Dokazy

Jozef Rajnik

Toto je nejaky predbezny moj text k dokazom, v ktorom chcem pomerne podrobne vysvetlif, ako
dokazovanie funguje.

Co to je vlastne dokaz? Zacneme najprv jednym pribehom. Predstavme si, Zze sme v skole a so
spoluziakmi si v rdmci precvicovania rieSime tito ulohu.

Uloha 0.1. V obore realnych c¢isel vyrieste rovnicu

20 —6+4+x=2x+ 3.

Verim, Ze s takouto tilohou by ste nemali problém. Mozno ste ju uz vyriesili skor ako ste zacali ¢itat
tento text. No pride nas spoluziak Seki, ktory doteraz studoval v tplne inej krajine a predvedie nam
nasledovné riesenie.

Pozrime sa na ¢isla, ktoré mame pri x-kach. Prvé x ma pri sebe dvojku, druhé x nemé ziadne
¢islo — to zodpovedd jednotke, a posledné ¢islo mé opit dvojku. Séitame 2 + 1+ 2 = 5, ¢ize
rieSenie tejto rovnice je x = 5. Presvedéime sa o tom skigkou spravnosti. Lava strana vyjde
2-5—6+4+5=13 a prava strana vyjde 2 -5 + 3 = 13, takze skuska nam vysla.

Co vravite na toto riesenie? Je spravne? Uplne alebo s vyhradami? Alebo je dost mimo? Ak tvrdite,
7e nie je spravne, tak preco? Asi celkom ¢astd odpoved, ¢o by sme poculi v tejto situdcii je: ,, To
nie je spravne rieSenie, lebo rovnice sa maju riesit takto, lebo takto sme to robili v gkole!“ Nejde
nahodou o matematického génia s inovativnym sposobom myslenia?

Tato situacia je v matematike celkom casta a je pre vSetkych zucastnenych narocnd. Pri takychto
beznych typoch tloh (ako napr. rovnice) aspon méme vyhodu, ze mélokedy stojime na strane
vymyslaca rieseni, lebo sme sa v skole ucili postupy, ako sa takéto ilohy majui riesit. No ak sa
matematike venujeme viac, tak stretneme aj tlohy, ktoré nezapadaji do nejakého bezného typu.
V takej situdcii musime vymyslat vlastné riesenia. No a lahko sa ndm tu moze stat, ze skonéime
ako Seki. Prideme s genidlnymi ndpadmi, ako tiloha funguje, ako prist na spravny vysledok, mozno
niekedy o tom napiSeme aj Stvorstranovi esej — a dostaneme za to len zlomok bodov.

Od casu napisania tejto rozpravky uz ubehli nejaké roky a tato situdcia sa stala este aktudlnejsou.
Miesto spoluziaka Sekiho dnes snad kazdy z nas stretdva ChatGPT a podobné iné jazykové modely,
ktoré si radi vymyslia rozne matematické dokazy. Dostat sa k dokazom v dnesnej dobe nie je vobec
tazké. Tazké viak je (zatial) vedief povedat, ¢i takto vygenerované riesenie je matematicky korektné
alebo nie.

1 Zakladné principy dokazovania

Zacneme s dvomi jednoduchymi lohami, na ktorych si ukdZeme, ¢o je to dokaz. Pre pestrost vybe-
rieme pomerne odlisné tilohy — prva bude z geometrie a druhé sa bude tykat ¢isel a odmocnin.



Dokaz z geometrie

Uloha 1.1. Mdme dany trojuholnik ABC, kde o = 70°, 8 = 45° a ¢ = 6 cm. Na strane AB zvolime
bod P tak, aby bol uhol APC pravy. Podobne na strane AC' zvolime bod @) tak, aby uhol AQH bol
pravy. Priese¢nik useciek PC' a QB oznacime H. Dokazte, ze |[<PHB| = 70°.

Takyto typ dokazovej tlohy je najlahsi na pochopenie. Co ak by tloha znela: ,Uréite velkost uhla
PHB?“ Takéto 1loha by nemala robit problémy absolventovi zdkladnej skoly. V tomto pripade sa
dokazové tloha 1isi len v jedinej veci — prezradila ndm vysledok. Skiste teda k tlohe pristipit takto.

Existuje viacero sposobov, ako vieme urcit velkost uhla. Jedno z nich je rysovanie. Mdme zadané
presné rozmery trojuholnika a vieme ho narysovat standardnou konstrukciou (usu). Potom uz len
narysujeme dve kolmice a odmeriame uhol medzi nimi. Viete, nakolko je toto riesenie v poriadku?
Problémom rysovania je, Ze nie je presné. Uhol tak nevieme urc¢it presne, ale len s istou presnostou. Aj
ked’ uhlomerom odmeriame 70°, nevieme tak vylicit, ¢ skutoéna velkost uhla nie je ndhodou 70,2°,
prip. nejaké iracionalne ¢islo. Okrem toho ma rysovanie este jeden problém v kontexte dokazov, ktory
ilustrujeme o ktsok neskor.

RieSenie

B

Sucet vnutornych uhlov stvoruholnika APHQ je 360°, preto
|<PAQ| + |<AQH| + |<QHP| + |[<HPA| = 360°.
Dosadime uhly, ¢o pozname zo zadania, a mame
70° + 90° + |[<QH P| + 90° = 360°,

¢o po uprave dava
|<<QH P| = 360° — 70° — 90° — 90° = 110°.

Uhol BHP je susedny k uhlu QH P, preto

|<BHP| = 180° — |[<QHP| = 180° — 110° = 70°.

J

No a takto sme dokdzali, Ze uhol BHP m4 naozaj velkost 70°. Poznamendme, Ze existuji aj iné
dokazy, napr. cez vypocet uhla ABQ. Nie kazda tloha sa d4 takto Iahko prerobif na vypoctovi,
ktori pozname. Co s nasledujicou ulohou?

Uloha 1.2. Méame dany ostrouhly trojuholnik ABC'. Na strane AB zvolime bod P tak, aby bol uhol
APC pravy. Podobne na strane AC' zvolime bod @ tak, aby uhol AQH bol pravy. Priese¢nik tise¢iek
PC a QB oznacime H. Dokéazte, ze |<PHB| = |<BAC!.

Na rozdiel od predoslej tlohy je tato vseobecnd. To ndm mimo iné zabranuje rieSenie rysovanim. My



si narysovat vieme len nejaky konkrétny trojuholnik. V fiom vieme (priblizne) overit, Ze uhly PHB
a BAC majui rovnaki velkost, pripadne si vieme takto narysovat aj niekolko d'alsich trojuholnikov.
Vsetkych moznych trojuholnikov je vsak nekoneéne vela. Takto teda neziskame istotu, Ze dokazované
tvrdenie bude platif v kazdom z nich.

Avsak ked sa pozrieme pozorne na predoslé riesenie, tak si mozeme vSimnit, Ze sme v iom nijako
nevyuzili velkost uhla 3 ¢i dizku strany c. Vyuzivali sme len velkost uhla a. Co ak by uhol «
mal ind velkost? Mozete si skusit vyriesit dokdzat tvrdenie pre iné velkosti uhla o (pripominame,
7e zadania od nas vyzaduje len ostré uhly). Aj bez riesenia si vSak mozeme vSimnut, Ze to pojde
podobne. Vypocty z predoslého rieSenia vieme totiz robif pomocou premennej a. Pre ndzornejsiu
ukdzku uvedieme vlavo rieSenie predoslej, konkrétnej tilohy a vpravo rieSenie tejto vSeobecnej verzie.

RieSenie pre o = 70° RiesSenie tulohy 1.2

Nech |[<BAC| = a.

Sucet vnutornych uhlov stvoruholnika Sucet vnutornych uhlov stvoruholnika
APHQ je 360°, teda APHQ je 360°, teda

70° + 90° + |[<@QH P| + 90° = 360°, a+90° + |<@QHP| + 90° = 360°,
¢o po uprave dava ¢o po uprave dava
|<<QH P| = 360° — 70° — 90° — 90° = 110°. |<<QH P| = 360° —a—90°—90° = 180° — .
Zo susednych uhlov BHP a QHP: Zo susednych uhlov BHP a QHP:

|<BHP|=180° — |[<QHP| ="T70°. |<BHP| =180° — (180° — a) = «.

Toto je castd certa dokazovych tloh — si viiéSinou vseobecné. Zahfiiaji velmi vela, ¢asto aZ ne-
koneéne vela pripadov, ktoré treba pokryt. Preto pri dokazovani takychto tvrdeni potrebujeme pouzit
vSeobecné metddy a iivahy, ¢o je ¢asto sprevadzané aj pouzitim nejakych pismeniek, teda premennych.

Mozeme si teda vsimnit, ze takéto dokazovanie sa v zdsade niéim nelisi od bezného rieSenia tiloh —
pouzivame znalosti z matematiky, ktoré pozname, aby sme sa dostali k tomu, ¢o chceme dokézat. V
tejto tlohe sme vyuzivali sucet uhlov v stvoruholniku a vlastnosti susednych uhlov.

Nerovnosti s ¢islami a odmocninami

Uloha 1.3. Dokdzte, ze plati

V60 > V13 + V17.

