
Cvičenie z PTS

27.4.2010

Service-oriented architectures

• A means of developing distributed systems where
the components are stand-alone services

• Services may execute on different computers from
different service providers

• Standard protocols have been developed to
support service communication and information
exchange

Service-oriented architectures

Benefits of SOA

• Services can be provided locally or outsourced to
external providers

• Services are language-independent

• Investment in legacy systems can be preserved

• Inter-organisational computing is facilitated
through simplified information exchange

Web service standards

Transport (HTTP , HTTPS, SMTP , ...)

Messaging (SOAP)

Service definition (UDDI, WSDL)

Process (WS-BPEL)

Support (WS-Security , WS-Addressing, ...)

XML technologies (XML, XSD, XSL T,)

Key standards

• SOAP (Simple Object Access Protocol)
– A message exchange standard that supports service communication

• WSDL (Web Service Definition Language)
– This standard allows a service interface and its bindings to be defined

• UDDI (Universal Description, Discovery and Integration)
– Defines the components of a service specification that may be used to

discover the existence of a service

• WS-BPEL (Business Process Execution Language)
– A standard for workflow languages used to define service composition

Service-oriented software engineering

• Existing approaches to software engineering have
to evolve to reflect the service-oriented approach
to software development
– Service engineering. The development of dependable,

reusable services
• Software development for reuse

– Software development with services. The development
of dependable software where services are the
fundamental components
• Software development with reuse

Services as reusable components

• A service can be defined as:
– A loosely-coupled, reusable software component that encapsulates discrete

functionality which may be distributed and programmatically accessed. A
web service is a service that is accessed using standard Internet and XML-
based protocols

• A critical distinction between a service and a component as defined
in CBSE is that services are independent
– Services do not have a ‘requires’ interface

– Services rely on message-based communication with messages expressed in
XML

An order as an XML message

<starter>

 <dish name = “soup” type = “tomato” />

 <dish name = “soup” type = “fish” />

 <dish name = “pigeon salad” />

</starter>

<main course>

 <dish name = “steak” type = “sirloin”

cooking = “medium” />

 <dish name = “steak” type = “fillet”

cooking = “rare” />

 <dish name = “sea bass”>

</main>

<accompaniment>

 <dish name = “french fries” portions =

“2” />

 <dish name = “salad” portions = “1” />

</accompaniment>

Web service description language

• The service interface is defined in a service
description expressed in WSDL. The WSDL
specification defines
– What operations the service supports and the format

of the messages that are sent and received by the
service

– How the service is accessed - that is, the binding maps
the abstract interface ontoa concrete set of protocols

– Where the service is located. This is usually expressed
as a URI (Universal Resource Identifier)

Structure of a WSDL specification

A WSDL description fragment

Define some of the types used. Assume that the name space prefixes ‘ws’ refers to

the name space URI for XML schemas and the namespace prefix associated with

this definition is weathns.

<ty pes>

 <xs: schema targetNameSpace = “http://.../weathns”

 xmlns: weathns = “http://…/weathns” >

 <xs:element name = “PlaceAndDate” ty pe = “pdrec” />

 <xs:element name = “MaxMinTemp” ty pe = “mmtrec” />

 <xs: element name = “InDataFault” ty pe = “errmess” />

 <xs: complexTy pe name = “pdrec”

 <xs: sequence>

 <xs:element name = “town” ty pe = “xs:string”/>

 <xs:element name = “country” ty pe = “xs:string”/>

 <xs:element name = “day ” ty pe = “xs:date” />

 </xs:complexTy pe>

 Definitions of MaxMinType and InDataFault here

 </schema>
</ty pes>

A WSDL description fragment 2

Now define the inte rface and its operations. In this case, there is only a single

operation to return maximu m and min imum temperatures

<interf ace name = “weatherInf o” >

 <operation name = “getMaxMinTemps” pattern = “wsdlns: in-out”>

 <input messageLabel = “In” element = “weathns: PlaceAndDate” />

 <output messageLabel = “Out” element = “weathns:MaxMinTemp” />

 <outf ault messageLabel = “Out” element = “weathns:InDataFault” />

</operation>
</interf ace>

Service engineering

• The process of developing services for reuse in
service-oriented applications

• The service has to be designed as a reusable
abstraction that can be used in different systems

