Error! Style not defined.

	<Project name>

	Requirements Specification

	Use case approach

	

	

	

	

Issued by

Copyright (2001, XXXX
All Rights Reserved

	Authors:
	 <name>
	<department>

	Translator:
	

	Notification:
	

In addition to the authors named on the cover page the following persons have
collaborated on this document:

	<name>
	<department>

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

The document comprises 1 pages, all pages have issue no 01.

This issue was created on 14.02.14:59.

50
GENERAL INFORMATION

0.1
Issue Control
5
0.2
Revision History
5
0.3
References
5
0.4
Glossary and Abbreviations
5
1
INTRODUCTION
6
1.1
Scope and purpose
6
1.2
Common vocabulary
6
1.2.1
Definitions
6
1.3
Open issues
7
2
System overview
8
2.1
Business Context
8
2.2
User Characteristics
8
2.3
Summary of Features
8
2.4
General Constraints, Assumptions and Dependencies
9
3
Functional requirements
10
3.1
Introduction to Use-case concept
10
3.1.1
Use case description contains:
11
3.1.2
Relationships between use cases
11
3.2
User Roles
12
3.2.1
<user role/actor>
12
3.3
Use Cases
13
3.3.1
<Use case package>
13
4
Nonfunctional requirements
14
4.1
External Interface/Interoperability Requirements
14
4.2
GUI Requirements
14
4.3
Internal Data Requirements
14
4.4
Design and Implementation Constraints
14
4.5
Safety Requirements
15
4.6
Security and Privacy Requirements
15
4.7
HW Requirements
15
4.8
SW Requirements
15
4.9
Software Quality Factors
15
4.9.1
Usability
15
4.9.2
Reliability
15
4.9.3
Performance
15
4.9.4
Supportability
15
4.9.5
Efficiency Requirements
16
4.9.6
Integrity Requirements
16
4.9.7
Maintainability Requirements
16
4.9.8
Testability Requirements
16
4.9.9
Flexibility Requirements
16
4.9.10
Portability Requirements
16
4.9.11
Reusability Requirements
16
5
Appendices
17

0 GENERAL INFORMATION

0.1 Issue Control

The document comprises 1 pages, all pages have issue no 01.

This issue was created on 14.02.2002 14:59.

0.2 Revision History

	Issue
	Date
	Reason for Changes

	01
	
	

Table 1: History

0.3 References

Numbered list of documents, books, links, etc. referenced from within this document. This section is also known as Bibliography.

0.4 Glossary and Abbreviations

	Term
	Description

	
	

This section describes the abbreviations used within the document.

1 INTRODUCTION

NOTE: a text marked in Italic and blue is an explanation to the respective section. Please leave it out in your future documents!
1.1 Scope and purpose

Describe the purpose and scope of the application of this document here.

1.2 Common vocabulary

Note: If necessary (mainly for large complex projects), this section could be saved in a document file called Glossary. In that case leave out the subsequent chapters and provide a reference.

Present any information the reader might need to this chapter.

This section is used to define terminology specific to the problem domain, explaining terms, which may be unfamiliar to the reader of the requirements specification or other project documents.

Often, this section can be used as an informal data dictionary, capturing data definitions so that use-case descriptions and other project documents can focus on what the system must do with the information.

1.2.1 Definitions

The terms defined here form the essential substance of this section document. They can be defined in any order desired, but generally alphabetic order provides the greatest accessibility.

1.2.1.1 <Name of term 1>

The definition for term 1 is presented here. As much information as the reader needs to understand the concept should be presented.

1.2.1.2 <Group of terms>

Sometimes it is useful to organize terms into groups to improve readability.

For example, if the problem domain contains terms related to both accounting and building construction (as would be the case if we were developing a system to manage construction projects), presenting the terms from the two different sub-domains might prove confusing to the reader. To solve this problem, we use groupings of terms.

In presenting the grouping of terms, provide a short description that helps the reader understand what this group of terms represents. Terms presented within the group should be organized alphabetically for easy access.

1.2.1.2.1 <Name of term 1 within group>

The definition for term 1 is presented here. As much information as the reader needs to understand the concept should be presented.

