
Databases, T. Plachetka, S2023-2024 1Introduction

Databases

Tomáš Plachetka, Ján Šturc

Faculty of mathematics, physics and informatics, 

Comenius University, Bratislava

Summer 2023–2024

http://www.dcs.fmph.uniba.sk/~plachetk

/TEACHING/DB2



Databases, T. Plachetka, S2023-2024 2Introduction

Recommended reading

• H. Garcia-Molina, J.D. Ullman, J. Widom: Database Systems, 

The Complete Book, Prentice Hall 2003

• S. Abiteboul, R. Hull, V. Vianu: Foundations of Databases, 

Addison-Wesley, 1995

• C. Zaniolo: Advanced Database Systems, Morgan Kaufmann, 

1997

• S. W. Dietrich, S. D. Urban: An Advanced Course in Database 

Systems (Beyond Relational Databases), Pearson Prentice Hall, 

2005

• P.A. Bernstein, V. Hadzilacos, N. Goodman: Concurrency 

Control and Recovery in Database Systems, Addison-Wesley, 

1987

• ...



Databases, T. Plachetka, S2023-2024 3Introduction

Course outline in short

Implementation and optimisation of database 

systems with focus on relational (and deductive) 

databases

• Other kinds of databases are also deployed and studied: 

network, object, document, ... (Some trends may be just 

programmers’ escape from mathematics.)

• A graph is a binary relation [N, E  N  N]. A tree is a special 

graph. Thus replacement of relations with e.g. trees concerns only 

the language used to talk about the data structures



Databases, T. Plachetka, S2023-2024 4Introduction

Structure of a modern database system

Relational

data

XML data

...

Database engine

(relational algebra)

Datalog

SQL

XQuery

OOGL

Frontend 

(user interface)

Backend 



Databases, T. Plachetka, S2023-2024 5Introduction

Structure of a modern database system

Relational

data

XML data

...

Database engine

(machine algebra)

Datalog

SQL

XQuery

OOGL

Frontend 

(user interface)

Backend 

Rel. 

algebra



Databases, T. Plachetka, S2023-2024 6Introduction

Subproblems

• Semantics of query languages, models of programs

• Addition of function symbols to Datalog (and other languages)

• Computation of queries: naïve evaluation, Pure Prolog

• Translation of Datalog and SQL to relational algebra, shredding

(mapping of XML documents to relational schemas)

• Optimisation of queries:

• in Datalog and SQL (naïve evaluation + recursion, indexing)

• in relational algebra

• in machine algebra



Databases, T. Plachetka, S2023-2024 7Introduction

Function symbols (functors) in Datalog

• A function (functor) is fully described by a name and arity 

(number of arguments). Functions of arity 0 are "ordinary 

constants".

• Mathematically, a function can be replaced with a characteristic 

predicate which “represents the graph of the function”:

f(X0, ...,Xn-1) = y ⇔ pf(X0, ...,Xn-1, Y)

But we do not care about the values returned by functions

• We will use function symbols to represent structured data. It 

is worth mentioning that they can be used to encode numbers 

(natural, rational, …)



Databases, T. Plachetka, S2023-2024 8Introduction

Function symbols: arithmetics on natural numbers

Arithmetics on natural numbers:

nat(0).

nat(s(X)) ← nat(X).

add(0, X, X) ← nat(X).

add(s(X), Y, s(Z)) ← nat(X), nat(Y), nat(Z), add(X, Y, Z).

le(X, Y) ← nat(X), nat(Y), add(X, _, Y). /* less equal */

mul(0, X, 0) ← nat(X).

mul(s(X), Y, Z) ← nat(X), nat(Y), nat(Z), mul(X, Y, V), add(V, Y, Z).



Databases, T. Plachetka, S2023-2024 9Introduction

Function symbols: arithmetics on natural numbers

Unary encoding of natural numbers:

nat(0). nat(s(X)) ← nat(X). 

