
Databases, T. Plachetka, S2024-2025 1Higher Normal Forms

Higher Normal Forms

Tomáš Plachetka, Ján Šturc

Faculty of mathematics, physics and informatics,
Comenius University, Bratislava

Summer 2024–2025

http://www.dcs.fmph.uniba.sk/~plachetk

/TEACHING/DB2

http://www.dcs.fmph.uniba.sk/~sturc/databazy/rldb

Databases, T. Plachetka, S2024-2025 2Higher Normal Forms

Multi-valued dependency

Definition: A multi-valued dependency (MVD) X ®® Y holds in
relation r, if
r(X, Y1, Z1) Ù r(X, Y2, Z2) Þ r(X, Y1, Z2) Ù r(X, Y2, Z1)

Example:
emp(Emp_name, Proj_name, Boss_name)

joe x fred
joe y lisa
joe x lisa
joe y fred

Emp_name ®® Proj_name, Emp_name ®® Boss_name both hold.
Emp_name ®® Emp_name also holds, but it is a trivial MVD

Definition: An MVD X ®® Y is called trivial, when either Y is subset
of X or r = X È Y

Databases, T. Plachetka, S2024-2025 3Higher Normal Forms

Multi-valued dependency: inference rules

IR1 (reflexive rule for FDs): X Ê Y Þ X ® Y
IR2 (augmentation rule for FDs): X ® Y Þ XZ ® YZ

IR3 (transitive rule for FDs): X ® Y, Y ® Z Þ X ® Z
IR4 (complementation rule for MVDs):

X ®® Y Þ X ®® (R – (X È Y))

IR5 (augmentation rule for MVDs): X ®® Y Ù W Ê Z Þ WX ®® YZ

IR6 (transitive rule for MVDs): X ®® Y Ù Y ®® Z Þ X ®® (Z - Y)

IR7 (replication rule for FD to MVD): X ® Y Þ X ®® Y
IR8 (coalescence rule for FDs and MVDs): X ®® Y Ù (exists W such that

W Ç Y = Æ Ù W ® Z Ù Y Ê Z) Þ X ® Z

Sometimes the following notation is used (sharing the same left-hand

side, similarly as with FDs): X ®® Y, Z stands for X ®® Y, X ®® Z. But Y and

Z are now sets of attributes (i.e. the comma is important)!

Databases, T. Plachetka, S2024-2025 4Higher Normal Forms

Multi-valued dependency: 4NF

Definition: A relation schema r is in 4NF with respect to a set of

dependencies F (that includes functional dependencies and multivalued

dependencies) if for every nontrivial multivalued dependency X ®® Y in

F+, X is a superkey in r

F+ is a closure of F with respect to inference rules IR1–IR8. These

inference rules are sound and complete (the soundness results from the

definitions of FD and MVD, the completeness is harder to prove)

Apparently, emp(Emp_name, Proj_name, Boss_name) should be

decomposed into

project(Emp_name, Proj_name), boss(Emp_name, Boss_name)

Databases, T. Plachetka, S2024-2025 5Higher Normal Forms

Multi-valued dependency: 4NF

Definition: Relation schemas r1 and r2 form a lossless (non-additive)

join decomposition of r with respect to a set F of functional and

multivalued dependencies, if

(r1 Ç r2) ®® (r1 - r2), or

(r1 Ç r2) ®® (r2 - r1)

Databases, T. Plachetka, S2024-2025 6Higher Normal Forms

Multi-valued dependency: 4NF

4NF decomposition algorithm

naive, but with lossless non-additive join guarantee

Input: A universal relation r and a set of functional and multivalued

dependencies F

decompose(r, F)

{

D := {r};

while (a relation schema s exists in D which is not in 4NF)

{

find a non-trivial MVD X ®® Y in s which violates

4NF;

replace s in D by relation schemas (s - Y) and (X È
Y);

}

}

Databases, T. Plachetka, S2024-2025 7Higher Normal Forms

Join dependency
Definition. Let R, R1, …, RN denote sets of attributes. A join dependency is a
constraint of the form R = R1 … RN which is satisfied if for each valid
population of the relation r over attributes R holds
r = PR

1
(r) … PR

N
(r)

Note that this is (indeed) a definition of lossless decomposition, i.e. global
consistency. However, a join dependency is a constraint just over sets of
attributes, which does not depend on the actual decomposition of the
database schema

