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ABSTRACT

In rendering it is sometimes desirable to compute minimum total light energy
mesh. This requires finding the solution for minimum weight triangulation (MWT). We
have introduced several new heuristics for MWT, based on original observations. All
new algorithms are tested on a set of randomly generated examples. For each example
we compute the optimum (for small data sets) using backtrack technique or a reference

suboptimum using simulated annealing technique. We compare the new heuristics.
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1 Introduction

The rendering of wire-frame models can sometimes require the minimum total
light energy mesh. This needs finding the minimum weight triangulation MWT. The
question whether the construction of MWT is possible in polynomial time has
remained open for a long time, [GaJo80], [PrSh85], {Aure91].

There are instances, where the polynomial algorithm [AnCo093] is known.
However, the complexity for them is too high, or the input set is very special (e.g. the
MWT of the interior of the single polygon can be computed in cubic time, [Gilb79],
[K1in80]). This motivates the construction of new heuristics.

The best heuristics known is that by Plaisted and Hong [P1ai80], with running
time O(NZ?.logN) and achicving the O(logN) approximation of MWT, but its
implementation is too complex. We introduce the practically implementable
algorithms. We have developed a simulated annealing research environment, which
enables the comparison of algorithms for any input set, and a backtrack program,
offering the global optimum for smaller test examples.

The paper is organised as follows. We formulate the problem at the end of this
section. Then we introduce some observations and construct three new heuristics in
section 2. We compare the heuristics in section 3. The conclusion is given in section 4.

The computed results are summarized in the Table 1 in Appendix.
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The following figure illustrates the fragment of a picture displaying the top of a
skull using 3D Christiansen mesh from a standard renderer. The mesh is projected
onto the plane z=0. Evidently, the total edge length can be improved giving better
displaying of the same data. ‘ R
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Fig.1: An example of 3D mesh with unsatisfactorily long total edge length. . 'f‘.‘ o

Thus, the problem is formulated as follows: .
Given a set S of N points in the plane in a general position, i. . no thrée of .
them are collinear. Compute the Minimum-Weight Triangulation MWT, which -

minimizes the total length of the triangulation edges.

2 New Heuristics

In this section we report some observations leading to several new triangulators.
There is an exponential number of possible triangulators. A qubcstion ariécs; how to
compare these. We will try to evaluate (both theoretically and practically) their quality
and complexity. The reference suboptimum for any particular input set is‘.obtainc,d by
simulated annealing technique ASA [Cern82] a stochastic optimizing method béséd on "
thermodynamic -model. The use of ASA for triangulation was dcsigi.i’q'd and | _
implemented in [Boba94]. ASA randomly flips the edges of starting tﬁangulatidn (DT)

We have also implchcntcd the brute force algorithm based on backtrackjrig,”too.
Using this algorithm ensures finding the global optimum. Its limitation is its

exponential complexity. We were able to compute the rcéults for up to 15 points.
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Brute Force Algorithm
Input: S (N distinct points in the plane) Output: MWT(S)

Brute force algorithm:

1. Construct list of all edges

2. Mark all edges in the list as "not considered, not selected, not crossed"
3. Mark all mandatory edges as "considered, selected"

4. Call procedure Backtrack.

Procedure Backtrack
If the list does not contain any "not selected, not crossed" edge
New triangulation found (edges marked as "selected belong to the new triangulation). Save
it if it is better than the previously found triangulations.
Else
e := some "not considered, not selected, not crossed” edge
Mark e as "considered, selected"
Cle) := set of all "not considered, not selected not crossed" edges crossing e
Mark all edges in C(e) as “crossed"
Call procedure Backtrack
Mark e as "not selected”
Mark all edges in C(e) as "not crossed"
For each edge cin Cle)
Mark ¢ as "considered, selected"
Clc) := set of all "not considered, not selected not crossed" edges crossing ¢
Mark all edges in C(c) as "crossed"
Call procedure Backtrack
Mark c as "not considered, not selected"

Mark all edges in C(c) as "not crossed"

Mark e as "not considered"

|

Comments: 1. the edge is marked "selected" if it belongs to triangulation in the
current level of recursion, otherwise it is marked "not selected".

