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Toto je nejaký predbežný môj text k dôkazom, v ktorom chcem pomerne podrobne vysvetlit’, ako
dokazovanie funguje.

Čo to je vlastne dôkaz? Začneme najprv jedným pŕıbehom. Predstavme si, že sme v škole a so
spolužiakmi si v rámci precvičovania riešime túto úlohu.

Úloha 0.1. V obore reálnych č́ısel vyriešte rovnicu

2x− 6 + 4 + x = 2x+ 3.

Veŕım, že s takouto úlohou by ste nemali problém. Možno ste ju už vyriešili skôr ako ste začali č́ıtat’

tento text. No pŕıde náš spolužiak Seki, ktorý doteraz študoval v úplne inej krajine a predvedie nám
nasledovné riešenie.

Pokus o riešenie

Pozrime sa na č́ısla, ktoré máme pri x-kách. Prvé x má pri sebe dvojku, druhé x nemá žiadne
č́ıslo – to zodpovedá jednotke, a posledné č́ıslo má opät’ dvojku. Sč́ıtame 2 + 1 + 2 = 5, čiže
riešenie tejto rovnice je x = 5. Presvedč́ıme sa o tom skúškou správnosti. L’avá strana vyjde
2 · 5− 6 + 4 + 5 = 13 a pravá strana vyjde 2 · 5 + 3 = 13, takže skúška nám vyšla.

Čo vrav́ıte na toto riešenie? Je správne? Úplne alebo s výhradami? Alebo je dost’ mimo? Ak tvrd́ıte,
že nie je správne, tak prečo? Asi celkom častá odpoved’, čo by sme počuli v tejto situácii je:

”
To

nie je správne riešenie, lebo rovnice sa majú riešit’ takto, lebo takto sme to robili v škole!“ Nejde
náhodou o matematického génia s inovat́ıvnym spôsobom myslenia?

Táto situácia je v matematike celkom častá a je pre všetkých zúčastnených náročná. Pri takýchto
bežných typoch úloh (ako napr. rovnice) aspoň máme výhodu, že málokedy stoj́ıme na strane
vymýšl’ača riešeńı, lebo sme sa v škole učili postupy, ako sa takéto úlohy majú riešit’. No ak sa
matematike venujeme viac, tak stretneme aj úlohy, ktoré nezapadajú do nejakého bežného typu.
V takej situácii muśıme vymýšl’at’ vlastné riešenia. No a l’ahko sa nám tu môže stat’, že skonč́ıme
ako Seki. Pŕıdeme s geniálnymi nápadmi, ako úloha funguje, ako pŕıst’ na správny výsledok, možno
niekedy o tom naṕı̌seme aj štvorstranovú esej – a dostaneme za to len zlomok bodov.

Od času naṕısania tejto rozprávky už ubehli nejaké roky a táto situácia sa stala ešte aktuálneǰsou.
Miesto spolužiaka Sekiho dnes snád’ každý z nás stretáva ChatGPT a podobné iné jazykové modely,
ktoré si radi vymyslia rôzne matematické dôkazy. Dostat’ sa k dôkazom v dnešnej dobe nie je vôbec
t’ažké. Ťažké však je (zatial’) vediet’ povedat’, či takto vygenerované riešenie je matematicky korektné
alebo nie.

1 Základné prinćıpy dokazovania

Začneme s dvomi jednoduchými úlohami, na ktorých si ukážeme, čo je to dôkaz. Pre pestrost’ vybe-
rieme pomerne odlǐsné úlohy – prvá bude z geometrie a druhá sa bude týkat’ č́ısel a odmocńın.



Dôkaz z geometrie

Úloha 1.1. Máme daný trojuholńık ABC, kde α = 70◦, β = 45◦ a c = 6 cm. Na strane AB zvoĺıme
bod P tak, aby bol uhol APC pravý. Podobne na strane AC zvoĺıme bod Q tak, aby uhol AQH bol
pravý. Priesečńık úsečiek PC a QB označ́ıme H. Dokážte, že |∢PHB| = 70◦.

Takýto typ dôkazovej úlohy je najl’ahš́ı na pochopenie. Čo ak by úloha znela:
”
Určite vel’kost’ uhla

PHB?“ Takáto úloha by nemala robit’ problémy absolventovi základnej školy. V tomto pŕıpade sa
dôkazová úloha ĺı̌si len v jedinej veci – prezradila nám výsledok. Skúste teda k úlohe pristúpit’ takto.

Existuje viacero spôsobov, ako vieme určit’ vel’kost’ uhla. Jedno z nich je rysovanie. Máme zadané
presné rozmery trojuholńıka a vieme ho narysovat’ štandardnou konštrukciou (usu). Potom už len
narysujeme dve kolmice a odmeriame uhol medzi nimi. Viete, nakol’ko je toto riešenie v poriadku?
Problémom rysovania je, že nie je presné. Uhol tak nevieme určit’ presne, ale len s istou presnost’ou. Aj
ked’ uhlomerom odmeriame 70◦, nevieme tak vylúčit’, či skutočná vel’kost’ uhla nie je náhodou 70,2◦,
pŕıp. nejaké iracionálne č́ıslo. Okrem toho má rysovanie ešte jeden problém v kontexte dôkazov, ktorý
ilustrujeme o kúsok neskôr.

Riešenie

A

B C

P
Q

H

70◦

Súčet vnútorných uhlov štvoruholńıka APHQ je 360◦, preto

|∢PAQ|+ |∢AQH|+ |∢QHP |+ |∢HPA| = 360◦.

Dosad́ıme uhly, čo poznáme zo zadania, a máme

70◦ + 90◦ + |∢QHP |+ 90◦ = 360◦,

čo po úprave dáva
|∢QHP | = 360◦ − 70◦ − 90◦ − 90◦ = 110◦.

Uhol BHP je susedný k uhlu QHP , preto

|∢BHP | = 180◦ − |∢QHP | = 180◦ − 110◦ = 70◦.

No a takto sme dokázali, že uhol BHP má naozaj vel’kost’ 70◦. Poznamenáme, že existujú aj iné
dôkazy, napr. cez výpočet uhla ABQ. Nie každá úloha sa dá takto l’ahko prerobit’ na výpočtovú,
ktorú poznáme. Čo s nasledujúcou úlohou?

Úloha 1.2. Máme daný ostrouhlý trojuholńık ABC. Na strane AB zvoĺıme bod P tak, aby bol uhol
APC pravý. Podobne na strane AC zvoĺıme bod Q tak, aby uhol AQH bol pravý. Priesečńık úsečiek
PC a QB označ́ıme H. Dokážte, že |∢PHB| = |∢BAC|.

Na rozdiel od predošlej úlohy je táto všeobecná. To nám mimo iné zabraňuje riešenie rysovańım. My



si narysovat’ vieme len nejaký konkrétny trojuholńık. V ňom vieme (približne) overit’, že uhly PHB
a BAC majú rovnakú vel’kost’, pŕıpadne si vieme takto narysovat’ aj niekol’ko d’aľśıch trojuholńıkov.
Všetkých možných trojuholńıkov je však nekonečne vel’a. Takto teda neźıskame istotu, že dokazované
tvrdenie bude platit’ v každom z nich.

Avšak ked’ sa pozrieme pozorne na predošlé riešenie, tak si môžeme všimnút’, že sme v ňom nijako
nevyužili vel’kost’ uhla β či d́lžku strany c. Využ́ıvali sme len vel’kost’ uhla α. Čo ak by uhol α
mal inú vel’kost’? Môžete si skúsit’ vyriešit’ dokázat’ tvrdenie pre iné vel’kosti uhla α (pripomı́name,
že zadania od nás vyžaduje len ostré uhly). Aj bez riešenia si však môžeme všimnút’, že to pôjde
podobne. Výpočty z predošlého riešenia vieme totiž robit’ pomocou premennej α. Pre názorneǰsiu
ukážku uvedieme vl’avo riešenie predošlej, konkrétnej úlohy a vpravo riešenie tejto všeobecnej verzie.

Riešenie pre α = 70◦

Súčet vnútorných uhlov štvoruholńıka
APHQ je 360◦, teda

70◦ + 90◦ + |∢QHP |+ 90◦ = 360◦,

čo po úprave dáva

|∢QHP | = 360◦ − 70◦ − 90◦ − 90◦ = 110◦.

Zo susedných uhlov BHP a QHP :

|∢BHP | = 180◦ − |∢QHP | = 70◦.

Riešenie úlohy 1.2

Nech |∢BAC| = α.
Súčet vnútorných uhlov štvoruholńıka
APHQ je 360◦, teda

α + 90◦ + |∢QHP |+ 90◦ = 360◦,

čo po úprave dáva

|∢QHP | = 360◦−α−90◦−90◦ = 180◦−α.

Zo susedných uhlov BHP a QHP :

|∢BHP | = 180◦ − (180◦ − α) = α.

Toto je častá čerta dôkazových úloh – sú väčšinou všeobecné. Zahŕňajú vel’mi vel’a, často až ne-
konečne vel’a pŕıpadov, ktoré treba pokryt’. Preto pri dokazovańı takýchto tvrdeńı potrebujeme použit’

všeobecné metódy a úvahy, čo je často sprevádzané aj použit́ım nejakých ṕısmeniek, teda premenných.

Môžeme si teda všimnút’, že takéto dokazovanie sa v zásade nič́ım neĺı̌si od bežného riešenia úloh –
použ́ıvame znalosti z matematiky, ktoré poznáme, aby sme sa dostali k tomu, čo chceme dokázat’. V
tejto úlohe sme využ́ıvali súčet uhlov v štvoruholńıku a vlastnosti susedných uhlov.

Nerovnosti s č́ıslami a odmocninami

Úloha 1.3. Dokážte, že plat́ı √
60 >

√
13 +

√
17.

Oproti úlohe 1.1 máme teraz výrazne jednoduchšie zadanie. Tiež si vieme túto úlohu predstavit’ ako
nedôkazovú:

”
Ktoré z č́ısel

√
60 a

√
13 +

√
17 je väčšie?“ Opät’ nám tu formulácia úlohy prezrádza

odpoved’. Vedeli by ste to zistit’? Akým postupom?

Jedna možnost’ je využit’ kalkulačku. To je podobný pŕıstup ako rysovanie v geometrii – nie je presný
a t’ažko sa zovšeobecňuje (čo budeme neskôr potrebovat’. Preto kalkulačky na chv́ıl’u odlož́ıme (resp.
aspoň tlačidlo s odmocninou) a skúsime pŕıst’ s iným pŕıstupom. My tiež jeden uvedieme.



