RieSenia 2. sady domacich iloh

Uloha 1

dve hodnoty.

Figtrka holub ohrozuje policka ako je zndzornené na obrazku. Kolko najviac holubov mozno umiestnit
na Sachovnicu rozmerov a) 6 x 6, b) 8 x 8 tak, aby sa ziadne dva neohrozovali? VaSe tvrdenie dokazte.

Pre ziskanie 1,5 boda staci dplne vyriesit éast a) a v casti b) korekine obmedzit mozny vysledok na

XXX

XXX
X XIXIXIX
XXX X
X XXX X

Sachovnica 6 x 6

Uké4Zeme, Ze najviac mozno umiestnit 6 holubov.

Konstrukcia. Obrazok [1| zndzoriiuje umiestnenie 6 holubov, o ktorom sa Iahko presvedéime, Ze sa Ziadne

dva neohrozuju.

[

[

[

Obr. 1

Obr. 2

Odhad. Na obrazku [2| je Sachovica rozdelend na 6 obdlznikov rozmeru 2 x 3. Lahko skontrolujeme, ze
Tubovolné dva holuby v obdlzniku 2 x 3 sa ohrozuji. Ak by sme na Sachovnicu umiestnili viac ako 6 holubov,
tak v niektorom obdlzniku by boli aspon dva holuby, a tie by sa ohrozovali. Preto na Sachovnicu nie je

mozné umiestnit viac ako 6 neohrozujticich sa holubov.

Odhad (bez Dirichletovho principu). Na obréazku [2]je Sachovica rozdelend na 6 obdiznikov rozmeru
2 x 3. Kazdy z nich mo6ze obsahovat najviac jedného holuba. Preto na $achovnicu mozno umiestnit najviac

6 holubov.

Sachovnica 8 x 8 (Ciasto¢né rieSenie)

Uvedieme najskor ¢iastkové rieSenie pre Sachovnicu 8 x 8. toto rieSenie sme od véas ocakavali a stacilo na
ziskanie 1,5 boda za tlohu (spolu s so spravnou ¢astou a)).

Konstrukcia. Obrazok |3|zndzoriiuje umiestnenie 10 holubov, o ktorom sa l'ahko presvedéime, Ze sa Ziadne
dva neohrozuju.

LN LN

Obr. 3 Obr. 4

Odhad. Na obrazku [je sachovica rozdelend na 11 oblasti. Ak by sme na Sachovnicu umiestnili viac ako
11 holubov, tak v niektorej oblasti by boli aspon dva holuby. Tieto dva holuby by sa ohrozovali, ako sme
uz overili pre obdlznik 2 x 3 v éasti a), ¢o plati aj pre stvorec 2 x 2, ktory je jeho podmnozinou. Preto na
Sachovnicu nie je mozné umiestnit viac ako 11 neohrozujticich sa holubov.

.....

Teda mozny vysledok sme zuzili na hodnoty 10 a 11.

Sachovnica 8 x 8 (tiplné riesenie)

Ukéazeme, ze spravnym rieSenim tlohy je 10. Umiestnenie 10 neohrozujtcich sa holubov sme uz ukazali na
obrézku |3| Ostdva ndm ukdzat, ze 11 holubov nemozno umiestnit.

Spravny odhad. Pre spor predpokladajme, Ze na Sachovnici 8 X 8 mame umiestnenych 11 holubov, z
ktorych sa Ziadne dva neohrozuji. Ked'ze v kazdej z 11 oblast{ na obrazku |4/ moéze byt najviac jeden holub a
méme préave 11 holubov, tak v kazdej oblasti musi byt préve jeden holub. Speciélne, prave jeden holub musi
byt v rohovom §tvorci 2 x 2. Rovnaky zéaver plati pre kazdy rohovy §tvorec 2 x 2, ked'ze Sachovnicou mozeme
otacat o 90°. Takisto z rozdelenia Sachovnice ako na obrazku |5 vyplyva, Ze prave jeden holub sa nachiadza
v prostrednom $tvorci 2 x 2. Vd'aka rota¢nej symetrii moéZeme bez ujmy na vieobecnosti predpokladat, Ze
tento holub je v lavom hornom rohu.

