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Úloha 1

(2 body) Nech R je relácia na množine P(N) taká, že pre každé A,B ∈ P(N) platí

ARB ⇔ ∃k ∈ Z : ((∀a ∈ A : ∃b ∈ B : b = a+ k) ∧ (∀b ∈ B : ∃a ∈ A : b = a+ k)) .

Dokážte, že R je reláciou ekvivalencie na množine P(N) a opíšte rozklad, ktorý indukuje.

Poznámka. Pokiaľ je úloha pre Vás veľmi abstraktná, 1 bod viete získať, ak ju vyriešite pre prípad,
keď reláciu R budete miesto množiny P(N) uvažovať definovanú na množine P({0, 1, 2, 3, 4}). Uznáme
Vám aj riešenia založené na overovaní všetkých možností, ak ho dostatočne zaznamenáte. Ak pritom
použijete počítačové programy, tak ich pripojte k odovzdávanému PDF súboru do MS Teams.

Dôkaz cez prácu s kvantifikátormi

Najskôr ukážeme dôkaz, ktorý možno spraviť bez toho, aby sme podmienku zo zadania nejako upravovali či
zjednodušovali. Na tomto riešení je poučné vidieť, ako sa pracuje s kvantifikovanými výrokmi.

Reflexívnosť. Pre každé A ∈ P(N) platí ARA, keďže pre k = 0 platí:

• ∀a ∈ A : ∃b ∈ A : b = a+ k, keďže po voľbe b = a máme a = a+ 0;

• ∀b ∈ A : ∃a ∈ A : b = a+ k, keďže po voľbe a = b máme b = b+ 0.

Symetrickosť. Nech A,B ∈ P(N) a nech ARB. Potom:

∃k ∈ Z : ((∀a ∈ A : ∃b ∈ B : b = a+ k) ∧ (∀b ∈ B : ∃a ∈ A : b = a+ k))

⇓
∃k ∈ Z : ((∀a ∈ A : ∃b ∈ B : a = b− k) ∧ (∀b ∈ B : ∃a ∈ A : a = b− k))

⇓
∃k ∈ Z : ((∀b ∈ B : ∃a ∈ A : a = b− k) ∧ (∀a ∈ A : ∃b ∈ B : a = b− k))

A keďže −k je tiež celé číslo, tak po jeho nahradení za ℓ máme

∃ℓ ∈ Z : ((∀b ∈ B : ∃a ∈ A : a = b+ ℓ) ∧ (∀a ∈ A : ∃b ∈ B : a = b+ ℓ)) ,

čo je presne podľa definície BRA.

Tranzitívnosť. Nech A,B,C ∈ P(N) a nech ARB ∧ BRC. Z platnosti ARB máme, že pre nejaké celé
číslo k platí

∀a ∈ A : ∃b ∈ B : b = a+ k, (1)
∀b ∈ B : ∃a ∈ A : b = a+ k. (2)

Podobne z BRC máme pre nejaké ℓ ∈ Z

∀b ∈ B : ∃c ∈ C : c = b+ ℓ, (3)
∀c ∈ C : ∃b ∈ B : c = b+ ℓ. (4)



Teraz dokážeme, že pre m = k + ℓ platí:

1. ∀a ∈ A : ∃c ∈ C : c = a + m: Dôkaz. Pre ľubovoľné a ∈ A podľa (1) existuje b0 ∈ B pre ktoré platí
b0 = a + k. Pre toto b0 podľa (3) máme existenciu c0 ∈ C takého, že c0 = b0 + ℓ (využívame, že ak
niečo platí pre všetky b, tak platí aj pre konkrétne b0), teda c0 = b0 + ℓ = a + k + ℓ = a +m. Takto
sme pre každé a ∈ A našli c = c0 pre ktoré platí c = a+m. (Pri dôkaze možno pokojne použiť rovno b
miesto b0. Pre lepšiu názornosť sme však použili iné označenie, keďže vlastne ide o odlišné písmenká.
Tak to spravíme aj nižšie.)