• Involves

– Service candidate identification

– Service design

– Service implementation

The service engineering process

Service candidate identification

• Three fundamental types of service

– Utility services that implement general functionality
used by different business processes

– Business services that are associated with a specific
business function e.g., in a university, student
registration

– Coordination services that support composite
processes such as ordering

Service classification

 Utility Business Coordination

Task Currency

convertor

Employ ee locator

Validate claim

f orm

Check credit

rating

Process expense

claim

Pay external

supplier

Entity Document style

checker

Web f orm to XML

converter

Expenses form

Student

application f orm

Service identification

• Is the service associated with a single logical entity used in different
business processes?

• Is the task one that is carried out by different people in the
organisation?

• Is the service independent?

• Does the service have to maintain state? Is a database required?

• Could the service be used by clients outside the organisation?

• Are different users of the service likely to have different non-
functional requirements?

Catalogue services

• Created by a supplier to show which good can be ordered from
them by other companies

• Service requirements
– Specific version of catalogue should be created for each client

– Catalogue shall be downloadable

– The specification and prices of up to 6 items may be compared

– Browsing and searching facilities shall be provided

– A function shall be provided that allows the delivery date for ordered items
to be predicted

– Virtual orders shall be supported which reserve the goods for 48 hours to
allow a company order to be placed

Catalogue - Non-functional requirements

• Access shall be restricted to employees of
accredited organisations

• Prices and configurations offered to each
organisation shall be confidential

• The catalogue shall be available from 0700 to 1100

• The catalogue shall be able to process up to 10
requests per second

Catalogue service operations

Operation Description

MakeCatalogue Creates a version of the catalogue tailored for a specif ic customer.

Includes an o ptional parameter to create a downloadable PDF

version of the catalogue.

Compare Prov ides a comparison of up to 6 characteristics (e.g. price,

dimensions, processor speed, etc .) of up to 4 catalogue items for

comparison.

Lookup Displays all of the data associated with a specified catalogue item.

Search This operation takes a logical expression and searches the

catalogue according to that expression. It displays a list of all items

that match the search expression.

CheckDeliv ery Returns the predicted deliv ery date for an item if it is ordered today.

MakeVirtualOrder Reserv es the number of items to be ordered by a customer and

prov ides item inf ormation for the customer’s own procurement

system.

Service interface design

• Involves thinking about the operations associated
with the service and the messages exchanged

• The number of messages exchanged to complete a
service request should normally be minimised.

• Service state information may have to be included
in messages

Interface design stages

• Logical interface design
– Starts with the service requirements and defines the operation names and

parameters associated with the service. Exceptions should also be defined

• Message design
– Design the structure and organisation of the input and output messages.

Notations such as the UML are a more abstract representation than XML

• WSDL description
– The logical specification is converted to a WSDL description

Catalogue interface design

Operation Inputs Outputs Exceptions

MakeCatalogue mcIn

Company id

PDF-f lag

mcOut

URL of the catalogue for that

company

mcFault

Invalid company id

Compare compIn

Company id

Entry attribute (up to 6)

