RieSenia 4. sady domacich iloh

Uloha 1

Na mnozine N = {0,1,2,. ..} definujeme reldciu C tak, zZe pre lubovolné a,b € N plati
aCbe Ik eN: b —a® =9k

Dokazte, ze C je relaciou usporiadania na mnozine N a urcte vSetky jej minimalne, najmensie, ma-
ximdlne a najvicsie prvky. Spravnost vasich vysledkov dokazte.

Dokaz usporiadania

Reflexivnost. Pre kazdé a € N plati > —a®> =0=19-0, teda a C a.

Antisymetrickost. Pre kazdé a,b € N plati:

aCbAbLC a
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Ked'ze k,l € N, tak z toho vyplyva k = £ = 0, teda b*> — a® = 0, o pre a,b € N znamen4, Ze a = b.

Tranzitivnost. Pre kazdé a,b,c € N plati:
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Hasseho diagram

Thto cast nie je nutné uvadzat v rieSeni. Uvddzame ju pre lepsiu predstavu, ako vyzerd naSa usporiadana
mnozina. Na¢rtneme si Hasseho diagram, v ktorom prvky rasti zlava doprava.

0—3—6—9—12—. ..

1—8—10—17—...
2—7—11—16—...
4—5—13—14—. ..

Na fiom si moZeme vs§imnit pomerne peknu Struktiru nasej usporiadanej mnoziny. Z nej uz lahko vidime,
ze minimdlne prvky si 0, 1, 2, 4. Avsak argumentovat diagramom nemoéZeme — nemdme ho nakresleny
cely. Uvedieme preto dva dokazy. Jeden tplne nezavisly na tejto Struktire, v druhom zddvodnime, zZe tato
usporiadand mnozina ma Struktiru, akd vidime na diagrame.

Minimélne prvky su0, 1, 2, 4.

Doékaz minimalnych z definicie. Najprv ukdzeme, ze kazdy z nich je miniméalny:
e al0=0-0ad’=%=a>=-9%k=a=0Ak=0, kedze —a® <0.
ealCl=1-a>=%=ad>=1-9%k=>a=1Ak=0, kedze pre k > 0je 1 — 9k < 0.
ealC2=4-a>=9%=ad>=4-9%k=>a=2Nk=0, kedze pre k > 0 je 4 — 9k < 0.

e a0l 4=16-a’=9%=0ad’>=16—9k = a=4Ak =0, kedze pre k = 1 mdme a®> = 7, ¢o nemé v
prirodzenych ¢islach riesenie, a pre k > 2 je 16 — 9k < 0, ¢o tiez nema riesenie.

A este ukazeme, Ze iné prvky nie si minimélne:
e 3 nie je minimdlny < 0C 3«32 -02=9=9-1

e Va € {5,6,7,8}: a nie je minimalny < 9—-aCa<a?>—(9—a)?=(a+9—a)(a—9+a) =9(2a—9),
pricom 9 — a aj 2a — 9 su pre tieto a prirodzené ¢isla

e Va € N,a > 9: a nie je minimédlny < (a —9) Ca<a®>—(a—9)?=(a+a—9)(a—a+9) =9(2a—9),
pricom 2a —9 € Naaja—9¢e€N.

Dékaz minimalnych cez §truktiru usporiadania. Nech plati 3k € N: b? — a? = 9%. Potom:
o b2 — a? je delitelné deviatimi, teda ¢isla a2, b> maji rovnaky zvysok po deleni deviatimi.
o Kedze k € N, teda k > 0, tak aj b> — a® = b*> > a?, ¢o v prirodzenych é&slach znamend b > a.

Plat{ to aj opacne: ak mame b > a také, ze 9 | (b* — a?), tak ndjdené k = (b> — a?)/9 bude nezaporné a celé,
teda prirodzené.

