
Databases, T. Plachetka, S2024-2025 1Distributed databases

Databases

Tomáš Plachetka, Ján Šturc

Faculty of mathematics, physics and informatics,
Comenius University, Bratislava

Summer 2024–2025

http://www.dcs.fmph.uniba.sk/~plachetk

/TEACHING/DB2

http://www.dcs.fmph.uniba.sk/~sturc/databazy/rldb

Databases, T. Plachetka, S2024-2025 2Distributed databases

Literature

P.A. Bernstein, V. Hadzilacos, N. Goodman:
Concurrency Control and Recovery in Database
Systems, 1987

H. Garcia-Molina, J.D. Ullman, J. Widom: Database
System Implementation, Prentice Hall, 2000

P.A. Bernstein, E.Newcomer: Transaction Processing,
2009

G. Weikum, G. Vossen: Transactional Information
Systems, 2002

Databases, T. Plachetka, S2024-2025 3Distributed databases

General requirements: ACID
Atomicity: each transaction is processed in whole (if any part fails, then
the whole transaction fails and the database is left unchanged)
Consistency: each single transaction which begins with a consistent
database leaves the database in a consistent state when it is commited
(this requirement is addressed to application programmers)
Isolation: the transactions are either executed serially, or the system
guarantees that the execution has the same effect as a serial execution
Durability: once a transaction is committed, all the changes made by the
transactions remain in the database, also in presence of failures

Databases, T. Plachetka, S2024-2025 4Distributed databases

Centralised (2-tier) architecture

Trans 1

DB system

Trans 2 Trans N...

START
COMMIT / ABORT
READ
WRITE
(INSERT)
(DELETE)

DATALOG

Databases, T. Plachetka, S2024-2025 5Distributed databases

Centralised (2-tier) architecture

Advantages:

• simple

• implemented and tested over decades

• compatible with existing bureaucracy

Disadvantages:

• everything else

• fragility (data cannot be accessed when the server is
out of order)

• no scalability

• etc.

Databases, T. Plachetka, S2024-2025 6Distributed databases

Distributed databases: a framework

Requirements:

• ACID

• Transparency: the client does not see whether the
system is distributed or not

• Resistance against failures: a server must not wait
indefinitely long for a recovery of another server

Databases, T. Plachetka, S2024-2025 7Distributed databases

Trans 1 Trans 2 Trans N...

DB system 1

Site 1

DB system 2

Site manager 2Site manager 1

START
COMMIT / ABORT
READ
WRITE
(INSERT)
(DELETE) DB system S

...

Site manager S

Trans 3

Site 2

Site S

Distributed (3-tier) architecture

Databases, T. Plachetka, S2024-2025 8Distributed databases

Atomic commit protocol

A transaction demands COMMIT from its home-site.
(Note that even if the transaction could see all sites, it
cannot demand COMMIT from all the sites at once.)

The most important requirement: Either all sites
agree on COMMIT, or all agree on ABORT

Assumptions:

• If a site fails, it simply stops working (no byzantine
failures). However, a site can fail during the agreement
protocol

•A failure of a site is detected (when a site is waiting for
a message from a failed site, it receives a message "I
am down" from the network on behalf of the failed site)

Databases, T. Plachetka, S2024-2025 9Distributed databases

Atomic commit protocol: requirements

1. All sites which decide will make the same decision (all
decide COMMIT or all decide ABORT)

2. If a site decides, it never changes its decision

3. The decision COMMIT can be only made when all the
sites vote YES

4. If all the sites vote YES and there are no failures, then
all the sites must eventually decide COMMIT

5. If there are no failures for a sufficiently long time, then
the non-failed sites will eventually make a decision

Databases, T. Plachetka, S2024-2025 10Distributed databases

Two-phase atomic commit protocol (2ACP): COMMIT

Databases, T. Plachetka, S2024-2025 11Distributed databases

Two-phase atomic commit protocol (2ACP): ABORT

Databases, T. Plachetka, S2024-2025 12Distributed databases

Two-phase atomic commit protocol (2ACP): Phase 1

Phase 1: a transaction T demands COMMIT from the
coordinator. If the coordinator votes NO, it immediately decides
ABORT (writes <ABORT T> to its log) and broadcasts [ABORT]
to all the participants. Otherwise:

• Coordinator writes <prepare T> to its log and broadcasts
[VOTE T] to all the participants

• When a participant receives [VOTE T], it asks its underlying
database system whether it can commit T

–If not, it decides ABORT (it writes <ABORT T> to its log)
and answers the coordinator with [NO T]

–If yes, it writes <YES T> do its log and answers the
coordinator with [YES T]

Databases, T. Plachetka, S2024-2025 13Distributed databases

Two-phase atomic commit protocol (2ACP): Phase 2

Phase 2: The coordinator is waiting for YES/NO from all the
participants

• When it receives a [NO T], it decides ABORT, writes
<ABORT T> to its log and broadcasts [ABORT T]

• When all the answers are [YES T], it decides COMMIT, writes
<COMMIT T> do its log and broadcasts [COMMIT T]

The participants (which voted YES) are waiting for the decision
from the coordinator and then write the decision to their logs

When a participant fails before sending its vote, the coordinator
detects the failure and proceeds as if the participant voted NO

A failed participant does not influence the decision

Databases, T. Plachetka, S2024-2025 14Distributed databases

2ACP: Recovery from a failure

A participant recovering from a failure reads its log.

