
Riešenia 4. sady domácich úloh

Úloha 1

Na množine N = {0, 1, 2, . . . } definujeme reláciu ⊑ tak, že pre l’ubovol’né a, b ∈ N plat́ı

a ⊑ b ⇔ ∃k ∈ N : b2 − a2 = 9k.

Dokážte, že ⊑ je reláciou usporiadania na množine N a určte všetky jej minimálne, najmenšie, ma-
ximálne a najväčšie prvky. Správnost’ vašich výsledkov dokážte.

Dôkaz usporiadania

Reflex́ıvnost’. Pre každé a ∈ N plat́ı a2 − a2 = 0 = 9 · 0, teda a ⊑ a.

Antisymetrickost’. Pre každé a, b ∈ N plat́ı:

a ⊑ b ∧ b ⊑ a

⇓
∃k ∈ N : b2 − a2 = 9k ∧ ∃ℓ ∈ N : a2 − b2 = 9ℓ

⇓
9k = b2 − a2 = −(a2 − b2) = −9ℓ

⇓
9k = −9ℓ

⇓
k + ℓ = 0

Ked’že k, l ∈ N, tak z toho vyplýva k = ℓ = 0, teda b2 − a2 = 0, čo pre a, b ∈ N znamená, že a = b.

Tranzit́ıvnost’. Pre každé a, b, c ∈ N plat́ı:

a ⊑ b ∧ b ⊑ c

⇓
∃k ∈ N : b2 − a2 = 9k ∧ ∃ℓ ∈ N : c2 − b2 = 9ℓ

⇓
b2 − a2 + c2 − b2 = 9k + 9ℓ

⇓
c2 − a2 = 9(k + ℓ)

⇓
m = k + ℓ ∈ N

⇓
∃m ∈ N : c2 − a2 = 9m

⇓
a ⊑ c



Hasseho diagram

Túto čast’ nie je nutné uvádzat’ v riešeńı. Uvádzame ju pre lepšiu predstavu, ako vyzerá naša usporiadaná
množina. Načrtneme si Hasseho diagram, v ktorom prvky rastú zl’ava doprava.

0—3—6—9—12—. . .
1—8—10—17—. . .
2—7—11—16—. . .
4—5—13—14—. . .

Na ňom si môžeme všimnút’ pomerne peknú štruktúru našej usporiadanej množiny. Z nej už l’ahko vid́ıme,
že minimálne prvky sú 0, 1, 2, 4. Avšak argumentovat’ diagramom nemôžeme – nemáme ho nakreslený
celý. Uvedieme preto dva dôkazy. Jeden úplne nezávislý na tejto štruktúre, v druhom zdôvodńıme, že táto
usporiadaná množina má štruktúru, akú vid́ıme na diagrame.

Minimálne prvky sú 0, 1, 2, 4.

Dôkaz minimálnych z defińıcie. Najprv ukážeme, že každý z nich je minimálny:

• a ⊑ 0 ⇒ 0− a2 = 9k ⇒ a2 = −9k ⇒ a = 0 ∧ k = 0, ked’že −a2 ≤ 0.

• a ⊑ 1 ⇒ 1− a2 = 9k ⇒ a2 = 1− 9k ⇒ a = 1 ∧ k = 0, ked’že pre k > 0 je 1− 9k < 0.

• a ⊑ 2 ⇒ 4− a2 = 9k ⇒ a2 = 4− 9k ⇒ a = 2 ∧ k = 0, ked’že pre k > 0 je 4− 9k < 0.

• a ⊑ 4 ⇒ 16 − a2 = 9k ⇒ a2 = 16 − 9k ⇒ a = 4 ∧ k = 0, ked’že pre k = 1 máme a2 = 7, čo nemá v
prirodzených č́ıslach riešenie, a pre k ≥ 2 je 16− 9k < 0, čo tiež nemá riešenie.

