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Uloha 1

(2 body) Nech R je relacia na mnozine P(N) taka, ze pre kazdé A, B € P(N) plati
ARB < Jke€Z: (NVacA:FbeB:b=a+k)AN(VbeB:Jac A:b=a+k)).

Dokazte, Ze R je relaciou ekvivalencie na mnozine P(N) a opiste rozklad, ktory indukuje.

Pozndmka. Pokial je tloha pre Vas velmi abstraktna, 1 bod viete ziskat, ak ju vyriesite pre pripad,
ked relaciu R budete miesto mnoziny P(N) uvazovat definovant na mnozine P({0,1,2,3,4}). Uzname
Vam aj rieSenia zaloZené na overovani vSetkych moznosti, ak ho dostatoéne zaznamenate. Ak pritom
pouZijete pocitacové programy, tak ich pripojte k odovzdavanému PDF stiboru do MS Teams.

Dokaz cez pracu s kvantifikdtormi

Najskor ukazeme dokaz, ktory mozno spravit bez toho, aby sme podmienku zo zadania nejako upravovali ¢i
zjednodusSovali. Na tomto rieSeni je pou¢né vidiet, ako sa pracuje s kvantifikovanymi vyrokmi.

Reflexivnost. Pre kazdé A € P(N) plati ARA, kedze pre k = 0 plati:
e Vac A: 3be A: b=a+ k, kedZe po volbe b = a mame a = a + 0;
e Vbe A: Jac A: b=a+k, kedZe po volbe a = b mame b = b + 0.

Symetrickost. Nech A, B € P(N) a nech ARB. Potom:

dkeZ: (VacA:beB:b=a+k)AN(VbeB:Jac A:b=a+k))

4
dkeZ: ( AN(VbeB:3ac A:a=b—k))

4
dkeZ: (VbeB:JacA:a=b—k)A )

A kedze —k je tiez celé ¢islo, tak po jeho nahradeni za £ mame
HeZ: (VbeB:JacA:a=b+ /)N ),
¢o je presne podla definicie BRA.

Tranzitivnost. Nech A, B,C € P(N) a nech ARB A BRC'. Z platnosti ARB mame, Ze pre nejaké celé
¢islo k plati

VYVaec A: dbe B:b=a+k, (1)
Vbe B:Jdac A:b=a+ k. (2)
Podobne z BRC' mame pre nejaké ¢ € Z

Vbe B:3cecC:c=b+/{, (3)
VeeC:dbeB:c=b+ V. (4)



Teraz dokaZeme, Ze pre m = k + £ plati:

1. Va € A: dc € C: ¢ = a + m: Dokaz. Pre Tubovolné a € A podla existuje by € B pre ktoré plati
bg = a + k. Pre toto by podla mame existenciu ¢y € C takého, ze ¢y = by + ¢ (vyuzivame, Ze ak
nie¢o plati pre vSetky b, tak plati aj pre konkrétne by), teda co = by + ¢ = a + k + ¢ = a + m. Takto
sme pre kazdé a € A nasli ¢ = ¢y pre ktoré plati ¢ = a + m. (Pri dokaze mozno pokojne pouzit rovno b
miesto by. Pre lepSiu nazornost sme vsak pouZili iné oznadenie, kedZe vlastne ide o odligné pismenka.
Tak to spravime aj nizsie.)

2. Vee C:3da € A: ¢ = a+ m: Dokaz. Pre lubovolné ¢ € C existuje podla b € B splhajice ¢ = b+ ¢
a pre toto b podla 2 existuje a € A také, ze b=a+k,tedac=b+l=a+k+{=a+m.

Dokaz cez prepisanie podmienky

Teraz ukazeme, ako si mozno ddkazy zjednodusit, ak si na zac¢iatku podmienku relacie zjednodusime.

Vyrokova forma 3b € B: b = a + k je ekvivalentna a + k € B. Na zéklade toho si vieme ARB ekvivalentne
prepisat na
dkeZ: (NVae Aia+keB)ANNMbe B:b—ke A)).

Toto uvedomenie nam vie zjednodusit dokazy. Este viac si pomozeme, ked pre mnozinu A € P(N) a k € Z
definujeme

At+k={atk ac A
Ukazme, 7e pre vietky A, B € P(N) plati

ARB & dke€Z: B= A+ k.