Natural numbers are represented as terms: 0, s(0), s(s(0)), ...

nat(X) means that X is a natural number.

add(X, Y, Z)  Z = X + Y

mult(X, Y, Z)  Z = X  Y

le(X, Y)  X <= Y

We can rely on built-in arithmetic predicates instead on the 

definitions above (built-in predicates are presumably more 

efficient). However, when details are important, we can define 

them from scratch



Databases, T. Plachetka, S2023-2024 10Introduction

Function symbols: arithmetics

Exercise (related more to computability theory than databases):

Implement all elementary mathematical operations (+, -, , /) and 

functions (sqrt, sin, cos, log, exp) on natural numbers.

Propose a representation of whole and rational numbers



Databases, T. Plachetka, S2023-2024 11Introduction

Function symbols: Encoding of data structures

Fragment of an XML document:

<addr>

<place>

<street>Baker_Street</street>

<nr>221B</nr>

</place>

<city>London

<pcode>NW1_6XE</pcode>

</city>

</addr>

a(p(s(Baker_Street), nr(221B)), c(London, pc(NW1_6XE)))



Databases, T. Plachetka, S2023-2024 12Introduction

Function symbols: Encoding of data structures

Binary tree:

• Predicates:

tree(T) true when T is binary tree

label(L) true when L is a label of a node

• Function symbols:

null empty tree

node(L, T1, T2) tree with a root L, 

left subtree T1, right subtree T2

• Rules:

tree(null).

tree(node(L, T1, T2))  label(L), tree(T1), tree(T2).



Databases, T. Plachetka, S2023-2024 13Introduction

Terms

Definition:

• A variable is a term.

• Let t0, tn-1 be terms. Let f be an n-ary functional symbol. Then

f(t0, ...,tn-1) is a term.

Informally, a term is any text which can be used as an 

argument of a predicate

Note that constants such as 'a, 'john', '7', ... are terms as well. 

More specifically, they are functors with no arguments, i.e. 

functors of arity 0



Databases, T. Plachetka, S2023-2024 14Introduction

Computation of Datalog programs with functors

Definition: Herbrand universe for a Datalog program P is a set of 

all ground terms which are compositions of functors which appear 

in  P

Herbrand universum of an arbitrary program with only 

"ordinary constants" is finite (assuming that the extensional 

database is finite)

Herbrand universum of a program with function symbols can 

be infinite. Also the result of the naïve evaluation (fixpoint) can be 

infinite. E.g. the predicate nat(.) „comprises“ all natural numbers, 

the predicate tree(.) „comprises“ all binary trees etc.



Databases, T. Plachetka, S2023-2024 15Introduction

Substitutions

Definition: A substitution is a function : V  T, where V is a set 

of variables and T is a set of terms. A substitution is applied to 

terms.

Substitutions are denoted as  = [{Xi ↦ ti}i = 1, …, n]

The result of an application of a substitution  on term t is a 

term s = t , obtained by replacement of variables common in both 

t and  by terms determined by . The replacement is applied to 

all the variables “in parallel” (i.e. once for each variable)



Databases, T. Plachetka, S2023-2024 16Introduction

Ordering and equivalence of terms

Definition: A term t is at least as general as a term s (denoted 

t ⊒ s), if a substitution  exists such that s = t .

Definition: Terms t a s are equivalent (denoted t ≅ s), if

t ⊒ s and s ⊒ t

It holds: Two terms are equivalent, t ≅ s, if they differ only in 

naming of variables

This structure is called term algebra, although it is rather a lattice. 