To znamend, Ze porovnatelné si len éfsla, ktorych druhé mocniny ddvaji rovnaky zvySok po deleni 9, a v
tom pripade ich porovndme na zaklade bezného usporiadania <. ZvySok druhej mocniny prirodzeného ¢isla
a zavisi len na jeho zvysku po deleni deviatimi. Vyskusame vSetky mozné zvysky:

1

amodgz‘ 2 3
1 4 0

a2m0d9:‘

0 4 5 6 7 8
0 7T 7 0 4 1
Teda druhé mocniny celych ¢isel ddvaji po deleni deviatimi len zvysky 0, 1, 4 a 7. Preto nasa usporiadand
mnozina naozaj vyzerd tak, ako na obrazku. Vsetky prirodzené éisla st rozdelené do 4 mnozin podla zvysku
ich druhej mocniny po deleni 9 a v rdmci tychto mnozin st usporiadané podla velkosti. Preto st minimalnymi

prvkami ¢isla 0, 1, 2 a 4.



Najmensi prvok neexistuje, kedze mame aspoini dva minimdlne prvky.

Maximélne prvky neexistuji, kedze pre kazdé a € N plati a C a + 9, kedze (a + 9)? — a? = a® + 18a +
81 —a?>=92a+9)a2a+9€N.

Najviesi prvok neexistuje, ked Ze neexistuje maximalny prvok.

Komentar Chceme upozornif na problémy pri zdéovodiiovani, Ze neexistuje najmensi / najvacsi prvok:

e . Najmens{ prvok neexistuje, lebo existuji neporovnatelné prvky napr. 0 a 1.“ Toto nie je spravny
dokaz. Napr. mnozina N usporiadand reldciu | (deli) ma najmensi prvok 1 napriek tomu, ze prvky 2 a
3 st neporovnatelné.

e , Najmensi prvok neexistuje, lebo nemame prave jeden miniméalny prvok.“ Toto je spravny dévod, len
chceme upozornit, Ze ide len o jednosmerni implikaciu. Pokial méme len jeden minimdlny prvok, este
to neznamend, ze ide o najmensi (priklad by ste mali byt schopni vymysliet, je to uzitoéné cvicenie k
priprave na skisku).

.....

.....

Uloha 2

Nech M je mnozina vSetkych nekone¢nych bindrnych postupnosti (teda kazdy ¢len je 0 alebo 1), ktoré
neobsahuju tri jednotky vedla seba a zdroven neobsahuji dve nuly vedla seba. Rozhodnite a nésledne
dokézte, ¢i je mnozina M spocitatelnd.

Riesenie cez injekciu

Definujme zobrazenie f: {0,1}N — M, ktoré kazdej bindrnej postupnosti a = (ag, a1, ...) € {0,1}Y priradi
postupnost nasledovne: pre kazdé ¢ € N nahradi a; postupnostou (1,0), ak a; = 0, alebo postupnostou
(1,1,0), ak a; = 1; potom vSetky tieto postupnosti spoji do jednej. Takto dostaneme postupnost zloZent z
blokov (1,0) a (1,1,0), ktord zjavne neobsahuje (0,0) ani (1,1,1), teda je v mnozine M. KedZe kazdy blok
sa konéf nulou, vieme tieto bloky jednoznaé¢ne spitne identifikovat. Ak sa dve postupnosti a, b liSia na i-tom
mieste, tak ich obrazy f(a), f(b) sa budu lisit v i-tom bloku. Preto a # b = f(a) # f(b), teda zobrazenie f
je injektivne.

Ked'ze sme nasli injekciu f: {0,1}N — M, tak toto zobrazenie je zroven bijekciou medzi {0,1}" a oborom
hodnot H(f) (ktory je vlastne tvoreny tymi postupnostami z M, ktoré sa za¢inaji jednotkou). Z prednéasky
vieme, ze mnozina {0, 1} je nespocitatelns, preto je nespocitatelna aj mnozina H(f). Kedze H(f) C M,
tak aj mnozina M je nespocitatelna.

Riesenie cez bijekciu

V tlohe sa dala tiez nijst aj bijekcia. Uvedieme rovno dve, jednym aj druhym smerom, ¢o vyuZijeme pri
zdovodneni, ze naozaj ide o bijekciu.