Podmienka Va € A: a + k € B je ekvivalentna A+ k C B, lebo vravi, Ze vSetky prvky tvaru a + k prea € A
sa nachadzaju v B. Podmienka Vb € B: b — k € A je zas ekvivalentnd B C A + k. Teda

ARB&3keZ: (A+kCBABCA+k) < 3keZ: B=A+k
Reflexivnost. Pre k=0 plati A+0={a; a € A} = A, teda ARA.

Symetrickost. ARB = 3k € Z: B = A+ k. Potom
B-k={b—k beBy={atk—k acA}=A,
teda BRA.

Tranzitivnost. ARBABRC =3k €Z: B=A+kANH €Z:C=B+{=C=B+{=(A+k)+{=
{a+k+0;ac A=A+ (k+{)=>C=A+(k+{)= ARC.

Poznamka. Ak chceme byt dosledni. Musime brat do tvahy, Ze nemdZeme len tak bez dokazu vyuzit, ze
(A+k)+¢=A+ (k+ /() alebo B= A+ k < B+ (—k) = A. Preto sme aspon stru¢ne naznacili dokazy
tychto vlastnosti, ked sme ich pouZzivali.

Rozklad malej mnoziny

Najskor opiseme rozklad mnoziny P ({0, 1,2, 3,4}). Opakujeme proces, v ktorom si vyberieme nejaki mnozinu
A, ktora este nemame v rozklade a ur¢ime jej triedu R[A]. Tu vieme uéit tak, Ze si prejdeme zvys$né prvky
mnoziny P({0,1,2,3,4}) a zistime, ktoré z nich su vo vztahu s prvkom A. Jednoduchsie vsak je, ked blizsie



pochopime, ¢o nam podmienka vravi. Napr. tym, Ze po volbe k mame len jedného kandidata na mnozinu B,
pre ktort méze platit ARB. Aby sme §li systematicky, tak zaéneme najprv s prazdnou mnozinou a uré¢ime

R[0] = {0}.

Pokrac¢ujeme na jednoprvkové mnoziny. Tam moZzeme zacat s

RI{0}] = {{0}, {1}, {2}, {3}, {4}}.

To sme zvolili k € {0,1,2,3,4}. Iné vol'by k by neviedli k podmnozine mnoziny {0, 1,2, 3,4}. Mame uZ vsetky
jednoprvkové mnoziny, tak pokracujeme dvojprvkovymi. Za¢neme s

R[{0,1}] = {{0,1}, {1, 2}, {2, 3}, {3,4}}.

Ak sme si to neuvedomili na zac¢iatku, tak si teraz vieme vSimnut, Ze vSetky prvky triedy R[A] dostavame tak,
ze ku kazdému ¢lenu mnoziny A pripoc¢itame vhodné k € Z. Vhodné znamené, Ze stale musi byt vysledkom
podmnozina {0,1,2,3,4} (resp. podmnozina N pri vSeobecnom rozklade). Ked tymto systémom budeme
pokracovat, tak sa dopracujeme k triedam

R[)] = {0},

R{0}] = {{0}, {1}, {2}, {3}, {4}},
R[{0,1}] = {{0,1},{1,2},{2,3},{3,4}},
R[{0,2}] = {{0,2},{1,3},{2,4}},

R[{0,1,2}] = {{0,1,2},{1,2,3},{2,3,4}},

R[{0,3}] = {{0,3},{1,4}},

R[{0,1,3}] = {{0,1,3},{1,2,4}},

R[{0,2,3}] = {{0,2,3},{1,3,4}},
R[{0,1,2,3}] = {{0,1,2,3},{1,2,3,4}},

R[{0,4}] = {{0,4}},

R[{0,1,4}] = {{0,1,4}},

R[{0,2,4}] = {{0,2,4}},
R[{0,1,2,4}] = {{0,1,2,4}},

[{0 3,4} = {{0,3,4}},
R[{0,1,3,4}] = {{0,1,3,4}},
R[{0,2,3,4}] = {{0,2,3,4}},

R[{0,1,2,3,4}] = {{0,1,2,3,4}}.

Cely rozklad

Vyuzijeme, ze ARB < dk € Z: B = A + k. Potom priamo s definicie je mnozina A v triede so v8etkymi
mnozinami tvaru A + k pre k € Z, ktoré vSak musia byt podmnozinami N. Teda

RA|={A+k k€ ZANA+kCN}.

