
Riešenia 3. sady domácich úloh

Úloha 1

V triede je 20 chlapcov a 30 dievčat. Mikuláš im doniesol 200 nerozĺı̌sitel’ných cukŕıkov. Kol’kými
spôsobmi vie Mikuláš rozdelit’ det’om cukŕıky tak, aby všetci chlapci spolu mali iný počet cukŕıkov
ako dievčatá?

Keby sme nemali podmienku, že chlapci a dievčatá dostanú rôzny počet cukŕıkov, chceli by sme medzi 200
cukŕıkov vložit’ 49 oddel’ovačov, ktoré to oddelia na cukŕıky pre jednotlivé deti. Počet možnost́ı je preto(
200+49
200

)
.

Teraz však potrebujeme odpoč́ıtat’
”
zlé“ možnosti – t. j. také, v ktorých chlapcom aj dievčatám rozdeĺıme

po 100 cukŕıkov. Pre chlapcov potrebujeme dat’ 19 oddel’ovačov medzi 100 cukŕıkov. Pre dievčatá zas 29
oddel’ovačov medzi 100 cukŕıkov. Ku každému rozloženiu cukŕıkov pre chlapcov vieme priradit’ l’ubovol’né
rozloženie pre dievčatá, čiže použijeme pravidlo súčinu. Zlých možnost́ı je teda

(
100+19
100

)
·
(
100+29
100

)
.

Výsledný počet možnost́ı je preto
(
249
200

)
−
(
119
100

)(
129
100

)
.

Úloha 2

Uvažujme 52 žoĺıkových kariet, z ktorých každá má práve jednu z 13 hodnôt a práve jednu zo 4 farieb.
Kol’kými spôsobmi možno každému z 9 hráčov rozdat’ 4 karty tak, aby neexistoval hráč, ktorý má
všetky 4 karty rovnakej hodnoty?

Poznámka. Pod rozdańım kariet formálne mysĺıme usporiadanú 9-ticu tvorenú navzájom disjunktnými
4-prvkovými podmnožinami množiny všetkých kariet.

Nech Ai pre i = 1, 2, . . . , 9 označuje také rozloženia, kde i-ty hráč má na ruke 4 karty rovnakej hodnoty. Ked’

chceme spoč́ıtat’, v kol’kých rozloženiach nikto nemá 4 karty rovnakej hodnoty, stač́ı od všetkých rozložeńı
odpoč́ıtat’ tie, v ktorých má aspoň jeden hráč 4 karty rovnakej hodnoty.

Najskôr spoč́ıtajme, kol’ko je všetkých rozložeńı. Najskôr vyberieme 36 kariet a zorad́ıme ich, čo je 5236 =
52!

(52−36)! =
52!
16! . Prvé štyri pôjdu prvému hráčovi, druhému druhé štyri, atd’. Na porad́ı kariet jednotlivého

hráča nezálež́ı, preto tento počet vydeĺıme (4!)9. Preto celkový počet rozložeńı je 52!
(16!)(4!)9

.

Od tohto počtu chceme odpoč́ıtat’ počet rozložeńı, kde aspoň jeden hráč má 4 karty rovnakej hodnoty, čo je
zjednotenie rozložeńı A1, . . . , A9. Tam vieme využit’ prinćıp inklúzie a exklúzie.

Urč́ıme počet možnost́ı, kde k fixných hráčov má karty rovnakej hodnoty. Najskôr si z 9 hráčov vyberieme
týchto k hráčov

(
9
k

)
spôsobmi. Potom urč́ıme, o aké hodnoty ide – to ide 13k = 13!

(13−k)! spôsobmi. Zostáva

nám vybrat’ 36− 4k kariet pre zvyšných 9− k hráčov, ktoré potom rozdeĺıme podobne ako predtým, na čo
je (52− 4k)36−4k = (52−4k)!

16!(4!)9−k možnost́ı. Dostávame sa teda k výsledku

52!

(16!)(4!)9
−

9∑
k=1

(−1)k+1 ·
(
9

k

)
· 13!

