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Uloha 1

1,5 boda) Rozhodnite, ¢i zlozeny vyrok
(
[(@aA=b)V(cA(d=¢€))]=[cV((bV—-e)Aa)V(aAe)

je tautologia. VaSe tvrdenie dokazte.

Dokaz sporom

Sporom. Nech je vyrok nepravdivy. Z toho dostdvame (1) a (2):
(1) (aA=b)V(cA(d=r¢)) <1,
(2) cvV((bV—e)Aa)V(aNe)< 0,z coho dostdvame
(2a) ¢ <0,
(2b) ((bV —e) Aa) <0,
(2¢) (aNe) 0.
(3) Vdaka (2a) plati (c A (d = €)) < 0, preto aby platilo (1), musi (a A =) < 1, teda:
(3a) a 1,
(3b) b & 0.
(4) (bV —e) < 0 lebo (2b) a (3a), preto:
(4a) b= 0,
(4b) e & 1.

(5) e< 0, lebo (2¢) a (3a) — a to je spor so (4b).

Dokaz priamo
Nech plati (a A =b) V (¢ A (d = ¢)). Chceme dokézat, Ze plati ¢V ((bV =€) Aa) V (a A e), ¢o si oznaéime 7.
Dokaz rozdelime na dva pripady.

1. Ak plati (a A =b), tak a < 1 a b < 0. Dalej rozlisime:
(a) Ak e < 1, tak plati a A e, a teda aj celd disjunkcia na pravej strane implikacie.

(b) Ak e < 0, tak plati —e, teda aj (b —e) a (bV —e) A a. Opéat méme, ze plati celd pravd strana.
2. Ak plati (¢ A (d = e)), tak plati ¢, a teda aj celd pravd strana implikécie.
Komentar

Uloha sa dala zjednodu§if aj tym, Ze pravi stranu s vyuzitim distributivneho zdkona a inych zdkladnych
tautolégii ekvivalentne upravime na je ¢V a.



Uloha 2

Nech A je podmnozina prirodzenych ¢&isel. SupermnozZinou mnoziny A nazveme mnozinu vsetkych
nadmnozin mnoziny A v univerze prirodzenych ¢&isel. Budeme ju oznacovat S(A). Teda

SA)={XePN)|ACX}.
Zistite, ¢i pre lubovolné mnoziny A, B plati:
a) S(AUB) =S8(A)US(B),
b) S(AU B) =S8(A)NS(B).

Vase tvrdenia dokdzte. Pre ziskanie plného poc¢tu bodov nesmiete bez dékazu vyuZit tvrdenia o
mnozinach, v8etky vyuzité tvrdenia dokazte z definicii.

a) neplati

Nech A = {1} a B = {2}. Potom
o AC {1}, preto {1} € S(A), teda aj {1} € S(A) US(B).
e AUB ={1,2} Z {1}, preto {1} ¢ S(AU B).

Preto S(AU B) # S(A) US(B) (lebo sme nasli prvok {1}, ktory je v mnozine na pravej strane a nie je v
mnoZine na lavej strane).

a) iny protipriklad

Nech A =N a B =N — {0}. Potom
S(AUB) =S8(N) =N,
S(A) = S(N) = N,
S(B) = S(N —{0}) = {N— {0}, N},
S(A)uS(B) = {N — {0},N}.

Avsak S(AU B) = N # {N — {0},N} = S(4) US(B).

b) plati

Ukéazeme, ze S(AUB) = S(A)NS(B)
»,C“: Nech X € S(AU B). Z toho postupne vyplyva:
(1) AuUBCX

(2) AQX,leboprekazdéyplati:yGA:yEAVyGB:yGAUB(:lgyGX

(3) B C X analogicky (dékazvyzerzitatko:yEB:>y€A\/y€B:>y€AUB(:1>)y€X)

(4) ACXABCX

(5) X e S(A)ANX € §(B)



(6) X € S(A)NS(B)

,2% Nech X € S(A)NS(B). Z toho postupne vyplyva:
(1) X e S(A) A X € S(B)
(2) ACXABCX

(3) AUB C X, lebo pre kazdé y plati: y € AUB =y € AV y € B, ¢o dalej rozdelime na dva pripady:
e ak y € A, tak z A C X (2) dostdvame y € X,
e ak y € B, tak z B C X (2) dostdvame y € X. V oboch pripadoch plati y € X, ¢im sme dokongéili
doékaz AU B C X.