2. ∀c ∈ C : ∃a ∈ A : c = a+m: Dôkaz. Pre ľubovoľné c ∈ C existuje podľa (4) b ∈ B spĺňajúce c = b+ ℓ
a pre toto b podľa 2 existuje a ∈ A také, že b = a+ k, teda c = b+ ℓ = a+ k + ℓ = a+m.

Dôkaz cez prepísanie podmienky

Teraz ukážeme, ako si možno dôkazy zjednodušiť, ak si na začiatku podmienku relácie zjednodušíme.

Výroková forma ∃b ∈ B : b = a+ k je ekvivalentná a+ k ∈ B. Na základe toho si vieme ARB ekvivalentne
prepísať na

∃k ∈ Z : ((∀a ∈ A : a+ k ∈ B) ∧ (∀b ∈ B : b− k ∈ A)) .

Toto uvedomenie nám vie zjednodušiť dôkazy. Ešte viac si pomôžeme, keď pre množinu A ∈ P(N) a k ∈ Z
definujeme

A+ k = {a+ k; a ∈ A}.

Ukážme, že pre všetky A,B ∈ P(N) platí

ARB ⇔ ∃k ∈ Z : B = A+ k.

Podmienka ∀a ∈ A : a+ k ∈ B je ekvivalentná A+ k ⊆ B, lebo vraví, že všetky prvky tvaru a+ k pre a ∈ A
sa nachádzajú v B. Podmienka ∀b ∈ B : b− k ∈ A je zas ekvivalentná B ⊆ A+ k. Teda

ARB ⇔ ∃k ∈ Z : (A+ k ⊆ B ∧B ⊆ A+ k) ⇔ ∃k ∈ Z : B = A+ k.

Reflexívnosť. Pre k = 0 platí A+ 0 = {a; a ∈ A} = A, teda ARA.

Symetrickosť. ARB ⇒ ∃k ∈ Z : B = A+ k. Potom

B − k = {b− k; b ∈ B} = {a+ k − k; a ∈ A} = A,

teda BRA.

Tranzitívnosť. ARB ∧ BRC ⇒ ∃k ∈ Z : B = A+ k ∧ ∃ℓ ∈ Z : C = B + ℓ ⇒ C = B + ℓ = (A+ k) + ℓ =
{a+ k + ℓ; a ∈ A} = A+ (k + ℓ) ⇒ C = A+ (k + ℓ) ⇒ ARC.

Poznámka. Ak chceme byť dôslední. Musíme brať do úvahy, že nemôžeme len tak bez dôkazu využiť, že
(A + k) + ℓ = A + (k + ℓ) alebo B = A + k ⇔ B + (−k) = A. Preto sme aspoň stručne naznačili dôkazy
týchto vlastností, keď sme ich používali.

Rozklad malej množiny

Najskôr opíšeme rozklad množiny P({0, 1, 2, 3, 4}). Opakujeme proces, v ktorom si vyberieme nejakú množinu
A, ktorú ešte nemáme v rozklade a určíme jej triedu R[A]. Tú vieme učiť tak, že si prejdeme zvyšné prvky
množiny P({0, 1, 2, 3, 4}) a zistíme, ktoré z nich sú vo vzťahu s prvkom A. Jednoduchšie však je, keď bližšie



pochopíme, čo nám podmienka vraví. Napr. tým, že po voľbe k máme len jedného kandidáta na množinu B,
pre ktorú môže platiť ARB. Aby sme šli systematicky, tak začneme najprv s prázdnou množinou a určíme

R[∅] = {∅}.

Pokračujeme na jednoprvkové množiny. Tam môžeme začať s

R[{0}] = {{0}, {1}, {2}, {3}, {4}}.

To sme zvolili k ∈ {0, 1, 2, 3, 4}. Iné voľby k by neviedli k podmnožine množiny {0, 1, 2, 3, 4}. Máme už všetky
jednoprvkové množiny, tak pokračujeme dvojprvkovými. Začneme s

R[{0, 1}] = {{0, 1}, {1, 2}, {2, 3}, {3, 4}}.