A ešte ukážeme, že iné prvky nie sú minimálne:

• 3 nie je minimálny ⇐ 0 ⊏ 3 ⇐ 32 − 02 = 9 = 9 · 1

• ∀a ∈ {5, 6, 7, 8}: a nie je minimálny ⇐ 9− a ⊏ a ⇐ a2 − (9− a)2 = (a+9− a)(a− 9+ a) = 9(2a− 9),
pričom 9− a aj 2a− 9 sú pre tieto a prirodzené č́ısla

• ∀a ∈ N, a ≥ 9: a nie je minimálny ⇐ (a− 9) ⊏ a ⇐ a2 − (a− 9)2 = (a+ a− 9)(a− a+9) = 9(2a− 9),
pričom 2a− 9 ∈ N a aj a− 9 ∈ N.

Dôkaz minimálnych cez štruktúru usporiadania. Nech plat́ı ∃k ∈ N : b2 − a2 = 9k. Potom:

• b2 − a2 je delitel’né deviatimi, teda č́ısla a2, b2 majú rovnaký zvyšok po deleńı deviatimi.

• Ked’že k ∈ N, teda k ≥ 0, tak aj b2 − a2 ⇒ b2 ≥ a2, čo v prirodzených č́ıslach znamená b ≥ a.

Plat́ı to aj opačne: ak máme b ≥ a také, že 9 | (b2 − a2), tak nájdené k = (b2 − a2)/9 bude nezáporné a celé,
teda prirodzené.

To znamená, že porovnatel’né sú len č́ısla, ktorých druhé mocniny dávajú rovnaký zvyšok po deleńı 9, a v
tom pŕıpade ich porovnáme na základe bežného usporiadania ≤. Zvyšok druhej mocniny prirodzeného č́ısla
a záviśı len na jeho zvyšku po deleńı deviatimi. Vyskúšame všetky možné zvyšky:

a mod 9 = 0 1 2 3 4 5 6 7 8

a2 mod 9 = 0 1 4 0 7 7 0 4 1

Teda druhé mocniny celých č́ısel dávajú po deleńı deviatimi len zvyšky 0, 1, 4 a 7. Preto naša usporiadaná
množina naozaj vyzerá tak, ako na obrázku. Všetky prirodzené č́ısla sú rozdelené do 4 množ́ın podl’a zvyšku
ich druhej mocniny po deleńı 9 a v rámci týchto množ́ın sú usporiadané podl’a vel’kosti. Preto sú minimálnymi
prvkami č́ısla 0, 1, 2 a 4.



Najmenš́ı prvok neexistuje, ked’že máme aspoň dva minimálne prvky.

Maximálne prvky neexistujú, ked’že pre každé a ∈ N plat́ı a ⊏ a+ 9, ked’že (a+ 9)2 − a2 = a2 + 18a+
81− a2 = 9(2a+ 9) a 2a+ 9 ∈ N.

Najväčš́ı prvok neexistuje, ked’že neexistuje maximálny prvok.

Komentár Chceme upozornit’ na problémy pri zdôovodňovańı, že neexistuje najmenš́ı / najväčš́ı prvok:

•
”
Najmenš́ı prvok neexistuje, lebo existujú neporovnatel’né prvky napr. 0 a 1.“ Toto nie je správny

dôkaz. Napr. množina N usporiadaná reláciu | (deĺı) má najmenš́ı prvok 1 napriek tomu, že prvky 2 a
3 sú neporovnatel’né.

•
”
Najmenš́ı prvok neexistuje, lebo nemáme práve jeden minimálny prvok.“ Toto je správny dôvod, len

chceme upozornit’, že ide len o jednosmernú implikáciu. Pokial’ máme len jeden minimálny prvok, ešte
to neznamená, že ide o najmenš́ı (pŕıklad by ste mali byt’ schopńı vymysliet’, je to užitočné cvičenie k
pŕıprave na skúšku).

