SQL

SQL --- Structured Query Language

SQL is the most used database query language today.
e Standard since 80ties (1986); no changes last 10-20 years
* |f there is the standard, ,SQL" is varies among different database systems

e Queries written for one database system (PosgreSQL) need not to work in another (MySQL),
mostly because of usefull extensions of the SQL standard the database systems implement

e SQL contains also standards Data Manipulation Language (DML) and Data Definition
Language (DDL)

Basic syntax:

e SELECT <attributes>
FROM <relations>
WHERE <condition>
ORDER BY attributel, attribute?2...]
LIMIT 100] [OFFSET 0]

Example of a SQL query

SELECT
concat(e.firstname,’ €¢,e.lastname) AS ename,
(CASE
WHEN e.comm IS NULL THEN e.sal
ELSE e.comm + e.sal
) AS ‘total salary’
FROM emp
WHERE deptno>=20 AND lower(e.firstname)=‘john’

Multisets

e SQL threats relations as multisets, i.e. multisets can contain duplicate
rows (opposite to Datalogu).

* If you want to strip duplicates you must enforce it using some
commands (UNIQUE constraint when creating table — more in DDL —
or using DISTINCT keyword in queries).

JOINS

* join is the union of two tables; it is a subset of the cartesian
product of tables specified by additional conditions for linking
(cartesian product - each row with each)

* FULL JOIN

* INNER JOIN or just JOIN
* LEFT JOIN

* RIGHT JOIN

FULL OUTER JOIN

Cartesian product (FULL JOIN):

Name | Deptno tone_Loeyno [ocane ooy e

John 10 Accounting John Accounting

Thomas 20 X 20 PR i John 10 20 PR

Joe 40 30 Development John 10 30 Development
Thomas 20 10 Accounting
Thomas 20 20 PR

SELECT * FROM emp, dept Thomas 20 30 Development
Joe 40 10 Accounting
Joe 40 20 PR

Joe 40 30 Development

INNER JOIN

INNER JOIN = JOIN:
[Ty tone_Loeyno [ocane ooy e

John 1OIN Accounting) John Accounting
Thomas 20 20 PR lehe 10 20 PR
Joe 40 30 Development leka 15 =20 Development
Thermrmas 20 19 Lcoourtag
SELECT * FROM emp e, dept d Thomas 20 20 PR
WHERE e.deptno = d.deptno Thomas 20 30 Pevelopment
Joe 40 10 Aceounting
SELECT * FROM emp e " o .
JOIN dept d ON e.deptno = d.deptno 40 - Bevelopment

SELECT * FROM emp e natural join dept as d

INNER JOIN = JOIN: m

John Accounting
lohn 10 20 ——
'Name | Deptno m o
John 10 Accounting
JOIN = John 10 10 Human res.
Thomas 20 20 PR .
Tramrmas 28 10 Aecobrting
Joe 40 30 Development
Thomas 20 20 PR
10 Human res.
Fromas 28 30 Beveleprront
SELECT * Fhomas 20 10 Humanres:
FROM emp e Joe 40 10 Accounting
JOIN dept d ON e.deptno = d.deptno Jee 40 20 PR
oo 40 30 Bevelaprrent
oo 40 10 Hrar—ress

How would you write join using Datalog?

LEFT JOIN

LEFT [OUTER] JOIN:

Name | Deptno tone_Loeyno [ocane ooy e

John 10 LEET Accounting _ John Accounting
Thomas 20 JOIN 20 PR John 10 10 Human res.
Joe 40 30 Development Thomas 20 20 PR
10 Human res. Joe 40 null null
SELECT *

FROM emp as e
LEFT JOIN dept as d
ON e.deptno = d.deptno

How would you write LEFT JOIN using Datalogu?

RIGHT JOIN

RIGHT [OUTER] JOIN:

CCWETTy [T T

Accounting RIGHT John _ John Accounting
20 PR JOIN Thomas 20 ~ John 10 10 Human res.
30 Development Joe 40 Thomas 20 20 PR
10 Human res. Joe 40 null null

The same as LEFT JOIN, just in opposite direction

SELECT *
FROM dept AS d
RIGHT JOIN emp AS e ON e.deptno = d.deptno

Operators, expressions, functions

* You can use many operators in WHERE clause:
* =, <>, >, <,>=, <=, BETWEEN, LIKE, IN, IS NULL, IS NOT NULL
 AND, OR, ! (NOT)

e Also it is possible to use arithmetic expressions and many more
functions

/

e E.g. concat(e.firstname,” ; e.lastname)
* Functions to work with date and time

* List of supported functions depends on a database system
* https://www.postgresql.org/docs/current/static/functions.html

https://www.postgresql.org/docs/current/static/functions.html

Inner SELECT (subselect)

 SELECT name FROM emp e WHERE e.ID IN (SELECT ID FROM managers)

e SELECT name FROM emp e WHERE EXISTS (SELECT * FROM managers WHERE
id=e.id)

* in the case of nested selects, one must be careful about efficiency
* JOIN operations can optimize the database system quite well

* (if you have a properly designed DB - more on that later)
e even EXISTS and NOT EXISTS are straightforward
e optimizing IN and NOT IN can be a problem, it's easier to write an "inefficient" query

* Note that EXISTS can always be rewritten as JOIN; NOT EXISTS as a difference (EXCEPT)

UNION, EXCEPT

* SELECT name
FROM emp_dallas WHERE sal>=1000

UNION [ALL]
SELECT name
FROM emp_huston WHERE sal>=500

* Number and type of attributes in SELECT clause must be the same

Auxiliary tables and CTE

WITH emp_houston AS (
SELECT * FROM emp as e, dept as d
WHERE e.deptno=d.deptno and d.dname="houston’

)
SELECT * FROM emp_houston WHERE sal>=1000

 CREATE TEMPORARY TABLE emp_houston (
SELECT * FROM emp as e, dept as d
WHERE e.deptno=d.deptno and d.dname="houston’

);
e SELECT * FROM emp_houston WHERE sal>=1000

PostgreSQL

* we will work with the PostgreSQL database system during the exercises
* Most database systems have a client-server architecture
* Server
e contains data
* understands SQL queries

* clients connect to it mostly via socket (TCP/IP), or named pipes or other channels
supported by the OS

* client
* An application that needs to work with data
* sends queries to server in SQL language
 displays/processes response from the server
* Some features can be implemented on any page (e.g., pagination).

PostgreSQL

* We have two terminal windows open on cvika.dcs.fmph.uniba.sk
* In one window, we edit the file with the assignment, e.g. vim queries.sql

* In the second window, run the edited file (all queries in it) with the command

psql -f queries.sql

e |t doesn't hurt to have a third window where we run PSQL and use it to view
the contents of the database and debug queries

* Everyone is working on their database, which is automatically
selected after running PSQL

Woriking with PostgreSQL console

* PostgreSQL console (interactive terminal) with the psql command
* You can then write queries in the console, e.g. SELECT * FROM emp;

* Interesting special commands:
e \d emp or \d+ emp - Displays the table structure
* \d - Displays a list of tables in the current database
 \db - Displays a list of databases
* \c emp - connects to the EMP database
* \q — exit console

* Console documentation:
http://www.postgresgl.org/docs/current/static/app-psql.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

