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Úloha 1

(1,5 boda) Rozhodnite, či zložený výrok

[(a ∧ ¬b) ∨ (c ∧ (d ⇒ e))] ⇒ [c ∨ ((b ∨ ¬e) ∧ a) ∨ (a ∧ e)]

je tautológia. Vaše tvrdenie dokážte.

Dôkaz sporom

Sporom. Nech je výrok nepravdivý. Z toho dostávame (1) a (2):

(1) (a ∧ ¬b) ∨ (c ∧ (d ⇒ e)) ⇔ 1,

(2) c ∨ ((b ∨ ¬e) ∧ a) ∨ (a ∧ e) ⇔ 0, z čoho dostávame

(2a) c ⇔ 0,

(2b) ((b ∨ ¬e) ∧ a) ⇔ 0,

(2c) (a ∧ e) ⇔ 0.

(3) Vd’aka (2a) plat́ı (c ∧ (d ⇒ e)) ⇔ 0, preto aby platilo (1), muśı (a ∧ ¬b) ⇔ 1, teda:

(3a) a ⇔ 1,

(3b) b ⇔ 0.

(4) (b ∨ ¬e) ⇔ 0 lebo (2b) a (3a), preto:

(4a) b ⇔ 0,

(4b) e ⇔ 1.

(5) e ⇔ 0, lebo (2c) a (3a) – a to je spor so (4b).

Dôkaz priamo

Nech plat́ı (a ∧ ¬b) ∨ (c ∧ (d ⇒ e)). Chceme dokázat’, že plat́ı c ∨ ((b ∨ ¬e) ∧ a) ∨ (a ∧ e), čo si označ́ıme r.
Dôkaz rozdeĺıme na dva pŕıpady.

1. Ak plat́ı (a ∧ ¬b), tak a ⇔ 1 a b ⇔ 0. Ďalej rozĺı̌sime:

(a) Ak e ⇔ 1, tak plat́ı a ∧ e, a teda aj celá disjunkcia na pravej strane implikácie.

(b) Ak e ⇔ 0, tak plat́ı ¬e, teda aj (b ∨ ¬e) a (b ∨ ¬e) ∧ a. Opät’ máme, že plat́ı celá pravá strana.

2. Ak plat́ı (c ∧ (d ⇒ e)), tak plat́ı c, a teda aj celá pravá strana implikácie.

Komentár

Úloha sa dala zjednodušit’ aj tým, že pravú stranu s využit́ım distribut́ıvneho zákona a iných základných
tautológíı ekvivalentne uprav́ıme na je c ∨ a.



Úloha 2

Nech A je podmnožina prirodzených č́ısel. Supermnožinou množiny A nazveme množinu všetkých
nadmnož́ın množiny A v univerze prirodzených č́ısel. Budeme ju označovat’ S(A). Teda

S(A) = {X ∈ P(N) | A ⊆ X}.

Zistite, či pre l’ubovol’né množiny A, B plat́ı:

a) S(A ∪B) = S(A) ∪ S(B),

b) S(A ∪B) = S(A) ∩ S(B).

Vaše tvrdenia dokážte. Pre źıskanie plného počtu bodov nesmiete bez dôkazu využit’ tvrdenia o
množinách, všetky využité tvrdenia dokážte z defińıcíı.

a) neplat́ı

Nech A = {1} a B = {2}. Potom

• A ⊆ {1}, preto {1} ∈ S(A), teda aj {1} ∈ S(A) ∪ S(B).

• A ∪B = {1, 2} ̸⊆ {1}, preto {1} /∈ S(A ∪B).

Preto S(A ∪ B) ̸= S(A) ∪ S(B) (lebo sme našli prvok {1}, ktorý je v množine na pravej strane a nie je v
množine na l’avej strane).

a) iný protipŕıklad

Nech A = N a B = N− {0}. Potom

• S(A ∪B) = S(N) = N,

• S(A) = S(N) = N,

• S(B) = S(N− {0}) = {N− {0},N},

• S(A) ∪ S(B) = {N− {0},N}.

Avšak S(A ∪B) = N ̸= {N− {0},N} = S(A) ∪ S(B).

b) plat́ı

Ukážeme, že S(A ∪B) = S(A) ∩ S(B)

”
⊆“: Nech X ∈ S(A ∪B). Z toho postupne vyplýva:

(1) A ∪B ⊆ X

(2) A ⊆ X, lebo pre každé y plat́ı: y ∈ A ⇒ y ∈ A ∨ y ∈ B ⇒ y ∈ A ∪B
(1)⇒ y ∈ X

(3) B ⊆ X analogicky (dôkaz vyzerá tatko: y ∈ B ⇒ y ∈ A ∨ y ∈ B ⇒ y ∈ A ∪B
(1)⇒ y ∈ X)

(4) A ⊆ X ∧B ⊆ X

(5) X ∈ S(A) ∧X ∈ S(B)



(6) X ∈ S(A) ∩ S(B)

”
⊇“: Nech X ∈ S(A) ∩ S(B). Z toho postupne vyplýva:

(1) X ∈ S(A) ∧X ∈ S(B)

(2) A ⊆ X ∧B ⊆ X

(3) A ∪B ⊆ X, lebo pre každé y plat́ı: y ∈ A ∪B ⇒ y ∈ A ∨ y ∈ B, čo d’alej rozdeĺıme na dva pŕıpady:

• ak y ∈ A, tak z A ⊆ X (2) dostávame y ∈ X,

• ak y ∈ B, tak z B ⊆ X (2) dostávame y ∈ X. V oboch pŕıpadoch plat́ı y ∈ X, č́ım sme dokončili
dôkaz A ∪B ⊆ X.