•
”
Najväčš́ı prvok neexsituje, lebo množina N je zhora neohraničená.“ Toto je úplne irelevantný argu-

ment, lebo hovoŕı o bežnom usporiadańı ≤ a nie o usporiadańı ⊑, o ktorom je úlohe. Napr. usporiadaná
množina (N, |) má najväčš́ı prvok 0.

Úloha 2

Nech M je množina všetkých nekonečných binárnych postupnost́ı (teda každý člen je 0 alebo 1), ktoré
neobsahujú tri jednotky vedl’a seba a zároveň neobsahujú dve nuly vedl’a seba. Rozhodnite a následne
dokážte, či je množina M spoč́ıtatel’ná.

Riešenie cez injekciu

Definujme zobrazenie f : {0, 1}N → M , ktoré každej binárnej postupnosti a = (a0, a1, . . . ) ∈ {0, 1}N prirad́ı
postupnost’ nasledovne: pre každé i ∈ N nahrad́ı ai postupnost’ou (1, 0), ak ai = 0, alebo postupnost’ou
(1, 1, 0), ak ai = 1; potom všetky tieto postupnosti spoj́ı do jednej. Takto dostaneme postupnost’ zloženú z
blokov (1, 0) a (1, 1, 0), ktorá zjavne neobsahuje (0, 0) ani (1, 1, 1), teda je v množine M . Ked’že každý blok
sa konč́ı nulou, vieme tieto bloky jednoznačne spätne identifikovat’. Ak sa dve postupnosti a, b ĺı̌sia na i-tom
mieste, tak ich obrazy f(a), f(b) sa budú ĺı̌sit’ v i-tom bloku. Preto a ̸= b ⇒ f(a) ̸= f(b), teda zobrazenie f
je injekt́ıvne.

Ked’že sme našli injekciu f : {0, 1}N → M , tak toto zobrazenie je zároveň bijekciou medzi {0, 1}N a oborom
hodnôt H(f) (ktorý je vlastne tvorený tými postupnost’ami z M , ktoré sa zač́ınajú jednotkou). Z prednášky
vieme, že množina {0, 1}N je nespoč́ıtatel’ná, preto je nespoč́ıtatel’ná aj množina H(f). Ked’že H(f) ⊆ M ,
tak aj množina M je nespoč́ıtatel’ná.

Riešenie cez bijekciu

V úlohe sa dala tiež nájst’ aj bijekcia. Uvedieme rovno dve, jedným aj druhým smerom, čo využijeme pri
zdôvodneńı, že naozaj ide o bijekciu.



Definujme zobrazenie f : {0, 1}N → M , ktoré každej nekonečnej binárnej postupnosti a = (a0, a1, a2, . . . ) ∈
{0, 1}N prirad́ı postupnost’ z M tak, že začne s postupnost’ou b = (0), ak a0 = 0, alebo s prázdnou postup-
nost’ou b = (), ak a0 = 1. Potom postupne pre každé i ∈ N+:

• ak ai = 0, tak na koniec postupnosti b pridá (1, 0);

• ak ai = 1, tak na koniec postupnosti b pridá (1, 1, 0).

Takto vytvorená postupnost’ b = f(a) obsahuje len 0 a 1 neobsahuje (0, 0) ani (1, 1, 1): Po prvom kroku
môže mat’ (1, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1, 0), čo sed́ı. Po prvom a každom d’aľsom kroku vytvárania sa konč́ı
na (1, 0), k čomu môžeme pridat’ aj (1, 0), aj (1, 1, 0) (ak by sme chceli byt’ vel’mi poriadni, tak by sme to
mali dokázat’ indukciou). Teda naozaj ide o zobrazenie do množiny M .