(13− k)!
· (52− 4k)!

16!(4!)9−k
=

9∑
k=0

(−1)k ·
(
9

k

)
· 13!

(13− k)!
· (52− 4k)!

16!(4!)9−k
.



Úloha 3

Nech P je množina všetkých permutácíı množiny {1, 2, . . . , 5}. Na množine P definujeme reláciu R
tak, že pre každé (a0, a1, . . . , a4), (b0, b1, . . . , b4) ∈ P plat́ı

(a0, a1, . . . , a4)R(b0, b1, . . . , b4) ⇔ ∃k ∈ Z : ∀i ∈ {0, 1, . . . , n− 1} : ai = b(i+k) mod 5.

a) (1,5 b) Dokážte, že R je relácia ekvivalencie na množine P .

b) (0,5 b) Oṕı̌ste rozklad množiny P , ktorý relácia ekvivalencie R indukuje na množine P .

Pre účely nasledujúcich bonusových úloh budeme uvažovat’ P = {1, 2, . . . , n}, kde n je kladné celé
č́ıslo a

(a0, a1, . . . , an−1)R(b0, b1, . . . , bn−1) ⇔ ∃k ∈ Z : ∀i ∈ {0, 1, . . . , n− 1} : ai = b(i+k) mod n.

c) (0,5 b*) Kol’ko tried má rozklad pre n = 47?

d) (1 b*) Oṕı̌ste rozklad všeobecne a formálne pre l’ubovol’né kladné celé č́ıslo n. Môžete ho oṕısat’

aj naṕısańım efekt́ıvneho programu, ktorý nač́ıta kladné celé č́ıslo n a vyṕı̌se rozklad do konzoly:
každú triedu vyṕı̌se do samostatného riadku tak, že medzerou oddeĺı prvky triedy.

e) (1 b*) Ako by sa zmenili riešenia predošlých úloh, ak by sme miesto množiny P uvažovali
množinu V = {1, 2, . . . , 10}47 a n = 47?

Ospravedlňujeme sa za chybu v zadańı. V úlohách c) a d) sme chceli množinu P uvažovat’ ako množinu
všetkých permutácíı množiny {1, 2, . . . , n} – pri formulovańı zadanie sme nesprávne naṕısali, že {1, 2, . . . , n}
je náhrada za množinu P (čo nedáva zmysel), pričom to mala byt’ náhrada za množinu {1, 2, . . . , 5}

a) Dôkaz cez symbolické zápisy

Na dokázanie, že R je reláciou ekvivalencie, potrebujeme ukázat’, že R je reflex́ıvna, symetrická a tranzit́ıvna.

Reflex́ıvnost’. Pre každú päticu a = (a0, . . . , a4) ∈ P a pre k = 0 plat́ı ∀i ∈ {0, 1, . . . , 4} : ai = a(i+0) mod 5,
teda aRa.

Symetrickost’. Nech (a0, . . . , a4), (b0, . . . , b4) ∈ P . Predpokladajme, že

(a0, . . . , a4)R(b0, . . . , b4),

teda pre nejaké k ∈ Z plat́ı
∀i ∈ {0, 1, . . . , 4} : ai = b(i+k) mod 5.

Potom pre č́ıslo −k, ktoré je celé, plat́ı pre každé i ∈ {0, 1, . . . , 4}:

a(i−k) mod 5 = b(i−k+k) mod 5 = bi,

teda ∀i ∈ {0, 1, . . . , 4} : bi = a(i−k) mod 5, čo znamená, že (b0, . . . , b4)R(a0, . . . , a4).

Tranzit́ıvnost’ Nech (a0, . . . , a4), (b0, . . . , b4), (c0, . . . , c4) ∈ P . Predpokladajme, že

(a0, . . . , a4)R(b0, . . . , b4) ∧ (b0, . . . , b4)R(c0, . . . , c4).

