Datalog

Datalog

* More detailed theoretical foundations at Databaseslectures

* A program in a Datalog is a set of rules (implications), e.g.
* zlozene_cislo(Z) ¢ krat(X, Y, Z), int(X), int(Y), not X=1, notY = 1.
e prvocislo(Z) < int(Z), not Z =1, not zlozene_cislo(Z).

* Syntax:
<hlava>: <atom>
<hlava> :- <telo>

<telo>: <atom> | \+ <atom> | <telo>, <atom>
We will use Prolog to evaluate Datalog queries, so we will use Prolog syntax (which is a
superset of Datalog) to write them:

* \+ is negation, :- is “implication”

Datalog

* Example of a datalog rule:
— res(N,J) :-emp(,N,J, , ,S,), S>=2000.
On the left side, only one positive atom at a time

Variables start with a capital letter

Constants in lowercase
Each variable is listed in at least one positive EDB context in the body of the rule

* _means anonymous variable

The is operator is used to evaluate arithmetic expressions:
e E.g. Xis 243, not X = 2+3

* (the = symbol would be interpreted as the unification of the therms and no arithmetic operation
will occur).

Working with datalog: SWI-Prolog

* Three options:
— on servers cvika, login using ssh on cvika.dcs.fmph.uniba.sk
(username/password from AlSe)
— using SWI-Prolog on your local computer

— online at https://swish.swi-prolog.org/

 We recommend opening 3 windows

* In one, you edit a file with queries, eg. vim queries_emp.pl
* In the second window, you are running the Prolog environment: swipl -s queries_emp.pl
* in the third window you have a database (list of facts)

Working with datalog

* After you write a query to a file, you need to save it to disk
(vim: ESC, ":w", ENTER).

* then compile the new version: make. (even with that dot)

e Be sure to check if the compiler reports errors and fix them if necessary

 Calculation of queries:
?- q(job(J)).

* the predicate "q()" is used to nicely format the output and eliminate
apparent duplicates (Prolog does full backtracking and can find a
specific value in multiple branches)

Datalog and negation

® List touples [D, J], where job J is not in the department D:
jobDept(J, D) :-emp(_,_,J, , ,_,D).
missing(D, J) :-
emp(_,_J,____)

em p(_;_;_;_r_;_; D)I
\+ jobDept(J,D).

e Why we cannot write the following program?
missing(D, J) :-
emp(_,_),_,,..),
emp(_,_,_,_,_,_,D),
\+emp(_,_,J,_,_,_,D).

Datalog and general quantifier

e [tis necessary to rewrite the general quantifier as a negation of the
existential, so in the auxiliary rule we describe the counterexample

and by negating the auxiliary predicate we say that the
counterexample does not exist

e departments in which each type of work is represented:

hasAllJobs(D) :- dept(D,_, ,),\+ missinglob(D).

missinglob(D) :-emp(,), , , ,),emp(, , , , , ,D),
\+ jobDept(J,D).

jobDept(J, D) :-emp(_, ,J, , , ,D).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

