
Databases, T. Plachetka, S2023-2024 1SQL database tuning

Databases

Tomáš Plachetka, Ján Šturc

Faculty of mathematics, physics and informatics,

Comenius University, Bratislava

Summer 2023–2024

http://www.dcs.fmph.uniba.sk/~plachetk

/TEACHING/DB2

http://www.dcs.fmph.uniba.sk/~sturc/databazy/rldb

Databases, T. Plachetka, S2023-2024 2SQL database tuning

Database tuning

Engineering aspects of query optimisation

• Estimation of the output size of a query

• Tuning of schema: indexes, denormalisation, partitioning

Databases, T. Plachetka, S2023-2024 3SQL database tuning

Estimation of the output size

The evaluation of a query plan (e.g. choosing the order of joins) is

measured in the total number of output tuples. However, how to

compute the number of output tuples before computing

them?

For example, the number of tuples produced by a join R⋈S lies in

general between 0 (an empty relation) and |R||S| (a cartesian

product). It depends on the data in R and S (and the join

condition)

The query optimiser collects some statistics on the relations in a

special table called the catalogue. This allows for a better

estimation than, say, |R||S| / 2 for the output size of R⋈S

Databases, T. Plachetka, S2023-2024 4SQL database tuning

Estimation of the output size

Statistics for a relation R:

B(R): the number of blocks

T(R): the number of tuples

V(R, A): the number of distinct values of the attribute A

MAX(R, A): the maximum value of A

MIN(R, A): the minimum value of A

We will assume SQL queries of form

select AttrList

from R1, ..., RN

where Cond

The reduction factor for a query Q (i.e. the output relation) is

defined as rf(Q) = B(Q) / (B(R1) * ... * B(RN))

Databases, T. Plachetka, S2023-2024 5SQL database tuning

Estimation of the output size

Idea: The reduction factor for a query Q will be estimated by

induction on the structure of Q (without actually computing Q):

rf(Q) = rf(AttrList) * rf(Cond) /* assumption of independence */

rf(AttrList) = #attr(AttrList) / i #attr(Ri)

/* assumption that all attributes contribute equally to the output

size */

rf(Cond1 and Cond2) = rf(Cond1) * rf(Cond2)

/* assumption of independence */

rf(Cond1 or Cond2) = min(1, rf(Cond1) + rf(Cond2))

/* assumption of independence */

Databases, T. Plachetka, S2023-2024 6SQL database tuning

Estimation of the output size

rf(Ri.A=const) = 1 / V(Ri.A)

/* assumption of uniform distribution */

rf(Ri.A>const) = (MAX(Ri.A) – const) / (MAX(Ri.A) – MIN(Ri.A))

/* assumption of uniform distribution */

rf(Ri.A=Rj.B) = 1 / (max(V(Ri.A), V(Rj.B)))

/* assumption of uniform distribution */

etc.

E.g. the number of the output tuples for a selection R.A=const (R)

can then be estimated as T(R) * rf(R.A=const)

Databases, T. Plachetka, S2023-2024 7SQL database tuning

Schema tuning: a sample database

A sample university database (Kifer et al.):

students(StudentId, SName, SAddr, SStatus)

professors(ProfId, PName, DeptId)

courses(CourseId, DeptId, CName, CDescr)

transcripts(StudentId, CourseId, Semester, Grade)

teaching(ProfId, CourseId, Semester)

Databases, T. Plachetka, S2023-2024 8SQL database tuning

Schema tuning: indexes

A clustered index (usually created on the primary key) reflects the

physical ordering of tuples in a relation. As there is only one

physical ordering of tuples, there is at most one clustered index

There may be arbitrarily many non-clustered indexes (hash

tables or search trees, e.g. B+-trees) attached to a relation

Paul00112233

Anna00112234

Matt00112235

Tim00112236

Carol00112237

Rob00112238

00112233

00112235

00112236

00112238

Anna

Carol

Paul

Tim

clustered index relation unclustered index

Databases, T. Plachetka, S2023-2024 9SQL database tuning

Schema tuning: indexes

professors(ProfId, PName, DeptId)

Assume that ProfId is the primary key. Hence, the system probably

automatically creates a clustered index on ProfId (unless the schema states

otherwise)

select p.DeptId

from professors p

where p.PName = :name

If names of professor tend to differ, create an unclustered index on PName

However, what if there are many professors with the same name (e.g.