Pokus o dôkaz 1

Zo školy vieme, že nerovnosti môžeme nejako upravovat’, tak pod’me na to:

√
60 >

√
13 +

√
17 |2(√

60
)2

>
(√

13 +
√
17
)2

60 > 13 + 2
√
13
√
17 + 17

60 > 30 + 2
√
221 | −30

30 > 2
√
221 | /2

15 >
√
221 |2

255 > 221

Takto sme sa dostali k niečomu, čo plat́ı, takže aj pôvodná nerovnost’ je pravdivá.

Tak čo vrav́ıte na naše riešenie? Je to podl’a vás korektný dôkaz? Už druhá otázka nám napovedá,
čo to asi dôkaz bude. Z jedného pŕıkladu sa t’ažko rozmýšl’a, tak vám ešte pomôžeme druhým.

Úloha 1.4. Dokážeme, že
√
2 >

√
3. V čom je tento dôkaz chybný?

Pokus o dôkaz 2

Opät’ na to pôjdeme rovnako ako v predošlom dôkaze. Teda budeme upravovat’ dokazovanú
nerovnost’:

√
2 >

√
3, | −

√
3

√
2−

√
3 > 0, |2

2− 2 ·
√
2 ·

√
3 + 3 > 0, | +2 ·

√
6

5 > 2 ·
√
6, |2

25 > 24,

a to je pravda. Preto plat́ı
√
2 >

√
3.

Druhý pokus o dôkaz je zjavne nesprávny, nakol’ko sme ńım
”
dokázali“ nepravdivé tvrdenie

√
2 >

√
3

(korektným dôkazom predsa nemôžeme dokázat’ nepravdivé tvrdenie). Avšak prvý pokus o dôkaz sa
principiálne od druhého pokusu neĺı̌si. Čiže tiež nebude úplne v poriadku. Pod’me sa pozriet’ bližšie
na to, prečo je druhý pokus zlý.

Výhodou tejto úlohy je, že l’ahko vieme kalkulačkou vyhodnotit’ pravdivost’ každého nerovnosti, ktorý
sa v našom

”
dôkaze“ vyskytol. Problém nastáva medzi nerovnost’ami

√
2−

√
3 > 0 a (

√
2−

√
3)2 > 0.

Prvý z nich neplat́ı a druhá plat́ı. Problém je v tom, že nerovnosti nemôžeme len tak
”
nejako upra-

vovat’“. Muśıme si dávat’ pozor na to, aké úpravy použ́ıvame. Zo školy by ste si mohli pamätat’, že
existuje niečo také ako ekvivalentné úpravy. Umocňovanie na druhú vo všeobecnosti nie je ekviva-
lentná úprava.

Čo to ale ekvivalentné úpravy sú? Jednoducho povedané sú to také úpravy, ktoré nám nezmenia
platnost’ nerovnosti, resp. rovnosti. Napr. pripoč́ıtanie l’ubovol’ného reálneho č́ısla k obom stranám



nerovnosti je ekvivalentná úprava. Ak nerovnost’ plat́ı, tak ostane platit’ aj potom. A ak neplat́ı, tak
aj po pripoč́ıtańı bude neplatit’. Umocňovanie na druhú nie je ekvivalentná operácia, lebo nerovnost’

−2 < 1 plat́ı, ale jej umocneńım dostaneme neplatnú nerovnost’ 4 < 1.

Nie je to však stratené. Ak sa však obmedźıme len na nezáporné č́ısla, tak umocňovanie na druhú
je ekvivalentnou úpravou. Prečo? Budeme to považovat’ za známy fakt, ktorý vychádza z vlastnost́ı
umocňovania na druhý. Nahliadnut’ to môžeme napr. tým, že jeden štvorec má menšiu stranu ako
druhý štvorec práve vtedy, ked’ má menš́ı obsah ako druhý; alebo tiež z toho, že funkcia y = x2 je
na obore R+ rastúca.

Náš dôkaz teda vieme opravit’ takto. Ekvivalentnost’ úprav vieme napŕıklad naznačit’ poznámkou na
konci (alebo na začiatku) alebo aj uvedeńım symbolu ekvivalencie medzi riadkami. Uvedieme obe
možnosti.

Dôkaz úlohy 1.3

√
60 >

√
13 +

√
17 |2(√

60
)2

>
(√

13 +
√
17
)2

60 > 13 + 2
√
13
√
17 + 17

60 > 30 + 2
√
221 | −30

30 > 2
√
221 | /2

15 >
√
221 |2

255 > 221

Ked’že pri oboch umocňovaniach sme mali
na oboch stranách kladné č́ısla, všetky
použité úpravy boli ekvivalentné.

Dôkaz úlohy 1.3

√
60 >

√
13 +

√
17 |2

⇕ lebo
√
60 > 0,

√
13 +

√
17 > 0(√

60
)2

>
(√

13 +
√
17
)2

⇕
60 > 13 + 2

√
13
√
17 + 17

⇕
60 > 30 + 2

√
221 | −30

⇕
30 > 2

√
221 | /2

⇕
15 >

√
221 |2

⇕ lebo 15 > 0,
√
221 > 0

225 > 221

Upozornenie

Na použ́ıvanie umocňovania na druhú ako ekvivalentnej úpravy, ak sú obidve strany nezáporné,
si treba dat’ pozor. Nejde o štandardnú ekvivalentnú úpravu. Môže sa teda stat’, že vám učitel’

v škole takýto postup neuzná (napr. pri riešeńı rovńıc s odmocninami)

Čo sú to vlastne dôkazy?

Tvrdenia, ktoré dokazujeme, sa nazývajú v matematike výroky. Ide o tvrdenia, o ktorých má zmysel
uvažovat’, či sú pravdivé alebo nepravdivé. Spravidla majú podobu oznamovaćıch viet, no jeden výrok
môže byt’ zložený aj z viacerých viet – ako v úlohe 1.1, kde do výroku treba zahrnút’ celé zadanie so
všetkými predpokladmi. To, či je výrok pravdivý alebo nepravdivý sa nazýva pravdivostná hodnota.
Tá muśı pri výroku byt’ jednoznačne určitel’ná, teda muśı nadobudnút’ práve jednu z hodnôt pravda,
nepravda.



Okrem toho, že dokazujeme výroky, tak aj v samotných našich dôkazov sa objavilo viacero výrokov,
napr. |∢QHP | = 110◦ či 60 > 30 + 2

√
221. Za výroky teda môžeme považovat’ naše jednotlivé

kroky dokazovania. Aby sme mohli hovorit’ o dôkaze, tak nemôžeme tieto výroky ṕısat’ len tak hala-
bala. Dôležité sú vzt’ahy medzi nimi (ako sme poukázali už pri ekvivalentných a neekvivalentných
úpravách). Tieto vzt’ahy možno vyjadrit’ rôznymi výrokovými spojkami. Tie vieme umiest’ medzi dva
výroky a vytovŕıme tak zložený výrok:

”
a“

A B A ∧B

1 1 1

1 0 0

0 1 0

0 0 0

”
alebo“

A B A ∨B

1 1 1

1 0 1

0 1 1

0 0 0

”
ak . . . , tak“

A B A ⇒ B

1 1 1

1 0 0

0 1 1

0 0 1

”
práve vtedy, ked’“

A B A ⇔ B

1 1 1

1 0 0

0 1 0

0 0 1

Pomocou týchto logických spojok vieme aj poukázat’ na problém nesprávneho dôkazu tvrdenia
√
2 >√

3. Problém bol medzi výrokmi
√
2−

√
3 > 0 a (

√
2−

√
3)2 > 0. V akom vzt’ahu sú tieto dva výroky?

Akú logickú operáciu či úvahu sme použili? Vzt’ah tam máme nasledovný:

√
2−

√
3 > 0 ⇒ (

√
2−

√
3)2 > 0.

Ked’ sa nad tým zamysĺıme kus všeobecneǰsie, túto implikáciu vieme chápat’ aj nasledovne:
”
Ak máme

kladné č́ıslo, tak jeho druhá mocnina je tiež kladná.“ (Pomocou symbolov by sme toto tvrdenie vedeli
zaṕısat’ ako ∀x ∈ R : x > 0 ⇒ x2 > 0. – k takýmto zápisom je viac nižšie.)

Problém je však ten, že táto implikácia pripúšt’a, že z nepravdy vyplýva pravda. Ked’ vieme, že plat́ı
(
√
2−

√
3)2 > 0 , tak to nám nič nehovoŕı o tom, či plat́ı

√
2−

√
3 > 0 (pozriete si riadok 0 ⇒ 1 v

tabul’ke pre implikáciu).

Pri dokazovańı nerovnosti sme hovorili o ekvivalentných úpravách. Ekvivalencia dvoch výrokov zna-
mená, že majú rovnakú pravdivostnú hodnotu. O výroku 225 > 221 vieme, že je pravdivý. Pomocou
ekvivalencíı vieme tak túto pravdivost’ dostat’ až k dokazovanému výroku

√
60 >

√
13+

√
17. Využili

sme teda, že tento výrok je ekvivalentný pravdivému výroku, a preto muśı byt’ aj on sám pravdivý.

Avšak ekvivalentné úpravy nie sú až tak nutné. Pozrime sa na to, ako sme dospeli k záveru, že
dokazovaný výrok je pravdivý? Jeho pravdivost’ sme preniesli od zjavne pravdivého výroku 255 > 221
k dokazovanému výroku. A pri tomto

”
prenose pravdy“ nám stač́ı, aby sme mali všade len implikácie.

A práve tak funguje priamy dôkaz : ide o sériu implikácíı od pravdivého výroku k dokazovanému
výroku. Pri dôkaze nám teda stač́ı skontrolovat’, či smerom

”
zdola nahor“ platia všetky implikácie.

Dôkaz vieme zaṕısat’ teda tak ako v riešeńı vl’avo. Ak by sme však chceli byt’ poriadni, tak dôkaz
zaṕı̌seme v porad́ı, ktoré rešpektuje smer implikácíı.