Ak sme si to neuvedomili na začiatku, tak si teraz vieme všimnúť, že všetky prvky triedy R[A] dostávame tak,
že ku každému členu množiny A pripočítame vhodné k ∈ Z. Vhodné znamená, že stále musí byť výsledkom
podmnožina {0, 1, 2, 3, 4} (resp. podmnožina N pri všeobecnom rozklade). Keď týmto systémom budeme
pokračovať, tak sa dopracujeme k triedam

R[∅] = {∅},
R[{0}] = {{0}, {1}, {2}, {3}, {4}},

R[{0, 1}] = {{0, 1}, {1, 2}, {2, 3}, {3, 4}},
R[{0, 2}] = {{0, 2}, {1, 3}, {2, 4}},

R[{0, 1, 2}] = {{0, 1, 2}, {1, 2, 3}, {2, 3, 4}},
R[{0, 3}] = {{0, 3}, {1, 4}},

R[{0, 1, 3}] = {{0, 1, 3}, {1, 2, 4}},
R[{0, 2, 3}] = {{0, 2, 3}, {1, 3, 4}},

R[{0, 1, 2, 3}] = {{0, 1, 2, 3}, {1, 2, 3, 4}},
R[{0, 4}] = {{0, 4}},

R[{0, 1, 4}] = {{0, 1, 4}},
R[{0, 2, 4}] = {{0, 2, 4}},

R[{0, 1, 2, 4}] = {{0, 1, 2, 4}},
R[{0, 3, 4}] = {{0, 3, 4}},

R[{0, 1, 3, 4}] = {{0, 1, 3, 4}},
R[{0, 2, 3, 4}] = {{0, 2, 3, 4}},

R[{0, 1, 2, 3, 4}] = {{0, 1, 2, 3, 4}}.

Celý rozklad

Využijeme, že ARB ⇔ ∃k ∈ Z : B = A + k. Potom priamo s definície je množina A v triede so všetkými
množinami tvaru A+ k pre k ∈ Z, ktoré však musia byť podmnožinami N. Teda

R[A] = {A+ k; k ∈ Z ∧A+ k ⊆ N}.

Ak za A zvolíme množinu obsahujúcu 0, tak podmienku A + k ⊆ N nemusíme kontrolovať a stačí nám
uvažovať k ∈ N Tak sa dostávame k tomu, že náš rozklad je

{{A+ k; k ∈ N};A ⊆ N ∧ 0 ∈ A} ∪ {{∅}},

resp. bez definovania notácie A+ k ho vieme vyjadriť ako

{{{a+ k; a ∈ A}; k ∈ N};A ⊆ N ∧ 0 ∈ A} ∪ {{∅}}.

Slovne vyjadrené rozklad obsahuje jednu triedu obsahujúcu ∅ a potom pre každú podmnožinu množiny N,
ktorá obsahuje 0, máme triedu so všetkými jej posunmi o k, kde k je ľubovoľné prirodzené číslo.

Tento rozklad je správny, lebo prázdnu množina je sama v triede a pre neprázdne množiny platí:



• Každá neprázdna množina A ∈ P(N) má najmenší prvok m a je vo vzťahu R s množinou A + (−m),
ktorá obsahuje 0.

• Každé dve rôzne množiny A,B ∈ P(N) obsahujúce nulu nie sú vo vzťahu R: Z ARB dostávame
B = A+ k, čiže k = 0 (lebo inak by B obsahovalo len čísla väčšie ako 0, čo by bol spor), teda A = B,
čo je spor.

Komentár k častej chybe. Samozrejme, ak by sme uviedli rozklad ako

{{A+ k; k ∈ Z ∧A+ k ⊆ N};A ∈ P(N)},

tak je formálne správny, je to tá istá množina. Avšak takýto zápis nám nedáva dostatočnú informáciu o tom,
ako rozklad vyzerá. Totiž viaceré triedy v ňom uvádzame dvakrát (napr. pre A = {2} aj A = {7} dostávame
tú istú triedu). Napríklad z toho zápisu nevieme jasne povedať, koľko tried má tento rozklad. Preto pri
opise hľadáme vhodný systém reprezentantov – z každej triedy vyberieme jeden prvok, ktorým ho vieme
charakterizovať. Pri tejto úlohe to vedia byť množiny obsahujúce 0 a prázdna množina (ale existujú aj iné).
To pekne vieme vidieť na výpise všetkých tried.