Na obrédzku [0] si zaznac¢ime Sedou policka, ktoré tento prostredny holub ohrozuje. Takisto zazna¢ime Sedou
pre kazdy z rohovych stvorcov 2 x 2 styri policka, ktoré s nimi susedia — o nich totiz vieme, Ze st ohrozené
holubom v tomto rohovom $tvorci bez ohladu na to, na ktorom policku sa presne nachddza. Ostalo ndm
tak 5 bielych oblasti (dva Stvorce 2 x 2, dva obdfiniky 1 x 2 a jeden Stvorec 1 x 1). V kazdom z nich
moze byt najviac jeden holub. Preto celkovo na Sachovnici moze byt najviac 10 holubov. To je ale spor s
predpokladom, ze médme umiestnenych 11 holubov.

Obr. 5 Obr. 6

Komentar. Upozoritujeme vds, aby ste sa neskugali riesit tlohy takymto stylom, pokial mu isto nerozu-
miete. A ani takyto sofistikovany pristup nebudeme od vas vyZzadovat na skigkach. Riegit tilohu uvazovanim
kde musia byt holuby (resp. iné objekty) je ndroéné a vela takych pokusov konéf nesprdvnymi tivahami za
0 bodov.

V ¢om je toto rieSenie odlisné? V prvom rade, ma jasny zaciatok — hovorime, ze dokazujeme sporom, teda
je jasné, z ¢oho vychadzame. Taziskovou dvahou je rozdelenie Sachovnice na oblasti. Bez neho sa tazko
dopracujeme ku korektnym tivahdm o tom, Ze holub nikde musi byt.Tiez si v§imnite, Ze na Sachovnicu
sme umiestnili len jedného holuba, a to len vdaka tomu, Ze vSetky Styri moznosti jeho umiestnenia si
symetrické. Do rohovych oblasti sme uz holubov neumiestiovali. Totiz nevieme, na ktorych zo Styroch
polickach moze byt. Stacilo ndm vsak vediet, Ze niektoré policka budi tymto holubom ohrozené, a to nech
bude na hociktorom z tychto styroch policok.

Uvedeny sposob riesenia je teda akousi nadstavbou k Dirichletovmu principu (resp. principu delenia na
oblasti), kedy vieme ziskany odhad o trochu zlepsit.

Uloha 2

Zistite, ¢i pre lubovolné mnoziny A, B, C, D plati
a) (Ax B)—(CxD)C(A-C)x (B-D),
b) (AxB)—(CxD)2(A-C)x(B—-D).

Vase tvrdenia zdovodnite iba na zaklade definicii, teda bez odvoldvania sa na zname tvrdenia o
mnozinach alebo kartezidanskom sucine.

Dokaz, ze a) neplati

Nech A= B =D = {1} a C = (). Potom
e (AxB)—(CxD)={11}—0={11}
e (A—C)x (B—D)={1} x 0 =0.

Avsak, vtedy {(1,1)} Z 0.

Dokaz, ze b) plati

Ked'ze lava strana obsahuje len usporiadané dvojice, tak ndm staci ukézat, Ze pre kazdi usporiadani dvojicu
(x,y) plati:

(z,y) € (A= C) x(B-D)

U
reA—-CANyeB-D

U

r€ANx ¢ CANye BANy¢ D
\

(reANyeB)AN(x¢ CNy ¢ D)
4 (%)

(x,y) € AX BA(z,y) ¢ C x D
Y

(z,y) € (Ax B)— (C x D)

Komentar. Pozor, implikdcia (*) je jedina, ktora nie je ekvivalenciou — a taka tam musi byt, kedze inak
by §lo o dokaz nepravdivého tvrdenia a), ktory nemoze existovat. Spravna ekvivalencia je

(x¢CVyé¢D)s (x,y) ¢ CxD.

(Odporicame si znegovat (x,y) € C x D, teda z € C Ay € D.) AvSsak my nepotrebujeme ekvivalenciu.
Zdovodnenie implikécie zhora nadol je jednoduché: ked mame dvojicu (z,y), z ktorej = ¢ C a tiez y ¢ D,
tak vieme, Ze sa nenachidza v kartezidnskom sicine. Ak by sme to checeli dokézat striktne z definicie, tak
mozeme takto:

(x¢CANy¢D)=2¢C=(x¢CVy¢D)s(r,y) ¢CxD.