Maxima are variables, minima are constant (ground) terms, i.e. 

terms which do not contain variables)



Databases, T. Plachetka, S2023-2024 17Introduction

Composition of substitutions

Definition: A substitution  is a composition of substitutions

 and  (denoted  =   ), if for each term t holds t = (t ) 

Definition: A substitution  is at least as general as a 

substitution  (denoted  ⊒ ), if a substitution  exists such that

 =   

Definition: Substitutions  a  are equivalent (denoted  ≅ ), if

 ⊒  and  ⊒ 



Databases, T. Plachetka, S2023-2024 18Introduction

Composition of substitutions

An empty substitution, (a partial) identical substitution and all 

substitutions which only permute variables’ names are equivalent

A substitution which is not equivalent to an identical 

substitution is a specialisation



Databases, T. Plachetka, S2023-2024 19Introduction

Term matching

Term matching is a specialised unification problem (we will deal 

with general unification later): Consider a term t and a ground

term s (i.e. term s does not contain variables). The task is to find 

whether t ⊒ s; and if so, then find a substitution  such that

s = t 

Solution: recursive descent (into the structure of the terms).

Begin with empty substitution  and run the following procedure

match(s, t). When it returns TRUE, then the term t is at least as 

general as the term s and  is the substitution which proves it (we 

say that the term t matches term s). When the procedure returns

FALSE, then no solution exists (we say that the term t does not 

match the term s)



Databases, T. Plachetka, S2023-2024 20Introduction

Term matching

boolean match(t, s) {

if (t is a variable) {

if ((t) is undefined) {

(t) = s; 

return TRUE;

}

else

return (t) == s;

}

else if (t == f(t0, …, tk-1) and s == f(s0, … sk-1)) {

for (i = 0; i < k; i++) {

if (! match(ti, si))

return FALSE;

}

return TRUE;

} 

else 

return FALSE;

}



Databases, T. Plachetka, S2023-2024 21Introduction

Unification: variants of tasks

Unification solves equations in term algebra. There are several 

variants:

1. Let t and s be terms. Find the most general substitutions  and

 such that t  = s 

2. Let t and s be terms. Find the most general substitution  such 

that t  = s . (This is a classical mathematical task on solving 

equations.)

3. Let t and s be terms. Find the most general substitutions  and

 such that t   = s . This variant is called weak unification.

4. If terms are bound by a more specialised algebra than equality 

of terms (on the level of texts), then we talk about paramodulation.

„Modulo“ is understood as “with respect to a set of additional 

properties”. (For example, in a commutative algebra, 2+3 unifies 

with 3+2.)



Databases, T. Plachetka, S2023-2024 22Introduction

Unification: variants of tasks

We will only consider variant 2:

Let t and s be terms. Find the most general substitution  such 

that t  = s 

Notes on the other variants:

• The most general solution of variant 3 is obtained so that 

renames the variables in t in such a way that they are distinct from 

variables in s. We denote t’ = t  and solve variant 2: t’  = s 

• Solution to variant 1 can be obtained from the solution of variant

3 by setting  =   

• Solution to variant 1 with the use of the previous two statements 

is the most general solution to variant 1



Databases, T. Plachetka, S2023-2024 23Introduction

Unification: algorithms

Two main approaches to unification (this is only a selection of 

representative algorithms):

• Manipulation of the set of equations: J.Herbrand (1930), 

A.Martelli, U.Montanari (1982)

• Manipulation of trees or dags which represent terms:

J.A.Robinson (1965), J.Corbin, M.Bidoit (1983), G.Escalada-Imaz, 

M.Ghallab (1988), I.Prívara, P.Ružička (1989)



Databases, T. Plachetka, S2023-2024 24Introduction

Unification: Herbrand? (1930), Martelli-Montanari (1982)

Let E be a system of equations. Let  be initially an empty substitution.

while (E ≠ Ø) {

select an equation e  E; 

E := E - {e};

if (e is X = t or e is t = X) { 

if (X occurs in t)

return solution does not exist;

else { 

σ = σ  ⃘[x↦t]; 

E = E[x↦t];

}

else 

if (e is of the form f(s0, ... , sn-1) = f(t0, ... , tn-1))

E = E  {s0 = t0, ... , sn-1 = tn-1};

else return(solution does not exist)

}



Databases, T. Plachetka, S2023-2024 25Introduction

Unification: Escalada-Ghallab (1988)

