
Riešenia 2. sady domácich úloh

Úloha 1

Figúrka holub ohrozuje poĺıčka ako je znázornené na obrázku. Kol’ko najviac holubov možno umiestnit’

na šachovnicu rozmerov a) 6×6, b) 8×8 tak, aby sa žiadne dva neohrozovali? Vaše tvrdenie dokážte.

Pre źıskanie 1,5 boda stač́ı úplne vyriešit’ čast’ a) a v časti b) korektne obmedzit’ možný výsledok na
dve hodnoty.

Šachovnica 6× 6

Ukážeme, že najviac možno umiestnit’ 6 holubov.

Konštrukcia. Obrázok 1 znázorňuje umiestnenie 6 holubov, o ktorom sa l’ahko presvedč́ıme, že sa žiadne
dva neohrozujú.

Obr. 1 Obr. 2

Odhad. Na obrázku 2 je šachovica rozdelená na 6 obd́lžnikov rozmeru 2 × 3. L’ahko skontrolujeme, že
l’ubovol’né dva holuby v obd́lžniku 2×3 sa ohrozujú. Ak by sme na šachovnicu umiestnili viac ako 6 holubov,
tak v niektorom obd́lžniku by boli aspoň dva holuby, a tie by sa ohrozovali. Preto na šachovnicu nie je
možné umiestnit’ viac ako 6 neohrozujúcich sa holubov.

Odhad (bez Dirichletovho prinćıpu). Na obrázku 2 je šachovica rozdelená na 6 obd́lžnikov rozmeru
2× 3. Každý z nich môže obsahovat’ najviac jedného holuba. Preto na šachovnicu možno umiestnit’ najviac
6 holubov.



Šachovnica 8× 8 (čiastočné riešenie)

Uvedieme najskôr čiastkové riešenie pre šachovnicu 8 × 8. toto riešenie sme od vás očakávali a stačilo na
źıskanie 1,5 boda za úlohu (spolu s so správnou čast’ou a)).

Konštrukcia. Obrázok 3 znázorňuje umiestnenie 10 holubov, o ktorom sa l’ahko presvedč́ıme, že sa žiadne
dva neohrozujú.

Obr. 3 Obr. 4

Odhad. Na obrázku 4 je šachovica rozdelená na 11 oblast́ı. Ak by sme na šachovnicu umiestnili viac ako
11 holubov, tak v niektorej oblasti by boli aspoň dva holuby. Tieto dva holuby by sa ohrozovali, ako sme
už overili pre obd́lžnik 2 × 3 v časti a), čo plat́ı aj pre štvorec 2 × 2, ktorý je jeho podmnožinou. Preto na
šachovnicu nie je možné umiestnit’ viac ako 11 neohrozujúcich sa holubov.

Spojeńım týchto dvoch úvah vieme, že hl’adaný najväčš́ı možný počet holubov je aspoň 10 a najviac 11.
Teda možný výsledok sme zúžili na hodnoty 10 a 11.

Šachovnica 8× 8 (úplné riešenie)

Ukážeme, že správnym riešeńım úlohy je 10. Umiestnenie 10 neohrozujúcich sa holubov sme už ukázali na
obrázku 3. Ostáva nám ukázat’, že 11 holubov nemožno umiestnit’.

Správny odhad. Pre spor predpokladajme, že na šachovnici 8 × 8 máme umiestnených 11 holubov, z
ktorých sa žiadne dva neohrozujú. Ked’že v každej z 11 oblast́ı na obrázku 4 môže byt’ najviac jeden holub a
máme práve 11 holubov, tak v každej oblasti muśı byt’ práve jeden holub. Špeciálne, práve jeden holub muśı
byt’ v rohovom štvorci 2×2. Rovnaký záver plat́ı pre každý rohový štvorec 2×2, ked’že šachovnicou môžeme
otáčat’ o 90◦. Takisto z rozdelenia šachovnice ako na obrázku 5 vyplýva, že práve jeden holub sa nachádza
v prostrednom štvorci 2 × 2. Vd’aka rotačnej symetrii môžeme bez ujmy na všeobecnosti predpokladat’, že
tento holub je v l’avom hornom rohu.

