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Datalog vs Prolog: bottom-up vs top-down

In this lecture, we will ignore negation in programs (to keep things 

simple). We will focus on recursion in programs (with functional 

symbols)
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Datalog vs Prolog: bottom-up vs top-down

No difference in syntax, a world of difference in computation

Examples:

• Simple join: q(X, Y, Z)  r(X, Y), s(Y, Z). ?- q(a, b, c).

Bottom-up (Datalog’s naive evaluation) computes the join, then 

the selection: 
B(X, Y, Z) = R(X, Y) ⋈ S(Y, Z); Q(X, Y, Z) = X=a∧Y=b∧Z=c B(X, Y, Z)

Top-down (Prolog’s SLD resolution) starts with the query. It 

attempts to prove q(a, b, c) by finding the rule whose head unifies 

with q(a, b, c) and finding instances of variables which satisfy all 

subgoals in the body of that rule

• Recursion, a graph path: 

p(X, Y)  e(X, Y). p(X, Y)  e(X, Z), p(Z, Y). ?- p(a, b).

Top-down requires left recursion (EDB subgoals first), as it proves 

subgoals from left to right. The order is unimportant in bottom-up 

(conjunction/join is commutative). However, bottom-up computes 

all paths, although the query concerns only the path from a to b
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Example: recursion, a graph path

p(X, Y)  e(X, Y). p(X, Y)  e(X, Z), p(Z, Y). ?- p(a, b).

Bottom-up computation (Datalog) processes all paths, i.e. also paths in 

the black component of the graph. However, only blue edges matter

Datalog vs Prolog: bottom-up vs top-down
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Another example: recursion, ancestors (an acyclic graph)

anc(X, Y)  par(X, Y). /* Y is parent of X */

anc(X, Y)  par(X, Z), anc(Z, Y). 

?- anc(j, A). /* ancestors of j (j stands for John) */

EDB: par(X, Y) = {[c, a], [c, d], [d, b], [e, b], [f, c], [f, e], [g, c], [h, d], 

[i, d], [i, e], [j, f], [j, h], [k, g], [k, i]}

Datalog vs Prolog: bottom-up vs top-down

c d e

a b Addition of an arbitrary graph below 

vertices f, g, h, i, j, k does not 

influence the time complexity of top-

down computation of John’s 

ancestors. But it will influence the 

time complexity of bottom-up 

computation (naïve iteration 

computes the entire relation anc, 

not only John's ancestors)
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1. The goal, G0, is the root node of the tree.

2. The leaves of the root node are all rule nodes applicable to G0. Heads 

of these nodes are unified with G0 so that:

a) Before the unification, all variables of the rules are made disjoint 

with variables appearing in the current goal (each rule gets “fresh” 

numbered variables before processing)

b) During unification with a head, goal variables are preferred 

(i.e. they do not disappear)

c) If a variable in the head is substituted, the substitution is applied to 

all occurrences of that variable in the rule

d) Variables not appearing in the head (the fresh variables) are local 

in the rule (i.e. they do not appear in any other rule)

3. The leaves of a rule node are subgoals of the rule body. Each 

subgoal is recursively processed in a similar manner as G0

…

Top-down computation: Rule-Goal Tree (RGT)
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Top-down computation: Rule-Goal Tree (RGT)

Example: recursion, ancestors

r1: anc(X, Y)  par(X, Y). /* Y is parent of X */

r2: anc(X, Y)  par(X, Z), anc(Z, Y).

?- anc(j, A). /* ancestors of j (j stands e.g. for John) */

anc(j, A)

r1: anc(j, A)  par(j, A) r2: anc(j, A)  par(j, Z1), anc(Z1, A)

par(j, A) anc(Z1, A)par(j, Z1)

r1: anc(Z1, A)  par(Z1, A) r2: anc(Z1, A)  par(Z1, Z2), anc(Z2, A)

anc(Z2, A)par(Z1, Z2)

…

par(Z1, A)
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Top-down computation: Rule-Goal Tree (RGT)

A non-recursive example

r1: p(X, Y)  q(X, Z), r(Z, Y).

r2: r(U, V)  s(U, V). 

r3: r(U, V)  t(U, V).
?- p(0, W).

p(0, W)

r1: p(0, W)  q(0, Z1), r(Z1, W)

r(Z1, W)q(0, Z1)

r2: r(Z1, W)  s(Z1, W)

t(Z1, W)
s(Z1, W)

r3: r(Z1, W)  t(Z1, W)
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Top-down: propagation of bindings and results in RGT

