Threads

Threads

T. Plachetka Bratislava, 2025

Threads

Process:. what operating system does with a program
Thread: flow of control in a process (with own stack)

Stack

Process Process
l Z

T. Plachetka Bratislava, 2025

Threads

State diagram of a thread is similar to state diagram of
a process

4_ Wait satisfied Blocked
P

reempted
Start \

Scheduled Wait for resource

Done or cancelled

T. Plachetka Bratislava, 2025

Threads

What threads are for:

« expressing something what cannot be expressed otherwise,
l.e. a reaction which is independent of computation in a process
(GUI, for example)

What threads have not been meant for:
 anything else

T. Plachetka Bratislava, 2025

Threads

Contemporary trends of using threads:
* Implementation of GUI

* kicking more (?) performance out of PCs (web servers,
numeric computation, games, ...)

* production of specialised hardware (e.g. Nvidia/CUDA)

“Multicore processors are everywhere®, ,Gain performance by

harnessing threads in servers”, ...

T. Plachetka Bratislava, 2025

Critical sections
Whenever two threads access the same shared variable at the same time,
there is a problem.

For example, thread T1 increments an integer s, T2 decrements it (let s be 0
before that):

Tl:s=s+1;
T2:s=s-1;

The problem is that the operations ++ and -- can be translated to the machine
code as follows:

T1: LOAD reqgl, s; INC regl; STORE s, regl,;
T2: LOAD reg2, s; DEC reg2; STORE s, reg2;
The scheduler can execute these e.g. in the order

LOAD regl, s; LOAD reg2, s; INC regl; STORE s, regl; DEC reg2;
STORE s, reg2;

Both threads have been executed, but now s equals -1, not 0 as expected!

T. Plachetka Bratislava, 2025

Critical sections, mutual exclusion

An access to a shared memory (any access, no matter whether it is a read or
write) is called a critical region of a thread. The programmer must ensure
that no two threads are in their critical regions at the same time

We will first show two classical methods which ensure mutual exclusion:
Dekker's algorithm and Peterson's algorithm (to keep things simple, we
present solutions for 2 threads). Both algorithms consists of two pieces of
code (protocols): one on the entrance, the other one at the exit of the critical
section. Every thread executes these protocols whenever it enters or leaves a
critical section

T. Plachetka Bratislava, 2025

Dekker’s algorithm, wrong version
intinl =in 2 = FALSE;

Thread 1. Thread 2:
[* entry */ [* entry */
Inl = TRUE; in2 = TRUE;
while (in2) while (in1)
{ {
inl = FALSE; in2 = FALSE;
[* delay */ [* delay */
inl = TRUE; in2 = TRUE;
} }

[* critical section */ [* critical section */

[* exit */ [* exit */
inl = FALSE; in2 = FALSE;

Why is this wrong?

T. Plachetka Bratislava, 2025

Dekker’s algorithm, correct version

int in1 = in2 = FALSE;
int turn = 1;

Thread 1:
inl = TRUE;
while (in2)
{
if (turn == 2)
{
in1 = FALSE;
while (turn == 2)

In1 = TRUE;
}
}

[* critical section */

turn = 2;
inl = FALSE;

T. Plachetka

Thread 2:
In2 = TRUE; /* entry */
while (in1)
{
if (turn == 1)
{
in2 = FALSE;
while (turn == 1)

in2 = TRUE;
}
}

[* critical section */

turn = 1; [* exit */

in2 = FALSE;

Bratislava, 2025

Peterson’s algorithm
int inl = FALSE; int in2 = FALSE; int last = 1;

Thread 1:
inl = TRUE; last = 1; /* entry protocol for threadl */
while (in2 && last == 1)

[* critical section */
inl = FALSE; /* exit protocol for threadl */

Thread 2:
In2 = TRUE; last = 2; /* entry protocol for threadl */
while (inl1 && last == 2)

[* critical section */

in2 = FALSE; /* exit protocol for threadl */

T. Plachetka Bratislava, 2025

Dekker's and Peterson's algorithms: ticket, bakery

Peterson’s and Decker's algorithm can be generalised for an
arbitrary number of threads. Idea: each thread must pass (N-1)
through phases of an entry protocol, where N is the number of
threads. It is guaranteed that exactly 1 thread passes through N-
1 phases in one moment. Each phase solves an instance of
mutual exclusion problem for 2 threads

Alternative solutions (easier to understand): ticket algorithm,

bakery algorithm

Sketch of the ticket algorithm: at entrance, thread ,obtains a
ticket” with a number. The number is automatically incremented.
The entrance is clear for the thread holding the number “shown
on a display”

Sketch of the bakery algorithm: at entrance, thread “looks” at the
numbers of all waiting threads and chooses some greater
number for itself. When this number becomes the least, entrance
IS clear

T. Plachetka Bratislava, 2025

Dekker's and Peterson's algorithms: ticket, bakery

Problem of ticket algorithm: integers are finite, they will overflow

The same Is true for the bakery algorithmus, but only when a
thread Is waiting at the entrance to the critical region