Both the terms are represented with trees or (better) dags

1. Define equivalence of nodes as follows:

• Roots of the terms are equivalent

• If two nodes are equivalent, then their sons are also equivalent (in 

order)

• Leafs denoted by the same variable or the same constant are 

equivalent

2. Compute symmetric, reflective and transitive closure from these 

equivalence classes

3. Assign substitution to a class of equivalence:

• If a class contains two nodes with different functional symbols, then 

solution does not exist

• If a class contains only variables, then choose one and map the 

others to the chosen one

• If a class contains variables as well as functors, then map all those 

variables to the node with the functor

4. Apply occurs-check



Databases, T. Plachetka, S2023-2024 26Introduction

Example:

p(f(X, g(X)), g(g(Y))) = p(f(g(U), V), g(V))

p

f

X g

g

Y

g

X

p

f

g V

g

V

U

Unification: Escalada-Ghallab (1988)



Databases, T. Plachetka, S2023-2024 27Introduction

Example:

p(f(X, g(X)), g(g(Y))) = p(f(g(U), V), g(V))

p:1

f:2

X:4 g:5

g:3

Y:8

g:6

X:7

p:9

f:10

g:12 V:13

g:11

V:14

U:15

Unification: Escalada-Ghallab (1988)



Databases, T. Plachetka, S2023-2024 28Introduction

Example:

p(f(X, g(X)), g(g(Y))) = p(f(g(U), V), g(V))

p:1

f:2

X:4 g:5

g:3

Y:8

g:6

X:7

p:1

f:10

g:12 V:13

g:11

V:14

U:15

Unification: Escalada-Ghallab (1988)



Databases, T. Plachetka, S2023-2024 29Introduction

Example:

p(f(X, g(X)), g(g(Y))) = p(f(g(U), V), g(V))

p:1

f:2

X:4 g:5

g:3

Y:8

g:6

X:7

p:1

f:2

g:12 V:13

g:3

V:14

U:15

Unification: Escalada-Ghallab (1988)



Databases, T. Plachetka, S2023-2024 30Introduction

Example:

p(f(X, g(X)), g(g(Y))) = p(f(g(U), V), g(V))

p:1

f:2

X:4 g:5

g:3

Y:8

g:6

X:7

p:1

f:2

g:12 V:13

g:3

V:14

U:15

Unification: Escalada-Ghallab (1988)



Databases, T. Plachetka, S2023-2024 31Introduction

Example:

p(f(X, g(X)), g(g(Y))) = p(f(g(U), V), g(V))

p:1

f:2

X:4 g:5

g:3

Y:8

g:6

X:4

p:1

f:2

g:4 V:13

g:3

V:14

U:15

Unification: Escalada-Ghallab (1988)



Databases, T. Plachetka, S2023-2024 32Introduction

Example:

p(f(X, g(X)), g(g(Y))) = p(f(g(U), V), g(V))

p:1

f:2

X:4 g:5

g:3

Y:8

g:6

X:4

p:1

f:2

g:4 V:5

g:3

V:5

U:15

Unification: Escalada-Ghallab (1988)



Databases, T. Plachetka, S2023-2024 33Introduction

Example:

p(f(X, g(X)), g(g(Y))) = p(f(g(U), V), g(V))

p:1

f:2

X:4 g:5

g:3

Y:4

g:5

X:4

p:1

f:2

g:4 V:5

g:3

V:5

U:15

Construction of substitution (mgu): Y ↦ g(U), X ↦ g(U), V ↦ g(X)

Explicit solution: X = g(U), Y = g(U), V = g(g(U))

Unification: Escalada-Ghallab (1988)



Databases, T. Plachetka, S2023-2024 34Introduction

f(g(X), X) = f(Y, g(Y))

f:1

g:2

X:4

X:3

f:5

Y:6 g:7

Y:8

Unification: Escalada-Ghallab (1988)



Databases, T. Plachetka, S2023-2024 35Introduction

f(g(X), X) = f(Y, g(Y))

f:1

g:2

X:4

X:3

f:1

Y:6 g:7

Y:8

Unification: Escalada-Ghallab (1988)



Databases, T. Plachetka, S2023-2024 36Introduction

f(g(X), X) = f(Y, g(Y))

f:1

g:2

X:4

X:3

f:1

Y:2 g:7

Y:2

Unification: Escalada-Ghallab (1988)



Databases, T. Plachetka, S2023-2024 37Introduction

f(g(X), X) = f(Y, g(Y))

f:1

g:2

X:3

X:3

f:1

Y:2 g:3

Y:2

Construction of substitution (mgu): Y ↦g(X), X ↦ g(Y) CYCLE!