Example: (SSN, Name, ChildSSN) = (SSN, Name) (SSN, ChildSSN)
is implied by functional dependency SSN ® Name. In fact, each functional
dependency implies some join dependency

We are particularly interested in binary join dependencies (as it turns out,
these are MVDs), which are of the form
R = R1 R2

Again, recall that R, R1, R2 are sets of attributes which are not necessarily
actual relations of the database

Databases, T. Plachetka, S2024-2025 8Higher Normal Forms

Join dependency: 5NF

An MVD is a special case of a join dependency: X ®® Y in r can be
equivalently expressed as R = (XY) (X È (R - Y))

Definition. A relation schema r is in fifth normal form (5NF, or
Project-Join Normal Form, PJNF) with respect to a set F of functional,
multivalued, and join dependencies if
for every nontrivial join dependency JD(R1, R2, ..., Rn) in F+ (i.e., implied
by F) holds that every Ri is a superkey of r

Note that 5NF takes into account not only FDs and MVDs, but also all
kinds of JDs

No sound and complete set of inference rules is known for JDs (some
sound rules have been published, though)

Databases, T. Plachetka, S2024-2025 9Higher Normal Forms

Inclusion dependency

Definition: An inclusion dependency r.A < s.B holds if for any valid
population of r and any valid population of s holds
PA (r) Ê PB (s),
where A and B are sets of attributes

Informally: inclusion dependency states that relation r contains a
set of attributes A such that when A attains a value in r, then the
same value of A must exist in relation s (stored in attributes B)

Alternatively, inclusion dependency from relation r to relation s
exists if
 ($X $Y r(X, Y)) Þ ($Z s(X, Z))

Databases, T. Plachetka, S2024-2025 10Higher Normal Forms

Inclusion dependency

Example (a university database):
students(Student_ID, Name),
grades(Student_ID, Course_ID, Grade)
When a Student_ID appears in the relation grades, then the same
Student_ID must exists in the relation students (as grades are
assigned only to enrolled students)

In this example, Student_ID in grades is a foreign key for the
relation students, i.e. it is a superkey in the relation students (and
also vice versa). Foreign key is a special case of an inclusion
dependency. Inclusion dependencies cover and generalise the
concept of weak entity sets in ER and UML diagrams (presented
in the winter semester)

Databases, T. Plachetka, S2024-2025 11Higher Normal Forms

Inclusion dependency
Example (an extended university database):
students(Student_ID, Name),
graduates(Student_ID, Name)
grades(Student_ID, Course_ID, Grade)

A graduated student must have received some grades, so there is an inclusion
dependency from relation graduates to relation grades (but not in the opposite
direction). But in this case, Student_ID is not a foreign key (a superkey) in the
relation grades, because Student_ID ® Course_ID, Grade does not hold

Organisational (business) rules often dictate inclusion dependencies and other
integrity constraints which must hold for any valid population of a
database. It is desirable that the database system guards the database against
violation of any known constraint. Still, many constraints either cannot be
expressed in SQL or they can only be expressed in SQL in an awkward way
(subsequently, their guarding increases the cost of updates)

Databases, T. Plachetka, S2024-2025 12Higher Normal Forms

Inclusion dependency: inference rules

IR1 (reflexivity)
r.X < r.X

IR2 (attribute correspondence)
if r.X < s.Y,

where X = {A1, A2 ,..., An} and Y = {B1, B2, ..., Bn} and
Ai corresponds to Bi,
then r.Ai < s.Bi for 1 ≤ i ≤ n

IR3 (transitivity)
if r.X < s.Y and s.Y < t.Z, then r.X < r.Z

Databases, T. Plachetka, S2024-2025 13Higher Normal Forms

More on 4NF decomposition
Naïve approach to 4NF decomposition may produce bad database design

Example (Kifer, Bernstein, Lewis):
contracts(Buyer, Vendor, Product, Currency)
Business rule 1: If a company accepts several currencies, then each contract is
described in each currency
Buyer, Vendor ®® Product, Currency
or, equivalently,
contracts = (Buyer, Vendor, Product) ⋈ (Buyer, Vendor, Currency)

Business rule 2: If two vendors supply a product, they accept some currency;
and if a buyer has a contract with one of these vendors, then it has a contract
with the other vendor as well
Product, Currency ®® Buyer, Vendor