1.3 Open issues

List here any open issues regarding this document or the topic (requirements capture) in general.

2 System overview

The purpose of this part is to collect, analyze and define high-level user needs and features of the product. Focus on capabilities needed by the target users and why these needs exist.

Details of how the application fulfills these needs are specified in the subsequent functional and non-functional requirements section, therefore only a brief summary is provided here.

2.1 Business Context

This subsection should put the system in perspective to other related systems and the user’s environment. Describe the business context of the system.

Provide a description of this system, where it fits into the Company’s overall structure, and what functionality is provided by this product. (There might be another specification, e.g. Project Vision that would cover these items in much more detail and with far greater depth).

If the system is independent and totally self-contained, state it here. If the system is a component of a larger system, then this subsection should relate how these systems interact and should identify the relevant interfaces between the systems. One easy way to display the major components of the larger system, interconnections and external interfaces is via a block diagram.

This section shall also provide a high level description of business process to be supported by IT. You can use a textual description or provide some diagrams.

2.2 User Characteristics

State any User characteristics that may be influential or significant in the structure of the product.

This section should profile the intended users of the application and the key problems that limit their productivity. It should not be used to state specific requirements. Instead, provide the background and justification for why the requirements are needed.

To effectively provide products and services that meet your customers’ needs, it is necessary to understand the challenges they confront when performing their jobs.

For example, there could be a Customer (someone who sends a request vie the system), Administrator (someone who maintains the system), Operator (someone who handles the customer’s requests via the application), etc.

2.3 Summary of Features

Summarize the major benefits and features the product will provide.

For example, a customer support system may use this part to address problem documentation, routing and status reporting without mentioning the amount of detail each of these functions requires.

Organize the functions so the list is understandable to the customer or to anyone else reading the document for the first time. A simple table listing the key benefits and their supporting features might suffice.

For example (a customer support system)

	System feature
	Benefit

	Knowledge base assists support personnel in quickly identifying known fixes and workarounds
	New support staff can quickly get up to speed.

	Problems are uniquely itemized, classified and tracked throughout the resolution process. Automatic notification occurs for any aging issues.
	Customer satisfaction is improved because nothing falls through the cracks.

	Trend and distribution reports allow high-level review of problem status.
	Management can identify problem areas and gauge staff workload.

	Replication server allows current database information to be shared across the enterprise
	Distributed support teams can work together to solve problems.

	Knowledge base can be made available over the Internet. Includes hypertext search capabilities and graphical query engine
	Customers can help themselves, lowering support costs and improving response time.

	System feature
	Benefit

	
	

2.4 General Constraints, Assumptions and Dependencies

Outline here briefly any design constraints, external constraints, or other dependencies or factors that affect the features stated above.

List assumptions that, if changed, will alter the Vision document. For example, an assumption may state that a specific operating system will be available for the hardware designated for the software product. If the operating system is not available, the Vision document will need to change.

3 Functional requirements

NOTE: Be careful, avoid solution! Do describe customer problem, WHAT he wants/needs, instead HOW these needs will be realized (this will be done after a careful analysis in subsequent steps).

This section contains the list of the functional requirements (i.e. services or functionality) represented by Use cases.

3.1 Introduction to Use-case concept

This concept represents an acceptable way of expressing user requirements for both user (non-technical folks) and developers (technical folks). One use case describes several scenarios how user can use or interact with the system. This should be described using user's own words (omitting any technical terms, which are not understandable for ordinary users). The users should think that this is the way they will use the system. The GUI is not described in much detail, because it could change in the final version, but the functionality, i.e. WHAT the system will do should be clear.

Every use case description contains a section named Goal. This states a goal the user (we call him in generally an actor) has. Users usually think about goals when doing their job. They always set some goals for everyday of their work. And the system should help fulfilling these goals. Therefore for each use case it should be clear what goals the user has. If the goals are not real (doesn't exist in the real everyday work), then there is something wrong with the use case.

In use cases we try to link user's goal with systems responsibilities (what it should do), such that the system could assist the user to fulfill her goals.

The way how systems assists is written in the section Main flow, that describes the flow of interaction between the user and the system. We call it main, because in reality there always some ways, in that we say, things go fine, or normally (e.g. when crossing the street we usually successfully cross the street).