Potom
∃k ∈ Z : ∀i ∈ {0, . . . , 4} : ai = b(i+k) mod 5 ∧ ∃ℓ ∈ Z : ∀j ∈ {0, . . . , 4} : bj = c(j+ℓ) mod 5.



Existenčné kvantifikátory môžeme odstránit’ a použit’ nové označenie pre celé č́ısla, o ktorej existencii vrav́ı
tento výrok. Ked’že sme už rovno použili rôzne premenné k, ℓ, tak len existenčné kvantifikátory dáme preč.

∀i ∈ {0, . . . , 4} : ai = b(i+k) mod 5 ∧ ∀j ∈ {0, . . . , 4} : bj = c(j+ℓ) mod 5.

Uvažujme teraz l’ubovol’né i ∈ {0, . . . , 4}. Pre takéto i plat́ı

ai = b(i+k) mod 5. (1)

Ked’že bj = c(j+ℓ) mod 5 plat́ı pre všetky j ∈ {0, . . . , 4}, tak pre j = (i+ k) mod 5 plat́ı

b(i+k) mod 5 = c((i+k) mod 5+ℓ) mod 5 = c(i+k+ℓ) mod 5, (2)

pričom posledná rovnost’ plat́ı na základe pravidiel poč́ıtania so zvyškami. Z rovnost́ı (1) a (2) dostávame
ai = c(i+k+ℓ) mod 5. Dostali sme tak, že

∀i ∈ {0, . . . , 4} : ai = c(i+k+ℓ) mod 5.

Ked’že m = k + ℓ je celé č́ıslo, tak sme dokázali, že

∃m ∈ Z : ∀i ∈ {0, . . . , 4} : ai = c(i+m) mod 5,

teda (a0, . . . , a4)R(c0, . . . , c4).

Poznámka. Dôkaz sme ṕısali dost’ podrobne, aby boli jasné kroky, čo sa tu diali. Stačilo to ṕısat’ stručneǰsie.

a) Slovné dôkazy

Slovne vyjadrené, relácia R dáva do vzt’ahu také permutácie, kde jedna je cyklickým posunom druhej. Pre
stručnost’ budeme hovorit’ len o posune. S týmto uvedomeńım vieme l’ahšie dokázat’ jednotlivé vlastnosti.

Reflex́ıvnost’. Každá permutácia je posunom samej seba o 0 miest.

Symetrickost’. Ak aRb, tak permutácia b je cyklickým posunom permutácie a o k miest doprava. Potom
je permutácia a cyklickým posunom permutácie b o k miest dol’ava, resp. −k miest doprava, teda bRa.

Tranzit́ıvnost’ Nech aRb a bRc. Potom permutácia b je posunom permutácie a o k miest a c je cyklickým
posunom permutácie b o ℓ miest. Potom permutáciu c dostaneme z permutácie a posunom o k + ℓ miest,
preto aRc.

Komentár k rozkladu

Ukázalo sa, že podúloha c) bola l’ahšia ako podúloha b). Rozklad indukovaný reláciou ekvivalencie R nie je
až tak l’ahký na opis. Chceme upozornit’ na to, že určit’ počet tried nie je dostatočný opis rozkladu. Čo ak by
bolo tried nekonečne vel’a? To nám vel’a nepovie. Okrem toho, že treba naṕısat’, ako vyzerá jedna trieda (čo
väčšina zvládla), treba uviest’ aj pre každú triedu jeden prvok, ktorý ju charakterizuje. Toto nám aj určuje
počet tried – to ilustrujeme na druhom riešeńı úlohy c) – no dáva nám to viac informácie a je to použitel’né
všeobecne, aj ked’ máme nekonečne vel’a tried.