Oproti tlohe mame teraz vyrazne jednoduchsie zadanie. Tiez si vieme tiito tilohu predstavit ako
nedokazovi: ,Ktoré z éisel /60 a /13 + /17 je vicsie?“ Opiat nam tu formuldcia lohy prezradza
odpoved. Vedeli by ste to zistit? Akym postupom?

Jedna moznost je vyuzit kalkulacku. To je podobny pristup ako rysovanie v geometrii — nie je presny
a tazko sa zovseobeciiuje (€o budeme neskor potrebovat. Preto kalkulacky na chvilu odlozime (resp.
aspon tla¢idlo s odmocninou) a skisime prist s inym pristupom. My tiez jeden uvedieme.



Zo skoly vieme, Ze nerovnosti mézeme nejako upravovat, tak podme na to:

V60 > V13 + V1T
(V&0)' > (VIB+VTT)
60 > 13+ 2V13V17 + 17
60 > 30 4+2v221 | —30

30 >2v221 | /2

15 > v/221 |2
255 > 221

Takto sme sa dostali k niecomu, ¢o plati, takze aj povodnd nerovnost je pravdiva.

Tak ¢o vravite na nase riesenie? Je to podla vas korektny dokaz? Uz druhd otdzka ndm napoveda,
¢o to asi dokaz bude. Z jedného prikladu sa fazko rozmysla, tak vdm eSte pomozeme druhym.

Uloha 1.4. Dokdzeme, 7e v/2 > /3. V ¢om je tento dokaz chybny?

Opét na to pojdeme rovnako ako v predoslom dokaze. Teda budeme upravovat dokazovani
nerovnost:

V2>+V3, | —V3
V2-v3>0,
2-2-v2-v/3+3>0, |+2-V6

5>2-v6, |?
25 > 24,

a to je pravda. Preto plati v/2 > v/3.

Druhy pokus o dékaz je zjavne nespravny, nakolko sme nim , dokézali“ nepravdivé tvrdenie v/2 > /3
(korektnym dokazom predsa nemozeme dokdzat nepravdivé tvrdenie). AvSak prvy pokus o dokaz sa
principidlne od druhého pokusu nelisi. Cize tiez nebude tplne v poriadku. Pod'me sa pozriet blizsie
na to, preco je druhy pokus zly.

Vyhodou tejto tilohy je, Ze Tahko vieme kalkulackou vyhodnotit pravdivost kazdého nerovnosti, ktory
sa v nasom ,,dokaze* vyskytol. Problém nastdva medzi nerovnostami

V2—-v3>0 a (V2—-V3)?>0.

Prvy z nich neplati a druhd plati. Problém je v tom, Ze nerovnosti nemozeme len tak ,nejako upra-
vovat“. Musime si dévat pozor na to, aké dpravy pouzivame. Zo §koly by ste si mohli pamitat, ze
existuje nieco také ako ekvivalentné iupravy. Umocnovanie na druhi vo vSeobecnosti nie je ekviva-
lentna dprava.

Co to ale ekvivalentné upravy su? Jednoducho povedané su to také tupravy, ktoré ndm nezmenia
platnost nerovnosti, resp. rovnosti. Napr. pripocitanie lubovolného realneho ¢isla k obom strandm



nerovnosti je ekvivalentné tprava. Ak nerovnost plati, tak ostane platit aj potom. A ak neplati, tak
aj po pripocitani bude neplatit. Umociiovanie na druht nie je ekvivalentnd operdcia, lebo nerovnost
—2 < 1 plati, ale jej umocnenim dostaneme neplatnii nerovnost 4 < 1.

Nie je to vsak stratené. Ak sa vSak obmedzime len na nezdporné cisla, tak umocnovanie na druhu
je ekvivalentnou tipravou. Preco? Budeme to povazovat za znamy fakt, ktory vychddza z vlastnosti
umociiovania na druhy. Nahliadnut to moézeme napr. tym, Ze jeden Stvorec mé mensiu stranu ako
druhy §tvorec prave vtedy, ked mé mensi obsah ako druhy; alebo tiez z toho, Ze funkcia y = 22 je
na obore R rastica.

N4&s dokaz teda vieme opravit takto. Ekvivalentnost tiprav vieme napriklad naznacit pozndmkou na
konci (alebo na zaciatku) alebo aj uvedenim symbolu ekvivalencie medzi riadkami. Uvedieme obe
moznosti.

Doékaz tlohy 1.3 Doékaz tdlohy 1.3

V60 > VI3 +V17T P V60 > V13 +vV17T 2
(@>2>(\/ﬁ+\/1—7>2 ¥ lebo V60 > 0, V13 + V17 >0
60 > 13 +2v/13V/17 + 17 (\@)2> (\/1_3+\/1_7)2

60 > 30 + 2v221 | —30 (x
30>2v221 | /2 60 > 13 + 2V13V17 + 17
15>+v221  |? )
255 > 221 60 > 30 4 2v221 | —30
KedZe pri oboch umocinovaniach sme mali ¢ N
na oboch strandch kladné cisla, vSetky 30 > 2v22l | /2
pouzité tpravy boli ekvivalentné. ()

- ’ 15 > V221 B

{ lebo 15 > 0, v/221 > 0
225 > 221

Upozornenie

Na pouzivanie umocnovania na druhi ako ekvivalentnej ipravy, ak si obidve strany nezaporné,
si treba dat pozor. Nejde o Standardni ekvivalentni tpravu. Moze sa teda stat, Ze vam ucitel
v skole takyto postup neuznd (napr. pri rieSeni rovnic s odmocninami)

Co s to vlastne dokazy?

Tvrdenia, ktoré dokazujeme, sa nazyvaju v matematike vijroky. Ide o tvrdenia, o ktorych mé zmysel
uvazovat, ¢i su pravdivé alebo nepravdivé. Spravidla maji podobu oznamovacich viet, no jeden vyrok
moze byt zloZeny aj z viacerych viet — ako v tilohe , kde do vyroku treba zahrnit celé zadanie so
vSetkymi predpokladmi. To, ¢i je vyrok pravdivy alebo nepravdivy sa nazyva pravdivostnd hodnota.
T4 musi pri vyroku byt jednoznaéne uréitelnd, teda musi nadobudnit prave jednu z hodnot pravda,
nepravda.



Okrem toho, ze dokazujeme vyroky, tak aj v samotnych nasich dokazov sa objavilo viacero vyrokov,
napr. |[<KQHP| = 110° & 60 > 30 4 2v/221. Za vyroky teda mozeme povazovat nade jednotlivé
kroky dokazovania. Aby sme mohli hovorit o dokaze, tak nemozeme tieto vyroky pisat len tak hala-
bala. Dolezité si vztahy medzi nimi (ako sme poukézali uz pri ekvivalentnych a neekvivalentnych
tpravach). Tieto vztahy mozno vyjadrit roznymi vijrokovymi spojkami. Tie vieme umiest medzi dva
vyroky a vytovrime tak zlozeny vyrok:

Lk ,alebo® sak ..., tak® prave vtedy, ked'“
A B ANB A B AV B A B A= B A B A< B
1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1

Pomocou tychto logickych spojok vieme aj poukazat na problém nespravneho dékazu tvrdenia v/2 >
/3. Problém bol medzi vyrokmi v/2—+/3 > 0 a (v/2—+/3)2 > 0. V akom vztahu si tieto dva vyroky?
Akt logickii operéciu ¢ ivahu sme pouzili? Vztah tam mdme nasledovny:

V2-V3>0= (V2-V3)?>0.

Ked sa nad tym zamyslime kus vSeobecnejsie, ttito implikéciu vieme chépat aj nasledovne: ,Ak mame
kladné ¢islo, tak jeho druhd mocnina je tiez kladnd.“ (Pomocou symbolov by sme toto tvrdenie vedeli
zapisat ako Vo € R: z > 0 = 22 > 0. — k takymto zépisom je viac nizsie.)

Problém je vsak ten, Ze tato implikdcia pripista, Ze z nepravdy vyplyva pravda. Ked vieme, Ze plati
(\/_ — \/3)2 > 0, tak to ndm ni¢ nehovorf o tom, ¢ plati V2 —v/3 >0 (pozriete si riadok 0 = 1 v
tabulke pre implikéciu).

Pri dokazovani nerovnosti sme hovorili o ekvivalentnych ipravach. Ekvivalencia dvoch vyrokov zna-
mend, ze maju rovnakd pravdivostni hodnotu. O vyroku 225 > 221 vieme, ze je pravdivy. Pomocou
ckvivalencif vieme tak tito pravdivost dostat az k dokazovanému vyroku V60 > V13 +/17. Vyuzili
sme teda, Ze tento vyrok je ekvivalentny pravdivému vyroku, a preto musi byt aj on sdm pravdivy.

Avsak ekvivalentné upravy nie si az tak nutné. Pozrime sa na to, ako sme dospeli k zaveru, ze
dokazovany vyrok je pravdivy? Jeho pravdivost sme preniesli od zjavne pravdivého vyroku 255 > 221
k dokazovanému vyroku. A pri tomto ,,prenose pravdy“ nam staci, aby sme mali vSade len implikacie.
A prave tak funguje priamy dokaz: ide o sériu implikécii od pravdivého vyroku k dokazovanému
vyroku. Pri dokaze ndm teda staci skontrolovat, ¢ smerom ,zdola nahor® platia vSetky implikacie.
Dokaz vieme zapisat teda tak ako v rieseni vlavo. Ak by sme vSak chceli byt poriadni, tak dokaz
zapiSeme v poradi, ktoré reSpektuje smer implikacii.