Taktiež si to môžeme porovnať aj s programom na ďalšej strane, ktorý nám rozklad pre malý prípad vypíše.
Hlavná logika výpisu rozkladu je vo funkcii main. Vonkajší for cyklus zodpovedá časti A ⊆ N ∧ 0 ∈ A z
vonakjšej množiny matematického opisu rozkladu – prechádzame všetky podmnožiny obsahujúce 0 (akurát
v prípade programu len podmnožiny {0, 1, . . . , n−1}). Vnútorný for cyklus zas zodpovedá k ∈ N z vnútornej
množiny, teda z jednej triedy. Tu nám práve prechádzanie cez množiny s nulou zaručí, že nebudeme vypisovať
triedy opakovane – každú vypíšeme práve raz.



#include <iostream>
#include <vector>

using namespace std;

// aby sme vedeli vector vypisoavat cez <<
ostream& operator<<(ostream &out, vector<int> v) {

out << "{";
for (int i = 0; i < v.size(); i++) {

if (i > 0) out << ", ";
out << v[i];

}
out << "}";
return out;

}

// Funkcia, ktora vrati vsetky podmnoziny {0, 1, ..., n} obsahujuce 0
vector<vector<int>> subsets_with_0(int n) {

vector<vector<int>> result;

for (int mask = 0; mask < (1 << n); mask++) {
vector<int> subset = {0};
int x = mask;
for (int i = 1; i <= n; i++) {

if (x % 2 == 1) {
subset.push_back(i);

}
x /= 2;

}
result.push_back(subset);

}
return result;

}

int main() {
int n = 4;
cout << "R[{}] = {{}}" << endl;
for (vector<int> A : subsets_with_0(n)) {

cout << "R[" << A << "] = {";
for (int k = 0; k <= n; k++) {

vector<int> B(A.size());
for (int i = 0; i < B.size(); i++) {

B[i] = A[i] + k;
}
if (B.back() > n) break;
if (k > 0) cout << ", ";
cout << B;

}
cout << "}" << endl;

}
}



Úloha 2

(2 body) Na množine N = {0, 1, 2, . . . , } definujeme reláciu ⊑ tak, že pre ľubovoľné a, b ∈ N platí

a ⊑ b ⇔ ∃k ∈ N : b2 − a2 = 9k.

Dokážte, že ⊑ je reláciou usporiadania na množine N a určte všetky jej minimálne, najmenšie, maxi-
málne a najväčšie prvky. Správnosť vašich výsledkov dokážte.

Dôkaz usporiadania

Reflexívnosť. Pre každé a ∈ N platí a2 − a2 = 0 = 9 · 0, teda a ⊑ a.

Antisymetrickosť. Pre každé a, b ∈ N platí:

a ⊑ b ∧ b ⊑ a

⇓
∃k ∈ Nb2 − a2 = 9k ∧ ∃ℓ ∈ N : a2 − b2 = 9ℓ

⇓
9k = b2 − a2 = −(a2 − b2) = −9ℓ

⇓
9k = −9ℓ

⇓
k + ℓ = 0

Keďže k, l ∈ N, tak z toho vyplýva k = ℓ = 0, teda b2 − a2 = 0, čo pre a, b ∈ N znamená, že a = b.

Tranzitívnosť. Pre každé a, b, c ∈ N platí:

a ⊑ b ∧ b ⊑ c

⇓
∃k ∈ N : b2 − a2 = 9k ∧ ∃ℓ ∈ N : c2 − b2 = 9ℓ

⇓
b2 − a2 + c2 − b2 = 9k + 9ℓ

⇓
c2 − a2 = 9(k + ℓ)

⇓
m = k + ℓ ∈ N

⇓
∃m ∈ N : c2 − a2 = 9m

⇓
a ⊑ c

Hasseho diagram

Túto časť nie je nutné uvádzať v riešení. Uvádzame ju pre lepšiu predstavu, ako vyzerá naša usporiadaná
množina. Načrtneme si Hasseho diagram, v ktorom prvky rastú zľava doprava.