Za absenciu takéhoto opisu rozkladu sme strhávali 0,2 boda. Avšak určenie počtu tried sme započ́ıtali do
úlohy c). Pre lepšiu ilustráciu tohto problému si pozrite minulé domáce úlohy, napr. prvú úlohu 3. sady roku
2024. Tam aj ukazujeme, ako dokázat’, že sme rozklad oṕısali správne, čo sme teraz neyžadovali.

http://www.dcs.fmph.uniba.sk/~rajnik/dm2024/du/du04-ries.pdf
http://www.dcs.fmph.uniba.sk/~rajnik/dm2024/du/du04-ries.pdf


b) Rozklad

Trieda pre permutáciu (a0, . . . , a4) je tvorená všetkými permutáciami, ktoré možno z nej dostat’ cyklickým
posunom. Pre každú tried urč́ıme jedného jej reprezentanta. To sa dá napŕıklad tak, že permutáciu posunieme
tak, aby sa zač́ınala č́ıslom 1. Rozklad bude teda obsahovat’ pre každú permutáciu zač́ınajúcu jednotkou
triedu všetkých jej cyklických posunov.

Rozklad vieme aj celý vyṕısat’. Vyzerá takto:

{{(1, 2, 3, 4, 5), (2, 3, 4, 5, 1), (3, 4, 5, 1, 2), (4, 5, 1, 2, 3), (5, 1, 2, 3, 4)},
{(1, 2, 3, 5, 4), (2, 3, 5, 4, 1), (3, 5, 4, 1, 2), (5, 4, 1, 2, 3), (4, 1, 2, 3, 5)},
{(1, 2, 4, 3, 5), (2, 4, 3, 5, 1), (4, 3, 5, 1, 2), (3, 5, 1, 2, 4), (5, 1, 2, 4, 3)},
{(1, 2, 4, 5, 3), (2, 4, 5, 3, 1), (4, 5, 3, 1, 2), (5, 3, 1, 2, 4), (3, 1, 2, 4, 5)},
{(1, 2, 5, 3, 4), (2, 5, 3, 4, 1), (5, 3, 4, 1, 2), (3, 4, 1, 2, 5), (4, 1, 2, 5, 3)},
{(1, 2, 5, 4, 3), (2, 5, 4, 3, 1), (5, 4, 3, 1, 2), (4, 3, 1, 2, 5), (3, 1, 2, 5, 4)},
{(1, 3, 2, 4, 5), (3, 2, 4, 5, 1), (2, 4, 5, 1, 3), (4, 5, 1, 3, 2), (5, 1, 3, 2, 4)},
{(1, 3, 2, 5, 4), (3, 2, 5, 4, 1), (2, 5, 4, 1, 3), (5, 4, 1, 3, 2), (4, 1, 3, 2, 5)},
{(1, 3, 4, 2, 5), (3, 4, 2, 5, 1), (4, 2, 5, 1, 3), (2, 5, 1, 3, 4), (5, 1, 3, 4, 2)},
{(1, 3, 4, 5, 2), (3, 4, 5, 2, 1), (4, 5, 2, 1, 3), (5, 2, 1, 3, 4), (2, 1, 3, 4, 5)},
{(1, 3, 5, 2, 4), (3, 5, 2, 4, 1), (5, 2, 4, 1, 3), (2, 4, 1, 3, 5), (4, 1, 3, 5, 2)},
{(1, 3, 5, 4, 2), (3, 5, 4, 2, 1), (5, 4, 2, 1, 3), (4, 2, 1, 3, 5), (2, 1, 3, 5, 4)},
{(1, 4, 2, 3, 5), (4, 2, 3, 5, 1), (2, 3, 5, 1, 4), (3, 5, 1, 4, 2), (5, 1, 4, 2, 3)},
{(1, 4, 2, 5, 3), (4, 2, 5, 3, 1), (2, 5, 3, 1, 4), (5, 3, 1, 4, 2), (3, 1, 4, 2, 5)},
{(1, 4, 3, 2, 5), (4, 3, 2, 5, 1), (3, 2, 5, 1, 4), (2, 5, 1, 4, 3), (5, 1, 4, 3, 2)},
{(1, 4, 3, 5, 2), (4, 3, 5, 2, 1), (3, 5, 2, 1, 4), (5, 2, 1, 4, 3), (2, 1, 4, 3, 5)},
{(1, 4, 5, 2, 3), (4, 5, 2, 3, 1), (5, 2, 3, 1, 4), (2, 3, 1, 4, 5), (3, 1, 4, 5, 2)},
{(1, 4, 5, 3, 2), (4, 5, 3, 2, 1), (5, 3, 2, 1, 4), (3, 2, 1, 4, 5), (2, 1, 4, 5, 3)},
{(1, 5, 2, 3, 4), (5, 2, 3, 4, 1), (2, 3, 4, 1, 5), (3, 4, 1, 5, 2), (4, 1, 5, 2, 3)},
{(1, 5, 2, 4, 3), (5, 2, 4, 3, 1), (2, 4, 3, 1, 5), (4, 3, 1, 5, 2), (3, 1, 5, 2, 4)},
{(1, 5, 3, 2, 4), (5, 3, 2, 4, 1), (3, 2, 4, 1, 5), (2, 4, 1, 5, 3), (4, 1, 5, 3, 2)},
{(1, 5, 3, 4, 2), (5, 3, 4, 2, 1), (3, 4, 2, 1, 5), (4, 2, 1, 5, 3), (2, 1, 5, 3, 4)},
{(1, 5, 4, 2, 3), (5, 4, 2, 3, 1), (4, 2, 3, 1, 5), (2, 3, 1, 5, 4), (3, 1, 5, 4, 2)},
{(1, 5, 4, 3, 2), (5, 4, 3, 2, 1), (4, 3, 2, 1, 5), (3, 2, 1, 5, 4), (2, 1, 5, 4, 3)}}.