Dokaz podla smeru implikacii

255 > 221 | v/ ( obe strany kladné)
15 > /221
30 > 2v/221
60 > 30 + 2v/221
60 > 13 + 2v/13V17 + 17

2
60 > (\/ﬁ + \/1_7) | v/ ( obe strany kladné)

\/@>’\/ﬁ+\/ﬁ‘
V60 > V13 + V17

. 7

S takymito dokazmi sa vieme ¢asto stretnit v matematickych textoch. Ako plot twist z velkolepého
seridlu, asto nds dokaz zaciatku prekvapi ndhodnym tvrdenim typu 225 > 221, ktoré na prvy pohlad
vobec nesuvisi s dokazovanym tvrdenim.

Dokaz 3: pisany opacnym smerom s vyznacenymi implikaciami

V60 > VI3 + V1T 2
# lebo V60 > 0, V13 4+ V17 >0

(V&) > (ViB+vT7)’

()

60 > 13 + 2V/13V17 + 17
f

60 > 30 +2v221 | —30
f

30 >2v221 | /2
f

15 > /221 B
f lebo 255 > 0, 221 > 0
255 > 221

7

Upravy naznacené za zvislou ¢iarou nie su napisané zrovna najkorektnejsie. Korektnejsie by bolo
pisat opacné tipravy, ktoré robime zdola nahor. Resp. mézeme si ich aj iplne odpustitf a nepisat ich.
Nejde vsak o ziadnu tragédiu.

Na zdver si teda zhrnieme, ako by po takejto strdnke mal vyzerat dokaz, resp. takito zdkladna forma
dokazu, ktora sa nazyva priamy dokaz. Neskor sa zoznamime aj s inymi typmi dokazov.



Priamy dokaz

Priamy dokaz vyroku V je konec¢nd postupnost vyrokov, ktora sa konéi vyrokom V' a pre kazdy
vyrok tejto postupnosti plati niektory z nasledovnych bodov:

(i) je axiéma,
(ii) je vSeobecne zname alebo uz dokézané tvrdenie,

(iii) vyplyva (je logickym désledkom) z predchadzajicich vyrokov tejto postupnosti.

V exaktnej matematickej logike sa bod (ii) vynechdva. Formalne vzaté musi kazdy dokaz zacinat
axiomami. Potom st vsak dokazy dlhé. V praxi preto ¢asto nezachadzame az k axiomam. Napokon,

kazdy takyto neporiadny dokaz vieme prerobit tak, Ze ku kazdému zndmemu tvrdeniu priddme jeho
dokaz.

Ako na dokaz nerovnosti kalkulackou — da sa to aj bez ekvivalentnych
uprav

Pozrieme sa este na par d’alsich pokusov o dokaz. Na poéitanie odmocnin mame predsa kalkulacku,
tak to do nej natukdme! Ako vsak takyto postup spravne zapisat? Si nasledovné dva postupy
korektné?

Pomocou kalkulacky vypocitame:

V60 = 7,74596669

V13 = 3,60555128

V17 = 4,12310563

Teda V13 + V17 = 3,60555128 + 4,12310563 = 7,72865691

Pomocou kalkulacky vypoéitame: v/60 = 7,74596669

V13 = 3,60555128

V17 = 4,12310563

Teda /13 + /17 = 3,60555128 + 4,12310563 = 7,72865691

V pokuse 3 by mal byt problém zjavny: predsa /60 = 7,74596669 nie je pravdivy vyrok, nie je
to presnd hodnota /60, ale len pribliznd. Tento problém je uz opraveny v pokuse 4, kde naozaj je
pravda v/60 = 7,74596669. Problém je tu vsak v tom, Ze ¢o znamend v/60 = 7,745966697 Vieme, Ze
symbol = znamena priblizne sa rovna, ale vieme, ¢o presne tento pojem znamena po matematicke;
stranke? Alebo vieme, ako a ¢ vobec mozeme priblizné ¢isla séitavat? Problém je prave v séitavani:
pri nasom chépani znaku = ako zaokrihlovania na dve desatinné miesta plati v/13 = 3,61 a /30 =
5,48. Na zaklade nasej tivahy o sc¢itavani (ktord sme pouzili na konci pokusu 4) by sme tak dostali
V13 4+ /30 = 9,09. To vsak nie je pravda, lebo v/13 + /30 = 9,08 (overte si vSetko na kalkulacke).

Upozornime, ze toto je ¢asty problém pri mnohych dokazoch, ktory spocitava v tom, ze pouzivame
pojmy alebo symboly, ktorym poriadne nerozumieme alebo nie su jasne definované. V tomto pripade
ide len o technicky detail, no su situdcie, kedy takéto riesenia maji d’aleko od poriadneho dokazu,
hoci po intuitivnej stranke vyzeraji velmi presvedéivo.



Tento pokus o dokaze by sme vedeli opravit, ak sprdvne pouZijeme pravidld pre pocitanie s pri-
bliznymi ¢islami. No netreba vobec pouzivat takyto overkill. UkdZeme si jednoduchsie rieSenie. Hlavna
myslienka spociva v tom, Ze problematicky vzfah = nahradime jasnymi vzfahmi porovndvania, s
ktorymi vieme pracovat.

ook

1. 60 > 59,9076 (zjavna pravda)

2. /60 > 7,74 (odmocnenie 1.)

3. 13,0321 > 13 (zjavnd pravda)

4. 3,61 > /13 (odmocnenie 3.)

5. 17,0569 > 17 (zjavnd pravda)

6. 4,13 > /17 (odmicnenie 5.)

7. 7,74 =361 + 4,13 > /13 + /17, lebo je to sicet 4. a 5.
8. /60 > \/ﬁ-l—\/l_?, lebo 2. a 6.

J

V 6. kroku sme vyuzili, Ze ak plati a < ¢ a zdroven b < d, tak plati aj a + b < ¢ + d, pre lubovolné
realne ¢isla a, b, ¢, d. V 7. kroku sme zas vyuzili, ze ak plati a < b a zaroven b < ¢, tak plati aj a < ¢
(pre Va,b,c € R).

Pri tomto dokaze pekne vidime, Ze dokazy vobec nemusia byt linedrne. Nové tvrdenie v dokazovej
postupnosti nemusi vyplyvat iba z predoglého, ale moze vyplyvat aj z lubovolnych uz dokdzanych
tvrdeni. Stédle plati, ze takto vieme ,preniest“ pravdu od zjavne pravdivych tvrdeni (tvrdenia 1., 3.,
5,) postupne k vSetkym ostatnym a teda aj k dokazovanému tvrdeniu.

Ako takéto dokazy zapisovat? V tomto pripade sme jednotlivé kroky dokazu pisali pod seba a slovne
sme naznacili, na zdklade ¢oho sme tvrdenie dostali. Zdovodnenia v zdtvorkdch mozno vynechat.
Taktiez tieto zdovodnenia mozno zaznacit aj inak. Jednym z d'alsich sposobov je vyuzitie sipok /
implikacii, ¢o z coho vyplyva.

13,0321 > 13 = 3,61 > /13
};»7,74>¢ﬁ+\/1_7

17,0569 > 17 = 4,13 > /17 = V60 > V13 + V17

60 > 59,9076 = /60 > 7,74

Uloha 1.5. Dokdzte, ze plati:
a) \/9—\/E< \/9—1—\/1_0—1
b) VA4 V7 < V34 VI2
¢) V60 + v/VAT — V46 > V13 + V1T

Nerovnost s pismenkami

A opéf si vyskidsame vSeobecnejsiu verziu predoslej tlohy



Uloha 1.6. Dokéazte, ze pre kazdé nezaporné realne ¢islo x plati

Viaz +8 > Vz + vV + 4.

Toto je pomerne typicky dokaz, s ktorym sa stretneme v matematike — mame dokézat, Ze nieco plati
pre vsetky ¢isla z nejakej mnoziny (teraz vsetky nezdporné redlne ¢isla). Ako nieco také dokazat?
s,Jednoducha® predstava je, ze vyskusame vSetky hodnoty premennej. Teda z = 0, x = 9, x = 13
(takto dostaneme priamo tlohu , ale aj také hodnoty ako z = /2, © = 7 a este divokejsie.
Samozrejme, vyskugat nekonecne vela ¢isel nie je v naSich silach. No predstava takéhoto skiSania
nam niekedy vie pomoct.

Pozrime sa na dokaz tvrdenia pre x = 13, teda na rieSenie ulohy Napravo od neho ponechame
premenni z v nasej nerovnosti a pokisime sa robit rovnaké tpravy s touto premennou.