Explicit solution does not exist: X = g(g(...g(U)...)), Y = g(g(...g(U)...))?

Unification: Escalada-Ghallab (1988)



Databases, T. Plachetka, S2023-2024 38Introduction

Asymptotical complexity of the algorithm:

• Traversing both terms creates equivalence classes such that 

each node is equivalent with itself. O(n)

• Synchronous traversal:

Find n1 

Find n2 

Union n1 n2 

• Complexity of the union-find task (amortised for n operations) 

is O(nα(n)), where α is the inverse Ackermann function, 

α(D(n)) = n

• Complexity of occurs-check test is O(n) e.g. using topological 

sorting

A(m, n) = if (m == 0) return n + 1;
else if (n == 0) return A(m - 1, 1);
else return A(m - 1, A(m, n - 1));

D(n) = A(n, n)

Unification: Escalada-Ghallab (1988)



Databases, T. Plachetka, S2023-2024 39Introduction

Unification: Implementation

Tricks leading to an efficient implementation of unification:

• Represent a term as a DAG (Directed Acyclic Graph)

• During the synchronous traversal, maintain equivalence classes for nodes and 

equivalence classes for variables

• Whenever Find operation fails, establish a new equivalence class

• If a functor does not match the functor already stored in a class, then 

immediately terminate. If a variable differs from the variable already stored in a 

class, make these variables equivalent

• Use a modified occurs-check: test whether a variable in the resulting 

substitution is equivalent to a variable in the same equivalence class



Databases, T. Plachetka, S2023-2024 40Introduction

Unification: explicit expression of the solution

The result of unification is a substitution (mgu)

Beware! An attempt to explicitly express the solution can lead to exponential complexity!

Example: 

f(x0, x1, x2, …, xn-1) = f(g(x1, x1), g(x2, x2), …, g(xn, xn)) 

Solution:

x0 ↦ g(x1, x1), x1 ↦ g(x2, x2), x2 ↦ g(x3, x3), ..., xn-1 ↦ g(xn, xn) 

Explicit solutions computed backwards: 

xn-1 = g(xn, xn), 

xn-2 = g(g(xn, xn), g(xn, xn)),

xn-3 = g(g(g(xn, xn), g(xn, xn)), g(g(xn, xn), g(xn, xn)) ... 

...

Lengths of terms: 1, 6, 16, 36, 76, 156, 316, ...

Length of i-th term: Li = 2Li-1+4



Databases, T. Plachetka, S2023-2024 41Introduction

Translation of Datalog to relational algebra
We want to compute Datalog programs using the following mapping to the 

relational algebra:

Datalog Relational algebra

predicate relation

predicate definition () assignment to a relation (:=), with union ()

constant (ground term) constant string

, join (⋈)

not antijoin (▷)

recursion iterative fixpoint operator ()

Terms in Datalog are used only in arguments of predicates (this includes built-in 

predicates such as “<“, “>”, “=“, “+”, “-”, …)

However, arguments of predicates can now be complex terms



Databases, T. Plachetka, S2023-2024 42Introduction

Datalog to relational algebra: conversion of arguments

If an argument of a predicate is a single variable, it can be directly mapped to 

an attribute of a relation. However, arguments in a Datalog rule can be more 

complex, e.g.:

p(f(X, g(X)))  r(f(X, Y)), r(g(f(Y, g(Y)))).