An additional requirement to the mechanism of mutual

exclusion: fairness. It guarantees that every thread enters a
critical region (i.e., a waiting thread is not always overtaken by
other threads). Peterson’s algorithm, as well as ticket and bakery

algorithms are fair

T. Plachetka Bratislava, 2025

Algorithmic solutions to mutual exclusion

Dekker's and Peterson’s algorithms belong to the worst solutions
to mutual exclusion. They require no support from the processor

or the operating system. However, they rely on polling and have

other requirements which can hardly be fulfilled in contemporary
computers

T. Plachetka Bratislava, 2025

Low-level mutual exclusion: TestAndSet

Instruction TestAndSet (TSL)
Int TSL(int *lock) /* atomic */
{

Int old_lock_state = *lock;
*lock = TRUE;
return old lock_state;

}

Int lock = FALSE: /* initialisation */

while (TSL(&lock) == TRUE) /* enter critical section */
, [* or dequeue this thread */

critical section;

lock = FALSE; /* leave critical section */

T. Plachetka Bratislava, 2025

Low-level mutual exclusion: CompareAndSwap

Instruction CompareAndSwap (CAS)
Int CAS(int *lock, int old_state, int new_state) /* atomic */
{

Int old_lock_state = *lock;

If (old_lock state == old_state)

*lock = new_state;
return old_lock_state;

}

Int lock = FALSE: /* initialisation */

while (CAS(lock, FALSE, TRUE)) /* enter critical section */
. [* or dequeue this thread */
critical section;

lock = FALSE; /* leave critical section */
T. Plachetka Bratislava, 2025

Low-level mutual exclusion: futex
Futex (fast userspace mutex) is a data structure

used in Linux to implement the synchronization primitives of the
pthread library

#include <linux/futex.n>
#include <sys/time.h>

Int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout, /* or: uint32_t val2 */

Int *uaddr2, int val3);

The futex_op can be one of: FUTEX WAIT, FUTEX WAKE,
FUTEX FD, FUTEX REQUEUE, FUTEX CMP_REQUEUE,
FUTEX WAKE_OP, FUTEX WAIT BITSET,

FUTEX WAKE_BITSET

T. Plachetka Bratislava, 2025

L ow-level mutual exclusion: futex

[* Acquire the futex pointed to by 'futexp': walit for its value to
become 1, and then set the value to 0. */

static void fwait(int *futexp)
{

Nt s;
while (1)
{
[* Is the futex available? */
If (CAS(futexp, 1, 0))
break; /* Yes */
[* Futex Is not available; wait */
s = futex(futexp, FUTEX_ WAIT, 0, NULL, NULL, 0);
If (s ==-1 && errno !'= EAGAIN)
errExit("futex-FUTEX_WAIT"),

}

T. Plachetka Bratislava, 2025

Low-level mutual exclusion: futex
static void fpost(int *futexp)
{
Nt s;
If (CAS(futexp, 0, 1))
{
s = futex(futexp, FUTEX _WAKE, 1, NULL, NULL, 0);
if (s ==
errExit("futex-FUTEX WAKE");
}

}

T. Plachetka Bratislava, 2025

Threads (POSIX threads, pthreads)

API (the core):

pthread_create() starts a new thread, returns its id
pthread_self() returns id of this thread
pthread_equal() compares 2 ids

pthread_join() waits for termination of a thread
pthread _mutex_init() Initialises a mutex

pthread _mutex_ destroy() deinitialises a mutex

pthread _mutex_lock() locks mutex
pthread mutex _unlock() unlocks mutex
pthread_cond_init() Initialises a conditional variable
pthread_cond_destroy() deinitialises a conditional variable
pthread _cond_signal() signals a conditional variable
pthread_cond_wait() waits on a conditional variable

T. Plachetka Bratislava, 2025

Threads (POSIX threads, pthreads)

Priklad: pthread_create a pthread_join

#include <pthread.h>
#include <stdio.h>

void *thread_routine(void* arg) {
printf("Inside newly created thread\n");

}

iInt main() {
pthread t thread id;
void *thread_result;
othread create(&thread _id, NULL, thread routine, NULL);
printf("Inside main thread \n");
pthread join(thread_id, &thread_result);
}

gcc test.c -Ipthread
T. Plachetka Bratislava, 2025

Threads (POSIX threads, pthreads)

The previous program ignores the return values of
pthread_create() a pthread_join(). It does not matter on a slide,
but it does matter on a computer:

if ((pthread_create(&thread_id, NULL, thread _routine, NULL) != 0)

{

ERROR(“pthread_create() failed\n”);

}

T. Plachetka Bratislava, 2025

Pthreads: producer-consumer

pthread_mutex_t mutex = PTHREAD MUTEX_INITIALIZER:

int shared_data =1,
void *consumer(void* arg) {

int i;

for (1=0;1<30;i1++){
pthread mutex lock(&mutex);
shared_data --; /* Critical Section. */

pthread_mutex_unlock(&mutex);