When it finds <COMMIT T>, it does redo(T)

When it finds <ABORT T> or <NO T>, it does undo(T)

When it finds [YES T], it notifies the coordinator and waits for the
decision (subsequently, it does undo(T) or redo(T))

The coordinator recovering from a failure reads its log.

When it finds <COMMIT T>, it does redo(T) and broadcasts
<COMMIT T> to participants

Otherwise it does undo(T) and broadcasts <ABORT T> to
participants

Databases, T. Plachetka, S2024-2025 15Distributed databases

Three-phase atomic commit (3ACP): COMMIT

´Pre-
commit´

‘Acknowledge’

‘Commit
’

Databases, T. Plachetka, S2024-2025 16Distributed databases

Three-phase atomic commit (3ACP): ABORT

Databases, T. Plachetka, S2024-2025 17Distributed databases

3ACP: the idea behind the PRE-COMMIT phase

The idea behind the middle phase (PRE-COMMIT) is to alleviate
a possible failure of the coordinator. When the coordinator fails,
the surviving sites have a piece of information which allows for a
decision: either a non-failed participant has already a received a
PRE-COMMIT message or not:

•If not, the decision will eventually be ABORT.

•If so, the decision will be COMMIT, if there are no subsequent
failures

After the failure of the coordinator, the participants elect a new
coordinator which collects the information on the presence of
PRE-COMMIT. When it finds one, it first floods all the non-failed
processes with PRE-COMMIT, waits for acknowledgements and
then decides COMMIT (this decision is safe, because even
when it fails, the others will COMMIT anyway, using the same
scenario)

Databases, T. Plachetka, S2024-2025 18Distributed databases

3ACP: link failures

The aforementioned version of 3ACP assumes that only the
sites may fail, not the links which connect them (partitioning of
the network)

When the links are allowed to fail as well, 3ACP can be
extended with a majority rule [Skeen, 1982] and PRE-ABORT
states [Keidar, Dolev, 1994]. This extended 3ACP guarantees
correctness, but blocks sometimes. More precisely, it blocks
exactly when it has to (i.e. when any other atomic commit
protocol would also block)

If link failures or total site failures (all sites fail) are possible, then
every atomic commit protocol must block sometimes

If all sites fail, all recovered sites must wait until the last failed
site has recovered (or some site has reached a decision before)

Databases, T. Plachetka, S2024-2025 19Distributed databases

3ACP: link failures

Majority protocol: a group of sites is allowed to make a decision
only when it constitutes a strict majority of all sites

Databases, T. Plachetka, S2024-2025 20Distributed databases

3ACP: link failures

Majority protocol must be extended with PRE-ABORT states.
Another problem arises in the majority extended with PRE-
ABORT states: connected nodes form a quorum but the number
of PRE-COMMITs equals the number of PRE-ABORTs

Databases, T. Plachetka, S2024-2025 21Distributed databases

3ACP: link failures

Keidar&Dolev, 1994: a tie break for breaking the symmetry are
two counters in each site which encode whether the site was last
involved in a commit or abort attempt

Databases, T. Plachetka, S2024-2025 22Distributed databases

Election of new coordinator

Problem statement:

• Each site has a unique identifier

• Each sites knows all identifiers

The goal is to choose the unfailed node with the largest
identifier to be the coordinator and let all the sites know its
identifier

Databases, T. Plachetka, S2024-2025 23Distributed databases

Election of new coordinator: bully protocol

Example: the node 5 has failed

1

2

3

4

5

Election

Election

Election

1

2

3

4

5

OK

OK

Databases, T. Plachetka, S2024-2025 24Distributed databases

Election of new coordinator: bully protocol

Example: the node 5 has failed

1

2

3

4

5

Election
Election

1

2

3

4

5

OK

Election

Databases, T. Plachetka, S2024-2025 25Distributed databases

Election of new coordinator: bully protocol

Example: the node 5 has failed, 4 becomes the new coordinator

1

2

3

4

5

Coordinator

Coordinator

Coordinator

Databases, T. Plachetka, S2024-2025 26Distributed databases

Replication
Problem statement:
• A data object is replicated in several sites

Goal: Guarantee the isolation of transactions
→ distributed locking, distributed time-stamp
protocol, ...