Na obrázku 6 si zaznač́ıme šedou poĺıčka, ktoré tento prostredný holub ohrozuje. Takisto zaznač́ıme šedou
pre každý z rohových štvorcov 2× 2 štyri poĺıčka, ktoré s nimi susedia – o nich totiž vieme, že sú ohrozené
holubom v tomto rohovom štvorci bez ohl’adu na to, na ktorom poĺıčku sa presne nachádza. Ostalo nám
tak 5 bielych oblast́ı (dva štvorce 2 × 2, dva obd́lžniky 1 × 2 a jeden štvorec 1 × 1). V každom z nich
môže byt’ najviac jeden holub. Preto celkovo na šachovnici môže byt’ najviac 10 holubov. To je ale spor s
predpokladom, že máme umiestnených 11 holubov.



Obr. 5 Obr. 6

Komentár. Upozorňujeme vás, aby ste sa neskúšali riešit’ úlohy takýmto štýlom, pokial’ mu isto nerozu-
miete. A ani takýto sofistikovaný pŕıstup nebudeme od vás vyžadovat’ na skúškach. Riešit’ úlohu uvažovańım
kde musia byt’ holuby (resp. iné objekty) je náročné a vel’a takých pokusov konč́ı nesprávnymi úvahami za
0 bodov.

V čom je toto riešenie odlǐsné? V prvom rade, má jasný začiatok – hovoŕıme, že dokazujeme sporom, teda
je jasné, z čoho vychádzame. Ťažiskovou úvahou je rozdelenie šachovnice na oblasti. Bez neho sa t’ažko
dopracujeme ku korektným úvahám o tom, že holub nikde muśı byt’.Tiež si všimnite, že na šachovnicu
sme umiestnili len jedného holuba, a to len vd’aka tomu, že všetky štyri možnosti jeho umiestnenia sú
symetrické. Do rohových oblast́ı sme už holubov neumiestňovali. Totiž nevieme, na ktorých zo štyroch
poĺıčkach môže byt’. Stačilo nám však vediet’, že niektoré poĺıčka budú týmto holubom ohrozené, a to nech
bude na hociktorom z týchto štyroch poĺıčok.

Uvedený spôsob riešenia je teda akousi nadstavbou k Dirichletovmu prinćıpu (resp. prinćıpu delenia na
oblasti), kedy vieme źıskaný odhad o trochu zlepšit’.



Úloha 2

Zistite, či pre l’ubovol’né množiny A, B, C, D plat́ı

a) (A×B)− (C ×D) ⊆ (A− C)× (B −D),

b) (A×B)− (C ×D) ⊇ (A− C)× (B −D).

Vaše tvrdenia zdôvodnite iba na základe defińıcíı, teda bez odvolávania sa na známe tvrdenia o
množinách alebo karteziánskom súčine.

Dôkaz, že a) neplat́ı

Nech A = B = D = {1} a C = ∅. Potom

• (A×B)− (C ×D) = {(1, 1)} − ∅ = {(1, 1)}.

• (A− C)× (B −D) = {1} × ∅ = ∅.

Avšak, vtedy {(1, 1)} ̸⊆ ∅.

Dôkaz, že b) plat́ı

Ked’že l’avá strana obsahuje len usporiadané dvojice, tak nám stač́ı ukázat’, že pre každú usporiadanú dvojicu
(x, y) plat́ı:

(x, y) ∈ (A− C)× (B −D)

⇓
x ∈ A− C ∧ y ∈ B −D

⇓
x ∈ A ∧ x /∈ C ∧ y ∈ B ∧ y /∈ D

⇓
(x ∈ A ∧ y ∈ B) ∧ (x /∈ C ∧ y /∈ D)

⇓ (∗)
(x, y) ∈ A×B ∧ (x, y) /∈ C ×D

⇓
(x, y) ∈ (A×B)− (C ×D)

Komentár. Pozor, implikácia (*) je jediná, ktorá nie je ekvivalenciou – a taká tam muśı byt’, ked’že inak
by šlo o dôkaz nepravdivého tvrdenia a), ktorý nemôže existovat’. Správna ekvivalencia je

(x /∈ C ∨ y /∈ D) ⇔ (x, y) /∈ C ×D.

(Odporúčame si znegovat’ (x, y) ∈ C × D, teda x ∈ C ∧ y ∈ D.) Avšak my nepotrebujeme ekvivalenciu.
Zdôvodnenie implikácie zhora nadol je jednoduché: ked’ máme dvojicu (x, y), z ktorej x /∈ C a tiež y /∈ D,
tak vieme, že sa nenachádza v karteziánskom súčine. Ak by sme to chceli dokázat’ striktne z defińıcie, tak
môžeme takto:

(x /∈ C ∧ y /∈ D) ⇒ x /∈ C ⇒ (x /∈ C ∨ y /∈ D) ⇔ (x, y) /∈ C ×D.