Ak za A zvolime mnoZzinu obsahujucu 0, tak podmienku A + k C N nemusime kontrolovat a sta¢i nam
uvazovat k € N Tak sa dostdvame k tomu, Ze nas rozklad je

{{A+k; keN};;ACNAO€ AYU{{0}},
resp. bez definovania notacie A + k ho vieme vyjadrit ako
{{{a+k; ae A}; keN});ACNAO€e AU {{0}}.

Slovne vyjadrené rozklad obsahuje jednu triedu obsahujicu () a potom pre kazdt podmnozinu mnoziny N,
ktora obsahuje 0, mame triedu so v8etkymi jej posunmi o k, kde k je Tubovolné prirodzené é&islo.

Tento rozklad je spravny, lebo prazdnu mnozina je sama v triede a pre neprazdne mnoziny plati:



e Kazda neprazdna mnozina A € P(N) ma najmensi prvok m a je vo vztahu R s mnozinou A + (—m),
ktora obsahuje 0.

o Kazdé dve rozne mnoziny A, B € P(N) obsahujice nulu nie si vo vztahu R: Z ARB dostavame
B = A+k, ¢ize k =0 (lebo inak by B obsahovalo len &isla vicsie ako 0, ¢o by bol spor), teda A = B,
¢o je spor.

Komentar k ¢astej chybe. Samozrejme, ak by sme uviedli rozklad ako
{{A+k; ke ZNA+EkCN}LAeP(N)},

tak je formélne spravny, je to té ist4 mnozina. Av8ak takyto zapis nam nedéva dostato¢ni informéciu o tom,
ako rozklad vyzera. Totiz viaceré triedy v iom uvadzame dvakrat (napr. pre A = {2} aj A = {7} dostavame
ta ista triedu). Napriklad z toho zapisu nevieme jasne povedat, kolko tried mé tento rozklad. Preto pri
opise hladame vhodny systém reprezentantov — z kazdej triedy vyberieme jeden prvok, ktorym ho vieme
charakterizovat. Pri tejto tulohe to vedia byt mnoziny obsahujice 0 a prazdna mnoZzina (ale existuju aj iné).
To pekne vieme vidiet na vypise vSetkych tried.

TaktieZ si to modzeme porovnat aj s programom na dalej strane, ktory nam rozklad pre maly pripad vypiSe.
Hlavna logika vypisu rozkladu je vo funkcii main. Vonkajsi for cyklus zodpoveda ¢asti A C NAO € A z
vonakjsej mnoziny matematického opisu rozkladu — prechadzame vSetky podmnoziny obsahujtce 0 (akurat
v pripade programu len podmnoziny {0,1,...,n—1}). Vnttorny for cyklus zas zodpoveda k € N z vnttornej
mnoziny, teda z jednej triedy. Tu nam prave prechadzanie cez mnoZiny s nulou zaruci, ze nebudeme vypisovat
triedy opakovane — kazdd vypiSeme préave raz.



#include <iostream>
#include <vector>

using namespace std;

// aby sme vedeli vector vypisoavat cez <<
ostream& operator<<(ostream &out, vector<int> v) {

out << "{";
for (int i = 0; i < v.size(); i++) {
if (i > 0) out << ", ";

out << v[il;
}
out << "}";
return out;

}

// Funkcia, ktora vrati vsetky podmnoziny {0, 1, ..., n} obsahujuce 0
vector<vector<int>> subsets_with_0(int n) {
vector<vector<int>> result;

for (int mask = 0; mask < (1 << n); mask++) {
vector<int> subset = {0};
int x = mask;
for (int i = 1; i <= n; i++) {
if (x%2==1){
subset .push_back(i);

result.push_back(subset);
}
return result;

}

int main() {
int n = 4;
cout << "R[{}] = {{}}" << endl;
for (vector<int> A : subsets_with_0(n)) {
cout << "R[" << A << "] = {";
for (int k = 0; k <= n; k++) {
vector<int> B(A.size());
for (int i = 0; i < B.size(); i++) {
B[i] = A[i] + k;
}
if (B.back() > n) break;
if (k > 0) cout << ", ";
cout << B;
}

cout << "}'" << endl;



Uloha 2

(2 body) Na mnozine N = {0,1,2,...,} definujeme relaciu C tak, Ze pre lubovolné a,b € N plati
aCbe IkeN: b —a® =9k

Dokazte, ze C je relaciou usporiadania na mnozine N a uréte vSetky jej minimélne, najmensie, maxi-
malne a najvicsie prvky. Spravnost vasich vysledkov dokazte.