Databases, T. Plachetka, S2024-2025 27Distributed databases

Distributed 2-phase locking: centralised
Centralised scheme
• One site is a manager for all locks

– Easy to implement
– The manager can fail; the manager is a
bottleneck

Databases, T. Plachetka, S2024-2025 28Distributed databases

Primary-copy scheme

• Each site is a lock manager, responsible for a subset of the
data objects

• In case of replicated objects, one copy is the primary one (i.e.
exactly one site manages the primary copy)

• Read-lock can be acquired from any site which has the replica
of the object

• Write-lock can only be acquired from the primary-copy
manager, which must in turn acquire the write-lock from all other
sites holding a replica of the object

– No bottleneck for reading

– Primary copy manager can fail

→ Primary-copy scheme is as bad as the centralised scheme

Distributed 2-phase locking: primary copy

Databases, T. Plachetka, S2024-2025 29Distributed databases

Distributed 2-phase ROWA (Read-One-Write-All) protocol
• Read-lock can be acquired from any site manager
• Write-lock must be acquired from all the sites holding a replica of the data
object
• Cheap reads, expensive writes

Majority 2-phase protocol
• Read-lock as well as write-lock must be acquired from the strict majority of
sites which hold replicas
• 2 (n/2 + 1) messages for lock, (n/2 + 1) messages for unlock
• The price of a read equals the price for a write

(Note that a deadlock may occur in the majority protocol also when acquiring
write-lock for a single object:
e.g. there are 3 transactions, each of them has acquired the write-lock in 1/3
sites.)

Distributed 2-phase locking: 2 extremes

Databases, T. Plachetka, S2024-2025 30Distributed databases

Distributed 2-phase locking: quorum protocol
Quorum protocol is a compromise between ROWA
and the majority protocol
• Each site is assigned a weight wi, wi>0
• Let S denote the sum of all weights: S=∑ wi,

• Let Qr (read quorum) a Qw (write quorum) positive numbers
such that Qr + Qw > S and 2 Qw > S
(Qr a Qw may even differ for different data objects)

Rules:
• A read-lock must be acquired in sites with the total sum of
weights at least Qr

• A write lock must be acquired in sites with the total sum of
weights at least Qw

Databases, T. Plachetka, S2024-2025 31Distributed databases

Distributed deadlocks
• Deadlocks are more complicated in a distributed
system than in a centralized one
Example: T1 runs in Site 1, T2 runs in Site 2

Site 1 (manages X)
write-lock1(X)
w1(X)

write-lock1(Y)

Site 2 (manages Y)

write-lock2(Y)
w2(Y)
write-lock2(X)

• T1 and T2 are in a deadlock
• But Site 1 knows only that T2 is waiting for T1; Site 2 knows
only that T1 is waiting for T2

Databases, T. Plachetka, S2024-2025 32Distributed databases

Distributed deadlocks
• Solution: a repetitive detection of deadlocks and abort
of a transaction in a deadlock
• Management of a wait-for-graph (WFG) in each site
• A distributed protocol is run now and then to construct
a global WFG which combines the local WFGs
• A deadlock exists when there is a cycle in the global
WFG
• The global WFG is constructed in one site, called a
coordinator

Databases, T. Plachetka, S2024-2025 33Distributed databases

Example

Local WFGs

Global WFG

Distributed deadlocks

Databases, T. Plachetka, S2024-2025 34Distributed databases

Protocol for the construction of the WFG
• Coordinator broadcasts a request for the local WFGs
• Coordinator combines the local WFGs to a global WFG and
aborts a transaction in order to remove cycles in the global WFG
• Aborts are handled using the atomic commit protocol

Observation:
• The coordinator does not know the actual global WFG, only its
approximation (because of communication delays)
• The consequence is the detection of cycles which do not exist
at that time
• Hence, the coordinator sometimes unnecessarily aborts a
transaction which is not involved in a deadlock

Distributed deadlocks

Databases, T. Plachetka, S2024-2025 35Distributed databases

Example: phantom cycles in the WFG

• T2 releases the lock in S1: the edge
T1→T2 should disappear from the
WFG

• T2 asks for a lock which is has been
assigned to T3 in S2: in site 2, the
edge T2→T3 is added to the WFG

• However, the coordinator mat
perceive the above actions in the
different order, when it receives the
WFG from S2 before receiving WFG
from S1. Then it detects the cycle
T1 → T2→T3 →T1 in its global WFG
and unnecessarily aborts some of the
transactions T1, T2, T3

Distributed deadlocks

	1 - Slide1
	2 - Slide2
	3 - Slide3
	4 - Slide4
	5 - Slide5
	6 - Slide6
	7 - Slide7
	8 - Slide8
	9 - Slide9
	10 - Slide10
	11 - Slide11
	12 - Slide12
	13 - Slide13
	14 - Slide14
	15 - Slide15
	16 - Slide16
	17 - Slide17
	18 - Slide18
	19 - Slide19
	20 - Slide20
	21 - Slide21
	22 - Slide22
	23 - Slide23
	24 - Slide24
	25 - Slide25
	26 - Slide26
	27 - Slide27
	28 - Slide28
	29 - Slide29
	30 - Slide30
	31 - Slide31
	32 - Slide32
	33 - Slide33
	34 - Slide34
	35 - Slide35