Definujeme zobrazenie g : M → {0, 1}N, ktoré zobraźı postupnost’ b = (b0, b1, . . . ) ∈ M na binárnu po-
stupnost’ nasledovne. Ked’že postupnost’ b neobsahuje (0, 0), tak ju nuly delia na niekol’ko úsekov jednotiek.
Ked’že b neobsahuje (1, 1, 1), tak medzi nulami máme vždy jednu alebo dve jednotky. Akurát pred prvou
nulou sa môžu nachádzat’ 0, 1 aj 2 jednotky. Postupnost’ b má teda tvar

(0, 1a0 , 0, 1a1 , 0, 1a2 , 0, . . . ) alebo (1a0 , 0, 1a1 , 0, 1a2 , 0, . . . ),

kde ai ∈ {1, 2} pre každé i ∈ N a 1c znač́ı úsek c jednotiek po sebe. Postupnost’ b zobraźıme na

g(b) = (c, a0 − 1, a1 − 1, a2 − 1, . . . ),

kde c = 0 ak sa postupnost’ b zač́ına nulou, inak c = 1.

L’ahko oveŕıme, že f ◦ g aj g ◦ f sú identity, preto sú obe zobrazenia bijekcie [Škoviera, Tvrdenie 2.9].

Riešenie cez diagonálnu metódu

Pre spor predpokladajme, že množina M je spoč́ıtatel’ná. Potom možno všetky jej prvky zoradit’ do postup-
nosti (a0, a1, . . . ). Prvok na j-tom mieste postupnosti ai budeme označovat’ ai,j . Teraz definujeme postupnost’

b pomocou nasledovného algoritmu. Začneme s postupnost’ou b = (0, 1) d́lžky 2. Potom postupne pre každé
n ∈ N vykonáme nasledovné:

(i) Nech i je d́lžka doteraǰsej postupnosti b = (b0, b1, . . . , bi−1).

(ii) Ak an,i = 0, tak b pred́lžime na postupnost’ (b0, b1, . . . , bi−1, 1, 0, 1).

(iii) Ak an,i = 1, tak b pred́lžime na postupnost’ (b0, b1, . . . , bi−1, 0, 1).

Pred každým krokom n ∈ N sa postupnost’ b konč́ı na (0, 1) a neobsahuje ani tri jednotky po sebe, ani dve
nuly po sebe (takejto vlastnosti sa hovoŕı invariant). To dokážeme priamočiaro matematickou indukciou:

1. Pred krom 0 máme b = (0, 1), čo sed́ı.

2. Ak pred krokom n sa b konč́ı na (0, 1), tak v krokoch (ii) a (iii) nevytvoŕıme ani tri jednotky, ani dve
nuly. Taktiež sa bude nová postupnost’ b (pred krokom n+ 1) bude končit’ na (0, 1).

Ked’že b je binárna postupnost’ neobsahujúca (1, 1, 1) ani (0, 0), tak patŕı do M a teda sa nachádza v
postupnosti (a0, a1, . . . ).

Navyše, krokom (ii) alebo (iii) si zaruč́ıme, že pre každé n ∈ N sa postupnost’ b ĺı̌si od postupnosti an na
indexe i (podl’a vtedaǰsej hodnoty i). Preto sa postupnost’ b nenachádza v postupnosti (a0, a1, . . . ), čo je
spor s predošlým odsekom.

Poznámka. Spôsobov, ako tvorit’ postupnost’ b je mnoho, najmä takýchto algoritmických. Dôležité je
uvedomit’ si, že nemuśıme ı́st’ čisto po diagonále a vieme ovplyvňovat’, ktorý prvok zmeńıme z postupnosti
an.



Úloha 3

Uvažujme graf G, ktorého vrcholy tvoria všetky 100-členné postupnosti núl a jednotiek. Hranami sú
spojené tie postupnosti, ktoré sa ĺı̌sia práve v jednej poźıcii (teda napr. {0100 . . . 0, 1100 . . . 0} ∈ E(G),
ale {0100 . . . 0, 1000 . . . 0} /∈ E(G)). Určte:

a) Kol’ko hrán má graf G?

b) Je graf G eulerovský?

c) Je graf G súvislý?

d) Je graf G bipartitný?