Dôkaz podl’a smeru implikácíı

255 > 221 | √ ( obe strany kladné)

15 >
√
221

30 > 2
√
221

60 > 30 + 2
√
221

60 > 13 + 2
√
13
√
17 + 17

60 >
(√

13 +
√
17
)2

| √ ( obe strany kladné)

√
60 >

∣∣∣√13 +
√
17
∣∣∣

√
60 >

√
13 +

√
17

S takýmito dôkazmi sa vieme často stretnút’ v matematických textoch. Ako plot twist z vel’kolepého
seriálu, často nás dôkaz začiatku prekvaṕı náhodným tvrdeńım typu 225 > 221, ktoré na prvý pohl’ad
vôbec nesúviśı s dokazovaným tvrdeńım.

Dôkaz 3: ṕısaný opačným smerom s vyznačenými implikáciami

√
60 >

√
13 +

√
17 |2

⇑ lebo
√
60 > 0,

√
13 +

√
17 > 0(√

60
)2

>
(√

13 +
√
17
)2

⇑
60 > 13 + 2

√
13
√
17 + 17

⇑
60 > 30 + 2

√
221 | −30

⇑
30 > 2

√
221 | /2

⇑
15 >

√
221 |2

⇑ lebo 255 > 0, 221 > 0

255 > 221

Úpravy naznačené za zvislou čiarou nie sú naṕısané zrovna najkorektneǰsie. Korektneǰsie by bolo
ṕısat’ opačné úpravy, ktoré rob́ıme zdola nahor. Resp. môžeme si ich aj úplne odpustit’ a neṕısat’ ich.
Nejde však o žiadnu tragédiu.

Na záver si teda zhrnieme, ako by po takejto stránke mal vyzerat’ dôkaz, resp. takáto základná forma
dôkazu, ktorá sa nazýva priamy dôkaz. Neskôr sa zoznámime aj s inými typmi dôkazov.



Priamy dôkaz

Priamy dôkaz výroku V je konečná postupnost’ výrokov, ktorá sa konč́ı výrokom V a pre každý
výrok tejto postupnosti plat́ı niektorý z nasledovných bodov:

(i) je axióma,

(ii) je všeobecne známe alebo už dokázané tvrdenie,

(iii) vyplýva (je logickým dôsledkom) z predchádzajúcich výrokov tejto postupnosti.

V exaktnej matematickej logike sa bod (ii) vynecháva. Formálne vzaté muśı každý dôkaz zač́ınat’

axiómami. Potom sú však dôkazy dlhé. V praxi preto často nezachádzame až k axiómam. Napokon,
každý takýto neporiadny dôkaz vieme prerobit’ tak, že ku každému známemu tvrdeniu pridáme jeho
dôkaz.

Ako na dôkaz nerovnosti kalkulačkou – dá sa to aj bez ekvivalentných
úprav

Pozrieme sa ešte na pár d’aľśıch pokusov o dôkaz. Na poč́ıtanie odmocńın máme predsa kalkulačku,
tak to do nej nat’ukáme! Ako však takýto postup správne zaṕısat’? Sú nasledovné dva postupy
korektné?

Pokus o riešenie 3

Pomocou kalkulačky vypoč́ıtame:√
60 = 7,74596669√
13 = 3,60555128√
17 = 4,12310563

Teda
√
13 +

√
17 = 3,60555128 + 4,12310563 = 7,72865691

Pokus o riešenie 4

Pomocou kalkulačky vypoč́ıtame:
√
60

.
= 7,74596669√

13
.
= 3,60555128√

17
.
= 4,12310563

Teda
√
13 +

√
17

.
= 3,60555128 + 4,12310563 = 7,72865691

V pokuse 3 by mal byt’ problém zjavný: predsa
√
60 = 7,74596669 nie je pravdivý výrok, nie je

to presná hodnota
√
60, ale len približná. Tento problém je už opravený v pokuse 4, kde naozaj je

pravda
√
60

.
= 7,74596669. Problém je tu však v tom, že čo znamená

√
60

.
= 7,74596669? Vieme, že

symbol
.
= znamená priblǐzne sa rovná, ale vieme, čo presne tento pojem znamená po matematickej

stránke? Alebo vieme, ako a či vôbec môžeme približné č́ısla sč́ıtavat’? Problém je práve v sč́ıtavańı:
pri našom chápańı znaku

.
= ako zaokrúhl’ovania na dve desatinné miesta plat́ı

√
13

.
= 3,61 a

√
30 =

5,48. Na základe našej úvahy o sč́ıtavańı (ktorú sme použili na konci pokusu 4) by sme tak dostali√
13 +

√
30

.
= 9,09. To však nie je pravda, lebo

√
13 +

√
30

.
= 9,08 (overte si všetko na kalkulačke).

Upozorńıme, že toto je častý problém pri mnohých dôkazoch, ktorý spoč́ıtava v tom, že použ́ıvame
pojmy alebo symboly, ktorým poriadne nerozumieme alebo nie sú jasne definované. V tomto pŕıpade
ide len o technický detail, no sú situácie, kedy takéto riešenia majú d’aleko od poriadneho dôkazu,
hoci po intuit́ıvnej stránke vyzerajú vel’mi presvedčivo.



Tento pokus o dôkaze by sme vedeli opravit’, ak správne použijeme pravidlá pre poč́ıtanie s pri-
bližnými č́ıslami. No netreba vôbec použ́ıvat’ takýto overkill. Ukážeme si jednoduchšie riešenie. Hlavná
myšlienka spoč́ıva v tom, že problematický vzt’ah

.
= nahrad́ıme jasnými vzt’ahmi porovnávania, s

ktorými vieme pracovat’.

Dôkaz 4

1. 60 > 59,9076 (zjavná pravda)

2.
√
60 > 7,74 (odmocnenie 1.)

3. 13,0321 > 13 (zjavná pravda)

4. 3,61 >
√
13 (odmocnenie 3.)

5. 17,0569 > 17 (zjavná pravda)

6. 4,13 >
√
17 (odmicnenie 5.)

7. 7,74 = 3,61 + 4,13 >
√
13 +

√
17, lebo je to súčet 4. a 5.

8.
√
60 >

√
13 +

√
17, lebo 2. a 6.

V 6. kroku sme využili, že ak plat́ı a < c a zároveň b < d, tak plat́ı aj a + b < c + d, pre l’ubovol’né
reálne č́ısla a, b, c, d. V 7. kroku sme zas využili, že ak plat́ı a < b a zároveň b < c, tak plat́ı aj a < c
(pre ∀a, b, c ∈ R).

Pri tomto dôkaze pekne vid́ıme, že dôkazy vôbec nemusia byt’ lineárne. Nové tvrdenie v dôkazovej
postupnosti nemuśı vyplývat’ iba z predošlého, ale môže vyplývat’ aj z l’ubovol’ných už dokázaných
tvrdeńı. Stále plat́ı, že takto vieme

”
preniest’“ pravdu od zjavne pravdivých tvrdeńı (tvrdenia 1., 3.,

5,) postupne k všetkým ostatným a teda aj k dokazovanému tvrdeniu.

Ako takéto dôkazy zapisovat’? V tomto pŕıpade sme jednotlivé kroky dôkazu ṕısali pod seba a slovne
sme naznačili, na základe čoho sme tvrdenie dostali. Zdôvodnenia v zátvorkách možno vynechat’.
Taktiež tieto zdôvodnenia možno zaznačit’ aj inak. Jedným z d’aľśıch spôsobov je využitie š́ıpok /
implikácíı, čo z čoho vyplýva.

Dôkaz 5

13, 0321 > 13 ⇒ 3, 61 >
√
13

17, 0569 > 17 ⇒ 4, 13 >
√
17

}
⇒ 7, 74 >

√
13 +

√
17

60 > 59, 9076 ⇒
√
60 > 7, 74

 ⇒
√
60 >

√
13 +

√
17

Úloha 1.5. Dokážte, že plat́ı:

a)
√

9−
√
10 <

√
9 +

√
10− 1

b)
√
4 +

√
7 <

√
3 +

√
12

c)
√
60 +

√√
47−

√
46 >

√
13 +

√
17

Nerovnost’ s ṕısmenkami

A opät’ si vyskúšame všeobecneǰsiu verziu predošlej úlohy



Úloha 1.6. Dokážte, že pre každé nezáporné reálne č́ıslo x plat́ı

√
4x+ 8 >

√
x+

√
x+ 4.

Toto je pomerne typický dôkaz, s ktorým sa stretneme v matematike – máme dokázat’, že niečo plat́ı
pre všetky č́ısla z nejakej množiny (teraz všetky nezáporné reálne č́ısla). Ako niečo také dokázat’?

”
Jednoduchá“ predstava je, že vyskúšame všetky hodnoty premennej. Teda x = 0, x = 9, x = 13
(takto dostaneme priamo úlohu 1.3), ale aj také hodnoty ako x =

√
2, x = π a ešte divokeǰsie.

Samozrejme, vyskúšat’ nekonečne vel’a č́ısel nie je v našich silách. No predstava takéhoto skúšania
nám niekedy vie pomôct’.

Pozrime sa na dôkaz tvrdenia pre x = 13, teda na riešenie úlohy 1.3. Napravo od neho ponecháme
premennú x v našej nerovnosti a pokúsime sa robit’ rovnaké úpravy s touto premennou.

√
60 >

√
13 +

√
17 |2

⇑ lebo
√
60 > 0,

√
13 +

√
17 > 0(√

60
)2

>
(√

13 +
√
17
)2

⇑
60 > 13 + 2

√
13
√
17 + 17

⇑
60 > 30 + 2

√
221 | −30

⇑
30 > 2

√
221 | /2

⇑
15 >

√
221 |2

⇑ lebo 255 > 0, 221 > 0

255 > 221

√
4x+ 8 >

√
x+

√
x+ 4 |2

⇑ lebo
√
4x+ 8 > 0,

√
x+

√
x+ 4 > 0(√

4x+ 8
)2

>
(√

x+
√
x+ 4

)2

⇑
4x+ 8 > x+ 2

√
x
√
x+ 4 + x+ 4

⇑
4x+ 8 > 2x+ 4 + 2

√
221 | −(2x+ 4)

⇑
2x+ 4 > 2

√
x(x+ 4) | /2

⇑
x+ 2 >

√
x(x+ 4) |2

⇑ lebo x(x+ 4) > 0, x+ 2 > 0

(x+ 2)2 > x(x+ 4)

To vyzerá celkom sl’ubne. Podarilo sa nám dopracovat’ k pomerne jednoduchej nerovnosti. Narozdiel
od č́ısel, tu nevid́ıme priamo, či táto nerovnost’ plat́ı alebo nie. Ale môžeme ju d’alej upravovat’:

(x+ 2)2 > x(x+ 4)

⇑
x2 + 4x+ 4 > x2 + 4x

⇑
4 > 0

A takto sme sa už dostali k niečomu, čo plat́ı. A čo je dôležité, nerovnost’ 4 > 0 plat́ı pre každé
nezáporné reálne č́ıslo x (resp. inak povedané, plat́ı nezávisle na hodnote reálneho č́ısla x). Týmto
sme všeobecne dokázali dokazované tvrdenie. A ani to nebolelo. Robili sme vlastne to isté, ako
keby tam bolo č́ıslo. Dôležité bolo, že sme použ́ıvali úpravy, ktoré nezávisia na presnej hodnote
premenných, nanajvýš na ich nezápornosti, čo sme vo všetkých pŕıpadoch vedeli zaručit’, ked’že x
bolo podl’a zadania nezáporné. Pre porovnanie, dôkaz s odhadovańım odmocńın by šlo zovšeobecnit’

t’ažko – čo by sme naṕısali miesto
√
60 > 7,74? (Napriek tomu to nie je nemožné. Aj rôzne odhady

výrazov inými sa pri dôkazoch využ́ıvajú.)