0—3—6—9—12—. . .
1—8—10—17—. . .
2—7—11—16—. . .
4—5—13—14—. . .

Na ňom si môžeme všimnúť pomerne peknú štruktúru našej usporiadanej množiny. Z nej už ľahko vidíme,
že minimálne prvky sú 0, 1, 2, 4. Avšak argumentovať diagramom nemôžeme – nemáme ho nakreslený
celý. Uvedieme preto dva dôkazy. Jeden úplne nezávislý na tejto štruktúre, v druhom zdôvodníme, že táto
usporiadaná množina má štruktúru, akú vidíme na diagrame.

Minimálne prvky sú 0, 1, 2, 4.

Dôkaz minimálnych z definície. Najprv ukážeme, že každý z nich je minimálny:

• a ⊑ 0 ⇒ 0− a2 = 9k ⇒ a2 = −9k ⇒ a = 0 ∧ k = 0, keďže −a2 ≤ 0.

• a ⊑ 1 ⇒ 1− a2 = 9k ⇒ a2 = 1− 9k ⇒ a = 1 ∧ k = 0, keďže pre k > 0 je 1− 9k < 0.

• a ⊑ 2 ⇒ 4− a2 = 9k ⇒ a2 = 4− 9k ⇒ a = 2 ∧ k = 0, keďže pre k > 0 je 4− 9k < 0.

• a ⊑ 4 ⇒ 16 − a2 = 9k ⇒ a2 = 16 − 9k ⇒ a = 4 ∧ k = 0, keďže pre k = 1 máme a2 = 7, čo nemá v
prirodzených číslach riešenie, a pre k ≥ 2 je 16− 9k < 0, čo tiež nemá riešenie.

A ešte ukážeme, že iné prvky nie sú minimálne:

• 3 nie je minimálny ⇐ 0 ⊏ 3 ⇐ 32 − 02 = 9 = 9 · 1

• ∀a ∈ {5, 6, 7, 8}: a nie je minimálny ⇐ 9− a ⊏ a ⇐ a2 − (9− a)2 = (a+ 9− a)(a− 9 + a) = 9(2a− 9),
pričom 9− a aj 2a− 9 sú pre tieto a prirodzené čísla

• ∀a ∈ N, a ≥ 9: a nie je minimálny ⇐ (a− 9) ⊏ a ⇐ a2 − (a− 9)2 = (a+ a− 9)(a− a+ 9) = 9(2a− 9),
pričom 2a− 9 ∈ N a aj a− 9 ∈ N.

Dôkaz minimálnych cez štruktúru usporiadania. Nech platí ∃k ∈ N : b2 − a2 = 9k. Potom:

• b2 − a2 je deliteľné deviatimi, teda čísla a2, b2 majú rovnaký zvyšok po delení deviatimi.

• Keďže k ∈ N, teda k ≥ 0, tak aj b2 − a2 ⇒ b2 ≥ a2, čo v prirodzených číslach znamená b ≥ a.

Platí to aj opačne: ak máme b ≥ a také, že 9 | (b2 − a2), tak nájdené k = (b2 − a2)/9 bude nezáporné a celé,
teda prirodzené.

To znamená, že porovnateľné sú len čísla, ktorých druhé mocniny dávajú rovnaký zvyšok po delené 9 a v
tom prípade ich porovnáme na základe bežného usporiadania ≤. Zvyšok druhej mocniny prirodzeného čísla
a závisí len na jeho zvyšku po delení deviatimi. Vyskúšame všetky možné zvyšky:

a mod 9 = 0 1 2 3 4 5 6 7 8
a2 mod 9 = 0 1 4 0 7 7 0 4 1

Teda druhé mocniny celých čísel dávajú po delení deviatimi len zvyšky 0, 1, 4 a 7. Preto naša usporiadaná
množina naozaj vyzerá tak, ako na obrázku. Všetky prirodzené čísla sú rozdelené do 4 množín podľa zvyšku
ich druhej mocniny po delení 9 a v rámci týchto množín sú usporiadané podľa veľkosti. Preto sú minimálnymi
prvkami čísla 0, 1, 2 a 4.