V60 > V13417 Viz+8>Vr+vr+4
+ lebo V60 > 0, V13 + V17 > 0 flebo VAz +8 >0, Vi + V2 +4>0

(V&) > (VI3 +vI7) (ViTs) > (Vi vara)

fr )
60 > 13 + 2V13V17 + 17 dr+8>z+2V/aVr+4+x+4
fr )
60 > 30 +2v221 | —30 dr+8>20 +44+2V221 | —(20+4)
() g
30 >2v221 | /2 2 +4>20/x(x+4)  |/2
() g
15 > /221 K r+2>/x(r+4) |2
1 lebo 255 > 0, 221 > 0 flebo z(x +4) >0, x+2>0
255 > 221 (x+2) > x(r+4)

To vyzera celkom slubne. Podarilo sa ndm dopracovat k pomerne jednoduchej nerovnosti. Narozdiel
od ¢&fsel, tu nevidime priamo, ¢ tédto nerovnost plati alebo nie. Ale moézeme ju d'alej upravovat:

(x+2) > z(xr+4)
f
22 +4x +4> 2% +4x

f
4 >0

A takto sme sa uz dostali k niecomu, ¢o plati. A ¢o je dolezité, nerovnost 4 > 0 plati pre kazdé
nezéporné redlne ¢islo x (resp. inak povedané, plati nezavisle na hodnote redlneho ¢isla x). Tymto
sme vSeobecne dokazali dokazované tvrdenie. A ani to nebolelo. Robili sme vlastne to isté, ako
keby tam bolo ¢islo. Dolezité bolo, ze sme pouzivali tipravy, ktoré nezavisia na presnej hodnote
premennych, nanajvys na ich nezépornosti, ¢o sme vo vsetkych pripadoch vedeli zarucit, kedze x
bolo podla zadania nezdporné. Pre porovnanie, dokaz s odhadovanim odmocnin by §lo zovseobecnit
tazko — ¢o by sme napisali miesto v/60 > 7,74? (Naprick tomu to nie je nemozné. Aj rézne odhady
vyrazov inymi sa pri dokazoch vyuzivaju.)



Dokaz z delitelmosti

Pre pestrost zdjdeme do d’alsej oblasti a sktisime dokézat tvrdenie o delitelnosti.

Uloha 1.7. Dokézte, ze pre kazdé prirodzené éislo n je éslo n® — n delitelné a) dvomi, b) tromi, c)
Siestimi.

Talesova kruznica

Pre lepsiu pestrost si ukdZeme podobny pristup na tlohe z geometrie. Pri nej zabudneme na to, Ze
poznéame vlastnosti Téalesovej kruznice.

Uloha 1.8. Mame dant tsecku AB dlhii 6 cm. V jej strede S spravime kruznicu s polomerom 3 cm.
Na kruznici &k zvolime bod C' tak, aby |<CAB| = 40°. Dokézte, ze uhol AC'B je pravy.

Poznamka

Aky vyrok dokazujeme v tejto tlohe? Zeby vyrok ,Uhol ACB je pravy“? Toto nie je vyrok,
lebo nevieme, ¢o su body A, B, C. V skutocnosti je tymto vyrokom skoro celé zadanie, teda
napr.: ,Mame danu usecku AB dlhi 6 cm. V jej strede S spravime kruznicu s polomerom
3 cm. Na kruznici k zvolime bod C' tak, aby |<CAB| = 40°. Potom uhol AC'B je pravy.“ Toto
je priklad toho, ze definicia ,,Vyrok je oznamovacia veta. .. nie je presna. V tejto situacii sme
totiz vyrok vyjadrili viacerymi vetami. A toto sa beZne deje aj inde v matematike, nakolko
matematici bezne pracuji aj s vyrokmi na niekolko riadkov.

Toto je opit priklad tilohy, v ktorej sa d4 dokazovy rozmer lahko odstranit — staci sa spytat otdzku:
JZistite velkost uhla AC'B.“ Opit ndm dokazova formuldcia tlohy prezradila vysledok. Aj tiito
tlohu si vieme Tahko predstavif. Zadanie hovori totiz o jedineénej konfigurécii. Nie je problém si
tito situdciu narysovat. V nej dokonca mozeme odmerat velkost uhla ACB a takto sa presvedéit o
pravdivosti tvrdenia. Avsak nie dokdzat ho, lebo rysovanie nie je presné (je eSte menej presné ako
kalkulacka). No nie je ndrotné prist aj s presnym riesenim.

Kedze body A, B, C lezia na kruznici k, tak |SA| = |SB| = |SC|.

Trojuholnik ASC' je tak rovnoramenny, teda |[<ACS| = |[<CAB| = 40°.

|9ASC| = 180° — |9SCA| — |[9CAS| = 180° — 40° — 40° = 100° (sticet uhlov v trojuholniku
ASO).

|<<C'SB| = 180° — 100° = 80° (susedny uhol).

|<SCB| = |<SBC| = (180° — 80°)/2 = 50° (z rovnoramenného trojuholnika SBC).

|<ACB| = |<ACS| + |[<SCB| = 40° + 50° = 90°.




Porovnajte si struktiru tohto dokazu s tym, ¢o uz viete o priamom dokaze. Vychadzame z toho, o com
vieme, ze uz plati. Teraz su to veci, ktoré mame v zadani (napr. ze body A, B, C, lezia na kruznici)
a z nich odvodzujeme postupne dalsie a d'alsie tvrdenia. Skonéime pritom, ¢o mame dokdzat, teda
7e |[<<ACB| = 90°. Dokonca v tomto pripade je prirodzené tvorit dokaz v jeho sprdvnom smere.

Co ak by sme vsak mali dokdzat o nie¢o vseobecnejsie tvrdenie? Priamociara vec je, ze mozeme
vypustit dlzku tisecky AB. Avsak dokonca ani velkost uhla C'AB nepotrebujeme.

Uloha 1.9. Méme dant tsecku AB dlhi 6 cm. V jej strede S spravime kruznicu s polomerom 3 cm.
Na kruznici k zvolime Iubovolny bod C' rozny od bodov A, B. Dokézte, ze uhol ACB je pravy.

Slovickom lubovolnyj v zadani hovorime, Ze tvrdenie mdme dokdzat pre vsetky také body C. Aj v
tomto pripade tak vieme spravif pomerne priamoé¢iarou upravou konkrétneho dokazu. Ak pozndme
uhol CAB, tak dokaz ide lahko. Ak ho nepozndme, tak si ho vieme oznacit a pracovat s tymto
oznacenim.

Nech a = |[<CAB|. Kedze body A, B, C lezia na kruznici k, tak |SA| = |SB| = |SC|.
Trojuholnik ASC' je tak rovnoramenny, teda |[<ACS| = |[<CAB| = .

|<<ASC| = 180° — |<SCA| — |[<CAS| = 180° — v — @ = 180° — 2«x (sticet uhlov v trojuholniku
ASQ).

|<<CSB| =180° — (180° — 2a) = 2« (susedny uhol).

|<SCB| = |<SBC| = (180° — 2a)/2 = 90° — « (z rovnoramenného trojuholnika SBC).
|<ACB| = |<ACS| + |[<SCB| = a+ (90° — a) = 90°.

2 Vyrokové formy a kvantifikatory

Na predoslych prikladoch sme videli, ze dokazovat vSeobecné tvrdenie nie je aZ také stragné. Staci
robit to isté, ¢o by sme robili s ¢islami, len to robime s pismenkami. Toto vSak boli len isté typy
dokazov. Dokazy s pismenkami sa vsak niekedy vedia celkom zamotat.

Celkom typické matematickd vec s pismenkami moze vyzerat napriklad takto:
x > 5.

Alebo slovne: Cislo x je vicsie ako 5. O ¢o ide z pohladu vyrokovej logiky? Je to veta, ale jej
pravdivostnti hodnotu urcit nevieme — brani ndm v tom premenné. Nejde teda o vyrok. Vo vyrokovej
logike sa nieco takéto vold virokovd formula. Ide o vetu, ktord obsahuje premenné (jednu alebo viac),
za ktoré ked dosadime, tak dostaneme vyrok. V tomto pripade napr. dosadenim moéZeme dostat

napr. vyroky 6 > 5,2 >5, -9 > 5 ¢ 7w+ /3 — log, 3 > 5.



Vyrokové forma vsak potrebuje vSak este jednu vec. Musime $pecifikovat, ¢o za premenné do nej
mozeme dosadzovat. Lebo veta © > 5 asi nie je vyrokom (aj ked pri trochu inom pristupe by sme
ju mohli prehlésit za nepravdivy vyrok).

Vyrokové formuly budeme oznac¢ovat malym pismenkom, za ktoré do zatvorky napiseme, ktoré pre-
menné obsahuje. Napriklad:

e a(x)=x>5reR;
¢ U(y) =6y, yeN;
c(k,1) = NSD(a,b) = 1, a,b € {2,3,4,5,6,7,8,10};

e d(z,y) = z je otcom y, x, y st Tudia;
o e(z,y,2) =2® +2y* — V52 =472y, v,y € R, z € RT.

Okrem dosadenia vsak existuje d alsi sposob, ako z vyrokovej formy p(x) spravit vyrok. Ide o kvantifi-
kovanie. V matematike pozndme dva zakladné sposoby, ako mozeme kvantifikovat. Vieme tak dostat
vyrok

e . Pre vsetky = z mnoziny M plati p(x).“ — symbolicky zapisujeme YV € M: p(z).
e  Existuje x z mnoziny M plati p(x).“ — symbolicky zapisujeme Iz € M : p(x).