Dôkaz z delitel’nosti

Pre pestrost’ zájdeme do d’aľsej oblasti a skúsime dokázat’ tvrdenie o delitel’nosti.

Úloha 1.7. Dokážte, že pre každé prirodzené č́ıslo n je č́ıslo n3 − n delitel’né a) dvomi, b) tromi, c)
šiestimi.

Tálesova kružnica

Pre lepšiu pestrost’ si ukážeme podobný pŕıstup na úlohe z geometrie. Pri nej zabudneme na to, že
poznáme vlastnosti Tálesovej kružnice.

Úloha 1.8. Máme danú úsečku AB dlhú 6 cm. V jej strede S sprav́ıme kružnicu s polomerom 3 cm.
Na kružnici k zvoĺıme bod C tak, aby |∢CAB| = 40◦. Dokážte, že uhol ACB je pravý.

Poznámka

Aký výrok dokazujeme v tejto úlohe? Žeby výrok
”
Uhol ACB je pravý“? Toto nie je výrok,

lebo nevieme, čo sú body A, B, C. V skutočnosti je týmto výrokom skoro celé zadanie, teda
napr.:

”
Máme danú úsečku AB dlhú 6 cm. V jej strede S sprav́ıme kružnicu s polomerom

3 cm. Na kružnici k zvoĺıme bod C tak, aby |∢CAB| = 40◦. Potom uhol ACB je pravý.“ Toto
je pŕıklad toho, že defińıcia

”
Výrok je oznamovacia veta. . .“ nie je presná. V tejto situácii sme

totiž výrok vyjadrili viacerými vetami. A toto sa bežne deje aj inde v matematike, nakol’ko
matematici bežne pracujú aj s výrokmi na niekol’ko riadkov.

Toto je opät’ pŕıklad úlohy, v ktorej sa dá dôkazový rozmer l’ahko odstránit’ – stač́ı sa spýtat’ otázku:

”
Zistite vel’kost’ uhla ACB.“ Opät’ nám dôkazová formulácia úlohy prezradila výsledok. Aj túto
úlohu si vieme l’ahko predstavit’. Zadanie hovoŕı totiž o jedinečnej konfigurácii. Nie je problém si
túto situáciu narysovat’. V nej dokonca môžeme odmerat’ vel’kost’ uhla ACB a takto sa presvedčit’ o
pravdivosti tvrdenia. Avšak nie dokázat’ ho, lebo rysovanie nie je presné (je ešte menej presné ako
kalkulačka). No nie je náročné pŕıst’ aj s presným riešeńım.

Riešenie

Ked’že body A, B, C ležia na kružnici k, tak |SA| = |SB| = |SC|.
Trojuholńık ASC je tak rovnoramenný, teda |∢ACS| = |∢CAB| = 40◦.
|∢ASC| = 180◦ − |∢SCA| − |∢CAS| = 180◦ − 40◦ − 40◦ = 100◦ (súčet uhlov v trojuholńıku
ASC).
|∢CSB| = 180◦ − 100◦ = 80◦ (susedný uhol).
|∢SCB| = |∢SBC| = (180◦ − 80◦)/2 = 50◦ (z rovnoramenného trojuholńıka SBC).
|∢ACB| = |∢ACS|+ |∢SCB| = 40◦ + 50◦ = 90◦.

A B

C

S

40◦

40◦

100◦ 80◦

50◦

50◦



Porovnajte si štruktúru tohto dôkazu s tým, čo už viete o priamom dôkaze. Vychádzame z toho, o čom
vieme, že už plat́ı. Teraz sú to veci, ktoré máme v zadańı (napr. že body A, B, C, ležia na kružnici)
a z nich odvodzujeme postupne d’aľsie a d’aľsie tvrdenia. Skonč́ıme pritom, čo máme dokázat’, teda
že |∢ACB| = 90◦. Dokonca v tomto pŕıpade je prirodzené tvorit’ dôkaz v jeho správnom smere.

Čo ak by sme však mali dokázat’ o niečo všeobecneǰsie tvrdenie? Priamočiara vec je, že môžeme
vypustit’ d́lžku úsečky AB. Avšak dokonca ani vel’kost’ uhla CAB nepotrebujeme.

Úloha 1.9. Máme danú úsečku AB dlhú 6 cm. V jej strede S sprav́ıme kružnicu s polomerom 3 cm.
Na kružnici k zvoĺıme l’ubovol’ný bod C rôzny od bodov A, B. Dokážte, že uhol ACB je pravý.

Slov́ıčkom l’ubovol’ný v zadańı hovoŕıme, že tvrdenie máme dokázat’ pre všetky také body C. Aj v
tomto pŕıpade tak vieme spravit’ pomerne priamočiarou úpravou konkrétneho dôkazu. Ak poznáme
uhol CAB, tak dôkaz ide l’ahko. Ak ho nepoznáme, tak si ho vieme označit’ a pracovat’ s týmto
označeńım.

Riešenie

Nech α = |∢CAB|. Ked’že body A, B, C ležia na kružnici k, tak |SA| = |SB| = |SC|.
Trojuholńık ASC je tak rovnoramenný, teda |∢ACS| = |∢CAB| = α.
|∢ASC| = 180◦ − |∢SCA| − |∢CAS| = 180◦ − α− α = 180◦ − 2α (súčet uhlov v trojuholńıku
ASC).
|∢CSB| = 180◦ − (180◦ − 2α) = 2α (susedný uhol).
|∢SCB| = |∢SBC| = (180◦ − 2α)/2 = 90◦ − α (z rovnoramenného trojuholńıka SBC).
|∢ACB| = |∢ACS|+ |∢SCB| = α + (90◦ − α) = 90◦.

A B

C

S

α

α

180◦ − 2α 2α

90◦ − α

90◦ − α

2 Výrokové formy a kvantifikátory

Na predošlých pŕıkladoch sme videli, že dokazovat’ všeobecné tvrdenie nie je až také strašné. Stač́ı
robit’ to isté, čo by sme robili s č́ıslami, len to rob́ıme s ṕısmenkami. Toto však boli len isté typy
dôkazov. Dôkazy s ṕısmenkami sa však niekedy vedia celkom zamotat’.

Celkom typická matematická vec s ṕısmenkami môže vyzerat’ napŕıklad takto:

x > 5.

Alebo slovne: Čı́slo x je väčšie ako 5. O čo ide z pohl’adu výrokovej logiky? Je to veta, ale jej
pravdivostnú hodnotu určit’ nevieme – bráni nám v tom premenná. Nejde teda o výrok. Vo výrokovej
logike sa niečo takéto volá výroková formula. Ide o vetu, ktorá obsahuje premenné (jednu alebo viac),
za ktoré ked’ dosad́ıme, tak dostaneme výrok. V tomto pŕıpade napr. dosadeńım môžeme dostat’

napr. výroky 6 > 5, 2 > 5, −9 > 5 či π +
√

3− log7 3 > 5.



Výroková forma však potrebuje však ešte jednu vec. Muśıme špecifikovat’, čo za premenné do nej
môžeme dosadzovat’. Lebo veta ♡ > 5 asi nie je výrokom (aj ked’ pri trochu inom pŕıstupe by sme
ju mohli prehlásit’ za nepravdivý výrok).

Výrokové formuly budeme označovat’ malým ṕısmenkom, za ktoré do zátvorky naṕı̌seme, ktoré pre-
menné obsahuje. Napŕıklad:

• a(x) ≡ x > 5, x ∈ R;

• b(y) ≡ 6 | y, y ∈ N;

• c(k, l) ≡ NSD(a, b) = 1, a, b ∈ {2, 3, 4, 5, 6, 7, 8, 10};

• d(x, y) ≡ x je otcom y, x, y sú l’udia;

• e(x, y, z) ≡ x2 + 2y4 −
√
5z = 47xy, x, y ∈ R, z ∈ R+.

Okrem dosadenia však existuje d’aľśı spôsob, ako z výrokovej formy p(x) spravit’ výrok. Ide o kvantifi-
kovanie. V matematike poznáme dva základné spôsoby, ako môžeme kvantifikovat’. Vieme tak dostat’

výrok

•
”
Pre všetky x z množiny M plat́ı p(x).“ – symbolicky zapisujeme ∀x ∈ M : p(x).

•
”
Existuje x z množiny M plat́ı p(x).“ – symbolicky zapisujeme ∃x ∈ M : p(x).

Pri kvantifikácii je dôležité uviest’ množinu, cez ktorú kvantifikujeme.Predsa len ∀x ∈ Z+ : 2x > x je
niečo iné ako ∀x ∈ R : 2x > x. Tieto výroky môžeme preč́ıtat’ slovne aj nasledovne:

”
Dvojnásobok

l’ubovol’ného prirodzeného č́ısla je väčš́ı ako č́ıslo samotné“ a
”
Dvojnásobok l’ubovol’ného reálneho

č́ısla je väčš́ı ako č́ıslo samotné“. Tu vid́ıme aj to, že pri č́ıtańı takýchto výrokov, nemuśıme dodržat’

presnú formuláciu
”
Pre všetky...“ – niekedy tak dostaneme výrok l’ahš́ı na pochopenie.