}
}

void main() {
int i;
pthread_t thread _id,;
pthread_create(&thread_id, NULL, consumer, NULL);

for(int1=0;1<30;1++){
pthread mutex lock(&mutex);
shared data ++; /* Producer Critical Section. */

pthread mutex unlock(&mutex);
}
pthread join(&thread _id);
printf("End of main =%d\n”, shared_data);

Bratislava, 2025

T. Plachetka

Pthreads: producer-consumer (bounded buffer)

#define QUEUE_SIZE 10
#define NR_ITERATIONS 1000

int in = 0; /* reading index */

int out = O; /* writing index */

int queue[QUEUE_SIZE];

pthread _mutex_t mutex = PTHREAD_ MUTEX_INITIALIZER,;

int waiting_empty = 0;

pthread cond _t empty cond = PTHREAD COND _INITIALIZER;
int waiting_full = 0;

pthread_cond_t full_cond = PTHREAD_COND_INITIALIZER;

void main()
{
pthread_t thread consumer;

pthread_create(&thread_consumer, NULL, consumer, NULL);
producer();

pthread_join(&thread_consumer);

}

T. Plachetka Bratislava, 2025

Pthreads: producer-consumer (bounded buffer)

void *consumer(void* arg)

{

inti;

for (i=0; i < NR_ITERATIONS; i++)
{
pthread mutex_lock(&mutex); /* Begin critical section */
If (in == out)
{ I* The queue is empty */
waiting_empty++;
do
pthread cond_wait(&empty cond, &mutex);
while (in == out); /* Why this loop? */
waiting_empty--;
}

[* When we get here, the queue is not empty. Read from queuelin], increase in */
in = (in + 1) % QUEUE_SIZE;
iIf (waiting_full > 0) /* Why not just cond_signal? */
pthread _cond_signal(&full _cond);
pthread mutex unlock(&mutex); /* End critical section */

}
}

T. Plachetka Bratislava, 2025

Pthreads: producer-consumer (bounded buffer)

void *producer(void *arg)

{

inti;

for (i=0; i < NR_ITERATIONS; i++)
{
pthread mutex lock(&mutex); /* Begin critical section */
if ((in+ 1) % QUEUE_SIZE == out)
{ I* The queue is full */
waiting_ full++;
do
pthread cond_wait(&full_cond, &mutex);
while ((in + 1) % QUEUE_SIZE == out); /* Why this loop? */
waiting_full--;
}
[* When we get here, the queue is not full. Write to queue[out], increase out */
out = (out + 1) % QUEUE_SIZE;
If (waiting_empty > 0) /* Why not just cond_signal? */
pthread _cond_signal(&empty cond);
pthread mutex unlock(&mutex); /* End critical section */

T. Plachetka Bratislava, 2025

Pthreads: programming discipline

« Shared data must always be accessed through a
single mutex

 The thread which locks a mutex also unlocks the
mutex

* A boolean condition (expressed in terms of program
variables) is associated with each condition variable.

Every time the value of this boolean condition changes,
do not forget to signal() the condition variable

— Call Signal with a locked mutex; and only call it
when you are certain that a thread is waiting for the
signal

 Beware of deadlocks

T. Plachetka Bratislava, 2025

Semaphores and mutexes

* In theory, mutex = binary semaphore (they offer
different methods but can be simulated with each
other)

* In Unix systems, there is a huge difference between a
semaphore and a mutex. Mutexes exist only in the
scope of the process. Semaphores exist in the scope

of the operating system

T. Plachetka Bratislava, 2025

Pthreads: Linux (contention scope)

» Contention scope Is the POSIX term for describing
bound and unbound threads

— A bound thread Is said to have system contention
scope, I.e. It contends with all threads In the system

— An unbound thread has process contention scope,
l.e. It contends with threads in the same process

_inux uses bound threads. But think of scheduling
policies. You cannot influence scheduling of (all)
processes, but you should be able to schedule (all)
your threads within a process in any way you like. With
Linux, you can not do that (and not only with Linux)

T. Plachetka Bratislava, 2025

Pthreads: mutex_attr, cond_attr, ...

Pthreads offers many other functions and advertises to
call them with other arguments besides those which
shown In previous slides

Do not use use the other functions and arguments, you
will make less mistakes. Theory of concurrent
programming does not make use of them either and is

still sufficiently interesting (far from trivial)

T. Plachetka Bratislava, 2025

Examp
pthreac

Pthreads: mutex_attr, cond_attr, ...
e:
__mutex_Init(pthread _mutex_t *mutex,

pthreac

__mutex_ attr *attr)

Correct use:

pthread mutex_init(&mutex, NULL);
Incorrect use:

any other

NULL means default behaviour (fast mutex). An error
checking mutex may be useful during debugging. But

beware

of recursive mutex which mimicks locking in

Java, and which is never needed

T. Plachetka

Bratislava, 2025