Pri kvantifikdcii je dolezité uviest mnozinu, cez ktori kvantifikujeme.Predsa len Vo € Z*: 22 > x je
nieco iné ako Vo € R: 2z > x. Tieto vyroky moZeme precitat slovne aj nasledovne: ,,Dvojndsobok
Tubovolného prirodzeného &isla je viacsi ako ¢éislo samotné” a ,,Dvojnasobok lTubovolného redlneho
¢isla je vacsi ako ¢fslo samotné®. Tu vidime aj to, Ze pri ¢éitani takychto vyrokov, nemusime dodrzat
presntd formuldciu ,,Pre vsetky...“ — niekedy tak dostaneme vyrok lahsi na pochopenie.

Poznamka

Uvéadzanie mnozin pri kvantifikdtoroch mé svoje vynimky. MozZete sa stretnit aj zo zdpismi
stylu Va: p(x), kde ziadnu mnozinu neuvadzame. Toto mozno interpretovat dvomi sposobmi.
Prvym vysvetlenim je, ze tymto zdpisom myslime kvantifikovanie cez vSetky z, pre ktoré je
vyrokovd formula p(x) definovand. Druhym kontextom, kde mozete takyto zapis stretnit je,
ked’ je na inom mieste dané, v akej mnozine prvkov pracujeme. Ak mame povedané, Ze pra-
cujeme iba s celymi ¢islami, tak kazdy kvantifikator Va ¢ dx bez mnoziny kvantifikuje cez
mnozinu celych c¢isel.

Okrem toho sa zapisy kvantifikdtorov bez mnozin pouzivajui aj pri poriadnom studiu vyrokove;
logiky. Tento pristup slizi hlavne na oddelenie vyrokov a mnozin, aby sa nam nemiesali ma-
tematické oblasti. S tymto sa moéZete stretnit napr. ked si pozriete fubovolni sadu axiém k
nejakej matematickej teorii, napr. Zermelovu-Fraenkelovu sadu axiém k tedrii mnozin — ako
by sme v nich kvantifikovali cez mnoziny, kedZe pomocou tychto axiém definujeme samotné
mnoziny? Existuje vlastne mnozZina vsetkych mnozin, cez ktori by sme tu mohli kvantifikovat?

Dokazy kvantifikovanych vyrokov

Teraz sa pozrieme na to, ako dokazovat pravdivost alebo nepravdivost vyrokov. Teda, pozrieme sa
rovno na zistovanie pravdivostnej hodnoty. No hoci tilohy budi o zistovani, budeme v nich chciet
uplné riesenie vratane dokazu.


https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory

Uloha 2.1. Uréte pravdivostnt hodnotu vyroku

dreR:3x+2>2x+ 5.

Opit vdm pontikame dva pokusy o riesenie.

Nerovnost
3r+2>2x+5

si od¢itanim 2z a odéitanim 2 ekvivalentne upravime na
x> 3.

Toto, a teda aj nerovnost 3z +2 > 2z + 4 plati pre vietky redlne ¢isla viicsie ako 3, teda vyrok
je pravdivy.

Scitame vSetky cisla v zadani:
3+2+2+5=12

Dosaddme z = 12, ¢im mame na lavej strane 3-12 + 2 = 38 a na pravej strane 2-12 + 5 = 29.
Vyslo nam 38 > 29, ¢o je pravda, teda také x € R, pre ktoré plati 3z + 2 > 2z + 5 existuje.
Vyrok teda plati.

Mozno vés teraz prekvapime, ale spravne su teraz obe rieSenia. A mozno vas eSte prekvapime aj tym,
ked povieme, Ze druhy pokus je o nie¢o lepsi. Spomerime si, Ze dokaz sliZi na presvedcenie citatela
o pravdivosti nasho tvrdenia. A ako niekoho presved¢ime o existencii niecoho? Najjednoduchsie tak,
ze mu to ukazeme.

Prvé riesenie je zbytoéne zlozité. Mozno je to tym, ze ked vidime nerovnicu, tak mame nutkanie ju
vyriesit zauzivanym skolskym postupom. Takto si vSak priddvame pracu a tiez zvySujeme Sancu na
to, ze sa niekde pomylime. Isto, teraz ndm to pride banalne a irelevantné. No tato poznamka bude
relevantnd hlavne pri zlozitejsich tlohéch.

Idedlne riesenie takejto tlohy teda obsahuje len posledné dva riadky. Dokonca ich vieme skrétit do
nasledovného tvaru.

RiesSenie tulohy 2.1

Pre z = 12 mame 38 > 29, teda vyrok plati.

Objavili sme tak v podstate najjednoduchsiu formu dokazu, ktori vieme zhrntt asi takto.

Dokaz existenéného vyroku

Pravdivost tvrdenia tvaru 3z € M: p(x) dokazujeme tak, Ze uvedieme priklad konkrétneho
prvku z z mnoziny M a dokdzeme, Ze pre tento prvok plati p(z). Pri dokaze je idedlne dodrzat
struktiru (¢ nahradime konkrétnym prvkom):

Nech x = ¢. Potom . .. [d6kaz p(c)].

\.

Hoci tento typ dokazu vyzerd jednoducho, nemusi tomu byt vidy tak. Aj po dosadeni konkrétnej



hodnoty do p(x) mozeme dostat nejaky vyrok, ktorého pravdivost nebude trividlne dokdzat — pozrite
sa na nejaké narocné dokazy z predoslej sekcie.

Teraz by ste mohli tiito tlohu zvlddnut vyriesit.
Uloha 2.2. Uréte pravdivostnu hodnotu vyroku
Ve e R: 3242 > 22+ 5.

Riesenie tulohy 2.2

Dosadenim x = 0 dostaneme 2 > 5, ¢o neplati. Preto je vyrok zo zadania nepravdivy.

Cize v pripade, ze vieobecny vyrok neplati, tak dokaz méame tiez jednoduchy.

Vyvratenie vSeobecného vyroku

Nepravdivost tvrdenia tvaru Vo € M : p(x) dokazujeme tak, Ze uvedieme priklad konkrétneho
prvku z z mnoziny M a dokdzeme, Ze pre tento prvok neplati p(x).

Co sa tyka dokazovania vieobecnych vyrokov, tak to sme uz videli pri ilohe .

Dokaz vseobecného vyroku

Pravdivost tvrdenia tvaru Vo € M: p(z) dokazujeme tak, ze uvedieme priklad konkrétneho
prvku z z mnoziny M a dokézeme, Ze pre tento prvok neplati p(x). Dokaz moze mat Struktiru:

Nech z € M. Potom ... [dokaz p(z), pri ktorom vyuzivame premennd z].

A pre tplnost, vyvratit existenény vyrok 3z € M: p(z) znamend dokézat jeho negdciu, teda vyrok
Vo € M: —p(z), ¢o vieme spravit podla schémy vyssie.

Striedanie kvantifikatorov

Uloha 2.3. Rozhodnite o pravdivosti nasledovnych tvrdeni:
a) Ve RVyeR: x4+ y =0,
b) IreRVyeR:24+y=0,
c)VeeRIJyeR:a+y=0,
)

d) JxreRdyeR: 24y =0,

Riesenia tloh st zoradené podla ich narocnosti.
a) Neplati, lebo pre x = 1, y = 2 neplati 1 + 2 = 0.

d) Plati, lebo pre z = 3, y = —3 plati 3+ (—3) = 0.

)
c¢) Plati, lebo pre lubovolné x € R a pre y = —x plati z + (—z) = 0.
)

b) Neplati, lebo pre lubovolné z € R zvolime y = 1 — z (¢o je zjavne redlne ¢islo), pre ktoré



l méame 1+ (1 —z) =1#0, teda vyrok 1+ (1 — z) = 0 neplati. J

Uvedomme si, ze v podilohe b) sme vlastne dokazovali negéciu tvrdenia, ktory vyzerd: Vo € Ry €
R: 2z + vy # 0. Preto sme pouzili takiito struktiru — zacali sme dokazovat vieobecny vyrok ,Pre
Tubovolné z € R...* a pre toto vSeobecné z sme zacali dokazovat existenény vyrok, ¢o sme zacali
volbou y. Po prejdeni kvantifikdtorov sme dokazovali, Ze plati = + y # 0.

Vyroky b) a c) ilustrujii, ze na poradi kvantifikdtorov zdlezi. To mozeme ilustrovat aj roznymi
slovnymi vyznamami vyrokov b) a c):

b) Existuje redlne ¢islo, ktoré ddva siucet 0 s Tubovolnym redlnym éislom.
¢) Kazdé redlne ¢islo dava siucet 0 s nejakym redlnym ¢islom.

Na podiilohe c) si este rozoberieme struktiiru dokazu podla toho, ¢o sme si povedali vyssie. Dokaz
sa zacina za slovom lebo, teda je to veta: ,Pre Iubovolné xz € R a pre y = —z plati x + (—z) = 0.

e Pre lubovolné z € R: Takto sa zaéina dokaz vieobecného vyroku. Dalej teda nasleduje dokaz
tvrdenia dy € R: x +y = 0.

e pre y = —x: Teraz dokazujeme existencné tvrdenie, a toto je jeho zaciatok. VSimnite si, ze
narozdiel o riadku vyssie teraz uvadzame konkrétnu hodnotu premennej y. Teda konkrétnu v
kontexte dokazovania Jy € R: z + y = 0, kedy sme uz (v odrézke vyssie) zaviedli do dékazu
premenni x.

e plati z+(—z) = 0: Ostalo ndm dokdzat x+(—x), ¢o vyplyva z jednoduchej algebraickej tipravy.
Uloha 2.4. Rozhodnite o pravdivosti nasledovnych tvrdeni:

a) Ve e RVy e R: 2y =0,

b) Ixr e RYy e R: 2y =0,

c) Ve RIyeR: zy =0,

d)

a) Neplati, lebopre x =4 ay=2:4-2#0.

