
Cvičenie 6B: Poč́ıtanie súm

Pri poč́ıtańı súm sa snaž́ıme nájst’ výraz s rovnakou hodnotou, akú má poč́ıtaná suma. Výsledný výraz nesmie
obsahovat’ žiadnu sumu alebo súčin s premenným počtom členov. Aké metódy môžeme použit’ na dokazovanie súm?

1. Vypoč́ıtat’ si niekol’ko prvých členov, na základe nich si tipnút’ výsledok a následne dokázat’ jeho správnost’

(napr. matematickou indukciou). Vel’a výsledkov je však takých, že nevidno dobre z nich, čo sú zač.

2. Použit’ pri výpočte inú, už známu sumu. Často si to vyžaduje upravit’ sumu do tvaru vhodného pre aplikáciu
známej sumy. To často obnáša

• použit’ kombinatorické identity;

• rozṕısat’ si kombinačné č́ısla cez faktoriály a upravit’ ich tak, aby sme dostali kombinačné č́ıslo (č́ısla)
vhodné pre sumáciu;

• vyňatie konštanty pred sumu (
∑

c · ak = c
∑

ak);

• rozdelenie sumy na viac súm (
∑

(ak + bk) =
∑

ak +
∑

bk);

• substituovat’ premenné, upravit’ tým sumačný rozsah.

3. Upravit’ známu sumu obsahujúcu reálnu premennú x (napr. Binomickú vetu) do vhodného tvaru aplikovańım
operácie ako sú derivácia alebo integrácia.

4. Nájst’ kombinatorickú interpretáciu sumy (teda nejakú úlohu kde počet možnost́ı možno poč́ıtat’ riešenou
sumou) a pŕıst’ k počtu možnost́ı iným, jednoduchš́ım spôsobom. Teda ide o to, čo sme trénovali na cvičeńı
5, len s tým, že máme len jednu stranu rovnosti.

Pri použ́ıvańı známych súm pŕıde najviac vhod binomická veta.

Veta 1 (Binomická veta). Pre všetky x ∈ R a n ∈ N plat́ı

(1 + x)
n
=

n∑
k=0

(
n

k

)
xk.

Môžete však použ́ıvat’ aj iné známe sumy, napr. tie, čo sa uvádzajú v skriptách alebo v cvičeńı 5. Ak však použ́ıvate
sumu z cvičenia, ktorá nemá názov, tak súčast’ou úplného riešenia by mal byt’ aj jej dôkaz. Ked’ použ́ıvate sumu,
ktorá je pomenovaná (napr. Cauchyho sč́ıtaćı vzorec), uved’te jej názov – vtedy je vidno, že sa odvolávate na niečo
známe a taktiež na aké presne tvrdenie sa odvolávate, teda nemuśıte ṕısat’ do riešenia aj dôkaz.
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Úloha 6.→ Vypoč́ıtajte
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Úloha 7. Vypoč́ıtajte
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Úloha 8.→ Vypoč́ıtajte
n∑
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Úloha 9. Vypoč́ıtajte
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Úloha 11. Vypoč́ıtajte
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Úloha 12. (*) Vypoč́ıtajte
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Úloha 13. (*) Vypoč́ıtajte
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Úloha 14. (*) Vypoč́ıtajte
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Úloha 16. Vypoč́ıtajte
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Úloha 17. Vypoč́ıtajte
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Úloha 18. Vypoč́ıtajte pre n ∈ N, n ≥ 3:
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Výsledky

1. 0

2. 4n

3. n · 2n−1

4. 3n · 2n−1 + 2n

5.
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