Subgoal r(f(X, Y)) has one argument, which depends on two variables. 

Subgoal r(g(f(Y, g(Y)))) has one argument, which depends on one variable. 

Arguments of subgoals and the head have a structure determined by functors

How to compute the join r(f(X, Y)), r(g(f(Y, g(Y)))), if predicate r is mapped to the 

one-attribute relation R?

How to assign the result of the join to the 

one-attribute relation P corresponding to the predicate p?

We will extend the relational algebra with two conversion operators:

atov: „arguments to variables“

vtoa: „variables to arguments“



Databases, T. Plachetka, S2023-2024 43Introduction

Datalog to relational algebra: conversion of arguments

atov: „arguments to variables“

Let G be an m-ary relation corresponding to subgoal g(a1, …, am), with 

variables X1, ..., Xn. The contents of the variables must fit the structure of the 

arguments of the subgoal. The result of atov(g, G) is an n-ary relation B. It is a 

selection (combined with a projection) of values from G which match the 

arguments of the subgoal g(a1, …, am)

relation atov(g(a1, …, am), G) {

B = ;

for (each tuple [t1, …, tm]  G) {

if (match(g(a1, …, am), g(t1, …, tm)) {

/* let  denote the matching substitution */

B = B  [X1 , …, Xn ];

}

return B;

}



Databases, T. Plachetka, S2023-2024 44Introduction

Datalog to relational algebra: conversion of arguments

vtoa: „variables to arguments“

Let B(X1, ..., Xn) be n-ary relation resulting from the computation of the body of 

a rule h(a1, …, am)  <body>. The contents of the relation B must fit the 

structure of the head h(a1, …, am). This is computed as 

H = vtoa(h(a1, …, am), B). Values from B are simply substituted to the variables 

in the head

relation vtoa(h(a1, …, am), B) {

H = ;

for (each tuple t  B) {

 = ;

for (i = 1; i < n; i++)

 =   [Xi ↦ ti];

H = H  [a1, …, am] ;

}

return H;

}



Databases, T. Plachetka, S2023-2024 45Introduction

Datalog to relational algebra: conversion of arguments

Back to the example

p(f(X, g(X)))  r(f(X, Y)), r(g(f(Y, g(Y)))).

Predicate r has a corresponding one-attribute relation R, predicate p has a 

corresponding one-attribute relation P

Translation of the rule to relational algebra:

P = vtoa(p(f(X, g(X))), atov(r(f(X, Y)), R) ⋈ atov(r(g(f(Y, g(Y))), R)))

For example, if R = {f(0, 1), g(f(1, g(1)))}, the computation proceeds as follows:

B1(X, Y) = atov(r(f(X, Y)), R) = {[0, 1]} /* first record matches */

B2(Y) = atov(r(g(f(Y, g(Y)))), R) = {1} /* second record matches */

B(X, Y) = B1(X, Y) ⋈ B2(Y) = {[0, 1]} /* natural join */

P(X) = vtoa(p(f(X, g(X)), B(X, Y)) = {[f(0, g(0))]} /* conversion to head */



Databases, T. Plachetka, S2023-2024 46Introduction

Datalog to relational algebra: conversion of arguments

General scheme of computation of a safe Datalog rule (without negation)

Consider a rule h ← g1, …, gk. 

Let G1, …, Gk be relations corresponding to predicates of subgoals g1, …, gk

1. For each subgoal gi compute relation Bi = atov(gi, Gi). (Relation Bi contains 

all values for variables of subgoal gi, which satisfy the subgoal gi.)

2. Compute B = B1 ⋈ …⋈ Bk. (Relation B contains all candidate values for 

variables of the rule body, which satisfy all the subgoals.)