Dokaz usporiadania

Reflexivnost. Pre kazdé a € N plati a®> —a> =0=9-0, teda a C a.

Antisymetrickost. Pre kazdé a,b € N plati:

aCbAbLLC a
U
JkeNb? —a?=9kAFWeN: a®>— > =0
|’
9k = b —a? = —(a® — b?) = —9¢

Y

9k = —9¢
U

k+0=0

Kedze k,l € N, tak z toho vyplyva k = £ = 0, teda b?> — a® = 0, ¢o pre a,b € N znamena, Ze a = b.

Tranzitivnost. Pre kazdé a,b,c € N plati:

aCbAbCc

)
FkeN: bV —a? =9k A EN: - b =9
)
b — a4+ — b =9k + 90
Y
A —a?>=9k+10)

\

m=k+/¢eN
\

IJmeN: ? —a?=9m

4

alc

Hasseho diagram

Tito cast nie je nutné uvadzat v rieSeni. Uvadzame ju pre lepsiu predstavu, ako vyzerd naSa usporiadané
mnozina. Na¢rtneme si Hasseho diagram, v ktorom prvky rasti zl'ava doprava.



0—3—6—9—12—...

1—8—10—17—...
2—7—11—16—...
4—5—13—14—. ..

Na nom si méZeme vSimnut pomerne pekna Struktdru nasej usporiadanej mnoziny. Z nej uz lahko vidime,
7Ze minimélne prvky sa 0, 1, 2, 4. AvS8ak argumentovat diagramom nemodZeme — neméme ho nakresleny
cely. Uvedieme preto dva dokazy. Jeden tplne nezavisly na tejto Struktire, v druhom zdévodnime, Ze tato
usporiadand mnozina mé Strukturu, aka vidime na diagrame.

Minimalne prvky su0, 1, 2, 4.

Do6kaz minimalnych z definicie. Najprv ukaZeme, Ze kazdy z nich je minimalny:
ealC0=0-a’=9%=0ad’>=-9%k=a=0Ak=0, kedze —a® < 0.
eall=1-a’>=%=a>=1-9%=a=1Ak=0, kedze pre k > 0 je 1 — 9k < 0.
ealC2=4-a>=%=ad>=4—-9k=a=2Nk=0, kedze pre k > 0 je 4 — 9k < 0.

e a0l 4=16—a’=9% =ad’>=16—-9k = a=4ANk =0, kedZe pre k = 1 méame a®> = 7, o nemé v
prirodzenych ¢islach riesenie, a pre k > 2 je 16 — 9k < 0, ¢o tieZ nema rieSenie.

A eSte ukaZzeme, Ze iné prvky nie si minimalne:
e 3 nie je minimalny < 0C3«<32-02=9=9-1

e Va € {5,6,7,8}: a nie je minimalny < 9—-aCa<a®>—(9-a)’>=(a+9—a)(a—9+a) =9(2a—9),
pricom 9 — a aj 2a — 9 sa pre tieto a prirodzené ¢&isla

e Va € N,a > 9: a nie je minimalny < (a —9) Ca<a?—(a—9)?=(a+a—9)(a—a+9) =9(2a - 9),
pricom 2a —9€ Naaja—9€N.

Doékaz minimalnych cez Struktiru usporiadania. Nech plati 3k € N: b? — a® = 9k. Potom:

o b? — a? je delitelné deviatimi, teda ¢isla a2, b? maji rovnaky zvysok po deleni deviatimi.

o Kedze k € N, teda k > 0, tak aj b*> — a®> = b?> > a?, ¢o v prirodzenych é&islach znamena b > a.

Plati to aj opa¢ne: ak mame b > a takeé, 7e 9 | (b% — a?), tak ndjdené k = (b% — a?)/9 bude nezaporné a celé,
teda prirodzené.