Databases, T. Plachetka, S2024-2025 14Higher Normal Forms

More on 4NF decomposition
contracts(Buyer, Vendor, Product, Currency)
r1: Buyer, Vendor ®® Product, Currency
r2: Product, Currency ®® Buyer, Vendor

Decomposition using r1, (Buyer, Vendor, Product), (Buyer, Vendor, Currency)
breaks r2, i.e. the second MVD is lost. And vice versa

Breaking an MVD by 4NF decomposition is much worse than breaking an
FD by BCNF decomposition! The reason is that although e.g.
(Buyer, Vendor, Product), (Buyer, Vendor, Currency) is a losless 4NF
decomposition, it can still contain a lot of redundancy if some MVD is broken:

Buyer Vendor Product Buyer Vendor Currency
B1 V1 P B1 V1 C
B2 V2 P B2 V2 C
B1 V2 P B1 V2 C
B2 V1 P B2 V1 C

It is better not to insist on 4NF in this case

Databases, T. Plachetka, S2024-2025 15Higher Normal Forms

More on 4NF decomposition
Example (Kifer, Bernstein, Lewis):
dictionary(Latin, Hungarian, German, Slovak)
Business rule: If the dictionary provides translation from any language to any
other (one word can have even more translations in other languages)
Latin ®® Hungarian, German, Slovak
Hungarian ®® Latin, German, Slovak
German ®® Latin, Hungarian, Slovak
Slovak ®® Latin, Hungarian, German

Again, there is no lossless 4NF decomposition which preserves all MVDs
above. A workaround is to add a concept to the dictionary, i.e. to promote the
dictionary to a multilingual thesaurus:
thesaurus(Concept, Descr, Latin, Hungarian, German, Slovak)
Latin ® Concept, Hungarian ® Concept,
German ® Concept, Slovak ® Concept,
Concept ® Descr,
Concept ®® Latin, Hungarian, German, Slovak

(What about homonyms? Oh well…)

Databases, T. Plachetka, S2024-2025 16Higher Normal Forms

More on 4NF decomposition
thesaurus(Concept, Descr, Latin, Hungarian, German, Slovak)
Latin ® Concept, Hungarian ® Concept,
German ® Concept, Slovak ® Concept,
Concept ® Descr,
Concept ®® Latin, Hungarian, German, Slovak

Every FD is MVD as well. So let the decomposition begin with
Latin ® Concept and continue likewise. Resulting decomposition:
(Latin, Concept), (Latin, Hungarian), (Latin, German),
(Latin, Slovak), (Latin, Descr) is clearly 4NF. But it is too leaned towards
Latin, which seems unnatural (well, perhaps not to a linguist)

More natural is to derive
Concept, Descr ®® Latin, Hungarian, German, Slovak
which yields lossless 4NF decomposition:
(Concept, Descr, Latin), (Concept, Descr, Hungarian),
(Concept, Descr, German), (Concept, Descr, Slovak)

Databases, T. Plachetka, S2024-2025 17Higher Normal Forms

More on 4NF decomposition
thesaurus(Concept, Descr, Latin, Hungarian, German, Slovak)
Latin ® Concept, Hungarian ® Concept,
German ® Concept, Slovak ® Concept,
Concept ® Descr,
Concept ®® Latin, Hungarian, German, Slovak

We have got:
(Concept, Descr, Latin), (Concept, Descr, Hungarian),
(Concept, Descr, German), (Concept, Descr, Slovak)

Now we can get back to FD Concept ® Descr and decompose even more:
(Concept, Descr),
(Concept, Latin), (Concept, Hungarian),
(Concept, German), (Concept, Slovak)

This is the decomposition we were after!

Databases, T. Plachetka, S2024-2025 18Higher Normal Forms

More on 4NF decomposition

4NF decomposition is a problem difficult to tackle formally
[Beeri and Kifer, 1986] give a universal recipe, which does not
depend on a particular schema:
1.Find splitting left-hand side of MVDs
2.Find intersection anomalies
3.Apply 5-step “design strategy”

Databases, T. Plachetka, S2024-2025 19Higher Normal Forms

More on 4NF decomposition: 1.splitting lefthand anomaly

Definition. We say that X ®® V, W splits left-hand side of
Y ®® K, L when both Y Ç V and Y Ç W are both non-empty
If there are two MVDs in the schema where one splits left-hand side of
the other, then the schema exhibits left-hand anomaly