c) Počet tried

Každá trieda obsahuje cyklické posuny nejakej permutácie. Permutáciu 47 prvkov možno posunút’ 47 spôsobmi
a každý z nich je jedinečný – napr. na prvom mieste budeme mat’ vždy iné č́ıslo, ked’že máme permutáciu a
v nej sa neopakujú prvky. Teda každá trieda má 47 prvkov. Všetkých permutácíı množiny {1, 2, . . . , 47} je
47!, teda počet tried je

47!

47
= 46!.

Iné riešenie. Z riešenia b) vieme, že triedy možno jednoznačne určit’ permutáciami, ktoré zač́ınajú jed-
notkou. Na zvyšných 46 miestach je permutácia 46 prvkov a tých je 46!. To je teda aj počet tried.



d) Formálny opis rozkladu

Dôležité myšlienky sme už uvideli v riešeńı časti b). Jednu triedu vieme vyjadrit’ napr. ako

R[(a0, . . . , an−1)] = {(ak, a(k+1) mod n . . . , a(k+n−1) mod n); k ∈ {0, 1, . . . , n− 1}}.

Rozklad sa skladá z týchto tried pre každú permutáciu (1, a1, . . . , an−1) zač́ınajúcu sa jednotkou.

Celý rozklad možno formálne vyjadrit’ aj ako

{{(ak, a(k+1) mod n, . . . , a(k+n−1) mod n); k ∈ Z}; (a0, a1, . . . , an−1) ∈ P ∧ a0 = 1}.

Na základe toho vieme aj naṕısat’ program, ktorý tento rozklad pre zadané n vyṕı̌se. Vonkaǰśı for cyklus
zodpovedá prechádzaniu všetkých permutácíı zač́ınajúcich jednotkou ((a0, a1, . . . , an−1) ∈ P ∧ a0 = 1),
vnútorný for cyklus zas prechádzaniu posunov (k ∈ Z).
from itertools import permutations

n = int(input())

# Prejdeme vsetkych reprezentantov triedy - vsetky permutacie cisel 1, 2, ..., n,

# ktore sa zacinaju cislom 1. Staci nam teda prejst moznosti na zvysnych n - 1 pozicii

for a in permutations(range(2, n + 1)):

# Pridame na zaciatok 1-ku

a = (1,) + a

# Vypiseme triedu reprezentanta a - triedu obsahujucu vsetky jej cyklicke posuny

for k in range(n):

# Vypiseme cyklicky posun o k miest doprava

if k > 0:

print(end=' ')
print(a[k:] + a[:k], end='')

print()

e) Počet tried iného rozkladu

Relácia R bude reláciou ekvivalencie aj na množine V – nikde sme nevyužili, že ide o permutácie. Dôležité
bolo, že ide o postupnosti.