To znamena, Ze porovnatelné su len ¢isla, ktorych druhé mocniny davaja rovnaky zvySok po delené 9 a v
tom pripade ich porovndme na zaklade bezného usporiadania <. Zvysok druhej mocniny prirodzeného ¢&isla
a zavisi len na jeho zvysku po deleni deviatimi. Vyskasame vSetky mozné zvysky:

1

amod9:‘ 2 3
1 4 0

a2mod9:‘

0 4 5 6 7 8
0 7T 7 0 4 1
Teda druhé mocniny celych ¢isel davaji po deleni deviatimi len zvysky 0, 1, 4 a 7. Preto naSa usporiadana
mnozina naozaj vyzera tak, ako na obrazku. Vetky prirodzené ¢isla st rozdelené do 4 mnozin podla zvysku
ich druhej mocniny po deleni 9 a v rameci tychto mnoZin st usporiadané podla velkosti. Preto st minimalnymi

prvkami ¢éisla 0, 1, 2 a 4.

Najmensi prvok neexistuje, kedZe mame aspon dva minimalne prvky.



Maximalne prvky neexistuji, kedze pre kazdé a € N plati a C a + 9, kedze (a + 9)? — a® = a® + 18a +
81 —a?>=912a+9)a2a+9€N.

Najvacsi prvok neexistuje, kedZe neexistuje maximalny prvok.

Komentar Chceme upozornit na problémy pri zddéovodhovani, Ze neexistuje najmensi / najvacsi prvok:

e Najmensi prvok neexistuje, lebo existuji neporovnatelné prvky napr. 0 a 1.“ Toto nie je spravny
dokaz. Napr. mnoZina N usporiadana relaciu | (deli) mé& najmensi prvok 1 napriek tomu, Ze prvky 2 a
3 s neporovnatelné.

e Najmensi prvok neexistuje, lebo neméme préve jeden miniméalny prvok.“ Toto je spravny dévod, len
chceme upozornit, Ze ide len o jednosmernt implikaciu. Pokial mame len jeden miniméalny prvok, este
to neznamend, ze ide o najmensi (priklad by ste mali byt schopni vymysliet, je to uzito¢né cvicenie k
priprave na skugku).

e  Najvacsi prvok neexsituje, lebo mnozina N je zhora neohranic¢ené.” Toto je tplne irelevantny argument,
lebo hovori o beznom usporiadan{ < a nie o usporiadani C, o ktorom je tlohe. Napr. usporiadané
mnozina (N, |) mé najvacsi prvok 0.

Uloha 3

(1,5 boda) Nech M je mnozina vSetkych nekoneénych binarnych postupnosti (teda kazdy ¢len je 0 alebo
1), ktoré neobsahuju tri jednotky vedla seba a zaroven neobsahujt dve nuly vedla seba. Rozhodnite
a nasledne dokazte, ¢i je mnozina M spocitatelna.

RiesSenie cez injekciu

Definujme zobrazenie f: {0, 1} — M, ktoré kazdej binarnej postupnosti a = (ag,a1,...) € {0, 1} priradi
postupnost nasledovne: pre kazdé i € N nahradi a; postupnostou (1,0), ak a; = 0, alebo postupnostou
(1,1,0), ak a; = 1; potom vSetky tieto postupnosti spoji do jednej. Takto dostaneme postupnost zloZent z
blokov (1,0) a (1,1,0), ktora zjavne neobsahuje (0,0) ani (1,1, 1), teda je v mnozine M. Kedze kazdy blok
sa kon¢i nulou, vieme tieto bloky jednozna¢ne spéatne identifikovat. Ak sa dve postupnosti a, b liSia na i-tom
mieste, tak ich obrazy f(a), f(b) sa budu li8it v i-tom bloku. Preto a # b = f(a) # f(b), teda zobrazenie f
je injektivne. Preto |M| > |[{0,1}N] > Ry a teda mnozina M je nespocitatelna.

RieSenie cez bijekciu
V tlohe sa dala tieZ najst aj bijekcia. Uvedieme rovno dve, jednym aj druhym smerom, ¢o vyuZijeme pri
zdovodneni, Ze naozaj ide o bijekciu.