But sometimes, something can go wrong (e.g. we are hit by a car) and it's necessary to know these situations as well. Therefore we have a section called Alternative flows, that contains exceptional flows that represents some failure scenarios (it can go wrong) or some alternatives how to reach the specified goal a different way (you can cross the street normally, or using a walk-through).

Some scenarios cannot be executed if something does not hold (if you want to cross the street you have to be near the street and not sitting home). We shall call these conditions Preconditions. They will describe what should hold within the system or outside in order the scenario could be successful.

Usually after users perform some activities (a particular scenario), they expect some changes in the system or outside it, as set by the goal (e.g. when crossing the street you want to be on the opposite side without being injured or hit by a car). These we shall call Postconditions. We want write them down, unless they differ from the ones set in Goals section.

Every use case have it's own Priority (Rank) that represents it's priority when implementing the system. Use cases with higher ranking should be realized (implemented) prior to the one with lower ranking. Since we assume, there will be several incremental versions of the system, some use cases might be implemented in later versions.

Additionally there is one section stating the Open issues we identified during this (use case) analysis. At the end of our analysis these sections should be clear and all open issues or problems should be clarified.

Important!!! This should be readable and clear to users (non-technical folks). If it's not, please, notify us. We should be clear about this, because this represents the desired functionality You wish to have and we should implement. Any misunderstandings in these concepts, if not clarified here, could proliferate massively in later stages of the project causing budget/time overruns.

3.1.1 Use case description contains:

1. Name

2. ID

3. Rank(Priority)

This attribute can be one of High, Medium, Low.

· High represents the highest priority, which means this functionality is critical for the user. Failure to implement means the system will not meet customer needs. All critical features must be implemented in the release or the schedule will slip.

· Medium represents features important to the effectiveness and efficiency of the system for most applications. The functionality cannot be easily provided in some other way. Lack of inclusion of an important feature may affect customer or user satisfaction, or even revenue, but release will not be delayed due to lack of any important feature.

· Low represents features that are useful in less typical applications, will be used less frequently, or for which reasonably efficient workarounds can be achieved. No significant revenue or customer satisfaction impact can be expected if such an item is not included in a release.

4. Goal - it's the goal of the user (actor) initiating the use case. This goal should be supported by the system's responsibilities. The system should have such responsibilities, that all the goals of it's actors are fulfilled

5. Preconditions

6. Postconditions (success and failed)

7. Main flow (main scenario)

8. Alternative flows (alternative scenarios)

9. Open issues

10. Additional properties

 - schedule, time, frequency

 - other non-functional requirements

3.1.2 Relationships between use cases

You may notice that between some use cases there is a relationship (an arrow). This represents a situation in which scenarios of one use case (at the and of the arrow) are used in description of another use case (at the source of the target). We use this concept for the sake of simplicity and readability, since there are a couple of scenarios that are "shared" among several different use cases.

3.2 User Roles

All the possible users of the system are called Actors. Even non-human users are covered under this definition, e.g. another IT system that shall interact with the system being described.

Another important notice is that, Actors are not actual users, rather they represents roles that possible users can “play” when interacting with the system. Therefore, You may have one user e.g. Joe, who can play “Guest” as well as “Administrator” role (consider Guest and Administrator to be defined in the usual manner as for operating systems). Thus we will not model actor called “Joe” but actors named according to the roles.

For every actor there is a set of his goals together with his responsibilities. It is very important to specify the goals and responsibilities for each actor in much detail, since this is the main input for requirement analysis.

Simply stated, You have to know goals and responsibilities of Your users in order to be able to support these goals and responsibilities by an IT system.

For more detailed description of user roles, why to use them and how to describe them, please refer to an external document called “Use cases exemplified”.

3.2.1 <user role/actor>

Goals:

Identify the goals of the user (try to concentrate on those that relate to the system). To achieve these goals the user will require and use system’s services (i.e. functionality).

Responsible for:

1. Responsibility description…

List all the relevant responsibilities of this user (again try to concentrate on those that relate to the system). This is a key to find the goals of this actor, because each responsibility sets some goals.