Úloha 3

a) (0,5 b) Kol’ko je všetkých 3-ciferných č́ısel s ciferným súčtom 21, ktoré majú všetky cifry rôzne?

b) (0,5 b) Kol’kými spôsobmi možno vyplnit’ tabul’ku 3× 3 č́ıslami 0 a 1 tak, aby v každom štvorci
2× 2 bol rovnaký počet jednotiek ako núl?

c) (1 b) Kol’kými spôsobmi možno vyplnit’ tabul’ku 3× 7 (riadky × st́lpce) č́ıslami 0, 1, 2 tak, aby
každý riadok obsahoval práve 4-krát č́ıslo 0?

Správnost’ vašich riešeńı zdôvodnite (stač́ı neformálne). K podúlohám a), b) vyṕı̌ste všetky možnosti.
Aj v týchto podúlohách treba riešenie odôvodnit’ – muśıte vysvetlit’, prečo ste každú možnost’ vyṕısali
práve raz.

Podúloha a)

Najskôr urč́ıme, z akých navzájom rôznych cifier sa môže skladat’ 3-ciferné č́ıslo so súčtom 21:

• Ak je najväčšia cifra 9, tak zvyšné dve majú súčet 21 − 9 = 12. Ked’ postupne skúšame druhú cifru
od najväčšej, tak dostaneme možnosti 8 + 4 a 7 + 5.

• Ak je najväčšia cifra 8, tak zvyšné dva majú súčet 21− 8 = 13. Ten možno dosiahnut’ jedine ako 7+6.

• Ak je najväčšia cifra 7 alebo menej, tak ciferný súčet môže byt’ najviac 7 + 6 + 5 = 18, čo je menej
ako 21.

Pŕıpustné množiny cifier sú teda {9, 8, 4}, {9, 7, 5} a {8, 7, 6}. Každú z nich môžeme zoradit’ do 3-ciferného
č́ısla 3! spôsobmi (ide o permutácie), čo nám dá spolu 3 ·3! = 18 č́ısel. Vyṕısat’ ich môžeme v troch riadkoch,
každý riadok obsahuje č́ısla s rovnakými ciframi, len v inom porad́ı. Táto tabul’ka nám pekne ilustruje, prečo
č́ısla 3 a 3! pri výpočte násob́ıme.

984 948 894 849 498 489
975 957 795 759 597 579
876 867 786 768 687 678

Jednoduchý program, ktorý nám vyṕı̌se tieto možnosti môže vyzerat’ takto.

from itertools import permutations

for cifry in [[9, 8, 4], [9, 7, 5], [8, 7, 6]]:

for p in permutations(cifry):

print(*p, sep='')

Tento program priamo koṕıruje naše matematické riešenie. Ked’že obsahuje dva vnorené for cykly, prvý s 3
opakovaniami a druhý s 3! opakovaniami, tak vyṕı̌se naozaj celkom 3 · 3! = 18 možnost́ı.

Pokial’ by sme chceli do programu zakomponovat’ aj hl’adanie možných ciferných súčtov, tak to môžeme
napr. takto.

from itertools import permutations

trojice = []

# Skusame najvacsiu cifru

for a in range(9, 0, -1):

# Skusame druhu najvacsiu cifru

for b in range(a - 1, 0, -1):

# Tretiu cifru si dopocitame

c = 21 - a - b



# Ak uz nie je tretia cifra mensia ako druha, tak nemusime hladat dalej

if c >= b:

break

# Inak mame trojicu so spravnym suctom

trojice.append([a, b, c])

for cifry in trojice:

for p in permutations(cifry):

print(*p, sep='')

Podúloha b)

V druhom riadku tabul’ky máme 3 poĺıčka. Na každé z nich máme na výber 2 možnosti. To nám dáva spolu
23 možnost́ı, ako môže vyzerat’ prostredný riadok. Tieto č́ısla naṕı̌seme zelenou. Pre každú z možnost́ı urč́ıme
čiernou všetky č́ısla, ktoré sú jednoznačne určené. Takto dostaneme práve jednu tabul’ku v 6 pŕıpadoch, v
tých, kde je stredný riadok od 010 a 101. V týchto dvoch pŕıapadoch nevieme jednoznačne doplnit’ žiadne
č́ıslo. Rozoberieme preto všetky možnosti, ako môže vyzerat’ druhý st́lpec. Ked’že v ňom máme dve poĺıčka,
tak máme 22 možnost́ı na jeho vyplnenie. Pre každú z nich už dostaneme jednoznačné doplnenie zvyšku.