3. Convert the result to arguments of the head: H = vtoa(h, B)

We can further optimise the computation in step 2 by early projecting out 

variables which appear neither in the rest of the join, nor in the head



Databases, T. Plachetka, S2023-2024 47Introduction

Computation of programs without neg.: naïve iteration
We can compute single rules (with functors). If there is more than one rule 

defining the same predicate, then compute its resulting relation as a union of 

the relations corresponding to the rules

If the predicate dependency graph is acyclic, topological sorting determines the 

order in which intensional predicates (relations) are computed

If the predicate dependency graph is cyclic, naive iteration can be used to 

compute the intensional predicates (relations). (Naive iteration is universal, i.e. 

it can as well be used when the dependency graph is cyclic.)



Databases, T. Plachetka, S2023-2024 48Introduction

Computation of programs without neg.: naïve iteration
do {

for (all IDB predicates pi) {

Pi = ;

}

change = FALSE;

for (all IDB predicates pi) {

old_Pi = Pi; /* old_Pi is Pi from previous iteration */

for (all rules r with head pi(…)) {

/* compute rule r */

Pi = Pi 

vtoa(pi(…), atov(., .) ⋈ atov(., .) ⋈ …);

}

if (old_Pi != Pi)

change = TRUE; /* a relation has changed */

}

} while (change);



Databases, T. Plachetka, S2023-2024 49Introduction

Computation of programs without neg.: semi-naïve iter.
Differential scheme:

• Each intensional predicate pi is assigned a difference pi corresponding to a 

relation Pi (initially an empty set)

• Individual rules are computed as in naïve iteration, but in the body of the rule 

of pi, differences pi(...) are used instead of subgoals pi(...) (other subgoals are  

unchanged). Results are stored to both new Pi as well as new Pi. However, 

only a difference against the old Pi is stored into Pi: 

Pi := Pi  Pi

Pi := Pi  Pi

• This is iterated until all Pi computed in the last iteration are empty (i.e. no 

tuple was added)

This scheme can be further optimised by finding an appropriate ordering of 

rules in the iteration (and using additional differentials in the body of the rules).

[R.Ramakrishnan, D.Srivastava, S.Sudarshan: Rule Ordering in Bottom-Up 

Fixpoint Evaluation in Logic Programs, 1990]



Databases, T. Plachetka, S2023-2024 50Introduction

Computation of programs without neg.: semi-naïve iter.

for (all IDB predicates pi) {

Pi = ;

Pi = ;

}

do {

for (all IDB predicates pi) {

for (all rules r with head pi(…)) {

/* compute rule r */

Pi = Pi 

vtoa(pi(…), (atov(., .) ⋈ atov(., .) ⋈ …)  Pi;

Pi = Pi  Pi;

}

if (Pi != )

change = TRUE; /* a relation has changed */

}

} while (change);



Databases, T. Plachetka, S2023-2024 51Introduction

Computation of programs with neg.: semijoin, antijoin

The natural join, ⋈, behaves as the cartesian product when 

the joined relations have no common attribute

We will now introduce the semijoin operator, ⋉ (which will later 

be needed in some optimalisation techniques): 

r ⋉ s = X1, …, Xm (r ⋈ s), where X1, …, Xm are the attributes of r

Antijoin, ▷, generalises the set difference operator :

r ▷ s = r  (r ⋉ s)

Hence, the result of the antijoin are tuples of r which do not join with any 

tuple of s

We are now ready to compute Datalog programs (possibly with 

functional symbols) with negation. Negated subgoals are antijoined with 

the positive part of a rule. The result of the naive (or seminaive) iteration 

is called a fixpoint



Databases, T. Plachetka, S2023-2024 52Introduction

Computation of programs with neg.: naïve iteration

for (all IDB predicates pi)

Pi = ;

do {

change = FALSE;

for (all IDB predicates pi) {

old_Pi = Pi; /* old_Pi is Pi from previous iteration */

for (all rules r with head pi(…)) { /* compute rule r */

Pi = r

vtoa(pi(...), atov(., .) ⋈ atov(., .) ⋈ …/*positive subgoals*/

▷ atov(., .) ▷ atov(., .) ▷ …); /*negated subgoals*/

}

if (old_Pi != Pi)

change = TRUE; /* a relation has changed */

}

} while (change);