Poznámka

Uvádzanie množ́ın pri kvantifikátoroch má svoje výnimky. Môžete sa stretnút’ aj zo zápismi
štýlu ∀x : p(x), kde žiadnu množinu neuvádzame. Toto možno interpretovat’ dvomi spôsobmi.
Prvým vysvetleńım je, že týmto zápisom mysĺıme kvantifikovanie cez všetky x, pre ktoré je
výroková formula p(x) definovaná. Druhým kontextom, kde môžete takýto zápis stretnút’ je,
ked’ je na inom mieste dané, v akej množine prvkov pracujeme. Ak máme povedané, že pra-
cujeme iba s celými č́ıslami, tak každý kvantifikátor ∀x či ∃x bez množiny kvantifikuje cez
množinu celých č́ısel.

Okrem toho sa zápisy kvantifikátorov bez množ́ın použ́ıvajú aj pri poriadnom štúdiu výrokovej
logiky. Tento pŕıstup slúži hlavne na oddelenie výrokov a množ́ın, aby sa nám nemiešali ma-
tematické oblasti. S týmto sa môžete stretnút’ napr. ked’ si pozriete l’ubovol’nú sadu axióm k
nejakej matematickej teórii, napr. Zermelovu-Fraenkelovu sadu axióm k teórii množ́ın – ako
by sme v nich kvantifikovali cez množiny, ked’že pomocou týchto axióm definujeme samotné
množiny? Existuje vlastne množina všetkých množ́ın, cez ktorú by sme tu mohli kvantifikovat’?

Dôkazy kvantifikovaných výrokov

Teraz sa pozrieme na to, ako dokazovat’ pravdivost’ alebo nepravdivost’ výrokov. Teda, pozrieme sa
rovno na zist’ovanie pravdivostnej hodnoty. No hoci úlohy budú o zist’ovańı, budeme v nich chciet’

úplné riešenie vrátane dôkazu.

https://en.wikipedia.org/wiki/Zermelo%E2%80%93Fraenkel_set_theory


Úloha 2.1. Určte pravdivostnú hodnotu výroku

∃x ∈ R : 3x+ 2 > 2x+ 5.

Opät’ vám ponúkame dva pokusy o riešenie.

Pokus o riešenie 1

Nerovnost’

3x+ 2 > 2x+ 5

si odč́ıtańım 2x a odč́ıtańım 2 ekvivalentne uprav́ıme na

x > 3.

Toto, a teda aj nerovnost’ 3x+2 > 2x+4 plat́ı pre všetky reálne č́ısla väčšie ako 3, teda výrok
je pravdivý.

Pokus o riešenie 2

Sč́ıtame všetky č́ısla v zadańı:
3 + 2 + 2 + 5 = 12.

Dosadáme x = 12, č́ım máme na l’avej strane 3 · 12+ 2 = 38 a na pravej strane 2 · 12+ 5 = 29.
Vyšlo nám 38 > 29, čo je pravda, teda také x ∈ R, pre ktoré plat́ı 3x + 2 > 2x + 5 existuje.
Výrok teda plat́ı.

Možno vás teraz prekvaṕıme, ale správne sú teraz obe riešenia. A možno vás ešte prekvaṕıme aj tým,
ked’ povieme, že druhý pokus je o niečo lepš́ı. Spomeňme si, že dôkaz slúži na presvedčenie čitatel’a
o pravdivosti nášho tvrdenia. A ako niekoho presvedč́ıme o existencii niečoho? Najjednoduchšie tak,
že mu to ukážeme.

Prvé riešenie je zbytočne zložité. Možno je to tým, že ked’ vid́ıme nerovnicu, tak máme nutkanie ju
vyriešit’ zauž́ıvaným školským postupom. Takto si však pridávame prácu a tiež zvyšujeme šancu na
to, že sa niekde pomýlime. Isto, teraz nám to pŕıde banálne a irelevantné. No táto poznámka bude
relevantná hlavne pri zložiteǰśıch úlohách.

Ideálne riešenie takejto úlohy teda obsahuje len posledné dva riadky. Dokonca ich vieme skrátit’ do
nasledovného tvaru.

Riešenie úlohy 2.1

Pre x = 12 máme 38 > 29, teda výrok plat́ı.

Objavili sme tak v podstate najjednoduchšiu formu dôkazu, ktorú vieme zhrnút’ asi takto.

Dôkaz existenčného výroku

Pravdivost’ tvrdenia tvaru ∃x ∈ M : p(x) dokazujeme tak, že uvedieme pŕıklad konkrétneho
prvku x z množiny M a dokážeme, že pre tento prvok plat́ı p(x). Pri dôkaze je ideálne dodržat’

štruktúru (c nahrad́ıme konkrétnym prvkom):

Nech x = c. Potom . . . [dôkaz p(c)].

Hoci tento typ dôkazu vyzerá jednoducho, nemuśı tomu byt’ vždy tak. Aj po dosadeńı konkrétnej



hodnoty do p(x) môžeme dostat’ nejaký výrok, ktorého pravdivost’ nebude triviálne dokázat’ – pozrite
sa na nejaké náročné dôkazy z predošlej sekcie.

Teraz by ste mohli túto úlohu zvládnut’ vyriešit’.

Úloha 2.2. Určte pravdivostnú hodnotu výroku

∀x ∈ R : 3x+ 2 > 2x+ 5.

Riešenie úlohy 2.2

Dosadeńım x = 0 dostaneme 2 > 5, čo neplat́ı. Preto je výrok zo zadania nepravdivý.

Čiže v pŕıpade, že všeobecný výrok neplat́ı, tak dôkaz máme tiež jednoduchý.

Vyvrátenie všeobecného výroku

Nepravdivost’ tvrdenia tvaru ∀x ∈ M : p(x) dokazujeme tak, že uvedieme pŕıklad konkrétneho
prvku x z množiny M a dokážeme, že pre tento prvok neplat́ı p(x).

Čo sa týka dokazovania všeobecných výrokov, tak to sme už videli pri úlohe 1.6.

Dôkaz všeobecného výroku

Pravdivost’ tvrdenia tvaru ∀x ∈ M : p(x) dokazujeme tak, že uvedieme pŕıklad konkrétneho
prvku x z množiny M a dokážeme, že pre tento prvok neplat́ı p(x). Dôkaz môže mat’ štruktúru:

Nech x ∈ M . Potom . . . [dôkaz p(x), pri ktorom využ́ıvame premennú x].

A pre úplnost’, vyvrátit’ existenčný výrok ∃x ∈ M : p(x) znamená dokázat’ jeho negáciu, teda výrok
∀x ∈ M : ¬p(x), čo vieme spravit’ podl’a schémy vyššie.

Striedanie kvantifikátorov

Úloha 2.3. Rozhodnite o pravdivosti nasledovných tvrdeńı:

a) ∀x ∈ R ∀y ∈ R : x+ y = 0,

b) ∃x ∈ R ∀y ∈ R : x+ y = 0,

c) ∀x ∈ R ∃y ∈ R : x+ y = 0,

d) ∃x ∈ R ∃y ∈ R : x+ y = 0,

Riešenia úloh sú zoradené podl’a ich náročnosti.

Riešenie

a) Neplat́ı, lebo pre x = 1, y = 2 neplat́ı 1 + 2 = 0.

d) Plat́ı, lebo pre x = 3, y = −3 plat́ı 3 + (−3) = 0.

c) Plat́ı, lebo pre l’ubovol’né x ∈ R a pre y = −x plat́ı x+ (−x) = 0.

b) Neplat́ı, lebo pre l’ubovol’né x ∈ R zvoĺıme y = 1−x (čo je zjavne reálne č́ıslo), pre ktoré



máme 1 + (1− x) = 1 ̸= 0, teda výrok 1 + (1− x) = 0 neplat́ı.

Uvedomme si, že v podúlohe b) sme vlastne dokazovali negáciu tvrdenia, ktorý vyzerá: ∀x ∈ R∃y ∈
R : x + y ̸= 0. Preto sme použili takúto štruktúru – začali sme dokazovat’ všeobecný výrok

”
Pre

l’ubovol’né x ∈ R. . .“ a pre toto všeobecné x sme začali dokazovat’ existenčný výrok, čo sme začali
vol’bou y. Po prejdeńı kvantifikátorov sme dokazovali, že plat́ı x+ y ̸= 0.

Výroky b) a c) ilustrujú, že na porad́ı kvantifikátorov zálež́ı. To môžeme ilustrovat’ aj rôznymi
slovnými významami výrokov b) a c):

b) Existuje reálne č́ıslo, ktoré dáva súčet 0 s l’ubovol’ným reálnym č́ıslom.

c) Každé reálne č́ıslo dáva súčet 0 s nejakým reálnym č́ıslom.

Na podúlohe c) si ešte rozoberieme štruktúru dôkazu podl’a toho, čo sme si povedali vyššie. Dôkaz
sa zač́ına za slovom lebo, teda je to veta:

”
Pre l’ubovol’né x ∈ R a pre y = −x plat́ı x+ (−x) = 0.“

• Pre l’ubovol’né x ∈ R: Takto sa zač́ına dôkaz všeobecného výroku. Ďalej teda nasleduje dôkaz
tvrdenia ∃y ∈ R : x+ y = 0.

• pre y = −x: Teraz dokazujeme existenčné tvrdenie, a toto je jeho začiatok. Všimnite si, že
narozdiel o riadku vyššie teraz uvádzame konkrétnu hodnotu premennej y. Teda konkrétnu v
kontexte dokazovania ∃y ∈ R : x + y = 0, kedy sme už (v odrážke vyššie) zaviedli do dôkazu
premennú x.

• plat́ı x+(−x) = 0: Ostalo nám dokázat’ x+(−x), čo vyplýva z jednoduchej algebraickej úpravy.

Úloha 2.4. Rozhodnite o pravdivosti nasledovných tvrdeńı:

a) ∀x ∈ R ∀y ∈ R : xy = 0,

b) ∃x ∈ R ∀y ∈ R : xy = 0,

c) ∀x ∈ R ∃y ∈ R : xy = 0,

d) ∃x ∈ R ∃y ∈ R : xy = 0.

Riešenie

a) Neplat́ı, lebo pre x = 4 a y = 2: 4 · 2 ̸= 0.

b) Plat́ı, lebo pre x = 0 plat́ı ∀y ∈ R : 0 · y = 0

c) Plat́ı, lebo pre každé x ∈ R plat́ı: pre y = 0 dostaneme x · 0 = 0.

d) Plat́ı, lebo pre x = 0 a y = −17 plat́ı 0 · (−17) = 0.