1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
1 1 1 1 1 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0

1 0 1 1 0 1
0 1 0 1 0 1
0 1 0 0 1 0

0 1 0 0 1 0
0 1 0 1 0 1
1 0 1 1 0 1

0 1 0 0 1 0
0 1 0 1 0 1
0 1 0 0 1 0

Podúloha c)

Najskôr sa pozrieme na jeden riadok. Najskôr vyberieme zo všetkých jeho 7 poĺıčok 4 miesta, kam dáme
nuly. Na to máme

(
7
4

)
možnost́ı. Potom na každé zo zvyšných 3 miest máme 2 možnosti – dáme tam 1 alebo

2 – to nám dáva 23 možnost́ı. Celkovo na vyplnenie jedného riadku máme tak
(
7
4

)
·23 možnost́ı. Ked’že máme

riadky 3 a každý vieme vyplnit’ nezávisle, tak máme spolu((
7

4

)
· 23

)3

= 2803 = 21 952 000 možnost́ı

Toto riešenie vieme priamočiaro previest’ na nasledovný program.

from itertools import combinations, product

# Najprv si zistime moznosti pre riadok

riadky = []

# Prejdeme cez vsetky pozicie nul - zodpoveda cislu (7 nad 4)

for poz_nul in combinations(range(7), 4):

# Prejdeme cez vsetky monosti pre zvyne 3 policka - zodpoveda 2^3



for zvysok in product([1, 2], repeat=3):

# Na zaklade tychto dvoch volieb vytvorime riadok - na policka, kde

# nemaju byt nuly dame postupne cisla z trojice zvysok

r = [0] * 7

j = 0

for i in range(7):

if i not in poz_nul:

r[i] = zvysok[j]

j += 1

riadky.append(r)

# Teraz prejdeme cez vsetky trojice riadkov

# Tento cyklus nam umocni pocty riadkov na tretiu

for tabulka in product(riadky, repeat=3):

# Vypiseme tabulku a prazdny riadok

for riadok in tabulka:

print(*riadok, sep='')
print()

Pri matematickom riešeńı sa odvolávame na vetu o počte kombinácíı bez opakovania a variácíı s opakovańım
(resp. pravidlo súčinu). To zodpovedá tomu, že pri programovańı využijeme knižničné funkcie. Avšak v tejto
konkrétnej situácii nie je t’ažké preṕısat’ kód aj bez nich. Pre jednoduchost’ sprav́ıme ešte jednu úpravu –
miesto poźıcie núl vyberieme 3 poźıcie pre č́ısla, ktoré nie sú nuly.

from itertools import combinations, product

# Najprv si zistime moznosti pre riadok

riadky = []

# Prejdeme cez vsetky pozicie nul - zodpoveda cislu (7 nad 4)

for poz_nul in combinations(range(7), 4):

# Prejdeme cez vsetky monosti pre zvyne 3 policka - zodpoveda 2^3

for zvysok in product([1, 2], repeat=3):

# Na zaklade tychto dvoch volieb vytvorime riadok - na policka, kde

# nemaju byt nuly dame postupne cisla z trojice zvysok

r = [0] * 7

j = 0

for i in range(7):

if i not in poz_nul:

r[i] = zvysok[j]

j += 1

riadky.append(r)

# Teraz prejdeme cez vsetky trojice riadkov

# Tento cyklus nam umocni pocty riadkov na tretiu

for tabulka in product(riadky, repeat=3):

# Vypiseme tabulku a prazdny riadok

for riadok in tabulka:

print(*riadok, sep='')
print()

Komentár. Úloha bola cielene zvolená tak, aby nebolo l’ahké nechat’ dobehnút’ celý program. Bolo to preto,
aby Vás to prinútilo naṕısat’ kód efekt́ıvne (teda nie vygerovat’ všetky tabul’ky a kontrolovat’ podmienky –
tak to robila väčšina v úlohe a), kde to bolo schodné) a tiež viac sa zamysliet’ nad tým, prečo je váš program
správny. Ak bežne spust́ıme tento program, nemá šancu do konzoly vyṕısat’ všetky možnosti. Efekt́ıvneǰsie je
presmerovat’ výstup do súboru (napr. tak, že program spust́ıme pŕıkazom python ries c.py > vystup.txt.
Ďaľsie výrazné zrýchlenie možno docielit’ použit́ım sys.stdout.write miesto print.

Ak máte záujem o riešenie bonusu 2, tak naṕı̌ste Jozefovi Rajńıkovi.