Najmenší prvok neexistuje, keďže máme aspoň dva minimálne prvky.



Maximálne prvky neexistujú, keďže pre každé a ∈ N platí a ⊏ a+ 9, keďže (a+ 9)2 − a2 = a2 + 18a+
81− a2 = 9(2a+ 9) a 2a+ 9 ∈ N.

Najväčší prvok neexistuje, keďže neexistuje maximálny prvok.

Komentár Chceme upozorniť na problémy pri zdôovodňovaní, že neexistuje najmenší / najväčší prvok:

• „Najmenší prvok neexistuje, lebo existujú neporovnateľné prvky napr. 0 a 1.“ Toto nie je správny
dôkaz. Napr. množina N usporiadaná reláciu | (delí) má najmenší prvok 1 napriek tomu, že prvky 2 a
3 sú neporovnateľné.

• „Najmenší prvok neexistuje, lebo nemáme práve jeden minimálny prvok.“ Toto je správny dôvod, len
chceme upozorniť, že ide len o jednosmernú implikáciu. Pokiaľ máme len jeden minimálny prvok, ešte
to neznamená, že ide o najmenší (príklad by ste mali byť schopní vymyslieť, je to užitočné cvičenie k
príprave na skúšku).

• „Najväčší prvok neexsituje, lebo množina N je zhora neohraničená.“ Toto je úplne irelevantný argument,
lebo hovorí o bežnom usporiadaní ≤ a nie o usporiadaní ⊑, o ktorom je úlohe. Napr. usporiadaná
množina (N, |) má najväčší prvok 0.

Úloha 3

(1,5 boda) Nech M je množina všetkých nekonečných binárnych postupností (teda každý člen je 0 alebo
1), ktoré neobsahujú tri jednotky vedľa seba a zároveň neobsahujú dve nuly vedľa seba. Rozhodnite
a následne dokážte, či je množina M spočítateľná.

Riešenie cez injekciu

Definujme zobrazenie f : {0, 1}N → M , ktoré každej binárnej postupnosti a = (a0, a1, . . . ) ∈ {0, 1}N priradí
postupnosť nasledovne: pre každé i ∈ N nahradí ai postupnosťou (1, 0), ak ai = 0, alebo postupnosťou
(1, 1, 0), ak ai = 1; potom všetky tieto postupnosti spojí do jednej. Takto dostaneme postupnosť zloženú z
blokov (1, 0) a (1, 1, 0), ktorá zjavne neobsahuje (0, 0) ani (1, 1, 1), teda je v množine M . Keďže každý blok
sa končí nulou, vieme tieto bloky jednoznačne spätne identifikovať. Ak sa dve postupnosti a, b líšia na i-tom
mieste, tak ich obrazy f(a), f(b) sa budú líšiť v i-tom bloku. Preto a ̸= b ⇒ f(a) ̸= f(b), teda zobrazenie f
je injektívne. Preto |M | ≥ |{0, 1}N| > ℵ0 a teda množina M je nespočítateľná.

Riešenie cez bijekciu

V úlohe sa dala tiež nájsť aj bijekcia. Uvedieme rovno dve, jedným aj druhým smerom, čo využijeme pri
zdôvodnení, že naozaj ide o bijekciu.

Definujme zobrazenie f : {0, 1}N → M , ktoré každej nekonečnej binárnej postupnosti a = (a0, a1, a2, . . . ) ∈
{0, 1}N priradí postupnosť z M tak, že začne s postupnosťou b = (0), ak a0 = 0, alebo s prázdnou postup-
nosťou b = (), ak a0 = 1. Potom postupne pre každé i ∈ N+:

• ak ai = 0, tak na koniec postupnosti b pridá (1, 0);

• ak ai = 1, tak na koniec postupnosti b pridá (1, 1, 0).