'Johanson' in Island)? If this is a frequent query, create a clustered index on

PName, not on the primary key (and let the index on the primary key be

unclustered, which guarantees the uniqueness of ProfId anyway)

Databases, T. Plachetka, S2023-2024 10SQL database tuning

Schema tuning: indexes

transcripts(StudentId, CourseId, Semester, Grade)

select t.StudentId, t.CourseId

from transcripts t

where t.Grade = :grade

Do not create an unclustered index on Grade, because grades are from a small

domain (A-Fx). For a concrete :grade, the output will be large. An index scan

may therefore be slower than a simple sequential scan

Do not create a clustered index on Grade, save it for other queries. The best is

not to create any index at all

Do not create indexes for queries which access (e.g. output) more than

20% of tuples

Databases, T. Plachetka, S2023-2024 11SQL database tuning

Schema tuning: indexes

transcripts(StudentId, CourseId, Semester, Grade)

Presumably, the queries to this table frequently use conditions on StudentId

and CourseId. Less frequent queries use a condition on Semester. It seems

therefore logical to create a clustered index on [StudentId, CourseId]. However,

it is not a good idea, because there is seldomly more than 1 record for a given

[StudentId, CourseId] (only when a student repeats a course)

It is appropriate to create an unclustered hash index on

[StudentId, CourseId] (a hash index has a smaller overhead than a B+-

tree and we are discussing non-range queries). In addition, create a

clustered B+-tree index on Semester (for which range queries are

frequent)

Use clustering for grouping tuples which are likely to appear in the

output of queries

Databases, T. Plachetka, S2023-2024 12SQL database tuning

Schema tuning: indexes

teaching(ProfId, CourseId, Semester)

Suppose that we have already created a clustered B+-tree index on

Semester in order to tune a query. We are tuning another query which

needs a clustered index on [ProfId, CourseId]. What now?

In this case (a small number of attributes), we are lucky, beause we can

create an unclustered B+-tree index on

[ProfId, CourseId, Semester]. The computation of output tuples will

then not access the table teaching at all, because the values will be

fetched directly from the index! (This is called an index cover.)

Databases, T. Plachetka, S2023-2024 13SQL database tuning

Schema tuning: indexes

professors(ProfId, PName, DeptId)

courses(CourseId, DeptId, CName, CDescr)

teaching(ProfId, CourseId, Semester)

select

from professors p, courses c

where p.DeptId = ‘cs’ and c.DeptId = ‘math’ and c.CourseId in

(

select t.CourseId

from teaching t

where t.Semester = ‘s2015’ and t.ProfId = p.ProfId

)

Nested queries are (usually) optimised separately. Hence, a clustered index on

CourseId in teaching does not help at all, because CourseId does not appear in

the where clause of the subquery. It is better to rewrite the query without

nesting

Databases, T. Plachetka, S2023-2024 14SQL database tuning

Schema tuning: indexes

professors(ProfId, PName, DeptId)

courses(CourseId, DeptId, CName, CDescr)

teaching(ProfId, CourseId, Semester)

select

from professors p, courses c, teaching t

where p.DeptId = ‘cs’ and c.DeptId = ‘math’ and c.CourseId = t.CourseId and

t.Semester = ‘s2015’ and p.ProfId = t.ProfId

A good evaluation plan is then (perhaps extended with some preprocessing)

Dept='cs' (professors) ⋈ Semester='s2015' (teaching ⋈ DeptId='math' courses)

which benefits from a clustered index on CourseId in teaching. (The table

professors is covered by indexes.)

Databases, T. Plachetka, S2023-2024 15SQL database tuning

Schema tuning: indexes

transcripts(StudentId, CourseId, Semester, Grade)

select t.Semester, count(*) as Cnt

from trancripts t

where t.Grade <= :grade

group by t.Semester

An intuition tells us to create a clustered B+-tree index on Grade, because the

condition expresses a range of values. However, this condition is not very

selective...

It is better to create a clustered index on Semester (B+-tree or hash) which is

needed for creating the groups. Each group is then sequentially scanned,

counting the number of tuples

Databases, T. Plachetka, S2023-2024 16SQL database tuning

Schema tuning: indexes

transcripts(StudentId, CourseId, Semester, Grade)

students(StudentId, SName, SAddr, SStatus)

select t.Semester, count(*) as Cnt

from students s, transcripts t

where s.StudentId = t.StudentId and t.CourseId = 'cs'

group by t.Semester

With no indexes, the plan may be a nested-loop-join or a sort-merge-join. Such

plans are inefficient, because the output is probably small and intermediate

results are probably large.