JreRJdyeR: 2y =0.

b) Plati, lebo pre x = 0 plati Yy e R: 0-y =0
c¢) Plati, lebo pre kazdé = € R plati: pre y = 0 dostaneme z - 0 = 0.
)

d) Plati, lebo pre x =0 ay = —17 plati 0 - (—17) = 0.

Uloha 2.5. Rozhodnite, ktoré vyroky su pravdivé.

a) reR:z-1=x e) JreRIyeR:z-y=1
b) VieR:z- 1=z fy weRVyeR:z-y=1
c) reR:z-z=1 gy VeeRIyeR:z-y=1
d) VeceR:z-z=1 h) VieRVyeR:z-y=1



Uloha 2.6. Rozhodnite, ktoré vyroky si pravdivé.

a) meNIkeN: k>n
b) Vne NIk eN: k>n
c) IneNVEkeN: k>n

d) ImeNIkeN:k|n
e) Vne NIk eN:k|n
f) IneNVEeN: k|n

Uloha 2.7. Dokdite, ze stcet Tubovolnych dvoch celych éfsel delitelnych tromi je delitelny tromi.

Zacneme tym, Ze si najprv dokazovany vyrok symbolicky zapiSeme:
VacZNVNbeZ: (3|an3|b)=3]|(a+D).

Teraz detailne rozpiseme dokaz spolu s ivahami, ktoré pocas neho robime.

Krok dokazu

Jeho vysvetlenie

1. Nech a, b€ Z

Dokazujeme vseobecny vyrok. Zahodime kvantifikatory,
zavedieme premenné a vo zvysku dokazu dokazujeme (3 |
aAN3|b)=3]|(a+Db)

[N}

. Nech plati 3| a A3 | b

Dokazujeme vyrok v tvare implikacie. SkiSame priamy
dokaz, teda predpokladdme, Ze lava strana implikdcie
plati a nasim cielom je dokdzat 3| (a + b)

3.3 a (lebo 2.) Vyuzili sme, ze plati konjunkcia 3 | a A 3 | b a odvodili
sme z toho, ze plati jej ¢len 3 | a (teda vyuzili sme
tautolégiu (p A q) = p)

4. 3k € Z: a = 3k (lebo 3.) Vyuzili sme definiciu delitelnosti.

ot

. .a = 3r pre nejaké r € Z (lebo 4.)

V kroku 4. vieme, ze existuje nejaké celé cislo s istou

X /7~ 7 . . ~ ) ) .
vlastnostou. Toto celé ¢islo si vieme oznacit a d'alej pra-
covat s tymto oznacenim. Pre jeho oznacenie sme zvolili
r.

(=}

3D (lebo 2.

To isté robime pre druhy ¢len konjunkcie z bodu 2.

\]

.3k € Z: a = 3k (lebo 3.)

0}

. b= 3s pre nejaké s € Z (lebo 7.)

Opit robime to isté, len si musime dat pozor. Pre
oznacenie ,,onoho ¢isla, ktoré existuje v bode 6 musime
pouzit nové oznacenie. Premenni r uZz mame pouziti,
preto sme pouzili s.

9.a+0b=23r+3s (lebo 5. a 8.)

Séitali sme odvodené rovnosti

10. a +b=3(r +s) (lebo 9.)

Na tvrdenie z bodu 8. sme pouzili distributivny zakon.

11.r+s€Z (lebor e ZNs€Z)

Vyuzivame, ze sucet celych ¢isel je celé cislo.

12. 3k € Z: a + b = 3k (lebo 10. a 11.)

V bode 9 mame najdené celé ¢islo, konkrétne cislo k& =
r + s, pre ktoré plati a + b = 3k.

13. 3 (a +b) (lebo 12.)

Teraz sme opit pouzili definiciu delitelnosti, len teraz
opacnym smerom ako na zaciatku.

Najcastejsou chybou pri dokazoch tohto typu je zlé pomenovanie premennej v kroku 8. Je potrebné
si uvedomit, ze ked odstraiiujeme existenény kvantifikdtor, musime jeho lokalnu premenni nahradit
novou premennou. Okrem toho sa chytdk moze skryvat aj v bode 11. Ked dokazujeme existencné
tvrdenie prikladom, je potrebné overit, Ze nas priklad naozaj patri do kvantifikovanej mnoziny. Vo
vicsine 1loh je toto tvrdenie trividlne, no moze sa objavit vynimka. Napr. ak by ndm vyslo a + b =
3(y/T + 2s/(r +/3)), kedy vobec nie je jasné, ze v zatvorke mame celé islo.

Zapisovat dokazy takto podrobne nie je potrebné. Mnohé tivahy sa daji spojit do jednej, ¢im vieme
dokaz skratit. Tymto dlhym zdpisom sme chceli len ilustrovat tivahy, ktoré sa pri dokazovani deju.
Ked aj tieto ivahy nebudete pisat, mali by ste ich robif vo svojej hlave.



3 Dokaz sporom

Pod'me sa pozriet na nasledovni dokazovi tlohu. Skiste si dokdzat toto tvrdenie.

Uloha 3.1. Majme tri redlne ¢éisla so suctom 0. Dokazte, ze asponi jedno z tychto ¢isel je nezdporné.

Ked mate tvrdenie dokdzané, skiiste sa zamyslief nad tym, ako presne ste sa presvedéili, Zze dokazo-
vany vyrok je pravdivy.

Ak by boli vsetky tri ¢isla zaporné, tak aj ich sucet by bol zaporny, lebo stucet zapornych ¢isel
je zaporny. Preto niektoré z nich musi byt nezdporné.

Mozno niekoho zmiétie slovny zapis riesia. To nie je problém. Mnoho dokazov je pisanych slovne
(v ucebniciach, vzorovych rieseniach MO, ...). Mdze nam pomoct prepisat si ho symbolicky. Na to
si najprv musime zapisat symbolicky samotné dokazované tvrdenie. To sa d4 napriklad ako

Ve,y,z€e Rx4+y+2=0:2>0Vy>0VvVz>0.

Miesto spojok alebo si mézeme pomoct aj existenénym kvantifikdtorom, napr. 3w € {z,y,z}: w > 0.
Skimany dokaz by potom moze vyzerat takto.

r<0ANy<0Az<O0

r+y<0,lebor<0AYy <0

r+y+z2z<0,/lebor+y<0Az<O0

Dostali sme, Ze x +y + z < 0, ale podla zadania z + y + z = 0. V oboch krokoch sme vyuzili
zname pravidlo Va,b,c,d € R: (a<bAc<d)=a+c<b+d

Ci sa uz pozerdme na textovy alebo symbolicky dékaz, obe z nich sa lisia od priameho dokazu.
Pozerame si v nich na situaciu, kedy dokazovany vyrok V neplati. Vychadzame teda z predpokladu
V. Dopracovali sme sa k niecomu nepravdivému — Ze stcet a + b + ¢ je 0, ale zdrovenn ma byt aj
zaporny. A to je problém, nieco také sa nemoze stat. Preto sa nemdze stat ani to, ze plati =V. Takyto
princip dokazovania sa vold dokaz sporom. Z pohladu vyrokov sme dokdzali implikdciu =V = N,
kde N je nepravdivy vyrok. Kedze implikdcia =V = N je pravdivd (lebo sme ju korektne odvodili),
tak aj vyrok =V musi neplatit. Pripomernime si pravdivostni tabulku implikdcie.

albla=b
0]0 1
01 1
110 0
111 1

Dokaz sporom

Vyrok V' dokazme sporom nasledovne. Predpokladame, ze plati jeho negacia —V. Z tohto
predpokladu odvodime (napr. ako pri priamom dokaze) platnost nepravdivého tvrdenia. Teda
dokazeme

V= N,

kde N je nepravdivé tvrdenie.Jeho struktira vyzerd zvacsa nasledovne:




Kostra dokazu sporom

Tvrdenie V' dokazme sporom. Nech plati V. Potom
... (Retazec tvah ako pri priamom dokaze)
Teda plati N, ¢o je v spor.

Spor casto dostavame tym, ze postupne dokdzeme nejaké tvrdenie, aj jeho negaciu. Napriklad:
Tvrdenie V' dokézme sporom. Nech plati V. Potom
‘P‘r‘eto n je parne cislo
.l;e.da n je neparne c¢islo, ¢o je v spor tym, ze je parne.

V takomto pripade, ked sme v zdvere nedostali tvrdenie, ktoré je samo o sebe nepravdivé (napr. n

je neparne ¢islo — to kludne moze byt pravda), je odporticané dopisat, s ¢im je toto tvrdenie v spore
(alebo naznacit sipkou).

Poriadny zapis dokazu z tilohy moze teda vyzeraf takto.

Dokaz tlohy 3.1 sporom

Sporom. Nech st vSetky tri ¢isla zaporné. Potom aj ich sicet je zaporny, lebo stucet zapornych
c¢isel je zaporny. To je ale spor s tym, ze sucet tychto cisel je 0.