A schema which suffers from a left-hand anomaly is probably wrong (the
constraints are too strong)

For instance, in contracts example, the MVDs (business rules) r1, r2
split each other’s left-hand side. It indicates that something went wrong
already with the schema itself. Indeed, r1 and r2 should be rather
replaced by a single business rule which is the following JD:
contracts = (Buyer, Product) ⋈ (Vendor, Product) ⋈

(Buyer, Currency) ⋈ (Vendor, Currency)

It states that buyers buy some products, vendors sell some products,
buyers accept some currencies, vendors accept some currencies

Databases, T. Plachetka, S2024-2025 20Higher Normal Forms

More on 4NF decomposition: 2.intersection anomaly

Definition. We say that a schema suffers from intersection
anomaly when a pair of MVDs X ®® Z, Y ®® Z holds, but MVD
X Ç Y ®® Z does not hold

If a schema suffers from intersection anomaly, then the schema itself is
probably wrong (incomplete)

For instance, in dictionary example, Latin ®® Slovak and
Hungarian ®® Slovak hold, but Æ ®® Slovak does not hold. This is an
intersection anomaly

A solution is usually adding a new attribute or attributes

Databases, T. Plachetka, S2024-2025 21Higher Normal Forms

More on 4NF decomposition: 3.design strategy

We now assume no splitting left-hand side anomalies. Then a

dependency-preserving, lossless join decomposition can be

produced as follows:

a) Compute attribute closure, X+ of every MVD X ®® Y. Then

replace the MVD X ®® Y with X+ ®® Y
b) Find minimal cover of resulting MVDs from step a)

c) Eliminate intersection anomalies by adding new attributes. (This

can be done automatically! See [Beeri&Kifer, 1986].)

d) Apply naïve 4NF decomposition algorithm using MVDs only

e) Apply BCNF design algorithm using FDs only

See the multilingual thesaurus example

Databases, T. Plachetka, S2024-2025 22Higher Normal Forms

A “solution” to normalisation: DKNF

No matter how high a normal form is, a normalised database can

still exhibit some redundancy, because not all dependencies are

covered (or known). The domain-key normal form (DKNF) is an

ultimate normal form: DKNFÞ5NFÞ4NFÞBCNFÞ3NF

Definition [Fagin, 1981]: A relation is in domain-key normal form

(DKNF) if every constraint on the relation is a logical consequence

of keys and domains

What is a domain? A set of values which an attribute can attain

What is a constraint? In this context, it is an arbitrary rule precise

enough that one can decide whether it is fulfilled (true) or not

Databases, T. Plachetka, S2024-2025 23Higher Normal Forms

DKNF

More precisely, DKNF allows only two kinds of constraints:

1. A domain constraint, which expresses a set of values which

an attribute can attain, e.g. colorÎ{red, green, blue}

2. A key constraint, which expresses that a set of attributes is a

superkey of the relation in question. Hence, a key constraint for a

relation R states that the functional dependency K®R holds, where

KÍR

Definition (rephrased): Let D be a set of domain constraints, let K

be a set of key constraints for a relation R. Let G be a set of

general constraints (all “business rules” which hold in R). Then R

is in DKNF, if (D È K) Þ G

Databases, T. Plachetka, S2024-2025 24Higher Normal Forms

DKNF

The constraints in DKNF are local, i.e. bound to a single relation.

There is no concept of e.g. referential integrity, although

sometimes such constraints can be expressed in terms of

domains and keys

Unfortunately, there is no universal recipe which constructs a

DKNF decomposition (in general, it cannot be even decided

whether a DKNF decomposition exists). Once you have found

one, bravo, there is no redundancy. But in the meantime, you are

stuck

There is no universal recipe which verifies whether a given

decomposition is in DKNF

	1 - Slide1
	2 - Slide2
	3 - Slide3
	4 - Slide4
	5 - Slide5
	6 - Slide6
	7 - Slide7
	8 - Slide8
	9 - Slide9
	10 - Slide10
	11 - Slide11
	12 - Slide12
	13 - Slide13
	14 - Slide14
	15 - Slide15
	16 - Slide16
	17 - Slide17
	18 - Slide18
	19 - Slide19
	20 - Slide20
	21 - Slide21
	22 - Slide22
	23 - Slide23
	24 - Slide24