Definujme zobrazenie f: {0,1}N — M, ktoré kazdej nekonecnej bindrnej postupnosti a = (ag, a1, as,...) €
{0, 1} priradi postupnost z M tak, ze zacne s postupnostou b = (0), ak ag = 0, alebo s prazdnou postup-
nostou b = (), ak ap = 1. Potom postupne pre kazdé i € N*:

e ak a; = 0, tak na koniec postupnosti b prida (1,0);
e ak a; = 1, tak na koniec postupnosti b pridd (1, 1,0).

Takto vytvorend postupnost b = f(a) obsahuje len 0 a 1 neobsahuje (0,0) ani (1,1,1): Po prvom kroku
moze mat (1,0), (1,1,0), (0,1,0), (0,1,1,0), €o sedi. Po prvom a kazdom d’alsom kroku vytvérania sa kon¢i
na (1,0), k comu mozeme pridat aj (1,0), aj (1,1,0) (ak by sme chceli byt velmi poriadni, tak by sme to
mali dokdzat indukciou). Teda naozaj ide o zobrazenie do mnoziny M.

Definujeme zobrazenie g: M — {0, 1}N, ktoré zobrazi postupnost b = (bg,b1,...) € M na bindrnu po-
stupnost nasledovne. Ked'Ze postupnost b neobsahuje (0, 0), tak ju nuly delia na niekolko tsekov jednotiek.
Ked'Ze b neobsahuje (1,1,1), tak medzi nulami méme vzdy jednu alebo dve jednotky. Akurdt pred prvou
nulou sa mo6zu nachddzat 0, 1 aj 2 jednotky. Postupnost b m4 teda tvar

(0,1%,0,1%1,0,192,0,...)  alebo  (1%,0,1,0,1%,0,...),
kde a; € {1,2} pre kazdé i € N a 1¢ znaéci usek ¢ jednotiek po sebe. Postupnost b zobrazime na
g(b) = (c,ap — l,a1 — l,a2 — 1,...),
kde ¢ = 0 ak sa postupnost b zaéina nulou, inak ¢ = 1.

Lahko overime, Ze f o g aj g o f su identity, preto s obe zobrazenia bijekcie [Skoviera, Tvrdenie 2.9].

Riesenie cez diagonalnu metédu

Pre spor predpokladajme, Ze mnozina M je spoéitatelnd. Potom mozno vietky jej prvky zoradit do postup-
nosti (ag, a1, . .. ). Prvok na j-tom mieste postupnosti a; budeme oznacovat a; j. Teraz definujeme postupnost
b pomocou nasledovného algoritmu. Za¢neme s postupnostou b = (0,1) dfiky 2. Potom postupne pre kazdé
n € N vykondme nasledovné:

(i) Nech i je dizka doterajsej postupnosti b = (bo, b1, .-, bi—1).
(ii) Ak ap; =0, tak b prediZime na postupnost (bo,b1,...,bi—1,1,0,1).
(iii) Ak an,; = 1, tak b predizime na postupnost (bg,br,...,bi_1,0,1).

Pred kazdym krokom n € N sa postupnost b konéi na (0,1) a neobsahuje ani tri jednotky po sebe, ani dve
nuly po sebe (takejto vlastnosti sa hovori invariant). To dokdzeme priamociaro matematickou indukciou:

1. Pred krom 0 mdme b = (0, 1), ¢o sedi.

2. Ak pred krokom n sa b konéi na (0,1), tak v krokoch (ii) a (iii) nevytvorime ani tri jednotky, ani dve
nuly. Taktiez sa bude nové postupnost b (pred krokom n + 1) bude kon¢it na (0, 1).

Kedze b je bindrna postupnost neobsahujiica (1,1,1) ani (0,0), tak patri do M a teda sa nachddza v
postupnosti (ag, a,...).

Navyse, krokom (ii) alebo (iii) si zaru¢ime, Ze pre kazdé n € N sa postupnost b 1i$i od postupnosti a,, na
indexe i (podla vtedajsej hodnoty 7). Preto sa postupnost b nenachédza v postupnosti (ag,a1,...), ¢o je
spor s predoslym odsekom.