• Each goal node is assigned a binding relation M (“magic 

predicate”). Bound variables of the goal are attributes of the 

corresponding magic relation. The contents of the magic relation 

is a finite set of constant values resulting from the previous 

computation (“sideway-passed information”)

• In each rule node, i-th argument of the rule is assigned a 

“supplementary relation” Si. Supplementary relations collect 

sideway-passed information, i.e. possible instantiations for 

variables of the rule. Initially, this information is determined only by 

the head of the rule. It is updated as the computation moves from 

left to right over subgoals of the rule

• Each goal node as well as each rule node yield a resulting 

relation. For a goal node, it is the set of tuples which satisfy the 

goal. For a rule node, it is the set of tuples which satisfy the head 

of the rule
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Top-down: actual computation

• Actual computation takes place in rule nodes

• In the root and inner goal nodes, the resulting relation is 

computed as union of the results from the child nodes

• Leaves of the tree are joins (selections) of the magic relations 

with EDB relations

• In rule nodes, the subgoals are first converted to supplementary 

relations with variables (using atov). The supplementary 

relations are joined (or antijoined, in case of negation). The 

result is then converted to head (using vtoa) and sent to the 

parent node
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Top-down: RGT construction and evaluation

RGT construction and evaluation

• Input: a set of safe rules, EDB and a query (goal) G0

• Output: a set of all tuples which satisfy G0

• Method: two mutually recursive functions, expand_goal and expand_rule

• expand_goal(M, G, R), where G is a goal, M is the binding relation 

assigned to G, R is the resulting relation

• expand_rule(S0, r, R), where r is a rule, S0 is the supplementary predicate 

containing bindings given by the head, R is the resulting relation

For a query ?- G0, the computation begins with 

expand_goal(M0, atov(G, P), R), where M0 is the binding relation for the 

variables in G0, P is the predicate in G0, R is the result. (For a query with no 

bindings, M0 is initialised to a universe, i.e. S ⋈ M0 = S for an arbitrary relation 

S.)
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Top-down: expand_goal(M, G, R)

expand_goal(M, G, R) {

if (G is a goal with an EDB predicate P)

R = M ⋈ atov(G, P);

else {

/* G is a goal with an IDB predicate */

R = ; /* the result will be accumulated in R */

for (each rule r whose head H unifies with G) {

 = mgu(G, H);

H’ = M (H); /* H converted to arguments of G */

S0 = atov(H’, M);

expand_rule(S0, r, Rr);

R = R  Rr;

}

}
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Top-down: expand_rule(S0, r, R)

expand_rule(S0, r, R) {

/* let r be of form H  G1, …, Gk */

for (i = 1; i <= k; i++)

{

Mi = vtoa(Gi, Si-1);

expand_goal(Mi, Gi, R);

Qi = atov(Gi, R); /* convert Ri to variables */

Si = T (Si-1 ⋈ Qi);/* T is the set of variables which

appear in Si-1 or Qi in the rule r */

}

R = vtoa(H, Sk);

}
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Top-down: QRGT algorithm

• Recursive expand_rule / expand_goal algorithm is a 

depth-first traversal of the RGT. It can end in an infinite loop

• Modification of the expand_rule / expand_goal algorithm: 

QRGT (queue-based rule-goal-tree expansion). The idea is that 

breadth-first traversal of RGT does not get lost in an infinite 

branch

• QRGT computes the fix-point for safe Datalog programs

• For a goal G with magic relation M, QRGT computes a tuple 

[t1, …, tk] when this tuple is computed by the bottom-up 

computation
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Adorned predicates and rules

• Adornment for a predicate is a (finite) string of symbols ‘b’ and ‘f’ 

which stand for ‘bound’ and ‘free’. An adornment states which 

arguments of the predicate are bound just before the predicate is 

evaluated (called)

• Adornment for a rule (more precisely, for a position inside a rule) is 

a list assigned to “spaces between goals” in the rule,

[Vb1, Vb2, …Vbm | Vf1, Vf2, …, Vfn]. The symbol ‘|’ in the list separates 

bound and free variables of the rule when the computation just after the 

top-down computation has reached that point inside the rule. Note that a 

bound variable inside a rule is restricted to finitely many values. A 

variable is bound after the goal Gi when it has already been bound in 

the head of the rule, or when it appears in the rule anywhere before the 

goal Gi (from left to right, including Gi)
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Rule-Goal Graph (RGG)

Rule-Goal Graph consists of goal (predicate) nodes and rule position nodes. 