Definujme zobrazenie f: {0,1}N — M, ktoré kazdej nekonecnej binarnej postupnosti a = (ag, ay,az,...) €
{0, 1}N priradi postupnost z M tak, Ze zacne s postupnostou b = (0), ak ap = 0, alebo s prazdnou postup-
nostou b = (), ak ap = 1. Potom postupne pre kazdé i € N:

e ak a; = 0, tak na koniec postupnosti b prida (1,0);
e ak a; = 1, tak na koniec postupnosti b prida (1,1,0).

Takto vytvorena postupnost b = f(a) obsahuje len 0 a 1 neobsahuje (0,0) ani (1,1, 1): Po prvom kroku moze
mat (1,0), (1,1,0), (0,1,0), (0,1,1,0), ¢o sedi. Po prvom a kazdom dalsom kroku vytvarania sa kon¢i na



(1,0), k ¢omu mozeme pridat aj (1,0), aj (1,1,0) (ak by sme chceli byt velmi poriadni, tak by sme to mali
dokéazat indukciou). Teda naozaj ide o zobrazenie do mnoziny M.

Definujeme zobrazenie g: M — {0,1}N, ktoré zobrazi postupnost b = (bg, by, ...) € M na binarnu postupnost
nasledovne. KedZe postupnost b neobsahuje (0,0), tak ju nuly delia na niekol'ko tisekov jednotiek. KedZe b
neobsahuje (1,1,1), tak medzi nulami mame vzdy jednu alebo dve jednotky. Akurat pred prvou nulou sa
moéZzu nachadzat 0, 1 aj 2 jednotky. Postupnost b ma teda tvar

(0,1%,0,1%,0,1%2,0,...) alebo (190,0,1%,0,1%2,0,...),
kde a; € {1,2} pre kazdé i € N a 1¢ zna¢i asek ¢ jednotiek po sebe. Postupnost b zobrazime na
g(b) = (c,ap — 1,a1 — 1,a0 — 1,...),
kde ¢ = 0 ak sa postupnost b zacina nulou, inak ¢ = 1.

Lahko overime, Ze f o g aj g o f st identity, preto sii obe zobrazenia bijekcie [ékoviera, Tvrdenie 2.9].

RieSenie cez diagonalnu metédu

Pre spor predpokladajme, Ze mnoZina M je spocitatelna. Potom mozno vSetky jej prvky zoradit do postup-
nosti (ag, a1, . ..). Prvok na j-tom mieste postupnosti a; budeme oznacovat a; j. Teraz definujeme postupnost
b pomocou nasledovného algoritmu. Zaéneme s postupnostou b = (0, 1) dlzky 2. Potom postupne pre kazdé
n € N vykonadme nasledovné:

(i) Nech i je dlzka doterajsej postupnosti b = (bg, by, ..., b;_1).
(ii) Ak ap; =0, tak b predlzime na postupnost (bg, by, ...,b;_1,1,0,1).
(ili) Ak ap; =1, tak b predizime na postupnost (bg, by, ...,b;i_1,0,1).

Pred kazdym krokom n € N sa postupnost b konéi na (0,1) a neobsahuje ani tri jednotky po sebe, ani dve
nuly po sebe (takejto vlastnosti sa hovori invariant). To dokadZzeme priamociaro matematickou indukciou:

1. Pred krom 0 mame b = (0,1), ¢o sedi.

2. Ak pred krokom n sa b kon¢i na (0, 1), tak v krokoch (ii) a (iii) nevytvorime ani tri jednotky, ani dve
nuly. Taktiez sa bude nova postupnost b (pred krokom n + 1) bude kon¢it na (0, 1).

Ked7Ze b je bindrna postupnost neobsahujtca (1,1,1) ani (0,0), tak patri do M a teda sa nachadza v po-
stupnosti (ag, a1, ...).

Navyse, krokom (ii) alebo (iii) si zaru¢ime, Ze pre kazdé n € N sa postupnost b 1isi od postupnosti a,, na
indexe 7 (podla vtedajsej hodnoty 7). Preto sa postupnost b nenachadza v postupnosti (ag, a1, ... ), ¢o je spor
s predoslym odsekom.

Poznamka. Sposobov, ako tvorit postupnost b je mnoho, najmé takychto algoritmickych. Délezité je uve-
domit si, Ze nemusime ist ¢isto po diagonéle a vieme ovplyviiovat, ktory prvok zmenime z postupnosti a,,.



