
SQL

SQL --- Structured Query Language
SQL is the most used database query language today.
• Standard since 80ties (1986); no changes last 10-20 years

• If there is the standard, „SQL“ is varies among different database systems

• Queries written for one database system (PosgreSQL) need not to work in another (MySQL),
mostly because of usefull extensions of the SQL standard the database systems implement

• SQL contains also standards Data Manipulation Language (DML) and Data Definition
Language (DDL)

Basic syntax:
• SELECT <attributes>

FROM <relations>
WHERE <condition>
[ORDER BY attribute1, attribute2...]
[LIMIT 100] [OFFSET 0]

Example of a SQL query

SELECT
 concat(e.firstname,’ ‘,e.lastname) AS ename,
 (CASE
 WHEN e.comm IS NULL THEN e.sal
 ELSE e.comm + e.sal
) AS ‘total_salary’
FROM emp
WHERE deptno>=20 AND lower(e.firstname)=‘john’

Multisets

• SQL threats relations as multisets, i.e. multisets can contain duplicate
rows (opposite to Datalogu).

• If you want to strip duplicates you must enforce it using some
commands (UNIQUE constraint when creating table – more in DDL –
or using DISTINCT keyword in queries).

JOINs

• join is the union of two tables; it is a subset of the cartesian
product of tables specified by additional conditions for linking
(cartesian product - each row with each)

• FULL JOIN

• INNER JOIN or just JOIN

• LEFT JOIN

• RIGHT JOIN

Cartesian product (FULL JOIN):

Name Deptno

John 10

Thomas 20

Joe 40

Deptno Dept. name

10 Accounting

20 PR

30 Development

Name Deptno Deptno Dept. name

John 10 10 Accounting

John 10 20 PR

John 10 30 Development

Thomas 20 10 Accounting

Thomas 20 20 PR

Thomas 20 30 Development

Joe 40 10 Accounting

Joe 40 20 PR

Joe 40 30 Development

X =

SELECT * FROM emp, dept

INNER JOIN = JOIN:

Name Deptno

John 10

Thomas 20

Joe 40

Deptno Dept. name

10 Accounting

20 PR

30 Development

Name Deptno Deptno Dept. name

John 10 10 Accounting

John 10 20 PR

John 10 30 Development

Thomas 20 10 Accounting

Thomas 20 20 PR

Thomas 20 30 Development

Joe 40 10 Accounting

Joe 40 20 PR

Joe 40 30 Development

JOIN =

SELECT * FROM emp e, dept d
WHERE e.deptno = d.deptno

SELECT * FROM emp e
JOIN dept d ON e.deptno = d.deptno

SELECT * FROM emp e natural join dept as d

INNER JOIN = JOIN:

Name Deptno

John 10

Thomas 20

Joe 40

Deptno Dept. name

10 Accounting

20 PR

30 Development

10 Human res.

Name Deptno Deptno Dept. name

John 10 10 Accounting

John 10 20 PR

John 10 30 Development

John 10 10 Human res.

Thomas 20 10 Accounting

Thomas 20 20 PR

Thomas 20 30 Development

Thomas 20 10 Human res.

Joe 40 10 Accounting

Joe 40 20 PR

Joe 40 30 Development

Joe 40 10 Human res.

JOIN =

SELECT *
FROM emp e

JOIN dept d ON e.deptno = d.deptno

How would you write join using Datalog?

LEFT [OUTER] JOIN:

Name Deptno

John 10

Thomas 20

Joe 40

Deptno Dept. name

10 Accounting

20 PR

30 Development

10 Human res.

Name Deptno Deptno Dept. name

John 10 10 Accounting

John 10 10 Human res.

Thomas 20 20 PR

Joe 40 null null

LEFT
JOIN

=

SELECT *
FROM emp as e

LEFT JOIN dept as d
ON e.deptno = d.deptno

How would you write LEFT JOIN using Datalogu?

RIGHT [OUTER] JOIN:

Name Deptno

John 10

Thomas 20

Joe 40

Deptno Dept. name

10 Accounting

20 PR

30 Development

10 Human res.

Name Deptno Deptno Dept. name

John 10 10 Accounting

John 10 10 Human res.

Thomas 20 20 PR

Joe 40 null null

RIGHT
JOIN

=

SELECT *
FROM dept AS d

RIGHT JOIN emp AS e ON e.deptno = d.deptno

The same as LEFT JOIN, just in opposite direction

Operators, expressions, functions

• You can use many operators in WHERE clause:
• =, <>, >, <, >=, <=, BETWEEN, LIKE, IN, IS NULL, IS NOT NULL

• AND, OR, ! (NOT)

• Also it is possible to use arithmetic expressions and many more
functions

• E.g. concat(e.firstname,’ ‘, e.lastname)

• Functions to work with date and time

• List of supported functions depends on a database system
• https://www.postgresql.org/docs/current/static/functions.html

https://www.postgresql.org/docs/current/static/functions.html

Inner SELECT (subselect)

• SELECT name FROM emp e WHERE e.ID IN (SELECT ID FROM managers)

• SELECT name FROM emp e WHERE EXISTS (SELECT * FROM managers WHERE
id=e.id)

• in the case of nested selects, one must be careful about efficiency

• JOIN operations can optimize the database system quite well

• (if you have a properly designed DB - more on that later)

• even EXISTS and NOT EXISTS are straightforward

• optimizing IN and NOT IN can be a problem, it's easier to write an "inefficient" query

• Note that EXISTS can always be rewritten as JOIN; NOT EXISTS as a difference (EXCEPT)

UNION, EXCEPT

• SELECT name
FROM emp_dallas WHERE sal>=1000

UNION [ALL]

SELECT name
FROM emp_huston WHERE sal>=500

• Number and type of attributes in SELECT clause must be the same

Auxiliary tables and CTE

WITH emp_houston AS (
 SELECT * FROM emp as e, dept as d
 WHERE e.deptno=d.deptno and d.dname=‘houston’
)
SELECT * FROM emp_houston WHERE sal>=1000

• CREATE TEMPORARY TABLE emp_houston (
 SELECT * FROM emp as e, dept as d
 WHERE e.deptno=d.deptno and d.dname=‘houston’
);

• SELECT * FROM emp_houston WHERE sal>=1000

PostgreSQL

• we will work with the PostgreSQL database system during the exercises

• Most database systems have a client-server architecture

• Server

• contains data

• understands SQL queries

• clients connect to it mostly via socket (TCP/IP), or named pipes or other channels
supported by the OS

• client

• An application that needs to work with data

• sends queries to server in SQL language

• displays/processes response from the server

• Some features can be implemented on any page (e.g., pagination).

PostgreSQL

• We have two terminal windows open on cvika.dcs.fmph.uniba.sk
• In one window, we edit the file with the assignment, e.g. vim queries.sql

• In the second window, run the edited file (all queries in it) with the command
psql -f queries.sql

• It doesn't hurt to have a third window where we run PSQL and use it to view
the contents of the database and debug queries

• Everyone is working on their database, which is automatically
selected after running PSQL

Woriking with PostgreSQL console

• PostgreSQL console (interactive terminal) with the psql command

• You can then write queries in the console, e.g. SELECT * FROM emp;

• Interesting special commands:
• \d emp or \d+ emp - Displays the table structure
• \d - Displays a list of tables in the current database
• \db - Displays a list of databases
• \c emp - connects to the EMP database
• \q – exit console

• Console documentation:
http://www.postgresql.org/docs/current/static/app-psql.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