2. the edge is marked "crossed", if it is crossed by some "selected" edge in the
current level of recursion; the edge is marked "not crossed" otherwise.

3. the edge is marked "considered" in two cases: 1. edge is marked "selected", 2.
edge is marked "not selected" but some of its crossing edges are marked "selected".

4. The algorithm stems from the following facts: A. Every maximum configuration

of edges obtained by successively adding non-crossing edges is a triangulation. B. If an
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edge does not belong to a triangulation, then at least one of its crossing edges does.

The algorithm uses these properties to generate all configurations (each
configuration considered just once). We optimized the algorithm by not adding an edge
when the length of all following configurations was greater than the minimum length so
far. This significantly reduces the number of possibilities to be examined, especially if
the edges are ordered by some criteria (e.g. length or the weight used in Heuristics 3) so
that the first triangulation found is close to the minimum. However, despite the
optimizations the time complexity still remains exponential and so this algorithm can
only be used for small data sets (our implementation up to 15 points to obtain the result
on a SUN SPARC within an hour). Duration times for randomly generated sets of points
(measured on a standalone SUN SPARC):

Number of points 1-11 {12 13 14 15 16 and more

"Time (approximately) 1sec | 23sec | 40sec | 20 min | 50 min | not measured

2.1 Heuristics 1 (Pairwise Edge Acceptation)

It is well known that MWT can be obtained neither by Delaunay triangulation
DT nor by greedy algorithm GRT [PrSh85], [Aure91] although there exist instances of
S, for which DT or GRT equals MWT. There is a construction of S with 6 vertices in
[Boba94], where the shortest edge does not belong to the MWT. The size of example
is possible to reduce. Assume the 4 vertices of any square. There is the locus of points,
which are closer to the more distant pair of vertices, at each side of the square. The
locus is bounded by the square side and by the border of intersection of two circles
centered in the two more distant points with radius equal to the length of the diagonal
of given square. We choose the fifth point arbitrarily from this locus. Thus the side of
the square becomes a new interior edge in the convex hull of the 5 points. This is the

shortest interior edge.

Fig. 2: Minimal test example: optimum is not GRT.
\
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The GRT accepts this edge, but the MWT consists of the 2 diagonals from the
added fifth vertex. Evidently, this property cannot be constructed by a smaller set of v
points. This property leads to the construction of a heuristics for MWT.

Heuristics 1: Pairwise acceptation of interior edges of S.

Input: S (N distinct points in the plane) Output: Approximation of MWT

1. Accept all K edges of CH(S) into the list of accepted edges.

2. Select the current edge (one of accepted ones). ‘

3. Sort all possible pairs of new edges, joining (without intersection with any accepted edge)
the endpoints of the current edge with particular point, and identify the minimumllle‘ngt‘h‘. (If
there are rﬁore than one such points, select the "middle" one, closest to the axis of current
edge.) ‘ | o
4. Accept the pair of edges with minimal length into the list of accepted edges. '

5. Remove the current edge from the list of accepted edges and if it is not confcfnedlbli'n the

output file write it to the output file.

6. If the size of output file is less than 3N-3-K, go to 2.
7. Stop.

Since there are 3 to N extremal points in each S, in step 1 we accept 3 to N
edges which must belong to any triangulation. We iteratively accept the pair of edges in
step 4, some edges being repeated, as they occur in two neighbouring tﬁaﬁglcs. The -
repeating occurrence of them in output file is prevented by step 5. The halting criterion
follows from combinatorial analysis of triangulation. This guarantécs’\thc‘rcsult‘ to be a
triangulation, if no further edge can be added without intersection 'wifh any pl:cécding ,
edge. All this proves that the algorithm identifies a triangulation ‘wit_h linear, memory X

consumption and cubic time. The time complexity follows from thC'anélysiS':of 'stcp 3.