Na tomto dokaze si eSte mozeme vSimnit, Ze spor sme dostali s tym, ¢o sme v zadani. Dokazované
tvrdenie mozno tiez vyjadrit ako implikdciu

Ve,y,z€ Rz 4+y+2=0=(z>0vVy>0Vz>0).

Vtedy dostdvame spor s Tavou stranou implikéacie. Takyto dokaz sa nazyva aj nepriamy dokaz.

Nepriamy dokaz

Tvrdenie vo forme implikacie A = B dokazeme nepriamo tak, ze miesto implikdcie A = B
dokazeme implikaciu =B = —A, ktora sa nazyva obmena implikdcie.

Nepriamy dokaz je zalozeny na fakte, ze implikacie A = B a =B = A maju rovnaké pravdivostné
hodnoty. Samotni obmenu potom dokazujeme priamo (moézeme aj inak, ale iné techniky nepozname
a dokazovat obmenou alebo sporom nemd zmysel). Obmena tvrdenia z tilohy je

Ve,y,z € R: (2 <0Ay<0Az>0)=z+y+ 2z #0.

Nepriamy dokaz teda moze vyzerat nasledovne. Uvedieme struént verziu.

Doékaz tlohy 3.1 nepriamo

Nepriamo. Nech z < 0 < y < 0 < z. Potom = + y + 2z < 0 (lebo stucet zdpornych ¢isel je
zaporny), teda x +y + z # 0.

Dé4vame do pozornosti, Ze pokial nepouzivame priamy dokaz, je dobré napisat, aky dokaz pouzivame.
Aspon minimalisticky slovickom sporom alebo nepriamo.



4 Prehlad dokazovania

Typy dokazov podla sposobu uvazovania

Priamy dokaz

Priamy dokaz vyroku V je konec¢nd postupnost vyrokov, ktora sa konéi virokom V' a pre kazdy
vyrok tejto postupnosti plati niektory z nasledovnych bodov:

(i) je axiéma,
(ii) je vSeobecne zname alebo uz dokézané tvrdenie,

(iii) vyplyva (je logickym désledkom) z predchadzajicich vyrokov tejto postupnosti.

Dokaz sporom

Vyrok V dokdzme sporom nasledovne. Predpokladdme, ze vyrok plati negécia vyroku V. Z
tohto predpokladu odvodime (napr. ako pri priamom dokazov) platnost nepravdivého tvrdenia.
Teda dokazeme

V= N,

kde N je nepravdivé tvrdenie. Jeho struktira vyzerd zvécsa nasledovne:

Tvrdenie V' dokazme sporom. Nech plati V’. Potom
... (Retaze ivah ako pri priamom dokaze)
Teda plati N, ¢o je v spor.

Spor casto dostavame tym, ze postupne dokazeme nejaké tvrdenie, aj jeho negaciu. Napriklad:
Tvrdenie V' dokazme sporom. Nech plati V. Potom
.P.r.eto n je parne ¢islo
;l;éda n je neparne c¢islo, ¢o je v spor tym, ze je parne.

V takomto pripade, ked sme v zdvere nedostali tvrdenie, ktoré je samo o sebe nepravdivé

(napr. n je neparne ¢islo — to kludne moze byt pravda), je odporticané dopisat, s ¢im je toto
tvrdenie v spore (alebo naznagcit sipkou).

Dokazovanie kvantifikovanych vyrokov



Dokaz existenéného vyroku

Vyrok tvaru 3z € M: v(z) najlahsie dokdzeme tak, Ze néjdeme jedno z z mmnoziny M, pre
ktoré plati vyrokova forma v(x). Takyto dokaz m4 Struktiru

Pre z = 9 plati v(9), lebo (Ddékaz vjroku v(9)).

Samozrejme, miesto 9 zvolime spravne ¢islo alebo prvok. Dokonca mozeme pouzit aj vyraz s
premennymi, ak dokazujeme len vyrokovi formu vnutri zlozitejsieho vyroku.

Dokaz vseobecného vyroku

Vyrok tvaru Vo € M : v(x) najlahsie dokdzeme tak, ze spravime dokaz ,,vyroku“ v(z), v ktorom
budeme pouzivat premenni z.

Nech x je Tubovolny prvok M. Potom plati (Dékaz viroku v(x)).

. J

Samozrejme, existuji aj iné typy dokazov. Obzvlast pri existenénych tvrdeniach je viacero dokazov,
ktoré nezacinaji uréenim hladanej hodnoty.

Prehlad dokazovania vyrokov podla struktary

Tu je prehlad zédkladnych struktir dokazu podla typu vyroku, ktory méme dokazovat. Defaultne tak
dostaneme priamy dokaz, ale ni¢ ndm nebrani pred dokazovanim si dokazované tvrdenie upravit na
iné (nepriamym dokazom ¢i matematickou indukciou).

AN B: Dokazme A a potom dokazeme B.

AV B: Rozdelime dokaz na dva pripady (napr. ak je nejaké ¢islo parne alebo neparne). Z jedného
dokazeme A a zdruhého dokazeme B.

A = B: Predpokladame, ze A plati a dokazeme B.

A < B: Dokdzeme A= B a B = A.

¢ V niektorych pripadoch je mozné najst postupnost ekvivalentych tdprav od vyroku
Ak B. Tu vsak treba byt obozretny, ¢i naozaj vietky si ekvivalentné. Pre lepsiu kontrolu
odporicame skontrolovat, ¢i st vSetky tivahy spravne jednym aj druhym smerom.

(Vz)a(z): Dokézeme a(x) za pouzitia premennej .

(3z)a(x): Ukdzeme platnost a(z) pre jednu konkrétnu volbu premennej x (napr. dokdzeme a(47)).
Pri volbe x moZeme pouzit aj premenné, ale iba ak uZz v naSom dokaze nejaké mame definované
(a nesmu byt ,zakryté“ kvantifikdtorom).

Prehlad logickych tisudkov podla struktiury vyroku

A tu je prehlad zakladnych logickych krokov, ktoré vieme pocas dokazovania robit. Opét pre kazdy
z najcastejsich typov vyrokov uvadzame, ¢o z neho mozno odvodit.

A A B: Vieme odvodit platnost A, rovnako aj platnost B.



AV B: Vieme rozdelit dokaz na dve ¢asti, v jednej predpokladdme platnost A a v druhej plat-
nost B (vhodné pri dokazovani vyrokov so spojkou alebo).

A = B: Ak mame uz dokdzané A, vieme odvodit platnost B
A & B: Rovnako ako pri A = B, prip. B = A.

(Vz)a(z): Vieme za x dosadit honotu a odvodit pre nu platnost vyroku (napr. a(47), ak sme v
celych ¢islach).

(3z)a(z): Zavedieme novi premennd, napr. ¢, a odvodime platnost a(c).

5 Ako robit dékazy tautoldgii

Dokaz nekvantifikovanej tautologie

Uloha 5.1. Rozhodnite, ¢i zlozeny vyrok
[(a=b)A(cVd)A((maNc)=e)]=[-b= (eVd)

je tautoldgia.

Zapis rieSenie cez postupnost tvrdeni

Vyrok je tautologia. Dokaz sporom.
1. Nech plati =[[(a = b) A (cVd) A ((—maAc) = e)] = [~b= (eVd)]
2. (a=b)A(cVd)AN((maNc)=e)(z1)
3. a[mb=(eVvd)] (z 1. 9. -a (z4. a8.)
4. =b (z 3.) 10. (eVd) (z 2.)
5. =(eVd) (z 3.) 11. ¢ (2 7. a 11.)
6. —e (z5.) 12. (maNc)=e(z2.)
7. =d (z 5.) 13. maAc(z9. all)
8. a=b(z2) 14. e (z 12. a 13.) — to je spor s 6. J

Pri dokaze sporom je potrebné napisat, ze ideme dokazovat sporom (kludne aj jednym slovom. A
nasledne oznacit, ¢o je s ¢fm v spore (v nasom pripade 6. a 14.). Pri takychto rieSeniach ¢asto
hovorfme o tom, Ze nejaky vyrok plati alebo neplati. To sa d4 znacif viacerymi sposobmi.

e Pravdivé vyroky mozeme pisat len tak ako krok (napr. body 2., 8., 10., 14.), nepravdivé vieme
pisat formou, Ze plati ich negécia (napr. body 1., 3., 4, 5.). (Toto je pouzité aj v riesen{)
e Pravdivost vieme vyjadrit ekvivalenciou s pravdivostnou hodnotou, napr.
L [[la=b)A(cvVd)AN((maNnc)=e)]=[b=(eVd)] <0
4. b0
8. (a=b) <1



14. e 1

Pritom si vSsak davajte pozor, aby to nevyzeralo ako dosadenie pravdivostnej hodnoty za ele-
mentarny vyrok.

e Pouzit ohodnotenie / valudciu vyrokov v:
L v([la=bAlcVd)AN((maNc)=e)]=[-b=(eVd)]) =0
14. v(e) =1

Tento sposob sa casto pouziva pri hlbSom stidiu matematickej logiky. Na tomto predmete vsak
nie je nutné sa nim zaobrat.

Este si ukdzeme, 7ze dokazy sa daji zapisovat aj ako text. Tento text zaroveii aj detailnejsie vysvetluje,
¢o sa deje v predslom symbolickom dokaze. Zaver je mierne odlisny.