Úloha 2.5. Rozhodnite, ktoré výroky sú pravdivé.

a) ∃x ∈ R : x · 1 = x

b) ∀x ∈ R : x · 1 = x

c) ∃x ∈ R : x · x = 1

d) ∀x ∈ R : x · x = 1

e) ∃x ∈ R ∃y ∈ R : x · y = 1

f) ∃x ∈ R ∀y ∈ R : x · y = 1

g) ∀x ∈ R ∃y ∈ R : x · y = 1

h) ∀x ∈ R ∀y ∈ R : x · y = 1



Úloha 2.6. Rozhodnite, ktoré výroky sú pravdivé.

a) ∃n ∈ N ∃k ∈ N : k > n

b) ∀n ∈ N ∃k ∈ N : k > n

c) ∃n ∈ N ∀k ∈ N : k > n

d) ∃n ∈ N ∃k ∈ N : k | n

e) ∀n ∈ N ∃k ∈ N : k | n

f) ∃n ∈ N ∀k ∈ N : k | n

Úloha 2.7. Dokážte, že súčet l’ubovol’ných dvoch celých č́ısel delitel’ných tromi je delitel’ný tromi.

Začneme tým, že si najprv dokazovaný výrok symbolicky zaṕı̌seme:

∀a ∈ Z ∀b ∈ Z : (3 | a ∧ 3 | b) ⇒ 3 | (a+ b).

Teraz detailne rozṕı̌seme dôkaz spolu s úvahami, ktoré počas neho rob́ıme.

Krok dôkazu Jeho vysvetlenie
1. Nech a, b ∈ Z Dokazujeme všeobecný výrok. Zahod́ıme kvantifikátory,

zavedieme premenné a vo zvyšku dôkazu dokazujeme (3 |
a ∧ 3 | b) ⇒ 3 | (a+ b)

2. Nech plat́ı 3 | a ∧ 3 | b Dokazujeme výrok v tvare implikácie. Skúšame priamy
dôkaz, teda predpokladáme, že l’avá strana implikácie
plat́ı a naš́ım ciel’om je dokázat’ 3 | (a+ b)

3. 3 | a (lebo 2.) Využili sme, že plat́ı konjunkcia 3 | a ∧ 3 | b a odvodili
sme z toho, že plat́ı jej člen 3 | a (teda využili sme
tautológiu (p ∧ q) ⇒ p)

4. ∃k ∈ Z : a = 3k (lebo 3.) Využili sme defińıciu delitel’nosti.
5. a = 3r pre nejaké r ∈ Z (lebo 4.) V kroku 4. vieme, že existuje nejaké celé č́ıslo s istou

vlastnost’ou. Toto celé č́ıslo si vieme označit’ a d’alej pra-
covat’ s týmto označeńım. Pre jeho označenie sme zvolili
r.

6. 3 | b (lebo 2.) To isté rob́ıme pre druhý člen konjunkcie z bodu 2.
7. ∃k ∈ Z : a = 3k (lebo 3.)
8. b = 3s pre nejaké s ∈ Z (lebo 7.) Opät’ rob́ıme to isté, len si muśıme dat’ pozor. Pre

označenie
”
onoho č́ısla, ktoré existuje v bode 6“ muśıme

použit’ nové označenie. Premennú r už máme použitú,
preto sme použili s.

9. a+ b = 3r + 3s (lebo 5. a 8.) Sč́ıtali sme odvodené rovnosti
10. a+ b = 3(r + s) (lebo 9.) Na tvrdenie z bodu 8. sme použili distribut́ıvny zákon.
11. r + s ∈ Z (lebo r ∈ Z ∧ s ∈ Z) Využ́ıvame, že súčet celých č́ısel je celé č́ıslo.
12. ∃k ∈ Z : a+ b = 3k (lebo 10. a 11.) V bode 9 máme nájdené celé č́ıslo, konkrétne č́ıslo k =

r + s, pre ktoré plat́ı a+ b = 3k.
13. 3 | (a+ b) (lebo 12.) Teraz sme opät’ použili defińıciu delitel’nosti, len teraz

opačným smerom ako na začiatku.

Najčasteǰsou chybou pri dôkazoch tohto typu je zlé pomenovanie premennej v kroku 8. Je potrebné
si uvedomit’, že ked’ odstraňujeme existenčný kvantifikátor, muśıme jeho lokálnu premennú nahradit’

novou premennou. Okrem toho sa chyták môže skrývat’ aj v bode 11. Ked’ dokazujeme existenčné
tvrdenie pŕıkladom, je potrebné overit’, že náš pŕıklad naozaj patŕı do kvantifikovanej množiny. Vo
väčšine úloh je toto tvrdenie triviálne, no môže sa objavit’ výnimka. Napr. ak by nám vyšlo a+ b =
3(
√
r + 2s/(r +

√
3)), kedy vôbec nie je jasné, že v zátvorke máme celé č́ıslo.

Zapisovat’ dôkazy takto podrobne nie je potrebné. Mnohé úvahy sa dajú spojit’ do jednej, č́ım vieme
dôkaz skrátit’. Týmto dlhým zápisom sme chceli len ilustrovat’ úvahy, ktoré sa pri dokazovańı dejú.
Ked’ aj tieto úvahy nebudete ṕısat’, mali by ste ich robit’ vo svojej hlave.



3 Dôkaz sporom

Pod’me sa pozriet’ na nasledovnú dôkazovú úlohu. Skúste si dokázat’ toto tvrdenie.

Úloha 3.1. Majme tri reálne č́ısla so súčtom 0. Dokážte, že aspoň jedno z týchto č́ısel je nezáporné.

Ked’ máte tvrdenie dokázané, skúste sa zamysliet’ nad tým, ako presne ste sa presvedčili, že dokazo-
vaný výrok je pravdivý.

Pokus o riešenie

Ak by boli všetky tri č́ısla záporné, tak aj ich súčet by bol záporný, lebo súčet záporných č́ısel
je záporný. Preto niektoré z nich muśı byt’ nezáporné.

Možno niekoho zmätie slovný zápis riešia. To nie je problém. Mnoho dôkazov je ṕısaných slovne
(v učebniciach, vzorových riešeniach MO, . . . ). Môže nám pomôct’ preṕısat’ si ho symbolicky. Na to
si najprv muśıme zaṕısat’ symbolicky samotné dokazované tvrdenie. To sa dá napŕıklad ako

∀x, y, z ∈ R, x+ y + z = 0: x ≥ 0 ∨ y ≥ 0 ∨ z ≥ 0.

Miesto spojok alebo si môžeme pomôct’ aj existenčným kvantifikátorom, napr. ∃w ∈ {x, y, z} : w ≥ 0.
Skúmaný dôkaz by potom môže vyzerat’ takto.

Symbolicky zaṕısané riešenie

x < 0 ∧ y < 0 ∧ z < 0
x+ y < 0, lebo x < 0 ∧ y < 0
x+ y + z < 0, lebo x+ y < 0 ∧ z < 0
Dostali sme, že x + y + z < 0, ale podl’a zadania x + y + z = 0. V oboch krokoch sme využili
známe pravidlo ∀a, b, c, d ∈ R : (a < b ∧ c < d) ⇒ a+ c < b+ d

Či sa už pozeráme na textový alebo symbolický dôkaz, obe z nich sa ĺı̌sia od priameho dôkazu.
Pozeráme si v nich na situáciu, kedy dokazovaný výrok V neplat́ı. Vychádzame teda z predpokladu
¬V . Dopracovali sme sa k niečomu nepravdivému – že súčet a + b + c je 0, ale zároveň má byt’ aj
záporný. A to je problém, niečo také sa nemôže stat’. Preto sa nemôže stat’ ani to, že plat́ı ¬V . Takýto
prinćıp dokazovania sa volá dôkaz sporom. Z pohl’adu výrokov sme dokázali implikáciu ¬V ⇒ N ,
kde N je nepravdivý výrok. Ked’že implikácia ¬V ⇒ N je pravdivá (lebo sme ju korektne odvodili),
tak aj výrok ¬V muśı neplatit’. Pripomeňme si pravdivostnú tabul’ku implikácie.

a b a ⇒ b
0 0 1
0 1 1
1 0 0
1 1 1

Dôkaz sporom

Výrok V dokážme sporom nasledovne. Predpokladáme, že plat́ı jeho negácia ¬V . Z tohto
predpokladu odvod́ıme (napr. ako pri priamom dôkaze) platnost’ nepravdivého tvrdenia. Teda
dokážeme

V ′ ⇒ N,

kde N je nepravdivé tvrdenie.Jeho štruktúra vyzerá zväčša nasledovne:



Kostra dôkazu sporom

Tvrdenie V dokážme sporom. Nech plat́ı V ′. Potom
. . . (Ret’azec úvah ako pri priamom dôkaze)
Teda plat́ı N , čo je v spor.

Spor často dostávame tým, že postupne dokážeme nejaké tvrdenie, aj jeho negáciu. Napŕıklad:

Tvrdenie V dokážme sporom. Nech plat́ı V ′. Potom
. . .
Preto n je párne č́ıslo
. . .
Teda n je nepárne č́ıslo, čo je v spor tým, že je párne.

V takomto pŕıpade, ked’ sme v závere nedostali tvrdenie, ktoré je samo o sebe nepravdivé (napr. n
je nepárne č́ıslo – to kl’udne môže byt’ pravda), je odporúčané doṕısat’, s č́ım je toto tvrdenie v spore
(alebo naznačit’ š́ıpkou).

Poriadny zápis dôkazu z úlohy 3.1 môže teda vyzerat’ takto.

Dôkaz úlohy 3.1 sporom

Sporom. Nech sú všetky tri č́ısla záporné. Potom aj ich súčet je záporný, lebo súčet záporných
č́ısel je záporný. To je ale spor s tým, že súčet týchto č́ısel je 0.

Na tomto dôkaze si ešte môžeme všimnút’, že spor sme dostali s tým, čo sme v zadańı. Dokazované
tvrdenie možno tiež vyjadrit’ ako implikáciu

∀x, y, z ∈ R : x+ y + z = 0 ⇒ (x ≥ 0 ∨ y ≥ 0 ∨ z ≥ 0).

Vtedy dostávame spor s l’avou stranou implikácie. Takýto dôkaz sa nazýva aj nepriamy dôkaz.

Nepriamy dôkaz

Tvrdenie vo forme implikácie A ⇒ B dokážeme nepriamo tak, že miesto implikácie A ⇒ B
dokážeme implikáciu ¬B ⇒ ¬A, ktorá sa nazýva obmena implikácie.