Uloha 3

a) (0,5 b) Kolko je vsetkych 3-cifernych ¢isel s cifernym stétom 21, ktoré maju vsetky cifry rozne?

b) (0,5 b) Kolkymi sposobmi mozno vyplnit tabulku 3 x 3 éislami 0 a 1 tak, aby v kazdom $tvorci
2 x 2 bol rovnaky pocet jednotiek ako nul?

¢) (1 b) Kolkymi sposobmi mozno vyplnit tabulku 3 x 7 (riadky x stipce) éfslami 0, 1, 2 tak, aby
kazdy riadok obsahoval prave 4-krat ¢islo 07

Spravnost vasich rieSenf zdovodnite (staci neformélne). K podilohdm a), b) vypiste vietky moZnosti.
Aj v tychto podilohéch treba riesenie odovodnit — musite vysvetlit, preco ste kazdd moznost vypisali
prave raz.

Podiloha a)

Najskor uréime, z akych navzéjom réznych cifier sa moze skladat 3-ciferné éislo so stiétom 21:

e Ak je najvicsia cifra 9, tak zvysné dve majui stcet 21 — 9 = 12. Ked postupne skiisame druhi cifru
od najvicsej, tak dostaneme moznosti 8 +4 a 7+ 5.

e Ak je najviicsia cifra 8, tak zvysné dva maju sicet 21 — 8 = 13. Ten mozno dosiahnut jedine ako 7 + 6.

e Ak je najvicsia cifra 7 alebo menej, tak ciferny sicet moze byt najviac 7+ 6 + 5 = 18, ¢o je menej
ako 21.

Pripustné mnoziny cifier si teda {9,8,4}, {9,7,5} a {8,7,6}. Kazdi z nich m6zeme zoradit do 3-ciferného
¢isla 3! sposobmi (ide o permutécie), ¢o ndm da spolu 3-3! = 18 ¢isel. Vypisat ich mozeme v troch riadkoch,
kazdy riadok obsahuje ¢isla s rovnakymi ciframi, len v inom poradi. T4to tabulka ndm pekne ilustruje, preco
¢isla 3 a 3! pri vypocte ndsobime.

984 948 894 849 498 489
975 957 795 759 597 579
876 867 786 768 687 678

Jednoduchy program, ktory ndm vypiSe tieto moznosti moze vyzerat takto.

from itertools import permutations

for cifry in [[9, 8, 41, [9, 7, 5], [8, 7, 611:
for p in permutations(cifry):
print(*p, sep='"')

Tento program priamo kopiruje nase matematické rieSenie. Ked'ze obsahuje dva vnorené for cykly, prvy s 3
opakovaniami a druhy s 3! opakovaniami, tak vypiSe naozaj celkom 3 - 3! = 18 moznosti.

Pokial' by sme chceli do programu zakomponovat aj hladanie moznych cifernych stétov, tak to mozeme
napr. takto.

from itertools import permutations

trojice = []
Skusame najvacsiu cifru
for a in range(9, 0, -1):
Skusame druhu najvacsiu cifru
for b in range(a - 1, 0, -1):
Tretiu cifru si dopocitame
c=21-a-b

Ak uz nie je tretia cifra mensia ako druha, tak nemusime hladat dalej
if ¢ >= b:
break
Inak mame trojicu so spravnym suctom
trojice.append([a, b, c])

for cifry in trojice:
for p in permutations(cifry):
print(*p, sep='")

Podiloha b)

V druhom riadku tabulky mame 3 policka. Na kazdé z nich méme na vyber 2 moznosti. To ndm déva spolu
23 moznosti, ako moze vyzeraf prostredny riadok. Tieto ¢isla napiseme zelenou. Pre kazdi z moznosti uréime
¢iernou vietky éisla, ktoré su jednoznaéne uréené. Takto dostaneme prave jednu tabulku v 6 pripadoch, v
tych, kde je stredny riadok od 010 a 101. V tychto dvoch priapadoch nevieme jednoznaéne doplnit Ziadne
¢islo. Rozoberieme preto vietky moznosti, ako moze vyzerat druhy stipec. Ked'Ze v iom mame dve policka,
tak méame 22 moznost{ na jeho vyplnenie. Pre kazdud z nich uz dostaneme jednoznaéné doplnenie zvysku.