Zapis rieSenia textom

Sporom. Nech neplati [(a = b) A (¢ Vd) A ((ma Ac) = e)] = [-b = (e Vd)]. Potom (a =
b) A (e VvV d) A ((—a Ac) = e) plati a vyrok =b = (e V d) neplati. Z neskorsicho dostavame,
ze —b je pravda, teda b < 0; a tiez e V d neplati, teda e < 0 a d < 0. Z pravdivého vyroku
(@ = b)A(cVd)A((maAc) = e) vieme, Ze (a = b) plati. Preto kedze b < 0, tak aj a < 0. Tiez
nam plati (¢ V d), z coho vdaka d < 0 mdme, Ze ¢ < 1. Napokon nam plati aj (—a A c) = e.
Ked tam vSak dosadime uréené pravdivostné hodnoty, tak ndm vyjde (1 A 1) = 0, ¢o vsak
pravda nie je, a to je spor.

.

Dokaz ne-tautologie

Uloha 5.2. Rozhodnite, ¢ nasledovny zlozeny vyrok je tautoldgia

[(ma=0b)V(cAd)V (e N=cA—a)] = [(mbA —c) = al.

Ak chceme dokézaft, Ze zlozeny vyrok nie je tautoldgia, mame to jednoduché — staéi ndm uviest jeden
pripad, kedy ndm vyjde nepravda + vyhodnotit (resp. aspon naznacit vyhodnotenie vyroku).

RieSenie

Nejde o tautologiu, lebo pre a < 0, b < 0, c < 0, d < 1, e < 1 vyjde nepravda:

[(—|a:>b)\/(c/\d)\/\(e/\—|c/\—|a)1] = [EﬂbAﬂc)J=>¢]
1 1 0

N / (. J
-~ -~

N J/

.

Upozornujeme, na ¢asté nespravne (neiplné riesenie)
Pre spor predpokladajme, ze vyrok neplati
1. 7[[(ma=b)V(cAd)V (e AN—cA—a)] = [(-bA—c) = d
2. (bA—c)=a (z 1)
3. (b A —e) (z2)




4. =b (z 3.)
5. —c (z 3.)
6. —a (z 2.)

7. (ra=b)V(cAd)V(eN—cA-a) (z1.)
8. =(—a=0b) (z4. a6.)
9. =(cAd) (z5.)
10. e A=cA—a (z 7., lebo prvé dva vyroky v disjunkcii st nepravdivé, tak musf platit tret{)

11. e (z 10.)

Dostali sme ohodnotenie elementarnych vyrokov, kedy plati a < 0, b < 0, c < 0, e < 1 (d
moze byt aj pravda, aj nepravda). Teda vyrok nie je tautoldgia.

.

Hoci takto zrejme budete riesit takéto 1lohy, toto nie je dokaz — vychddzame totiz z predpokladu, ze
zlozeny vyrok neplati a tak nemoZzeme dokézat, Ze naozaj neplati. Dokonca v takejto situdcii moézeme
dojst aj nesprdvnemu zdveru (teda by vyrok bol tautolégiou) — to, Ze sa ndm nepodarilo dostat ku
sporu, neznamend, ze tam niekde skryty nie je.

V takejto situdcii potrebujeme overit, Ze pre nami ndjdené ohodnotenie elementdrnych vyrokov nam
vyjde naozaj nepravda (alebo to inym sposobom zdovodnit, ale overenie je najjednoduchsie a najis-
tejsie). Je to rovnakd situdcia, ako ked pri rieSenf rovnice (¢i ststavy rovnic) ndm nestaci dospiet
k tomu, Ze x = 17, y = 42 a z = 47, ale potrebujeme este vykonat skuigku spravnosti (alebo inym
sposobom odargumentovat, ze nami ndjdené riesenie vyhovuje).

Kvantifikované tautologie

Uloha 5.3. Dokdzte, ze vyrok
(Vz)(a(z) = b(z)) = ((Vx)a(z) = (Vz)b(x))

je tautoldgia.

Priamy dokaz

1. Nech plati (Vz)(a(x) = b(x)).
Dokazeme, ze plati (Vz)a(z) = (Vz)b(z):
2. Nech plati (Vz)a(z).

Dokazeme, ze plati (Vz)b(z):

Pre kazdé x plati:

3. a(z) (lebo 2.)

4. a(z) = b(x) (lebo 1.)

5. b(x) (lebo 3. a 4.)

Teda plati (Vz)b(z).

Teda plati (Vx)a(z) = (Vz)b(x)
Teda plati (Vz)(a(z) = b(z)) = ((Vx)a(z) = (Vz)b(x))




Komentdr. Dokazovana tautoldgia ma formu implikacie. T dokazujeme priamo tak, ze predpo-
kladdme pravdivost lavej strany a ukdzeme, Ze plati aj prava strana. KedZe na pravej strane je opit
implikacia, tak tento postup zopakujeme. Dokazy tychto dvoch implikacii si v ¢ervenych ramcekoch.
Dostaneme sa k dokazovaniu vyroku v tvare vseobecného kvantifikitora (modry raméek). Ten do-
kazujeme tak, ze napiSeme dokaz kvantifikovanej vyrokovej formy vseobecne za pomoci premennej
(zleny rdmcek). Vsimnite si, ze vnutri zeleného rdméeka nemédme ziadne kvantifikdtory. Do vasich
rieseni nemusite pisat tento komentér. Tiez moZete vypustit aj zdvery ,Teda plati...*

Dokaz sporom

Pre spor predpokladajme, Zze (pre nejaké univerzum a nejaké vyrokové formy a(z), b(x) na
nom definované) plati negécia, teda:

- =[(Vz)(a(z) = b(z)) = ((Vz)a(z) = (Vz)b(z))]
2. (Vz)(a(z)
3. (V)(a(z)

) (a(x)

—_

= b(z)) A =[(Vx)a(z) = (Vz)b(x)] (negécia 1.)
= b(x)) (lebo 2.)
4. (Fz)(a(x) A —=b(z)) (lebo 2. 4+ negécia)

5. a(c)A—b(c) pre nejaky prvok ¢ (lebo 4.) (tu sme zaviedli do ndsho dokazu novi premennii
¢, ktorou sme oznacili prvok univerza, ktorého existenciu zarucuje vyrok 4.)

6. a(c) = b(c) (lebo 2. plati pre vsetky prvky univerza, teda aj pre nase c)

7. =(a(c) = b(c)) (negacia 5.) — SPOR s tvrdenim 6.

- w

Casti pisané sedou sluzia pre lepsie objasnenie, do rieSenia takto podrobne netreba pisat.
Uloha 5.4. Rozhodnite, ¢ vyrok
(V)(a(z) = b(z)) = ((Va)a(z) < (Vr)b(z))

je tautoldgia.

Oproti predoslej tlohe sme teraz implikaciu nahradili ekvivalenciou. Tym vSak uz vyrok tautolégiou
neostane. To vieme dokézat dosadenim, kedy ndm vyjde nepravda:

Na doméne {1,2} definujme a(z) < x =1, b(z) < = = 2. Po dosadeni dostdvame vyrok

Vze{l,2)(z=1=12=2) & (Vz € {1,2})(z = 1) = (Vo € {1,2})(z = 2),

(. J/ (. S/ (. S/

' TV TV
0, lebo neplati pre x=1 0, lebo neplati pre x = 2 0, lebo neplati pre x=1

ktorého pravdivostna hodnota je 0.

. 7

Ako vieme na takéto dosadenie prist? Vyrokové formy si vieme predstavit ako tabulky, kde pre kazdy
prvok univerza mame napisané pravdivostni hodnotu, teda tabulku s hlavickou

x ‘ a(x) ‘ b(x)

Pod'me teda néjst také vyrokové formy, pre ktoré nebude platit (Vz)(a(z) = b(x)) = ((Vr)a(z) =
(Vz)b(z)). Kedze ide o ekvivalenciu. Mdme dve moznosti: 1 < 0 alebo 0 < 1. Pri prvej moznosti sa




nam darit nebude (mozno aj dojdeme k sporu a dokdzeme, Ze ide o tautoldgiu, ako vyssie). Preto
skisime druhd moznost:

(Vz)(a(z) = b(z)) = ((Vr)a(z) = (Vz)b(z))

N J/ (. J/

0 1
Z toho, ze (Vz)(a(x) = b(x)) neplati mame, ze plati (3z)(a(z) A —b(z)), teda z | a(z) | b(x)
existuje riadok tabulky, v ktorom méme 1 a 0. 1 0
KedZe b(x) je uz niekedy 0, tak vyrok (Vx)b(z) neplati. AvSsak md platit z | a(x) | b(x)
(Vz)a(z) = (Vx)b(x), preto (Vx)a(x) tiez neplati. Teda v niektorom riadku musi 1 0
mat a(x) nulu. 0

Presli sme uz vsetko. Tak ndm uZz ostédva len dokoncit tabulku — volné miesto v b(x) vyplnime
Tubovolne a nejako si pomenujeme prvky z univerza, napr. 42 a 47. Dostavame teda vyrokové formy
definované na {42, 47} ako:

x ‘a(x)‘b(x)
42 1 0
alo |6

Pre tie uz lahko overime, Ze ndm vyjde nepravdivy vyrok.
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