Catalogue number (up to 4)

compOut

URL of page showing

comparison table

compF ault

Invalid company id

Invalid catalogue number

Unknown attribute

Lookup lookIn

Company id

Catalogue number

lookOut

URL of page with the item

information

lookFault

Invalid company id

Invalid catalogue number

Search searchIn

Company id

Search string

searchOut

URL of web page with search

results

searchFault

Invalid company id

Badly-formed search string

CheckDeliv ery gdIn

Company id

Catalogue number

Number of items required

gdOut

Catalogue number

Expected deliv ery date

gdFault

Invalid company id

Invalid catalogue number

No av ailability

Zero items requested

PlaceOrder poIn

Company id

Number of items required

Catalogue number

poOut

Catalogue number

Number of items required

Predicted deliv ery date

Unit price estimate

Total price estimate

poFault

Invalid company id

Invalid catalogue number

Zero items requested

Input and output message structure

gdIn

cID: string
catNum: string
numItems: integer

size (cID) = 6
size (catNum) = 1 0
numItems > 0

gdOut

catNum: string
delivDate: date

size (catNum) = 1 0
delivDate > T oday

gdFault

errCode: integer

Invalid company id
errCode=1

Invalid catalogue number
errCode = 2

No availability
errCode = 3

Zero items requested
errCode = 4

Service implementation and deployment

• Programming services using a standard
programming language or a workflow language

• Services then have to be tested by creating input
messages and checking that the output messages
produced are as expected

• Deployment involves publicising the service using
UDDI and installing it on a web server. Current
servers provide support for service installation

A UDDI description

• Details of the business providing the service

• An informal description of the functionality
provided by the service

• Information where to find the service’s WSDL
specification

• Subscription information that allows users to
register for service updates

Legacy system services

• An important application of services is to provide
access to functionality embedded in legacy
systems

• Legacy systems offer extensive functionality and
this can reduce the cost of service implementation

• External applications can access this functionality
through the service interfaces

Legacy system access

Maintenance suppor t
legacy application

«service»
Maintenance

getJob
suspendJob
completeJob

«service»
Facilities

addEquipment
deleteEquipment
editEquipment

«service»
Logging

addRequest
deleteRequest
queryRequests

Software development with services

• Existing services are composed and configured to
create new composite services and applications

• The basis for service composition is often a
workflow
– Workflows are logical sequences of activities that,

together, model a coherent business process

– For example, provide a travel reservation services
which allows flights, car hire and hotel bookings to be
coordinated

Vacation package workflow

Construction by composition

Hotel booking workflow

Workflow design and implementation

• WS-BPEL is an XML-standard for workflow
specification. However, WS-BPEL descriptions are
long and unreadable

• Graphical workflow notations, such as BPMN, are
more readable and WS-BPEL can be generated
from them

• In inter-organisational systems, separate
workflows are created for each organisation and
linked through message exchange

Interacting workflows

Service testing

• Testing is intended to find defects and
demonstrate that a system meets its functional
and non-functional requirements

• Service testing is difficult as (external) services are
‘black-boxes’. Testing techniques that rely on the
program source code cannot be used

Service testing problems

• External services may be modified by the service provider thus
invalidating tests which have been completed

• Dynamic binding means that the service used in an application may
vary - the application tests are not, therefore, reliable

• The non-functional behaviour of the service is unpredictable
because it depends on load

• If services have to be paid for as used, testing a service may be
expensive

• It may be difficult to invoke compensating actions in external
services as these may rely on the failure of other services which
cannot be simulated

Key points

• Service-oriented software engineering is based on the notion that programs can
be constructed by composing independent services which encapsulate reusable
functionality.

• Service interfaces are defined in WSDL. A WSDL specification includes a
definition of the interface types and operations, the binding protocol used by the
service and the service location.

• Services may be classified as utility services, business services or coordination
services.

• The service engineering process involves identifying candidate services for
implementation, defining the service interface and implementing, testing and
deploying the service.

Key points

• Service interfaces may be defined for legacy software systems which may
then be reused in other applications.

• Software development using services involves creating programs by
composing and configuring services to create new composite services.

• Business process models define the activities and information exchange in
business processes. Activities in the business process may be
implemented by services so the business process model represents a
service composition.

• Techniques of software testing based on source-code analysis cannot be
used in service-oriented systems that rely on externally provided services.