Nepriamy dôkaz je založený na fakte, že implikácie A ⇒ B a ¬B ⇒ A majú rovnaké pravdivostné
hodnoty. Samotnú obmenu potom dokazujeme priamo (môžeme aj inak, ale iné techniky nepoznáme
a dokazovat’ obmenou alebo sporom nemá zmysel). Obmena tvrdenia z úlohy 3.1 je

∀x, y, z ∈ R : (x < 0 ∧ y < 0 ∧ z ≥ 0) ⇒ x+ y + z ̸= 0.

Nepriamy dôkaz teda môže vyzerat’ nasledovne. Uvedieme stručnú verziu.

Dôkaz úlohy 3.1 nepriamo

Nepriamo. Nech x < 0 < y < 0 < z. Potom x + y + z < 0 (lebo súčet záporných č́ısel je
záporný), teda x+ y + z ̸= 0.

Dávame do pozornosti, že pokial’ nepouž́ıvame priamy dôkaz, je dobré naṕısat’, aký dôkaz použ́ıvame.
Aspoň minimalisticky slov́ıčkom sporom alebo nepriamo.



4 Prehl’ad dokazovania

Typy dôkazov podl’a spôsobu uvažovania

Priamy dôkaz

Priamy dôkaz výroku V je konečná postupnost’ výrokov, ktorá sa konč́ı výrokom V a pre každý
výrok tejto postupnosti plat́ı niektorý z nasledovných bodov:

(i) je axióma,

(ii) je všeobecne známe alebo už dokázané tvrdenie,

(iii) vyplýva (je logickým dôsledkom) z predchádzajúcich výrokov tejto postupnosti.

Dôkaz sporom

Výrok V dokážme sporom nasledovne. Predpokladáme, že výrok plat́ı negácia výroku V . Z
tohto predpokladu odvod́ıme (napr. ako pri priamom dôkazov) platnost’ nepravdivého tvrdenia.
Teda dokážeme

V ′ ⇒ N,

kde N je nepravdivé tvrdenie. Jeho štruktúra vyzerá zväčša nasledovne:

Tvrdenie V dokážme sporom. Nech plat́ı V ′. Potom
. . . (Ret’aze úvah ako pri priamom dôkaze)
Teda plat́ı N , čo je v spor.

Spor často dostávame tým, že postupne dokážeme nejaké tvrdenie, aj jeho negáciu. Napŕıklad:

Tvrdenie V dokážme sporom. Nech plat́ı V ′. Potom
. . .
Preto n je párne č́ıslo
. . .
Teda n je nepárne č́ıslo, čo je v spor tým, že je párne.

V takomto pŕıpade, ked’ sme v závere nedostali tvrdenie, ktoré je samo o sebe nepravdivé
(napr. n je nepárne č́ıslo – to kl’udne môže byt’ pravda), je odporúčané doṕısat’, s č́ım je toto
tvrdenie v spore (alebo naznačit’ š́ıpkou).

Dokazovanie kvantifikovaných výrokov



Dôkaz existenčného výroku

Výrok tvaru ∃x ∈ M : v(x) najl’ahšie dokážeme tak, že nájdeme jedno x z množiny M , pre
ktoré plat́ı výroková forma v(x). Takýto dôkaz má štruktúru

Pre x = 9 plat́ı v(9), lebo ⟨Dôkaz výroku v(9)⟩.

Samozrejme, miesto 9 zvoĺıme správne č́ıslo alebo prvok. Dokonca môžeme použit’ aj výraz s
premennými, ak dokazujeme len výrokovú formu vnútri zložiteǰsieho výroku.

Dôkaz všeobecného výroku

Výrok tvaru ∀x ∈ M : v(x) najl’ahšie dokážeme tak, že sprav́ıme dôkaz
”
výroku“ v(x), v ktorom

budeme použ́ıvat’ premennú x.

Nech x je l’ubovol’ný prvok M . Potom plat́ı ⟨Dôkaz výroku v(x)⟩.

Samozrejme, existujú aj iné typy dôkazov. Obzvlášt’ pri existenčných tvrdeniach je viacero dôkazov,
ktoré nezač́ınajú určeńım hl’adanej hodnoty.

Prehl’ad dokazovania výrokov podl’a štruktúry

Tu je prehl’ad základných štruktúr dôkazu podl’a typu výroku, ktorý máme dokazovat’. Defaultne tak
dostaneme priamy dôkaz, ale nič nám nebrańı pred dokazovańım si dokazované tvrdenie upravit’ na
iné (nepriamym dôkazom či matematickou indukciou).

A ∧B: Dokážme A a potom dokážeme B.

A ∨B: Rozdeĺıme dôkaz na dva pŕıpady (napr. ak je nejaké č́ıslo párne alebo nepárne). Z jedného
dokážeme A a zdruhého dokážeme B.

A ⇒ B: Predpokladáme, že A plat́ı a dokážeme B.

A ⇔ B: Dokážeme A ⇒ B a B ⇒ A.

⋄ V niektorých pŕıpadoch je možné nájst’ postupnost’ ekvivalentých úprav od výroku
A k B. Tu však treba byt’ obozretný, či naozaj všetky sú ekvivalentné. Pre lepšiu kontrolu
odporúčame skontrolovat’, či sú všetky úvahy správne jedným aj druhým smerom.

(∀x)a(x): Dokážeme a(x) za použitia premennej x.

(∃x)a(x): Ukážeme platnost’ a(x) pre jednu konkrétnu vol’bu premennej x (napr. dokážeme a(47)).
Pri vol’be x môžeme použit’ aj premenné, ale iba ak už v našom dôkaze nejaké máme definované
(a nesmú byt’

”
zakryté“ kvantifikátorom).

Prehl’ad logických úsudkov podl’a štruktúry výroku

A tu je prehl’ad základných logických krokov, ktoré vieme počas dokazovania robit’. Opät’ pre každý
z najčasteǰśıch typov výrokov uvádzame, čo z neho možno odvodit’.

A ∧B: Vieme odvodit’ platnost’ A, rovnako aj platnost’ B.



A ∨B: Vieme rozdelit’ dôkaz na dve časti, v jednej predpokladáme platnost’ A a v druhej plat-
nost’ B (vhodné pri dokazovańı výrokov so spojkou alebo).

A ⇒ B: Ak máme už dokázané A, vieme odvodit’ platnost’ B

A ⇔ B: Rovnako ako pri A ⇒ B, pŕıp. B ⇒ A.

(∀x)a(x): Vieme za x dosadit’ honotu a odvodit’ pre ňu platnost’ výroku (napr. a(47), ak sme v
celých č́ıslach).

(∃x)a(x): Zavedieme novú premennú, napr. c, a odvod́ıme platnost’ a(c).

5 Ako robit’ dôkazy tautológíı

Dôkaz nekvantifikovanej tautológie

Úloha 5.1. Rozhodnite, či zložený výrok

[(a ⇒ b) ∧ (c ∨ d) ∧ ((¬a ∧ c) ⇒ e)] ⇒ [¬b ⇒ (e ∨ d)]

je tautológia.

Zápis riešenie cez postupnost’ tvrdeńı

Výrok je tautológia. Dôkaz sporom.

1. Nech plat́ı ¬[[(a ⇒ b) ∧ (c ∨ d) ∧ ((¬a ∧ c) ⇒ e)] ⇒ [¬b ⇒ (e ∨ d)]]

2. (a ⇒ b) ∧ (c ∨ d) ∧ ((¬a ∧ c) ⇒ e) (z 1.)

3. ¬[¬b ⇒ (e ∨ d)] (z 1.)

4. ¬b (z 3.)

5. ¬(e ∨ d) (z 3.)

6. ¬e (z 5.)

7. ¬d (z 5.)

8. a ⇒ b (z 2.)

9. ¬a (z 4. a 8.)

10. (c ∨ d) (z 2.)

11. c (z 7. a 11.)

12. (¬a ∧ c) ⇒ e (z 2.)

13. ¬a ∧ c (z 9. a 11.)

14. e (z 12. a 13.) – to je spor s 6.

Pri dôkaze sporom je potrebné naṕısat’, že ideme dokazovat’ sporom (kl’udne aj jedným slovom. A
následne označit’, čo je s č́ım v spore (v našom pŕıpade 6. a 14.). Pri takýchto riešeniach často
hovoŕıme o tom, že nejaký výrok plat́ı alebo neplat́ı. To sa dá značit’ viacerými spôsobmi.

• Pravdivé výroky môžeme ṕısat’ len tak ako krok (napr. body 2., 8., 10., 14.), nepravdivé vieme
ṕısat’ formou, že plat́ı ich negácia (napr. body 1., 3., 4, 5.). (Toto je použité aj v riešeńı)

• Pravdivost’ vieme vyjadrit’ ekvivalenciou s pravdivostnou hodnotou, napr.

1. [[(a ⇒ b) ∧ (c ∨ d) ∧ ((¬a ∧ c) ⇒ e)] ⇒ [¬b ⇒ (e ∨ d)]] ⇔ 0

4. b ⇔ 0

8. (a ⇒ b) ⇔ 1



14. e ⇔ 1

Pritom si však dávajte pozor, aby to nevyzeralo ako dosadenie pravdivostnej hodnoty za ele-
mentárny výrok.

• Použit’ ohodnotenie / valuáciu výrokov v:

1. v([(a ⇒ b) ∧ (c ∨ d) ∧ ((¬a ∧ c) ⇒ e)] ⇒ [¬b ⇒ (e ∨ d)]) = 0

14. v(e) = 1

Tento spôsob sa často použ́ıva pri hlbšom štúdiu matematickej logiky. Na tomto predmete však
nie je nutné sa ńım zaobrat’.

Ešte si ukážeme, že dôkazy sa dajú zapisovat’ aj ako text. Tento text zároveň aj detailneǰsie vysvetl’uje,
čo sa deje v predšlom symbolickom dôkaze. Záver je mierne odlǐsný.