Množina V má 1047 prvkov. Ukážeme, že rozklad, ktorý relácia R indukuje, má triedy dvoch typov:

• Postupnost’ (a, a, . . . , a) pre a ∈ V je v relácii R len sama zo sebou – všetky jej cyklické posuny sú
totožné s ňou. Takýchto tried je 10 a každá z nich má 1 prvok.

• Uvažujme postupnost’ (a0, a1, . . . , a46) takú, že nie všetky jej členy sú rovnaké. Ukážeme, že sa nachádza
v triede vel’kosti 47. Pre spor predpokladajme, že pre nejaké k ∈ {1, 2, . . . , 46} plat́ı (a0, a1, . . . , a47) =
(ak, a(k+1) mod 47, . . . , a(k+46) mod 47), teda pre každé i ∈ {0, 1, . . . , 46} plat́ı ai = a(i+k) mod 47. Takto
dostávame, že a0 = ak = a2k mod 47 = · · · = a46k mod 47. Ukážeme, že takto sme dostali všetky prvky
našej postupnosti. Ak by pre nejaké dve rôzne i, j ∈ {0, 1, . . . , 46} platilo, že ik aj jk majú rovnaký
zvyšok po deleńı 47, tak 47 | ik − jk = (i − j)k. Rozdiel i, j je z množiny {±1,±2, . . . ,±46}. Ked’že
47 je prvoč́ıslo, tak rozdiel i− j ńım nie je delitel’ný. Preto 47 | k, teda k = 0, čo je spor. Preto v sérii
rovnost́ı a0 = ak = a2k mod 47 = · · · = a46k mod 47 sú zahrnuté všetky členy postupnosti a dostávame
spor.

Takto sme ukázali, že postupnost’ (a0, a1, . . . , a47), ktorá obsahuje aspoň dva rôzne členy, je v triede
celkovo so 47 prvkami. Takýchto postupnost́ı je 1047 − 10 a ked’že každá z nich je v triede vel’kosti 47,
tak týchto tried je (1047 − 10)/47.

Celkový počet tried je teda

10 +
1047 − 10

47
.



Zauj́ımavosti

Rovnaký výsledok ako v c) má kombinatorická úloha:
”
Kol’kými spôsobmi možno 47 l’ud́ı usadit’ okolo

okrúhleho stola, ak možnosti ĺı̌siace sa len otočeńım považujeme za rovnaké?“ Pokial’ by sme túto úlohu
chceli formulovat’ vo formálnom matematickom jazyku, tak by to vyzeralo takto. Relácie evkivalencie vieme
využit’ na formulovanie toho, že na niečom nám pri poč́ıtańı možnost́ı nezálež́ı.

Zauj́ımavým dôsledkom tejto podúlohy e) je nasledovné uvedomenie. Počet tried muśı byt’ prirodzené č́ıslo.
Preto č́ıslo (1047−10)/47 muśı byt’ celé. To znamená, že č́ıslo 1047−10 je delitel’né č́ıslom 47. Tento výsledok
sa dá l’ahko zovšeobenit’: č́ıslo 10 vieme nahradit’ l’ubovol’ným prirodzeným č́ıslom n a miesto 47 môžeme
použit’ l’ubovol’né prvoč́ıslo p. Rovnako sa dá ukázat’, že č́ıslo np − n muśı byt’ delitel’né č́ıslom p, ked’že
tento zlomok predstavuje počet tried rozkladu, teda muśı ı́st’ o prirodzené č́ıslo. Toto tvrdenie je jedna z
ekvivalentných podôb malej Fermatovej vety a podúloha e) obsahuje hlavnú myšlienku jej kombinatorického
dôkazu.