Open issues:

State any open questions, issues or problems concerning the description of this user role.

Use Cases

This chapter describes the identified use cases – potential scenarios how system should be used by its users. These scenarios actually describe functionality provided by the system.

This section can be organized along the identified features of the system (as described in the System overview chapter). However any other reasonable structuring can be used if appropriate. But remember, this document shall be readable by several different stakeholders (customer, system analyst, developers, project manager, etc.) who might read it for the first and should understand it.

3.2.2 <Use case package>

This section can also contain a use case diagram depicting the use cases, actors and their relationships.

In the following is the list of all use cases from this package.

3.2.2.1 Use Case: <use case name>
ID: <identification>

Rank: <rank>

Goal

1. Goal description

2. ….

Preconditions
Postconditions
Main flow
Alternative flows
a. Alternative flow 1

b. Alternative flow 2

Open issues
4 Nonfunctional requirements

Any other types of requirements on the system being built that do not fit in the following section can be put in separate section according to the category they belong. Hence, You can add new categories (but keep it reasonable).

On the other hand if You do not want some category of non-functional requirements to be listed here (e.g. due to lack of understanding of the customer), You can leave it out.
4.1 External Interface/Interoperability Requirements

State any External interface requirements, these may be requirements on interfaces to other systems (e.g. if the system shall be integrated with other systems).

Interoperability requirements specify the requirements to facilitate interfacing this system with other systems.

These requirements may exist in greater detail in an Interface description document, or other requirements document. Reference these documents if they exist.

4.2 GUI Requirements

In case of GUI-intensive application, the customer may require a particular GUI technique to be used. Additionally some requirements on the language of GUI may be formulated.

Put all GUI related requirements here.

4.3 Internal Data Requirements

Describe in more detail requirements upon objects or data that will be maintained or handled by the system.

If the customer requires to maintain some information in a specific format or to have specific attributes of an object you can provide it here.

Consider for example that the customer

4.4 Design and Implementation Constraints

Indicate in this section any design constraints on the system being built. This subparagraph shall specify other requirements, which constrain the system’s design (e.g., the use of a particular processing configuration, use of particular architecture).

This subparagraph can also specify, directly or by reference, the design standards under which the Application shall be developed.

There may some implementation constraints posed on the system, such as the amount and location of internal memory and processing time allocated to the system, including spare capacity, etc.

4.5 Safety Requirements

4.6 Security and Privacy Requirements

4.7 HW Requirements

List here any requirements on computer hardware (e.g. to be used), or requirements on the utilization of the computer HW.

4.8 SW Requirements

List here any requirements on the SW that is required by the customer (e.g. a specific operation system, or a communication software, etc.)

4.9 Software Quality Factors

In the following is a list of possible categories of requirements which affect the software quality. They can be left out if not needed, an on the other hand a new subsection can be added as appropriate.

4.9.1 Usability

Include all of those requirements that relate to, or affect, the usability of the system. Examples include ease-of-use requirements or training requirements that specify how readily the system can be used by its actors.

4.9.2 Reliability

Specify any requirements concerning the reliability of the system. Quantitative measures such as mean time between failure or defects per thousand lines of code should be stated.

4.9.3 Performance

Outline the performance characteristics of the system. Include specific response times. Reference related use cases by name.

4.9.4 Supportability
Indicate any requirements that will enhance the supportability or maintainability of the system being built.
4.9.5 Efficiency Requirements

4.9.6 Integrity Requirements

This subparagraph shall specify the requirements for the implemented Application to control unauthorized access to operations and data.

4.9.7 Maintainability Requirements

This subparagraph shall specify the maximum effort required to locate and fix an error in the implemented Application.

4.9.8 Testability Requirements

This subparagraph shall specify the maximum effort required to ensure that the implemented Application performs its intended functions.

4.9.9 Flexibility Requirements

4.9.10 Portability Requirements

This subparagraph shall specify the maximum effort required to transfer the implemented Application from one hardware or software system environment to another.

4.9.11 Reusability Requirements

This subparagraph shall specify requirements to use the implemented Application in other applications.

5 Appendices

List here any appendices you want to refer from within the document.

PAGE

Error! Reference source not found.
2