1f1f1rpp1yp1fofjrjopryfrfofojjof1f1fjrjoyjryfofof1r{jo0j0fo
O10101OLOfL{HO T OO} L)L LfOfOfL)IOLT{fL|[L]O
1f1frpp1ryp1fofjrjopryfrfofojjof1f1fjrjoy11yfofof1{jo0j0fo

11011 11011

0110 11011

O[1fo0 0110

0O[1fO0 0110

01110 1{0]1

1{0f1 11011

01110 01110

0110 11011

01110 01110

Podiloha c)

Najskor sa pozrieme na jeden riadok. Najskor vyberieme zo vSetkych jeho 7 policok 4 miesta, kam déame
nuly. Na to mame (Z) moznosti. Potom na kazdé zo zvysnych 3 miest mame 2 moznosti — ddme tam 1 alebo
2 — to ndm dava 23 moznosti. Celkovo na vyplnenie jedného riadku mame tak (Z) -23 moznosti. Kedze mame
riadky 3 a kazdy vieme vyplnit nezdvisle, tak mdme spolu

7 3
(< 4) : 23) = 2803 = 21952000 moznosti

Toto rieSenie vieme priamociaro previest na nasledovny program.

from itertools import combinations, product

Najprv si zistime moznosti pre riadok
riadky = []
Prejdeme cez vsetky pozicie nul - zodpoveda cislu (7 nad 4)
for poz_nul in combinations(range(7), 4):
Prejdeme cez vsetky monosti pre zvyne 3 policka - zodpoveda 273

for zvysok in product([1, 2], repeat=3):
Na zaklade tychto dvoch volieb vytvorime riadok - na policka, kde
nemaju byt nuly dame postupne cisla z trojice zvysok
[0] = 7
j=0
for i in range(7):
if i not in poz_nul:
r[i] = zvysokl[j]
j+=1
riadky.append(r)

o]
]

Teraz prejdeme cez vsetky trojice riadkov
Tento cyklus nam umocni pocty riadkov na tretiu
for tabulka in product(riadky, repeat=3):
Vypiseme tabulku a prazdny riadok
for riadok in tabulka:
print (*riadok, sep='")
print ()

Pri matematickom rieSeni sa odvolavame na vetu o pocte kombinécii bez opakovania a variacii s opakovanim
(resp. pravidlo sué¢inu). To zodpoved4d tomu, Ze pri programovani vyuzijeme knizni¢né funkcie. Avsak v tejto
konkrétnej situdcii nie je fazké prepisat kéd aj bez nich. Pre jednoduchost spravime este jednu tpravu —
miesto pozicie nil vyberieme 3 pozicie pre ¢isla, ktoré nie st nuly.

from itertools import combinations, product

Najprv si zistime moznosti pre riadok
riadky = []
Prejdeme cez vsetky pozicie nul - zodpoveda cislu (7 nad 4)
for poz_nul in combinations(range(7), 4):
Prejdeme cez vsetky monosti pre zvyne 3 policka - zodpoveda 273
for zvysok in product([1, 2], repeat=3):
Na zaklade tychto dvoch volieb vytvorime riadok - na policka, kde
nemaju byt nuly dame postupne cisla z trojice zvysok
r=[0] 7
j=0
for i in range(7):
if i not in poz_nul:
r[i] = zvysokl[j]
j+=1
riadky.append(r)

Teraz prejdeme cez vsetky trojice riadkov
Tento cyklus nam umocni pocty riadkov na tretiu
for tabulka in product(riadky, repeat=3):
Vypiseme tabulku a prazdny riadok
for riadok in tabulka:
print (*riadok, sep='")
print ()

Komentér. Uloha bola cielene zvolens tak, aby nebolo lahké nechaf dobehntf cely program. Bolo to preto,
aby Vés to printtilo napisat kéd efektivne (teda nie vygerovat vsetky tabulky a kontrolovat podmienky —
tak to robila viiésina v lohe a), kde to bolo schodné) a tiez viac sa zamyslief nad tym, preco je v program
spravny. Ak bezne spustime tento program, nemé sancu do konzoly vypisat vietky moznosti. Efektivnejsie je
presmerovat vystup do stiboru (napr. tak, Ze program spustime prikazom python ries c.py > vystup.txt.
Dalsie vyrazné zrychlenie mozno docielit pouzitim sys.stdout.write miesto print.

Ak méte zdujem o rieSenie bonusu 2, tak napiste Jozefovi Rajnikovi.