Vaše tvrdenia dokážte.

Podúloha a)

Ked’že vrcholmi grafu sú všetky 100-prvkové binárne postupnosti, a pre každý člen takejto postupnosti
máme práve dve možnosti, vrcholov grafu je 2100.

Pre konkrétny vrchol máme 100 možnost́ı, ako ju zmenit’ tak, aby sa novovzniknutá postupnost’ ĺı̌sila práve
v jednej poźıcii, preto stupeň každého vrchola je 100.

Vieme, že súčet stupňov vrcholov je rovný dvojnásobku počtu hrán, a preto počet hrán je rovný

2100 · 100
2

= 299 · 100.

Iné riešenie. Hrana reprezentuje neusporiadanú dvojicu postupnost́ı, ktoré sa ĺı̌sia v práve jednom člene.
Preto nám stač́ı spoč́ıtat’ takéto množiny. Máme 100 možnost́ı, v ktorom člene nastáva zmena. V tomto
člene má jedna z postupnost́ı 0 a tá druhá 1. Ostáva určit’ členy na zvyšných 99 poźıciách, v ktorých sa naše
postupnosti zhodujú, na čo máme 299 možnost́ı. Počet hrán je preto 100 · 299.

Podúloha c)

Pre potreby domácej úlohy nám stačil neformálny opis myšlienky nasledovného dôkazu, no ukážeme, ako by
sa úloha dala dokázat’ formálne.

Matematickou indukciou vzhl’adom na počet prvkov d, v ktorých sa ĺı̌sia postupnosti u, v, ukážeme, že medzi
u a v existuje sled.

1◦ báza – Ak sa u, v ĺı̌sia v d = 1 prvku, zo zadania medzi nimi existuje hrana. Tým teda máme sled z u
do v.

2◦ indukčný krok – Predpokladajme, že pre všetky postupnosti, ktoré sa ĺı̌sia v k poźıciách, existuje
medzi nimi sled. Nech teraz u, v sú postupnosti, ktoré sa ĺı̌sia v k + 1 poźıciách. Zmeňme v u jeden
zo symbolov, v ktorom sa u a v ĺı̌sia, na opačný. Dostaneme tak postupnost’ u′, ktorá sa od u ĺı̌si v
jednom symbole (a teda sú spojené hranou) a od v v k symboloch (čiže z indukčného predpokladu
existuje sled z u′ do v). Spojeńım týchto dvoch informácíı dostávame aj sled z u do v, čo sme chceli
dokázat’.

Zároveň si uvedomme, že pri prechádzańı vrcholmi v predošlom dôkaze vždy zńıžime počet symbolov, v
ktorom sa aktuálny vrchol ĺı̌si od v. Preto sa nám v nájdenom slede neopakujú vrcholy, a teda ide o cestu.

Tým sme ukázali, že medzi každými dvoma vrcholmi grafu existuje cesta, a teda tento graf je súvislý.



Podúloha b)

Graf je eulerovský práve vtedy, ked’ je súvislý a všetky jeho vrcholy majú párny stupeň. Súvislost’ máme z
časti c) a v časti a) sme zistili, že všetky vrcholy majú stupeň 100, čiže zadaný graf je eulerovský.

Podúloha d)

Rozdel’me vrcholy grafu na dve množiny – A nech je množina takých postupnost́ı, ktoré obsahujú párny
počet jednotiek a B zas tých s nepárnym počtom jednotiek. Ked’že vrcholy spojené hranou sa ĺı̌sia v práve
jednej poźıcii, počty jednotiek v nich sa ĺı̌sia o ±1. To ale znamená, že hrana nám vždy muśı spájat’ vrcholy
s rôznou paritou počtu jednotiek, čiže skúmaný graf je bipartitný.