It helps to create an index on CourseId (which is the primary key anyway) in the

table transcripts

Databases, T. Plachetka, S2023-2024 17SQL database tuning

Schema tuning: indexes

transcripts(StudentId, CourseId, Semester, Grade)

teaching(ProfId, CourseId, Semester)

select t.ProfId, r.StudentId

from teaching t, transcripts r

where t.Semester = r.Semester and t.CourseId = r.CourseId

The output is probably much larger than any of the tables involved. An

appropriate plan is a sort-merge-join for the computation of the join. We can

help the optimiser with the choice of this plan by the creation of a clustered

index [Semester, CourseId] for the table transcript (which saves a large part of

the sorting)

Databases, T. Plachetka, S2023-2024 18SQL database tuning

Schema tuning: indexes

students(StudentId, SName, SAddr, SStatus)

professors(ProfId, PName, DeptId)

courses(CourseId, DeptId, CName, CDescr)

transcripts(StudentId, CourseId, Semester, Grade)

teaching(ProfId, CourseId, Semester)

ProfId and CourseId are foreign keys in teaching (a non-existing professor

does not teach, a non-existing course is not taught). E.g. each deletion of e.g. a

professor from professors fires an integrity check in the table teaching (deleting

all the tuples with that ProfId)

It is therefore advisable to have an index on foreign keys

Databases, T. Plachetka, S2023-2024 19SQL database tuning

Schema tuning: form of queries

The choice of built-in operators is important

courses(CourseId, DeptId, CName, CDescr, Hours)

select c.CName

from courses c

where c.Hours <> 2

Avoid <> when possible, it usually leads to a sequential scan. If '2' is a very

frequent value for hours, then this is perhaps better (a union of all other values):

select c.CName

from courses c

where c.Hours = '1' or c.Hours = '3' or c.Hours = '4' or c.Hours = '5'

Databases, T. Plachetka, S2023-2024 20SQL database tuning

Schema tuning: form of queries

professors(ProfId, PName, DeptId, HatSize)

select p.DeptId, max(p.HatSize)

from professors p

group by p.DeptId

having p.DeptID in ('cs', 'math')

It is better to move the selection to the where clause, it will be applied earlier:

select p.DeptId, max(p.HatSize)

from professors p

where p.DeptID = 'cs' or p.DeptID = 'math'

group by p.DeptId

Although these queries are equivalent, the optimiser may apply the selection

after aggregation in the plan for the first query, which unnecessarily increases

the size of the intermediate results

Databases, T. Plachetka, S2023-2024 21SQL database tuning

Schema tuning: denormalisation

students(StudentId, SName, SAddr, SStatus)

professors(ProfId, PName, DeptId)

courses(CourseId, DeptId, CName, CDescr)

transcripts(StudentId, CourseId, Semester, Grade)

teaching(ProfId, CourseId, Semester)

Denormalisation increases the performance of frequent

queries by the violation of a normal form of some table or

tables. It often has the form of adding new (redundant)

attribute to a table

Databases, T. Plachetka, S2023-2024 22SQL database tuning

Schema tuning: denormalisation

students(StudentId, SName, SAddr, SStatus, AvgGrade)

transcripts(StudentId, CourseId, Semester, Grade)

For example, if a query concerning the overall averages over

students' grades is frequent, the table student can be extended

with an attribute AvgGrade

A common problem with such a denormalisation are updates to

the database. In this case, when the table transcript changes,

the value of AvgGrade in students must be updated as well.

This is what triggers are used for

A general advice is: do not use denormalisation (unless you

know very well what you are doing)

Databases, T. Plachetka, S2023-2024 23SQL database tuning

Schema tuning: denormalisation (horizontal partitioning)

transcripts(StudentId, CourseId, Semester, Grade)

select t.StudentId, t.CourseId

from transcripts t

where t.Grade = :grade

If this is a very frequent query, the table transcript could be explicitly grouped:

transcriptsA(StudentId, CourseId, Semester)

transcriptsB(StudentId, CourseId, Semester)

...

transcriptsF(StudentId, CourseId, Semester)

Then the query becomes e.g.

select t.StudentId, t.CourseId

from transcriptsA t

Again, a general advice is: do not do this

Databases, T. Plachetka, S2023-2024 24SQL database tuning

Schema tuning: denormalisation (vertical partitioning)

students(StudentId, SName, SAddr, SStatus, Photo, Phone, ...)

If most attributes are usually unused in queries, the table can be

split into two tables, e.g.

students1(StudentId, SName)

students2(StudentId, SStatus, Photo, Phone, ...)

Some systems do this internally (it saves the transfer costs for

retrieving tuples from the disk and writing tuples to the disk)

Databases, T. Plachetka, S2023-2024 25SQL database tuning

Summary

This is (an incomplete) collection of tuning techniques of an engineering

character. A general advice:

•Do not fiddle with the schema denormalisation prematurely

•Choose the clustered indexes with care (the change of a clustered index

requires resorting the relation), reflect the structure of intermediate results of

frequent queries

•Think twice before you create an additional unclustered index. Indexes can

significantly speed up queries, but slow down updates (as all indexes attached

to relations must also be updated)

•When importing a large amount of data into the database, consider to remove

all indexes; and recreate the indexes back again after the database has been

populated

•Do not use all the features of the SQL language. Write queries in a "canonical"

form which does not unnecessarily limit the optimiser

•When a machine-generated plan for an SQL query differs from your

expectation, manually rewrite the query directly in the relational algebra. If your

SQL system does not allow you to do this, learn the details of its optimiser!