(4) X ∈ S(A ∪B)

Riešenie cez ekvivalentné úpravy a kvantifikátory

Pre každé X plat́ı:

X ∈ S(A ∪B)

⇕ (defińıcia supermnožiny)

A ∪B ⊆ X

⇕ (defińıcia podmnožiny)

∀y : (y ∈ A ∪B ⇒ y ∈ X)

⇕ (preṕısanie implikácie (tautológia (p ⇒ q) ⇔ (¬p ∨ q)))

∀y : (¬(y ∈ A ∨ y ∈ B) ∨ y ∈ X)

⇕ (De Morganov zákon)

∀y : ((y /∈ A ∧ y /∈ B) ∨ y ∈ X)

⇕ (distribut́ıvny zákon)

∀y : ((y /∈ A ∨ y ∈ X) ∧ (y /∈ B ∨ y ∈ X))

⇕ (preṕısanie implikácíı)

∀y : ((y ∈ A ⇒ y ∈ X) ∧ (y ∈ B ⇒ y ∈ X))

⇕ (*)

∀y : (y ∈ A ⇒ y ∈ X) ∧ ∀y : (y ∈ B ⇒ y ∈ X)

⇕ (defińıcia podmnožiny)

A ⊆ X ∧B ⊆ X

⇕ (defińıcia supermnožiny)

X ∈ S(A) ∧X ∈ S(B)

⇕ (defińıcia prieniku)

X ∈ S(A) ∩ S(B)

Poznámky v zátvorkách nie sú potrebné. Potrebné je vysvetlit’ najmä krok (*). Využili sme tautológiu

∀x : (a(x) ∧ b(x)) ⇔ (∀x : a(x) ∧ ∀x : b(x))

z cvičeńı 2, úloha 12c). Ked’že sa však nemôžeme odvolávat’ na cvičenia a danú tautológiu som nenašiel v
skriptách, tak by sme ju mali ešte dokázat’.

Ak plat́ı ∀x : (a(x) ∧ b(x)), tak pre každé x plat́ı a(x) ∧ b(x), teda a(x). Takto sme dokázali ∀x : a(x).
Analogicky dokážeme aj ∀x : b(x), teda plat́ı aj ich konjunkcia.

Ak plat́ı ∀x : a(x) ∧ ∀x : b(x), tak pre každé x plat́ı a(x) (z prvého člena konjunkcie) a aj b(x) (z druhého
člena konjunkcie), teda plat́ı ∀x : (a(x) ∧ b(x)).



Úloha 3

Pre celé č́ıslo n ≥ 1 uvažujeme rovnostranný trojuholńık so stranou d́lžky 2n, ktorý je rozdelený na
siet’ rovnostranných trojuholńıkov so stranou d́lžky 1, ktoré skrátene voláme jednotkové trojuholńıky.
Jeden rohový jednotkový trojuholńık je zafarbený načierno. Na obrázku je znázornená takáto siet’

pre n = 2. K dispoźıcii máme dlaždice tvaru rovnoramenného lichobežńıka tvorené tromi jednot-
kovými trojuholńıkmi (ako na obrázku vpravo). Dokážte, že celú túto trojuholńıkovú siet’ vieme
pokryt’ dlaždicami tak, aby čierne poĺıčko ostalo ako jediné nepokryté. (Dlaždice môžeme aj otáčat’,
ale nie prekrývat’ a ani nemôžu vytŕčat’ mimo vel’ký trojuholńık.)

Tvrdenie dokážeme matematickou indukciou. Pre stručnost’ budeme jednotkové trojuholńıky volat’ poĺıčkami.
Taktiež pod pojmom trojuholńık budeme vždy mysliet’ rovnostranný trojuholńık.

Báza. Pre n = 1 trojuholńık so stranou 21 = 2 a jedným čiernym poĺıčkom. Zvyšné tri poĺıčka majú tvar
dlaždice, takže ich vieme jednou dlaždicou pokryt’.

Indukčný krok. Predpokladajme, že pre nejaké kladné celé č́ıslo n vieme trojuholńık so stranou 2n s
jedným čiernym rohovým poĺıčkom pokryt’ dlaždicami (IP). Dokážeme tvrdenie pre trojuholńık so stranou
2n+1. Pomocou stredných priečok ho rozdeĺıme na štyri trojuholńıky so stranou d́lžky 2n. V rohu jedného z
nich sa nachádza čierne poĺıčko. Tento trojuholńık vieme vydláždit’ podl’a indukčného predpokladu. Zvyšné
tri trojuholńıky majú spoločný roh v strede strany vel’kého trojuholńıka. Okolo tohto spoločného rohu
zafarb́ıme poĺıčka načierno, z každého trojuholńıka jedno. Teraz na každý z troch trojuholńıkov vieme použit’

indukčný predpoklad, vd’aka ktorému ich vieme vydláždit’ okrem čiernych poĺıčok. Na záver tieto tri nové
čierne poĺıčka zakryjeme dlaždicou. Tak sme celý trojuholńık so stranou 2n+1 pokryli dlaždicami tak, aby
ostalo len jedno rohové poĺıčko.
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2k
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Bonus

Všeobecneǰsie tvrdenie neplat́ı. Pokial’ v trojuholńıku so stranou d́lžky 2 je čierne prostredné poĺıčko, tak
ho nevieme pokryt’ – ostávajúce 3 biele poĺıčka netvoria dlaždicu.