Fig. 3: Hlustration of Heuristics 1. The numbers show the ordering of triang]e generation. . .

It seems that the advantage of this algorithm is its easy implementation, but it
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may cause more than one non-triagulated areas, which must be processed separately
(recursively). The modification of the algorithm assuming instead of shortest pair of
edges the shortest triangle seems better in some cases. The results for Heuristics 1 are

illustrated in Table 1. Optimum is shown by the dashed line in Fig. 3.

2.2 Heuristics 2 (Combining Edges of NNG and ASA)

The Nearest Neighbour Graph NNG has a directed edge if the point is the
nearest neighbour of the other. NNG edges belong to DT [ORou94] similarly to the
EMST edges, but they are of a somewhat different nature. They can be single or
double for a pair of points, and NNG need not be connected. EMST has N-1
undirected edges NNG has N or more directed edges. The Pitteway triangulation
[Okab92] is constructed in a similar way - for each triangle every interior point has one

of the corners as its nearest neighbour in S. NNG is computable in time O(NlogN).

Heuristics 2: Combining Edges of NNG and ASA
Input: S (N distinct points in the plane) Output: Approximation of MWT

1. Add dll double edges of NNG into the list of accepted edges.
2. Remove all crossing edges.

3. Accept all edges which are mandatory now (see section 2.3).

4. |dentify remaining edges using DT approach combined with ASA.
5. Stop.

The implementation of this algorithm is in progress. Its innovation for ASA is
fixing of a subset of unflippable edges. This follows from the proof that the double
NNG edges are allways in MWT, [NiP196]. The time complexity inherited from NNG
is O(NlogN) in step 1, and biquadratic in step 2. The memory consumption is quadratic.

2.3 Heuristics 3 (Edges Mandatory for Each Triangulation)

We have proved, that besides the edges of convex hull some interior edges are
mandatory for each triangulation. Extreme edges create a convex hull border. The
mandatory edge has at least one endpoint in some interior vertex. Consider the edge
which is not intersected by any other possible edge given by a pair of points of S.
Evidently, this is true for extreme edges. We show this in two examples (one with one

non-extreme edge endpoint, the other with both) in the following figure. Note that
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there are O(IN) mandatory edges possible (Fig. 4b)).

Fig. 4: Mandatory edges for each triangulation: a) one (bold), b) O(N) mandatory edges.

Heuristics 3: Edges Mandatory in Each Triangulation
Input: S (N distinct points in the plane) Output: Approximation of MWT

1. Add all K edges of CH(S) to the list of accepted edges.

2. Accept all non-crossed edges.

3. For each remaining edge e compute the sum of all crossing edge lengths divided by
the length of e. Sort the edges by this and choose the edge with maximum value.

4. Remove all the edges crossing the accepted one.

5. If the size of output file is less than 3N-3-K, go to 2.

6. Stop.

In this algorithm we iteratively produce new mandatory edges or edges with the

highest "obstacleness", which in turn can produce new mandatory edges, etc. The time
g p ry cdg

complexity is biquadratic, with quadratic memory consumption.
3. Comparison of Results

The simulated annealing, backtrack and triangulation software have been
developed at Comenius University. The starting triangulation for ASA is DT, input
sets S are generated randomly in a unit square with the size up to 50 points, double
points being ignored. The name and the size of randomly generated sets are given in
the first column of Table 1. The algorithms are denoted by DT (starting triangulation
price), ASA/flips means calculated suboptimum using the reported number of flips,
and the name of heuristics - H1, H3. The brute force method is denoted by BFM.
Some small input sets were generated manually, e.g. those in Fig. 4.