Poznamka. Sposobov, ako tvorif postupnost b je mnoho, najmi takychto algoritmickych. DéleZité je
uvedomit si, Ze nemusime ist ¢isto po diagondle a vieme ovplyviiovat, ktory prvok zmenime z postupnosti
.-



Uloha 3

Uvazujme graf G, ktorého vrcholy tvoria vSetky 100-¢lenné postupnosti nil a jednotiek. Hranami si
spojené tie postupnosti, ktoré sa lisia prave v jednej pozicii (teda napr. {0100...0,1100...0} € E(G),
ale {0100...0,1000...0} ¢ E(G)). Urcte:

a) Kolko hrén m4 graf G?

b) Je graf G eulerovsky?

)
c) Je graf G suvisly?
d) Je graf G bipartitny?

Vase tvrdenia dokazte.

Podiloha a)

KedZe vrcholmi grafu si vsetky 100-prvkové bindrne postupnosti, a pre kazdy ¢len takejto postupnosti
méame prave dve moznosti, vrcholov grafu je 2109,

Pre konkrétny vrchol mdme 100 moznosti, ako ju zmenit tak, aby sa novovzniknuté postupnost lisila prave
v jednej pozicii, preto stupen kazdého vrchola je 100.

Vieme, ze sucet stupnov vrcholov je rovny dvojnasobku poc¢tu hran, a preto pocet hran je rovny

100
2100 g9 g0,
2
Iné riesenie. Hrana reprezentuje neusporiadani dvojicu postupnosti, ktoré sa liSia v prave jednom clene.
Preto nam staci spocitat takéto mnoziny. Méame 100 moZnosti, v ktorom ¢lene nastdva zmena. V tomto
¢lene mé jedna z postupnosti 0 a t4 druhd 1. Ostdva urcit ¢leny na zvysnych 99 pozicidch, v ktorych sa nage
postupnosti zhodujii, na ¢o mame 2°? moznosti. Pocet hran je preto 100 - 29,

Podiiloha c)

Pre potreby domaécej ilohy ndm stacil neformalny opis myslienky nasledovného dokazu, no ukiazeme, ako by
sa tloha dala dokdzat formdlne.

Matematickou indukciou vzhladom na pocet prvkov d, v ktorych sa lisia postupnosti u, v, ukdZzeme, ze medzi
u a v existuje sled.

1° béza — Ak sa wu,v lisia v d = 1 prvku, zo zadania medzi nimi existuje hrana. Tym teda mame sled z u
do v.

2° indukény krok — Predpokladajme, ze pre vSetky postupnosti, ktoré sa lisSia v k pozicidch, existuje
medzi nimi sled. Nech teraz u,v si postupnosti, ktoré sa lisia v k 4+ 1 pozicidch. Zmenme v u jeden
zo symbolov, v ktorom sa v a v lisia, na opa¢ny. Dostaneme tak postupnost v/, ktord sa od w lisi v
jednom symbole (a teda si spojené hranou) a od v v k symboloch (¢ize z indukéného predpokladu
existuje sled z v’ do v). Spojenim tychto dvoch informécii dostdvame aj sled z u do v, ¢o sme chceeli
dokézaf.

Zaroven si uvedomme, ze pri prechddzani vrcholmi v predoslom dokaze vzdy znizime pocet symbolov, v
ktorom sa aktualny vrchol lisi od v. Preto sa ndm v najdenom slede neopakuju vrcholy, a teda ide o cestu.

Tym sme ukézali, ze medzi kazdymi dvoma vrcholmi grafu existuje cesta, a teda tento graf je suvisly.



Podiloha b)

Graf je eulerovsky prave vtedy, ked je stvisly a vSetky jeho vrcholy maji parny stupeii. Stvislost mame z
Casti ¢) a v Casti a) sme zistili, ze vSetky vrcholy maju stupen 100, ¢ize zadany graf je eulerovsky.

Podiloha d)

Rozdelme vrcholy grafu na dve mnoziny — A nech je mnozina takych postupnosti, ktoré obsahuji parny
pocet jednotiek a B zas tych s neparnym poc¢tom jednotiek. Ked'Ze vrcholy spojené hranou sa lisia v prave
jednej pozicii, pocty jednotiek v nich sa lisia o +1. To ale znamend, Ze hrana ndm vzdy musi spajat vrcholy
s réznou paritou poctu jednotiek, ¢ize skimany graf je bipartitny.