Zápis riešenia textom

Sporom. Nech neplat́ı [(a ⇒ b) ∧ (c ∨ d) ∧ ((¬a ∧ c) ⇒ e)] ⇒ [¬b ⇒ (e ∨ d)]. Potom (a ⇒
b) ∧ (c ∨ d) ∧ ((¬a ∧ c) ⇒ e) plat́ı a výrok ¬b ⇒ (e ∨ d) neplat́ı. Z neskoršieho dostávame,
že ¬b je pravda, teda b ⇔ 0; a tiež e ∨ d neplat́ı, teda e ⇔ 0 a d ⇔ 0. Z pravdivého výroku
(a ⇒ b)∧(c∨d)∧((¬a∧c) ⇒ e) vieme, že (a ⇒ b) plat́ı. Preto ked’že b ⇔ 0, tak aj a ⇔ 0. Tiež
nám plat́ı (c ∨ d), z čoho vd’aka d ⇔ 0 máme, že c ⇔ 1. Napokon nám plat́ı aj (¬a ∧ c) ⇒ e.
Ked’ tam však dosad́ıme určené pravdivostné hodnoty, tak nám vyjde (1 ∧ 1) ⇒ 0, čo však
pravda nie je, a to je spor.

Dôkaz ne-tautológie

Úloha 5.2. Rozhodnite, či nasledovný zložený výrok je tautológia

[(¬a ⇒ b) ∨ (c ∧ d) ∨ (e ∧ ¬c ∧ ¬a)] ⇒ [(¬b ∧ ¬c) ⇒ a].

Ak chceme dokázat’, že zložený výrok nie je tautológia, máme to jednoduché – stač́ı nám uviest’ jeden
pŕıpad, kedy nám vyjde nepravda + vyhodnotit’ (resp. aspoň naznačit’ vyhodnotenie výroku).

Riešenie

Nejde o tautológiu, lebo pre a ⇔ 0, b ⇔ 0, c ⇔ 0, d ⇔ 1, e ⇔ 1 vyjde nepravda:

[(¬a ⇒ b) ∨ (c ∧ d) ∨ (e ∧ ¬c ∧ ¬a)︸ ︷︷ ︸
1︸ ︷︷ ︸

1

] ⇒ [(¬b ∧ ¬c)︸ ︷︷ ︸
1

⇒ a︸︷︷︸
0︸ ︷︷ ︸

0

]

︸ ︷︷ ︸
0

Upozorňujeme, na časté nesprávne (neúplné riešenie)

Nesprávne riešenie

Pre spor predpokladajme, že výrok neplat́ı

1. ¬[[(¬a ⇒ b) ∨ (c ∧ d) ∨ (e ∧ ¬c ∧ ¬a)] ⇒ [(¬b ∧ ¬c) ⇒ a]]

2. (¬b ∧ ¬c) ⇒ a (z 1.)

3. (¬b ∧ ¬c) (z 2.)



4. ¬b (z 3.)

5. ¬c (z 3.)

6. ¬a (z 2.)

7. (¬a ⇒ b) ∨ (c ∧ d) ∨ (e ∧ ¬c ∧ ¬a) (z 1.)

8. ¬(¬a ⇒ b) (z 4. a 6.)

9. ¬(c ∧ d) (z 5.)

10. e ∧¬c ∧¬a (z 7., lebo prvé dva výroky v disjunkcii sú nepravdivé, tak muśı platit’ tret́ı)

11. e (z 10.)

Dostali sme ohodnotenie elementárnych výrokov, kedy plat́ı a ⇔ 0, b ⇔ 0, c ⇔ 0, e ⇔ 1 (d
môže byt’ aj pravda, aj nepravda). Teda výrok nie je tautológia.

Hoci takto zrejme budete riešit’ takéto úlohy, toto nie je dôkaz – vychádzame totiž z predpokladu, že
zložený výrok neplat́ı a tak nemôžeme dokázat’, že naozaj neplat́ı. Dokonca v takejto situácii môžeme
dojst’ aj nesprávnemu záveru (teda by výrok bol tautológiou) – to, že sa nám nepodarilo dostat’ ku
sporu, neznamená, že tam niekde skrytý nie je.

V takejto situácii potrebujeme overit’, že pre nami nájdené ohodnotenie elementárnych výrokov nám
vyjde naozaj nepravda (alebo to iným spôsobom zdôvodnit’, ale overenie je najjednoduchšie a najis-
teǰsie). Je to rovnaká situácia, ako ked’ pri riešeńı rovnice (či sústavy rovńıc) nám nestač́ı dospiet’

k tomu, že x = 17, y = 42 a z = 47, ale potrebujeme ešte vykonat’ skúšku správnosti (alebo iným
spôsobom odargumentovat’, že nami nájdené riešenie vyhovuje).

Kvantifikované tautológie

Úloha 5.3. Dokážte, že výrok

(∀x)(a(x) ⇒ b(x)) ⇒ ((∀x)a(x) ⇒ (∀x)b(x))

je tautológia.

Priamy dôkaz

1. Nech plat́ı (∀x)(a(x) ⇒ b(x)).
Dokážeme, že plat́ı (∀x)a(x) ⇒ (∀x)b(x):

2. Nech plat́ı (∀x)a(x).
Dokážeme, že plat́ı (∀x)b(x):

Pre každé x plat́ı:

3. a(x) (lebo 2.)
4. a(x) ⇒ b(x) (lebo 1.)
5. b(x) (lebo 3. a 4.)

Teda plat́ı (∀x)b(x).
Teda plat́ı (∀x)a(x) ⇒ (∀x)b(x)

Teda plat́ı (∀x)(a(x) ⇒ b(x)) ⇒ ((∀x)a(x) ⇒ (∀x)b(x))



Komentár. Dokazovaná tautológia má formu implikácie. Tú dokazujeme priamo tak, že predpo-
kladáme pravdivost’ l’avej strany a ukážeme, že plat́ı aj pravá strana. Ked’že na pravej strane je opät’

implikácia, tak tento postup zopakujeme. Dôkazy týchto dvoch implikácíı sú v červených rámčekoch.
Dostaneme sa k dokazovaniu výroku v tvare všeobecného kvantifikátora (modrý rámček). Ten do-
kazujeme tak, že naṕı̌seme dôkaz kvantifikovanej výrokovej formy všeobecne za pomoci premennej
(zlený rámček). Všimnite si, že vnútri zeleného rámčeka nemáme žiadne kvantifikátory. Do vašich
riešeńı nemuśıte ṕısat’ tento komentár. Tiež môžete vypustit’ aj závery

”
Teda plat́ı. . .“

Dôkaz sporom

Pre spor predpokladajme, že (pre nejaké univerzum a nejaké výrokové formy a(x), b(x) na
ňom definované) plat́ı negácia, teda:

1. ¬[(∀x)(a(x) ⇒ b(x)) ⇒ ((∀x)a(x) ⇒ (∀x)b(x))]

2. (∀x)(a(x) ⇒ b(x)) ∧ ¬[(∀x)a(x) ⇒ (∀x)b(x)] (negácia 1.)

3. (∀x)(a(x) ⇒ b(x)) (lebo 2.)

4. (∃x)(a(x) ∧ ¬b(x)) (lebo 2. + negácia)

5. a(c)∧¬b(c) pre nejaký prvok c (lebo 4.) (tu sme zaviedli do nášho dôkazu novú premennú
c, ktorou sme označili prvok univerza, ktorého existenciu zaručuje výrok 4.)

6. a(c) ⇒ b(c) (lebo 2. plat́ı pre všetky prvky univerza, teda aj pre naše c)

7. ¬(a(c) ⇒ b(c)) (negácia 5.) – SPOR s tvrdeńım 6.

Časti ṕısané šedou slúžia pre lepšie objasnenie, do riešenia takto podrobne netreba ṕısat’.

Úloha 5.4. Rozhodnite, či výrok

(∀x)(a(x) ⇒ b(x)) ⇒ ((∀x)a(x) ↔ (∀x)b(x))
je tautológia.

Oproti predošlej úlohe sme teraz implikáciu nahradili ekvivalenciou. Tým však už výrok tautológiou
neostane. To vieme dokázat’ dosadeńım, kedy nám vyjde nepravda:

Riešenie

Na doméne {1, 2} definujme a(x) ⇔ x = 1, b(x) ⇔ x = 2. Po dosadeńı dostávame výrok

(∀x ∈ {1, 2})(x = 1 ⇒ x = 2)︸ ︷︷ ︸
0, lebo neplat́ı pre x=1

⇔ ((∀x ∈ {1, 2})(x = 1)︸ ︷︷ ︸
0, lebo neplat́ı pre x = 2

⇒ (∀x ∈ {1, 2})(x = 2)︸ ︷︷ ︸
0, lebo neplat́ı pre x=1

,

ktorého pravdivostná hodnota je 0.

Ako vieme na takéto dosadenie pŕıst’? Výrokové formy si vieme predstavit’ ako tabul’ky, kde pre každý
prvok univerza máme naṕısané pravdivostnú hodnotu, teda tabul’ku s hlavičkou

x a(x) b(x)

Pod’me teda nájst’ také výrokové formy, pre ktoré nebude platit’ (∀x)(a(x) ⇒ b(x)) ⇒ ((∀x)a(x) ⇒
(∀x)b(x)). Ked’že ide o ekvivalenciu. Máme dve možnosti: 1 ⇔ 0 alebo 0 ⇔ 1. Pri prvej možnosti sa



nám darit’ nebude (možno aj dôjdeme k sporu a dokážeme, že ide o tautológiu, ako vyššie). Preto
skúsime druhú možnost’:

(∀x)(a(x) ⇒ b(x))︸ ︷︷ ︸
0

⇒ ((∀x)a(x) ⇒ (∀x)b(x))︸ ︷︷ ︸
1

Z toho, že (∀x)(a(x) ⇒ b(x)) neplat́ı máme, že plat́ı (∃x)(a(x) ∧ ¬b(x)), teda
existuje riadok tabul’ky, v ktorom máme 1 a 0.

x a(x) b(x)
1 0

Ked’že b(x) je už niekedy 0, tak výrok (∀x)b(x) neplat́ı. Avšak má platit’

(∀x)a(x) ⇒ (∀x)b(x), preto (∀x)a(x) tiež neplat́ı. Teda v niektorom riadku muśı
mat’ a(x) nulu.

x a(x) b(x)
1 0
0

Prešli sme už všetko. Tak nám už ostáva len dokončit’ tabul’ku – vol’né miesto v b(x) vyplńıme
l’ubovol’ne a nejako si pomenujeme prvky x univerza, napr. 42 a 47. Dostávame teda výrokové formy
definované na {42, 47} ako:

x a(x) b(x)
42 1 0
47 0 0

Pre tie už l’ahko oveŕıme, že nám vyjde nepravdivý výrok.
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