’ machines can simulate each other with a constant
factor overhead In space and a polynomial factor overhead in
time.” [van Emde Boas]

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 18



Top 13 reasons why to use MPI

http://ivww . lam-mpi.org/mpi/mpi_top10.php
MPI| has more than one freely available, quality implementation.

MP| defines a 3rd party profiling mechanism.
MP| has full asynchronous communication.
MP| groups are solid, efficient, and deterministic.
MP| efficiently manages message buffers.
MP| synchronization protects 3rd party software.

MP| can efficiently program MPP and clusters.

MPI is totally portable.

MPI is formally specified

. MPI is a standard.

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 19



Message Passing Framework (TP)

Application process

(arbitrary entity with unique identifier)

Transaction

(arbitrary entity with unique identifier)

Language binding

Language binding

Basic msg passing operations
recv, : :
(four basic operations with formally defined

semantics)

Basic database operations
read, , ,
(four basic operations with formally

defined semantics)

Architecture binding 1

Architecture binding l

Message passing system
(Implementation of basic operations for a

specific architecture)

Database system
(iImplementation of basic operations for

a specific architecture)

Tomas Plachetka, Comenius University, Bratislava

Merin, 23 Januar 2006 20




Conclusions

 MPI has no asynchronous communication (shame!)
although MPI developers say otherwise (SHAME!)

- MPIl is unjustly presented as industrial standard (shame!)
and often also as academic standard (SHAME!)

- Want a provably better standard? You have just seen one:
« Qur restricted model is as powerful as asynchronous

channel model (and other theoretical models); our
unrestricted model is at least as powerful

« Qur framework can help in building practical message
passing systems. It defines formal semantics of four basic
operations, of which more complex operations consist

- Our framework can be efficiently implemented for variety
of architectures, ranging from Transputer-based
systems to practically all modern systems

Tomas Plachetka, Comenius University, Bratislava Merin, 23 Januar 2006 21