Table 1 shows that out of 21 BFM-comparable cases there are two where H1
result is longer than H3 result, and 6 where they are equal, but in remaining 13 cases

H1 is shorter. In 10 cases H1 is optimal. The comparison of ASA with BFM shows that
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ASA in linear to quadratic number of flips computes the optimum. The winning

heuristics in this tests is H1, providing often better results than DT.

Irig. 5: Hlustration of Brute Force Method. The biggest computed optimal solution for 15 pbin;r.

The remaining part of Table 1 shows different situation. There is no optimum
known. The results of algorithms for bigger input set confirms the advantage of DT.
This must be confronted with both GRT and H2 results in future research.

4. Conclusion

In this paper there are given some new heuristics for MWT problem based on
original observations. They are compared within a general research .framcw,o.rk for
evaluation of a quality of a new triangulator. The new heuristics were tééf‘cdl and
evaluated as shown in Table 1. The results show that there are sc{rcral "very good"
possible approximations of MWT. o o

The future research will improve some features of given algorithms arid scarch -
for the efficiently implementable combination of their advantages. Thils“will' be-used

for creating of a sophisticated 3D mesh generator.
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Appendix:

Table 1: Comparison of Results.

Pointset / Size DT ASA /flips H1 BFM H3
6uholnik / 6 5.357683 5.323621 /153 5.347933 5.323621 5.347933
ela/8 7.182710 7.049429 /110 7.049429 7.049429 7.234346
mand6 /6 6.844679 6.844679 /0 6.844679 6.844679 7.252423
mand8/ 8 7.084248 7.084248/0 7.084248 7.084248 7.152588
mand9/9 8.456372 8.072454 /42 8.264413 8.072454 9.475448
min /5 5.603550 5.603550/0 5.760718 5.603550 5.760718
min2 /5 5.530820 5.530820/0 5.661216 5.530820 5.661216
min3 /5 5.171512 5.151371/8 5.151371 5.151371 5.151371
min6-1/6 5.906205 5.906205 /0 5.906205 5.906205 5.906205
min6-2 /6 6.136384 5.776718 | 47 5.776718 5.776718 5.776718
min6-3 /6 6.125655 5.665825 /20 5.665825 5.665825 5.665825
min6-4 / 6 5.908059 5.535303 /56 5.633103 5.535303 5.535303
miro / 10 7.747139 7.747139/0 7.806375 7.747139 8.872314
rand10-1 /10 7.374082 7.374082 /0 7.374082 7.374082 8.076024
rand12-1/12 9.658102 9.341994 / 271 9.555521 9.341994 10.818047
rand7-2 /7 6.942306 6.942306 /0 6.942306 6.942306 7.286409
rand9-1/9 7.303678 7.286353 /95 7.380473 7.286353 7.363147
y10/10 8.292241 8.276486 / 157 8.300539 8.276486 8.524198
yl1/11 9.513794 9.497957 / 103 9.762265 9.497957 10.039366
v12/12 9.463387 9.447272 | 167 9.501336 9.447272 10.286146
setZ0A/ 20 10.524649 10.5123825/ 321 | 11.054246 --- 14.316322
set20B /20 11.8868389 | 11.6900118/243 ] 12.463131 --- 14.558865
set30A /30 16.0182781 | 15.849179/ 338 17.268378 --- 18.667758
set30B /30 18.0019692 [ 17.6252384/ 766 | 19.644581 - 23.084938
setd40A /40 21.4307861 | 20.7698802 / 872 | 22.827764 --- 29.922951
set40B / 40 19.9496364 [ 19.9412593/990 | 21.532394 --- 27.621193
set45A /45 22.5625934 | 22.1042613/1253 | 24.605662 --- 20.138564
set4SB /45 20.4152393 | 20.1053352/1322 | 22.828334 --- 28.900767
set50A / 50 23.8256530 | 23.7815303/1655 | 26.770547 --- 34.355074
setS0B / 50 21.9355258 | 21.9274368/1587 | 23.851022 --- 30.052524
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