RGG is a generalisation of RGT. Unlike RGT, RGG is always finite, but may 

contain cycles (when a predicate or a rule goal with the same adornment is 

evaluated more than once during the top-down computation). Edges of 

RGG connect nodes so that:

• Node with an EDB predicate has no outgoing edges

• Outgoing edges of a node with an adorned IDB predicate pa end in rule 

nodes r0[… | …] such that the head of the rule can be unified with pa, 

i.e. they bind the same variables

• Outgoing edges of a node with an adorned rule position ri[… | …] end in

a)  goal nodes pi
a, where pi is the predicate in goal Gi (i.e. the goal 

following the position ri) and the sets of variables bound in a and in 

the adornment of ri are equal

b)  node ri+1 (if ri is a rule position before the penultimate goal), where 

variables bound in ri+1 are those which have been bound in ri plus 

those which appear in the goal Gi
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Rule-Goal Graph (RGG)

Example: the same generation (person and parent are EDB predicates)

r1: sg(X, X)  person(X).

r2: sg(X, Y)  par(X, XP), par(Y, YP), sg(XP, YP).

?- sg(j, Y).

sgbf

r1.0[X |]

personb

r2.0[X |XP, Y, YP]

r2.1[X, XP | Y, YP]

r2.2[X, XP, Y, YP |]

parbf

parff

sgbb

r1.0[X |]

personb

r2.0[X, Y |XP, YP]

r2.1[X, Y, XP | YP]parbf

r2.2[X, XP, Y, YP |]parbf
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Rule-Goal Graph (RGG)

Example: the same generation with reordered goals: 

r1: sg(X, X)  person(X).

r2: sg(X, Y)  par(X, XP), sg(XP, YP), par(Y, YP).

?- sg(j, Y).

sgbf

r1.0[X |]

personb

r2.0[X | XP, Y, YP]

r2.1[X, XP | Y, YP]

r2.2[X, XP, YP | Y]

parbf

parfb
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Rule-Goal Graph (RGG)

Problems arising during the construction of an RGG:

• Rectification of subgoals in rules. This is advisable when 

either a constant or repeated variable appears in an IDB goal. 

(For example, adornment for p(X, X) is neither pff, nor pbb, it is 

actually slightly stronger. Similarly, p(1, 3) is stronger than just 

pbb.)

• Making adornments of IDB predicates uniform by reordering 

subgoals in rules

• Making built-in subgoals feasible. It may be possible to 

compute built-in subgoals for some adornments, but not all 

 feasibility problem for RGG



Databases, T. Plachetka, S2024-2025 20Top-Down Computation of Datalog Programs

Making adornments of IDB predicates uniform

• For each adorned predicate p in RGG, create a new predicate 

p_

• Copy all rules r with head p into rules r _ with head p_

• In all goal nodes r0, …, rk of the transformed rule r _, modify its 

child nodes as follows:

a) Keep EDB and built-in predicates in the rule r _ as they 

were in rule r

b) Change all adorned IDB predicates q to q_
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Making adornments of IDB predicates uniform: example

Original program:

r1: sg(X, X)  person(X).

r2: sg(X, Y)  par(X, XP), par(Y, YP), sg(XP, YP).

?- sg(j, Y).

Modified program with uniform adornments of IDB predicate sg:

r1_bf: sg_bf(X, X)  person(X).

r2_bf: sg_bf(X, Y)  par(X, XP), par(Y, YP), sg_bb(XP, YP).

r1_bb: sg_bb(X, X)  person(X).

r2_bb: sg_bb(X, Y)  par(X, XP), par(Y, YP), sg_bb(XP, YP).

?- sg_bf(j, Y).
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Rectification

Motivation:

r1: p(X, Y)  s(X, Y).

r2: p(X, Y)  q(X, V), p(Y, Y).

?- p(X, Y).

Note that the adornment pff does not fully capture the bindings in 

the call p(Y, Y) in r2. Although the variable Y is free, the two 

arguments in p are not arbitrary, they must be equal!

The adornments in the following RGG are not quite exact

pff

r1.0[| X, Y]

sff r2.1[X, V | Y]qff

r2.0[| X, V, Y]
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Rectification

Rectification is an algorithm which produces a program without 

duplicated variables and without constants in IDB subgoals. 