Takto vytvorená postupnosť b = f(a) obsahuje len 0 a 1 neobsahuje (0, 0) ani (1, 1, 1): Po prvom kroku môže
mať (1, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1, 0), čo sedí. Po prvom a každom ďalšom kroku vytvárania sa končí na



(1, 0), k čomu môžeme pridať aj (1, 0), aj (1, 1, 0) (ak by sme chceli byť veľmi poriadni, tak by sme to mali
dokázať indukciou). Teda naozaj ide o zobrazenie do množiny M .

Definujeme zobrazenie g : M → {0, 1}N, ktoré zobrazí postupnosť b = (b0, b1, . . . ) ∈ M na binárnu postupnosť
nasledovne. Keďže postupnosť b neobsahuje (0, 0), tak ju nuly delia na niekoľko úsekov jednotiek. Keďže b
neobsahuje (1, 1, 1), tak medzi nulami máme vždy jednu alebo dve jednotky. Akurát pred prvou nulou sa
môžu nachádzať 0, 1 aj 2 jednotky. Postupnosť b má teda tvar

(0, 1a0 , 0, 1a1 , 0, 1a2 , 0, . . . ) alebo (1a0 , 0, 1a1 , 0, 1a2 , 0, . . . ),

kde ai ∈ {1, 2} pre každé i ∈ N a 1c značí úsek c jednotiek po sebe. Postupnosť b zobrazíme na

g(b) = (c, a0 − 1, a1 − 1, a2 − 1, . . . ),

kde c = 0 ak sa postupnosť b začína nulou, inak c = 1.

Ľahko overíme, že f ◦ g aj g ◦ f sú identity, preto sú obe zobrazenia bijekcie [Škoviera, Tvrdenie 2.9].

Riešenie cez diagonálnu metódu

Pre spor predpokladajme, že množina M je spočítateľná. Potom možno všetky jej prvky zoradiť do postup-
nosti (a0, a1, . . . ). Prvok na j-tom mieste postupnosti ai budeme označovať ai,j . Teraz definujeme postupnosť
b pomocou nasledovného algoritmu. Začneme s postupnosťou b = (0, 1) dĺžky 2. Potom postupne pre každé
n ∈ N vykonáme nasledovné:

(i) Nech i je dĺžka doterajšej postupnosti b = (b0, b1, . . . , bi−1).

(ii) Ak an,i = 0, tak b predĺžime na postupnosť (b0, b1, . . . , bi−1, 1, 0, 1).

(iii) Ak an,i = 1, tak b predĺžime na postupnosť (b0, b1, . . . , bi−1, 0, 1).

Pred každým krokom n ∈ N sa postupnosť b končí na (0, 1) a neobsahuje ani tri jednotky po sebe, ani dve
nuly po sebe (takejto vlastnosti sa hovorí invariant). To dokážeme priamočiaro matematickou indukciou:

1. Pred krom 0 máme b = (0, 1), čo sedí.

2. Ak pred krokom n sa b končí na (0, 1), tak v krokoch (ii) a (iii) nevytvoríme ani tri jednotky, ani dve
nuly. Taktiež sa bude nová postupnosť b (pred krokom n+ 1) bude končiť na (0, 1).

Keďže b je binárna postupnosť neobsahujúca (1, 1, 1) ani (0, 0), tak patrí do M a teda sa nachádza v po-
stupnosti (a0, a1, . . . ).

Navyše, krokom (ii) alebo (iii) si zaručíme, že pre každé n ∈ N sa postupnosť b líši od postupnosti an na
indexe i (podľa vtedajšej hodnoty i). Preto sa postupnosť b nenachádza v postupnosti (a0, a1, . . . ), čo je spor
s predošlým odsekom.

Poznámka. Spôsobov, ako tvoriť postupnosť b je mnoho, najmä takýchto algoritmických. Dôležité je uve-
domiť si, že nemusíme ísť čisto po diagonále a vieme ovplyvňovať, ktorý prvok zmeníme z postupnosti an.