(4) X e S(AUB)

Riesenie cez ekvivalentné tpravy a kvantifikatory

Pre kazdé X plati:
X e S(AUB)

{ (definicia supermnoziny)
AUBCX
{ (definicia podmnoziny)
Vy: (ye AUB=ye€ X)
{ (prepisanie implikdcie (tautolégia (p = q) < (-pV q)))
Vy: ((ye AVye B)Vye X)
{ (De Morganov zdkon)
Vy: (y¢ ANy ¢ B)Vy € X)
{ (distributivny zdkon)
Vy: (y g AVye X)A(y ¢ BVy e X))
{ (prepisanie implikécif)
Vy: (ye A=yeX)AN(ye B=ye X))
NG
Vy: e A=yeX)AVy: e B=>ye€ X)
{ (definicia podmnoziny)
ACXANBCX
{ (definicia supermnoziny)
X eS(A)NX eS(B)
{ (definicia prieniku)
X e S(A)NS(B)

Poznamky v zatvorkach nie st potrebné. Potrebné je vysvetlit najmé krok (*). Vyuzili sme tautolégiu

Vz: (a(x) Ab(x)) & (Va: a(z) AVx: b(x))

z cviceni 2, tiloha 12c). Ked'Ze sa vsak nemozeme odvoldvat na cvicenia a dani tautolégiu som nenasiel v
skriptdch, tak by sme ju mali este dokazat.

Ak plati Va: (a(z) A b(x)), tak pre kazdé x plati a(z) A b(z), teda a(x). Takto sme dokdzali Vx: a(zx).
Analogicky dokézeme aj Vx: b(x), teda plati aj ich konjunkcia.

Ak plati Vx: a(z) A Vz: b(x), tak pre kazdé = plati a(z) (z prvého ¢lena konjunkcie) a aj b(z) (z druhého
¢lena konjunkcie), teda plati Va: (a(z) A b(z)).
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Pre celé ¢islo n > 1 uvazujeme rovnostranny trojuholnik so stranou diiky 2™ ktory je rozdeleny na
siet rovnostrannych trojuholnikov so stranou diiky 1, ktoré skratene volame jednotkové trojuholniky.
Jeden rohovy jednotkovy trojuholnik je zafarbeny nacierno. Na obrazku je zndzornens takato sief
pre n = 2. K dispozicii mame dlazdice tvaru rovnoramenného lichobeznika tvorené tromi jednot-
kovymi trojuholnfkmi (ako na obrdzku vpravo). Dokézte, Ze celi tito trojuholnikovi siet vieme
pokryt dlazdicami tak, aby ¢ierne policko ostalo ako jediné nepokryté. (Dlazdice mozeme aj otacat,
ale nie prekryvat a ani nemozu vytiéat mimo velky trojuholnik.)

Tvrdenie dokdzeme matematickou indukciou. Pre struénost budeme jednotkové trojuholniky volat polickami.
Taktiez pod pojmom trojuholnik budeme vZdy mysliet rovnostranny trojuholnik.

Béza. Pre n =1 trojubolnik so stranou 2! = 2 a jednym ¢iernym polickom. Zvysné tri policka maji tvar
dlazdice, takze ich vieme jednou dlazdicou pokryt.

A

Indukény krok. Predpokladajme, ze pre nejaké kladné celé ¢islo n vieme trojuholnik so stranou 2™ s
jednym ¢iernym rohovym polickom pokryt dlazdicami (IP). DokdZeme tvrdenie pre trojuholnik so stranou
2"+1 Pomocou strednych prie¢ok ho rozdelime na styri trojuholniky so stranou dfzky 2™. V rohu jedného z
nich sa nachédza ¢ierne policko. Tento trojuholnik vieme vydlazdif podla indukéného predpokladu. Zvysné
tri trojuholniky maji spoloény roh v strede strany velkého trojuholnika. Okolo tohto spoloéného rohu
zafarbime policka nacierno, z kazdého trojuholnika jedno. Teraz na kazdy z troch trojuholnikov vieme pouzit
indukény predpoklad, vd'aka ktorému ich vieme vydlazdit okrem ¢iernych policok. Na zaver tieto tri nové
¢ierne policka zakryjeme dlazdicou. Tak sme cely trojuholnik so stranou 2"t! pokryli dlazdicami tak, aby
ostalo len jedno rohové policko.

2k

2k+1



Bonus

Vseobecnejsie tvrdenie neplati. Pokial v trojuholniku so stranou diéky 2 je cierne prostredné policko, tak
ho nevieme pokryt — ostdvajiice 3 biele policka netvoria dlazdicu.
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