It defines new predicates (with fewer arguments):

r1: p(X, Y)  s(X, Y).

r2: p(X, Y)  q(X, V), p(Y, Y).

p(X, Y)  s(X, Y).

p(X, Y)  q(X, V), p1(Y). /* p1(Y)  p(Y, Y) */

p1(Y)  s(Y, Y). /* expansion using r1 */

p1(Y)  q(Y, V), p1(Y). /* expansion using r2 */
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Rectification

while (IDB goal g exists with a duplicated variable or a constant in 

arguments)

{

Let g be a goal where a predicate p is called. Replace p in the 

body a new predicate p’ with no duplicated variables and no 

constants in arguments

For each rule r with head h, create a new rule r’. To do that, 

compute  = mgu(g, h), preferring the variables of g. The 

new rule r’ is r, where all occurences of p are replaced with 

p’.

In all the other rules, replace p with p’.

}

Note that this algorithm always terminates (the number of 

arguments decreases in each iteration). Moreover, if the original 

program is safe, so is the rectified program
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Ordering of goals in rules

A rule in RGG is evaluated always from left to right. However, we 

can arbitrarily order the goals in the rule

Sometimes we must reorder the goals because of built-in goals

For example, the rule

p(X, Y)  X < Y, r(X, Y). 

equivalently: p(X, Y)  less(X, Y), r(X, Y).

cannot be evaluated from left to right e.g. for the adornment pff. 

The only adornment allowed in a call to less is lessbb.

But this ordering of goals is all right:

p(X, Y)  r(X, Y), less(X, Y).
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Ordering of goals in rules

Other reasons for reordering goals:

• Making use of indexes for EDB. Some adornments of EDB 

predicates may profit from using an index attached to a database 

relation

• IDB predicates with functional symbols in their definition may 

also forbid some adornments. For example, natf leads to an 

infinite expansion, whereas natb does not. 

Rules for nat(.): nat(0). nat(s(X))  nat(X).

• Negated IDB goals require that all their arguments are bound
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Ordering of goals in rules

We assume that bound is easier

We define a partial ordering of adornments: 

 if  has ‘b’ at least on those positions where  has

Then if  and we can evaluate p, then we can also evaluate p

For example, if we can evaluate pf, then we can also evaluate pb

We say that an adornment is allowed if the predicate can be 

evaluated for that adornment

For each predicate, there is a set for minimal allowed 

adornments
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Ordering of goals in rules

Assumed that for each adorned rule (i.e. adornment of the head), 

minimal allowed adornments for each goals are given

How to find an ordering of the goals so that the rule can be 

evaluated?

Backtracking: enumerate all the orderings and test whether a feasible 

RGG (only with allowed adornments) can be constructed

Optimisations:

• Assume “bound is easier”

• Maintain two sets of adorned goals: 1.a set T of target  adorned 

goals (this initially contains only the query); 2.a set F of adorned 

goals which cannot be realized (this initially contains goals with 

adornments which must be avoided, i.e. which are not allowed)
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Ordering of goals in rules

Example: the same generation

r1: sg(X, X)  person(X).

r2: sg(X, Y)  par(X, XP), par(Y, YP), sg(XP, YP).

?- sg(john, W).

T={sgbf}, F={parff, personf}

There is only one ordering for r1bb which avoids personf.

For r2bf, this ordering must be tested: par1
bf, sgfb, par2

fb. Therefore, sgfb

is added into the set T. It remains to show that sgfb can be realised.

There is only one ordering for r1bb which avoids personf.

For r2fb, the following ordering is realisable: par2
bf, sgbf, par1

fb.

We end up with T={sgbf, sgfb}. All goals in T are realisable
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Ordering of goals in rules
Example: the same generation, ?- sg(john, W). F={parff, personf}

r1: sg(X, X)  person(X).

r2bf: sg(X, Y)  par(X, XP), sg(XP, YP), par(Y, YP).

r2fb: sg(X, Y)  par(Y, YP), sg(XP, YP), par(X, XP).

Feasible RGG:
sgbf

r1.0[X |]

personb

r2.0[X |XP, Y, YP]

r2.1[X, XP | Y, YP]

r2.2[X, XP, YP | Y]

parbf

parfb

sgfb

r1.0[X |]

personb

r2.0[Y | X, XP, YP]

r2.1[Y, YP | X, XP]

r2.2[Y, YP, XP | X]

parfb

parbf


